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Linearized non-equilibrium and non-isothermal two-dimensional model of liquid
chromatography for studying thermal effects in cylindrical columns

Abdulaziz Garba Ahmada,b, Shamsul Qamara,c , and Andreas Seidel-Morgensternc

aDepartment of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan; bDepartment of Mathematics Programme, National
Mathematical Centre Abuja, Abuja, Nigeria; cMax Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

ABSTRACT
A non-equilibrium and non-isothermal two-dimensional lumped kinetic model (2D-LKM) is formu-
lated and analytically solved to study the influence of temperature variations along the axial and
radial coordinates of a liquid chromatographic column. The model includes convection-diffusion
partial differential equations for mass and energy balances in the mobile phase coupled with dif-
ferential equations for mass and energy in the stationary phase. The solutions are derived analytic-
ally through sequential implementation of finite Hankel and Laplace transformations using the
Dirichlet inlet boundary conditions. The coupling between the thermal waves and concentration
fronts is demonstrated through numerical simulations and important parameters are recognized
that influence the column performance. For a more comprehensive study of the considered
model, numerical temporal moments are obtained from the derived solutions. Several case studies
are conducted and validity ranges of the derived analytical solutions are identified. The current
analytical results will play a major role in the improvements of non-equilibrium and non-isother-
mal liquid chromatographic processes.
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Introduction

Column chromatography technique is a useful tool for the
separation of multi-component mixtures in which the
adsorption affinities of the components are dissimilar. This
technique is frequently utilized in the pharmaceutical, food
and chemical industries where the conventional thermal unit
operations, such as extraction and distillation, are not

suitable [1–5]. This process is equally popular at large and
preparative scales, especially for purifying proteins and other
high-value products.

All chromatographic techniques are broadly affected by
temperature and there are several ways to reveal its import-
ance. For instance, elevated temperature reduces viscosity
and enhances solubility and diffusivity [6,7]. Temperature
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influences column efficiency, retention time, peak shape,
and total time analysis, because thermodynamics and
adsorption kinetics are depending on the temperature.
Further, operation of the process under a controlled tempera-
ture improves reproducibility. Although, thermal effects are
usually neglected in the liquid chromatographic columns by
assuming the influence of adsorption heat insignificant, more
and more chromatographers have started realizing the tempera-
ture as imperative to the optimization of the process [8–10].
On the other hand, several authors have studied thermal effects
in the gas chromatography [11–14]. Further contributions on
the study of thermal effects in liquid chromatographic columns
are also available in the literature [5,9,10,15–23].

Several kinds of mathematical models exist in the litera-
ture for simulating liquid chromatography process consider-
ing different levels of complexities. Out of them, the
important and frequently used models contain the equilib-
rium dispersive model (EDM), the linear driving force
model, the lumped kinetic model (LKM) and the general
rate model (GRM) [1,4–6,24–26]. The mass transfer rate is
assumed infinite in the EDM, while the rate of change of
local concentration is considered finite in the LKM [1,4,5].
The GRM is regarded as the most comprehensive model
which incorporates the interfacial mass transfer between the
stationary and mobile phases, as well as the intra particle
diffusion [1].

Figure 1. Diagram of the thermally insulated column considering the solute injec-
tion either through the inner cylindrical core or through the outer annular ring.

Table 1. Values of the model parameters used in the test problems

Parameters Values

Interstitial velocity u ¼ 1:5 cm=min
Column length L ¼ 4:0 cm
Porosity � ¼ 0:4
Density of heat capacity of solid cf ¼ 4 kJ=l
Density of heat capacity of liquid ce ¼ 4 kJ=l
Axial dispersion coefficient Dz ¼ 0:025 cm2=min
Axial conductivity coefficient kz ¼ 0:1 kJcm�1min�1

Radial dispersion coefficient Dr ¼ 0:0025 cm2=min
Radial conductivity coefficient kr ¼ 0:01 kJcm�1min�1

Mass transfer coefficient k ¼ 1 cm=min
Heat transfer coefficient hp ¼ 1 Wðcm2KÞ�1

Initial temperature Tinit ¼ 300 K
Initial concentration cinit ¼ 0 mol=l
Inlet concentration cinj ¼ 1 mol=l
Reference temperature Tref ¼ 300 K
Inlet temperature Tinj ¼ 300 K
Adsorption equilibrium constant aref ¼ 1
Dimensionless injection time �inj ¼ 1 min
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Figure 2. Plots of profiles for the Isothermal case ðDHA ¼ 0 kJ=molÞ: Inner zone injection and parameters of the Table 1 are considered.
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The linear models are solvable analytically and several
authors have derived the analytical solutions of linear one-
dimensional (1D) models [27–35]. Moreover, the analytical
solutions of linearized isothermal two-dimensional (2D)
models are also available in the literature [36–39]. It was
found that the developed 2D-models and their solutions are
more flexible and general than the classical 1D-models and
their solutions. The solutions of 2D-models can be utilized
for studying both axial and radial concentration gradients
inside the columns. They are useful when the injection is
imperfect at the column inlet or column is packed non-
homogeneously. Moreover, experiment studies on the imple-
mentation of 2D liquid chromatography are also available
in the literature which further motivate the interest of ana-
lytical chemist in the current theoretical study [40,41].

In this article, a linearized non-isothermal 2D-LKM is
solved analytically. The present work further generalizes our
preceding analysis for the non-isothermal 1D-LKM [42].
Contrary to the previous analysis, the current flexible and
general non-isothermal 2D-LKM allows the study of both
axial and radial concentration and temperature gradients
inside the column. Such a non-isothermal model is very use-
ful for quantifying radial temperature gradients in those col-
umns in which radial concentration gradients are significant.

The Hankel and Laplace transformations are jointly used to
obtain the Hankel-Laplace domains analytical solutions
[36–39]. An accurate and efficient procedure of numerical
Laplace inversion is applied to obtain solutions in the time
domain [43]. A few important case studies are conducted
to demonstrate the joint occurrence of thermal and concen-
tration fronts. Moreover, those key parameters are pointed
out which influence the temperature gradients inside
the column.

The organizations of the paper contents are as follows. In
Section 2, a non-equilibrium and non-isothermal 2D-LKM
is formulated to simulate dynamical processes in non-iso-
thermal liquid chromatographic columns of cylindrical
geometry. In Section 3, the analytical solutions of the 2D-
model are derived for the considered Dirichlet boundary
conditions. Section 4 presents some numerical test problems
and eventually conclusions are given in Section 5.

The non-isothermal 2D-LKM chromatographic
model

In the derivation of the model, it is assumed that i) the
chromatographic column is thermally insulated and packed
homogeneously with spherical particles of radius Rp as
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Figure 3. Plots of profiles for the non-Isothermal case ðDHA ¼ �10 kJ=molÞ: Inner zone injection and parameters of the Table 1 are considered.
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shown in Figure 1 [44,45], ii) the volumetric flow rate is
constant, iii) the fluid is incompressible and interaction
between the mobile and stationary phases are negligible, iv)
the viscous heat of the system is neglected, v) the axial and
radial heat conductivity coefficients are independent of the
flow rate, vi) the temperature has no influence on the phys-
ical properties like density, viscosity, heat capacity and trans-
port coefficients (e.g. axial and radial dispersions and heat
conductivities), vii) the overall adsorption rate is expressed
by the linear driving force model, and viii) the solid phase
heat transfer resistance is concentrated at the par-
ticle surface.

Let the time coordinate is denoted by t, the radial coord-
inate across the column radius is represented by r, while the
axial coordinate along the column length is symbolized as z.
The solute propagates along z-direction of the column by
advection and axial-dispersion, while radial-dispersion is
only responsible for its spreading along the column radius.
Two different modes of injection are considered for trigger-
ing radial gradients inside the column. A new symbol �r is
introduced for splitting the inlet cross-section of the column
into outer annular and inner cylindrical regions. Thus, three
different possibilities are available for sample injection into
the column, i.e. the sample can be either injected via inner

region, outer region, or via full cross-sectional area of the
column. The latter possibility fulfills when the value of �r is
equal to the radius of the column represented by R. The
mass and heat balance equations for a single-component
elution in the mobile phase are stated as

@c
@t

þ u
@c
@z

¼ Dz
@2c
@z2

þ Dr
@2c
@r2

þ 1
r
@c
@r

� �
�Fk q�� qð Þ; (1)

@T
@t

þ u
@T
@z

¼ kz
cf

@2T
@z2

þ kr
cf

@2T
@r2

þ 1
r
@T
@r

� �

þF
�DHA

cf

@q
@t

� F
ce
cf

@Ts

@t
: (2)

In these equations, the solute concentration in the liquid
phase is denoted by c, the interstitial velocity is represented
as u, the axial-dispersion coefficient is denoted by Dz, the
radial-dispersion coefficient is represented by Dr, while the
phase ratio is defined as F ¼ 1��

� with � being the external
porosity. The symbol k denotes the mass transfer rate coeffi-
cient, the non-equilibrium mean loading of solute in the
solid phase is symbolized as q, a symbol T is used for tem-
perature of the mobile phase, the symbols kz and kr are
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Figure 4. Plots of profiles for the non-isothermal case ðDHA ¼ �10 kJ=molÞ: Outer zone injection and parameters of the Table 1 are considered.
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reserved for heat conductivity coefficients along the axial
and radial coordinates. Furthermore, ce ¼ qscsp; cf ¼ qlclp; q

s

and ql respectively represent densities per unit volume in
the solid and liquid phases, csp and clp respectively represent
the corresponding heat capacities of the solid and liquid
phases, while Ts is utilized for temperature of the
solid phase.

The corresponding mass and heat balance equations in
the solid phase are expressed as

@q
@t

¼ k q�� qð Þ; (3)

@Ts

@t
¼ �DHA

ce

@q
@t

þ 3hp
Rpce

T � TSð Þ: (4)

Here, DHA symbolizes the enthalpy of adsorption and hp
is used as a heat transfer coefficient between the mobile and
solid phases. A temperature dependent relation between the
solid phase equilibrium concentration q� and the liquid
phase concentration c is expressed as

q� ¼ aref exp
�DHA

Rg

1
Ts

� 1
Tref

� �" #
c: (5)

Here, Tref represents the reference temperature, aref is
Henry’s constant, and Rg is a universal gas constant. To
facilitate our analysis, the following new dependent variables
are considered:

c1 ¼ c; q1 ¼ q; c2 ¼ T�Tref ; q2 ¼ Ts�Tref : (6)

Furthermore, the following new dimensionless parameters
are introduced in the model for minimizing the number of
parameters:

j ¼ Lk
u
; q ¼ r

R
; Pez;H ¼ cf Lu

kz
; x ¼ z

L
;

Peq;H ¼ cf R2u

krL
; � ¼ ut

L
; Pez;M ¼ Lu

Dz
; Peq;M ¼ R2u

DrL
;

bs ¼
3Lhp
uRpce

; bL ¼
3Lhp
uRpcf

; (7)

where the column length is denoted by L, the Peclet num-
bers of heat and mass transfer along the axial direction are
respectively denoted by Pez;H and Pez;M: While, Peq;H and
Peq;M are the Peclet numbers of heat and mass transfer
along the radial direction, respectively. On using Eqs. (6)
and (7) in Eqs. (1)-(4), we obtain after some manipulations
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Figure 5. Comparison of analytical solutions for the linear isotherm and numerical solutions for the nonlinear isotherm at DHA ¼ �20 kJ=mol and DHA ¼
�40 kJ=mol: Inner zone injection and parameters of the Table 1 are considered.
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@c1
@�

¼�@c1
@x

þ 1
Pez;M

@2c1
@x2

þ 1
Peq;M

@2c1
@q2

þ 1
q
@c1
@q

� �
�Fj q�1�q1

� �
;

(8)

@c2
@�

¼�@c2
@x

þ 1
Pez;H

@2c2
@x2

þ 1
Peq;H

@2c2
@q2

þ 1
q
@c2
@q

� �
�FbL c2�q2ð Þ;

(9)

@q1
@�

¼ j q�1�q1
� �

; (10)

@q2
@�

¼ �DHA

ce
j q�1�q1
� � þ bs c2�q2ð Þ: (11)

By considering small changes in the temperature and
concentration, Eq. (5) can be expanded through Taylor
expansion up to first order. Resultantly, the equilibrium
relation between the stationary and mobile absorbed phases
is linearizes as:

q�1 ’ q�1 c1;ref ;Tref
� � þ @q�1

@Ts

����
c1;ref ;Trefð Þ

Ts �Tref
� �

þ @q�1
@c1

����
c1;ref ;Trefð Þ

c1 � c1;refð Þ; (12)

where c1;ref denotes the reference concentration and Tref is
the corresponding reference temperature. On using Eqs. (5)
and (6) in Eq. (18), we get

q�1 c1; q2ð Þ ¼ H1c1 þ H2q2; (13)

where H1 ¼ aref and H2 ¼ DHAc1;ref
RgTref

: The initial conditions are
given as

c1 x; q; 0ð Þ ¼ c1;init; q1 x; q; 0ð Þ ¼ q1;init;

c2 x; q; 0ð Þ ¼ c2;init; q2 x; q; 0ð Þ ¼ q2;init: (14)

Here, c2;init ¼ Tinit �Tref with Tinit being the initial tem-
perature, c1;init stands for the initial concentration in the col-
umn, while q1;init and q2;init represent the initial
concentration and temperature in the solid phase.
Furthermore, different inflow conditions are assumed at the
column inlet as elaborated below.

The inner circular region injection is stated as

c1 x¼ 0;q;�ð Þ¼ c1;inj; if 0� � � �inj and 0� q� ~q;
0; if �>�inj or ~q<q� 1;

	
(15a)

c2 x¼ 0;q;�ð Þ¼ c2;inj; if 0� � � �inj and 0� q� ~q;
0; if � >�inj or ~q<q� 1;

	
(15b)

Figure 6. Effect of mass transfer coefficient j on concentration and temperature profile for the non-isothermal case ðDHA ¼ �10 kJ=molÞ: Inner zone injection
and parameters of the Table 1 are considered.
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where ~q¼~r=R: While, injection in the outer annular zone is
stated as

c1 x¼ 0;q;�ð Þ¼ c1;inj; if 0� � � �inj and ~q<q� 1;
0; if �>�inj or 0� q� ~q;

	
(15c)

c2 x¼ 0;q;�ð Þ¼ c2;inj; if 0� � � �inj and ~q<q� 1;
0; if �>�inj or 0� q� ~q:

	
(15d)

To express injection via the whole inlet cross-section of the
column, either set ~q¼ 1 in Eqs. (15a) and (15b) or set ~q¼ 0
in Eqs. (15c) and (15d).

Considering a column of hypothetically infinite length,
conditions at the exit of the column are expressed as:

@ci x; q; �ð Þ
@x

����
x¼1

¼ 0; i ¼ 1; 2: (15e)

Here

c2;inj ¼ Tinj �Tref and �inj ¼
utinj
L

: (16)

In the conditions above c1;inj expresses concentration of
the injected component, Tinj donates the temperature of
injected component and � inj is the time of injection. In most
of the liquid chromatographic operations, the Peclet

numbers of energy and mass are sufficiently large (or axial
heat conductivity and axial-dispersion coefficients are suffi-
ciently small), providing a justification for the use of current
simplified Dirichlet boundary conditions.

Analytical solutions

The aforementioned linearized non-equilibrium and non-
isothermal two-dimensional LKM is solved analytically by
using the methods of Hankel and Laplace transformations.
A zeroth-order Hankel transform of the cðx; q; �Þ is defined
as [46–48]

cH x; kn; �ð Þ ¼ H c x; q; �ð Þ½ � ¼
ð1
0

c x; q; �ð ÞJ0 knqð Þq� �
dq;

(17a)

while, the inverse of the Hankel transform is stated as

c x; q; �ð Þ ¼ 2 cH x; kn ¼ 0; �ð Þ þ
X1
n¼1

cH x; kn; �ð Þ J0 knqð Þ
jJ0 knð Þj2

 !" #
:

(17b)

On the other hand, the Laplace transformation of
cHðx; kn; �Þ is expressed as [48]
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Figure 7. Effect of Peq;M on concentration and temperature profiles for the non-isothermal case ðDHA ¼ �10 kJ=molÞ: Here, plots for Peq;M ¼ 0:5 are shown in
(a) & (b), while plots for Peq;M ¼ 8 are given in (c) & (d) assuming ce
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¼ 1:
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�cH x; kn; sð Þ ¼
ð1
0

e� stcH kn; x; �ð Þ
 �
dt: t � 0: (17c)

Now, the above-mentioned transformations are applied
on Eqs. (8)-(11) to solve them analytically. After applying
these transformations and plugging the values of q1ðsÞ and
q2ðsÞ; the resulting equations have the forms

1
Pez;M

@�c1;H
@x2

�@�c1;H
@x

¼g1 s;knð Þs�c1;H�g1 s;knð Þsc1;int þ a2 sð Þs�c2;H;

(18)

1
Pez;H

@�c2;H
@x2

�@�c2;H
@x

¼b1 sð Þs�c2;H�b1 sð Þc1;int þ g2 s;knð Þs�c2;H;

(19)

where, the new parameters introduced in Eqs. (18) and (19)
are defined as

a1 sð Þ¼1þFjH1

sþj
� FDHAj2H1H2s

ce sþjð Þ2 sþbsð Þþ s sþjð ÞDHAjH2
;

a2 sð Þ¼ FbscejH2

ce sþjð Þ sþbsð Þþ sDHAjH2
;

b1 sð Þ¼ FbLcejH2

ce sþjð Þ sþbsð Þþ sDHAjH2
;

b2 sð Þ¼1� FbLce sþjð ÞþDHAjH1H2s

ce sþjð Þ2 sþbsð Þþ s sþjð ÞDHAjH2
;

g1 s;knð Þ¼a1 sð Þþ k2n
sPeq;M

; g2 s;knð Þ¼b2 sð Þþ k2n
sPeq;H

: (20)

Eqs. (18) and (19) are written in compact form as

1
Pez;M
1

Pez;H

0
BB@

1
CCA @2

@x2
�c1;H
�c2;H

� �
� @

@x
�c1;H
�c2;H

� �

¼ g1 s; knð Þ a2 sð Þ
b1 sð Þ g2 s; knð Þ

� �
s�c1;H � c1;init

s�c2;H

� �
: (21)

The matrix of the coefficients has the form

A ¼ g1 s; knð Þ a2 sð Þ
b1 sð Þ g2 s; knð Þ

� �
: (22)

The next step will be to decouple the above system by
using the eigen-decomposition method. The above matrix
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has two distinct eigenvalues, allowing its diagonalization.
These eigenvalues are given as

k1;2 ¼ 1
2

g1 s; knð Þ þ g2 s; knð Þð Þ½

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 s; knð Þ� g2 s; knð Þð Þ2 þ 4a2 sð Þb1 sð Þ

q
�: (23)

The two associated eigenvectors are expressed as

x1 ¼ k1 � g2 s; knð Þ
b1 sð Þ

� �
; x2 ¼ k2 � g2 s; knð Þ

b1 sð Þ
� �

: (24)

On the basis of the above eigenvalues, the transformation
Matrix B can be written as

B ¼ g1 s; knð Þ a2 sð Þ
b1 sð Þ g2 s; knð Þ

� �
: (25)

The following linear transformation is constructed by uti-
lizing the transformation matrix B:

�c1;H
�c2;H

� �
¼ k1 � g2 s; knð Þ k2 � g2 s; knð Þ

b1 sð Þ b1 sð Þ Þ
� �

�c1
�c2

� �
: (26)

By implementing the above transformation on the system
in Eq. (21), we obtain

1
Pez;M

d2�c1
dx2

� d�c1
dx

� sk1�c1 ¼ � k1c1;init; (27)

1
Pez;H

d2�c2
dx2

� d�c2
dx

� sk2�c2 ¼ � k2c2;init; (28)

where

c1;init ¼
c1;init

k1 � k2
; c2;init ¼ � c1;init

k1 � k2
: (29)

The two Eqs. (27) and (28) describe decoupled steady-state
of advection-dispersion equations. Our focus is to deter-
mined the analytical solutions these two separated equations.
The solutions of Eq. (27) is

�c1 x; kn; sð Þ ¼ A1e
a1x þ B1e

a2x þ c1;init
s

; (30)

where

a1;2 ¼ Pez;M6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2z;M þ 4sPez;Mk1

q
: (31)

In a similar manner, the solution of Eq. (28) is obtained as

�c2 x; kn; sð Þ ¼ A2e
b1x þ B2e

b2x þ c2;init
s

; (32)

where

b1;2 ¼ Pez;H6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2z;H þ 4sPez;Hk2

q
: (33)

The constants of integrations appearing in Eq. (27) and
(28), i.e. A1;A2;B1 and B2; are evaluated by means of the
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considered two different sets of boundary of conditions
(BCs). By applying the Hankel transforms on Eqs. (17a) (or
(17 b)) and (17c), the following equations are obtained

ci;H x; kn; �ð Þ ¼ ci;injF knð Þ; if 0 � � � �inj;
0; if �>�inj;

	
(34a)

@ci;H x; kn; �ð Þ
@x

����
x¼1

¼ 0; i ¼ 1; 2: (34b)

Here FðknÞ for the inner cylindrical core injection is
given as

F knð Þ ¼
~q2

2
; if kn ¼ 0;

J1 kn~qð Þ ~q
kn

; if kn 6¼ 0:

8>><
>>: (34c)

While, for the case of outer annular ring injection, FðknÞ
is stated as

F knð Þ ¼
1
2
� ~q2

2

� �
; if kn ¼ 0;

� J1 kn~qð Þ ~q
kn

; if kn 6¼ 0:

8>><
>>: (34d)

After applying the Laplace transformation on Eqs. (34a)
and (34b), the equations below were obtained

�ci;H x; kn; sð Þ ¼ F knð Þ
s

ci;inj 1 � e� s�injð Þ;

@�ci;H
@x

����
x¼1

¼ 0; i ¼ 1; 2: (35)

In �c domain, the above transformations take the forms

�c1;H 0; s; knð Þ ¼ 1� e� s�injð ÞF knð Þ
sb1 sð Þ k1 � k2ð Þ

b1 sð Þc1;inj � k2 � g2 s; knð Þð Þc2;inj

 �

; (36a)

�c2;H 0; s; knð Þ ¼ 1� e� s�injð ÞF knð Þ
sb1 sð Þ k2 � k2ð Þ

b1 sð Þc1;inj � k1 � g2 s; knð Þð Þc2;inj

 �

; (36b)

where

d�ci;H
dx

����
x¼1

¼ 0; i ¼ 1; 2: (37)

Using Eqs. (36a) and (36b), the constants of the integration
A1;A2;B1 and B2 have the following values

A1 ¼ 0; A2 ¼ 0; B1 ¼ �c1;H 0; s; knð Þ� c1;init
s

;
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JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES 445



B2 ¼ �c2;H 0; s; knð Þ� c2;init
s

: (38)

On substituting A1 and B1 values in Eq. (30), and A2

and B2 values in Eq. (32), we obtain

�c1;H x;s;knð Þ¼ð1�e�s�injÞF knð Þ
sb1 sð Þ k1�k2ð Þ b1 sð Þc1;inj� k2�g2 s;knð Þð Þc2;inj


 �
�ea2xþc1;init

s
1�ea2xð Þ; ð39Þ

�c2;H x;s;knð Þ¼ð1�e�s�injÞF knð Þ
sb1 sð Þ k2�k2ð Þ b1 sð Þc1;inj� k1�g2 s;knð Þð Þc2;inj


 �
�eb2xþc1;init

s
1�eb2xð Þ: ð40Þ

After utilizing the transformation in Eq. (26), the final
Hankel-Laplace domains solutions are obtained as

�c1;H x; kn; sð Þ ¼ 1 � e� s�injð Þc1;injF knð Þ
k1 � k4ð Þs

h
k1 � g2 s; knð Þð Þea2x � k2 � g2 s; knð Þð Þeb2x

i

þ 1 � e� s�injð Þc2;injF knð Þ k2 � g2 s; knð Þð Þ k1 � g2 s; knð Þð Þ
b1 sð Þ k1 � k2ð Þs

h
ea2x � eb2x

i
;

(41)

�c2;H x; kn; sð Þ ¼ 1 � e� s�injð Þb1 sð Þc1;injF knð Þ
k1 � k2ð Þs

h
ea2x � eb2x

i

þ 1 � e� s�injð Þc2;injF knð Þ
k1 � k2ð Þs

h
k2 � g2 s; knð Þð Þea2x

� k1 � g2 s; knð Þð Þeb2x
i
:

(42)

The analytical Hankel and Laplace inversions of Eqs. (41)
and (42) are not attainable. For that reason, the numerical
Hankel and Laplace inversions are employed to get accurate
solutions in the existing time domain [36–38,43].

Numerical test cases

Various case studies are conducted to examine the behavior
of analytical solutions. To access the validity ranges of our
analytical solutions, a high-resolution finite volume scheme
(HR-FVS) is also applied to numerically approximate the
full nonlinear model equations considering the isotherm in
Eq. (5) [49]. The numerical test cases also explain the cou-
pling between the concentration and thermal fronts. In the
analytical solutions, the linearized isotherm is considered
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with a Henry’s constant aref ¼ 1.0 at a reference temperature
Tref ¼ 300K: A column of length L ¼ 4:0 cm is considered
and the interstitial velocity is taken as u ¼ 1:5 cm=min:
The values of axial and radial dispersion coefficients for the
concentration in the bulk phase are chosen in a manner to
produce Peclet numbers of Pez;M ¼ 240 and Peq;M ¼ 6;
while their values for energy in the bulk phase have gener-
ated Pez;H ¼ 240 and Peq;H ¼ 6: All other parameters are
stated in Table 1 and their values are selected from the typ-
ical ranges encountered in high-performance liquid chroma-
tography (HPLC) applications.

Effect of adsorption enthalpy DHA

Figures 2 and 3 display the isothermal and non-isothermal
solutions for inner zone injection. It is evident from
Figure 2 that isothermal operating condition
(DHA ¼ 0 kJ=mol) produces no effect on the temperature
profile, leading to a steady state temperature profile (c.f. see
Figure 2). On the other hand, the non-isothermal operating
condition (DHA ¼ � 10 kJ=mol) produces visible tempera-
ture fluctuations as shown in Figure 3. Because of the con-
sidered linearity and low amplitudes of temperature
variations, the concentration profile is not effected by such
temperature variations. Due to inner zone injection, the

values of concentration and temperature are larger in the
inner region of the column (c.f. Figure 3b and Figure 3d).
Due to larger values of radial Peclet numbers (or small val-
ues of radial dispersion coefficients), variations in the pro-
files along the radial coordinate of the column are visible in
Figure 2 and Figure 3. Also, Figure 4 displays the non-iso-
thermal case results for the outer zone injection. Now, the
profiles have higher values in the outer annular region of
the column, while other effects are similar. Lastly, Figure 5
compares the analytical results for linearized isotherm and
numerical results for the nonlinear isotherm for two differ-
ent values of DHA: It is evident from the figure that analyt-
ical and numerical solutions are similar for small magnitude
of DHA; while they are deviating from each other for larger
value of DHA: It is also observed that our analytical solu-
tions are producing over-predicting results. These observa-
tions clearly endorse our assumptions for linearization.

Effect of mass transfer coefficient j

Figure 6 displays the results for three different values of j
and for injection in the inner region. It is noticed that
broadened profiles are generated for smaller value of j,
while they become sharper when the value of j is increased.
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For sufficiently larger value of j, i.e. j � 267; the results of
current LKM reduces to those of simplified EDM.

Effects of radial peclet numbers

Figures 7 and 8 displays the effects of Peq;M and Peq;H on
the temperature and concentration profiles. It was found
that Peq;H influences the temperature profile only, while
Peq;M effects both the temperature and concentration pro-
files. For small values of radial Peclet numbers (or larger
values of radial dispersion coefficients), no changes are seen
in the profiles along the radial coordinate of the column.

Effect of injection temperature Tref 6¼ Tinj

The effect of injected temperature is analyzed on the con-
centration and temperature profiles in Figure 9. A rise in
the injected temperature enlarges the adsorption peak of
temperature, while reducing the desorption peak (c.f. Figure
9a,b). The injected temperature lower than the reference
temperature minimizes the adsorption peaks and enlarges
the desorption peak downward (c.f. Figure 9c,d).

Effect of ratio ce
cf

The effect ratio of ce
cf
is shown in Figure 10. For ce

cf
>1; the

velocity of temperature profile is lower than the concentra-
tion profile in Figure 10a,b. In this case, the faster concen-
tration peak is coupled with the adsorption peak of
temperature. On the other hand, the desorption peak of
temperature, which is slow and decoupled, exits the column
at a later time. Contrarily, for ce

cf
<1; the velocity of concen-

tration profile is lower than the temperature profile as
shown in Figure 10c,d. In this case, the concentration peak
is coupled with the desorption peak of temperature, while
the adsorption peak of temperature is faster and decoupled.
It was already observed in Figure 3 that, for the case ce

cf
¼ 1;

both temperature and concentration profiles are moving at
very similar speeds.

Effects of axial peclet numbers

The precise effects of the two axial Peclet numbers of mass
and heat transfer (i.e Pez;M and Pez;H) on the concentration
and temperature profiles are presented in Figure 11 for the
value of ratio ce

cf
<1 and Tinj ¼ Tref. In Figure 11a,b, the

effect of Pez;M is studied for a fixed value of Pez;M ¼ 240:
The variation of Pez;M has a pronounced effect only if the
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concentration and temperature peaks are coupled, while it
has no effect on the separated decoupled temperature peak.
The coupled peaks of concentration and temperature clearly
become broader on decreasing the value of Pez;M: In con-
trast, Figure 11c,d shows the influence of Pez;H (c.f. Figure
11c,d) on the concentration and temperature profiles for
fixed Pez;M: It can be seen that Pez;H only effects the
decoupled temperature peaks, while it has no effect on
the coupled concentration and temperature peaks. The
decoupled temperature peaks become broadened on decreas-
ing the value of Pez;H: Similarly the result for the value ratio
ce
cf
>1 is applicable in the same manner.

Calculation and discussion of numerical moments

Here, the numerical moments are obtained up to the fourth
order. The numerical radial moments at the column outlet
(x¼ 1) are obtained as

ljk qð Þ ¼
ð1
0
cj q; x ¼ 1; �ð Þ�kd�; j ¼ 1; 2; k ¼ 0; 1; 2; 3; 4:

(43)

The normalized averaged moments of the band profiles,
averaged over the radial coordinate ðqÞ; are expressed as

lj0;av ¼
ð1
0
cj;av x ¼ 1; �ð Þd�; ljk;av ¼

Ð1
0 cj;av x ¼ 1; �ð Þ�kd�

lj0;av
;

k ¼ 1; 2; 3; 4; (44)

where

cj;av ¼ 2
ð1
0
cj q; x ¼ 1; �ð Þqdq: (45)

Now, the dimensionless moments are plotted to analyze the
effects of axial and radial Peclet numbers for mass (i.e. Pez;M
and Peq;M) on the concentration profile using the solution
for inner zone injection. Figure 12 displays the plots of con-
centration moments with respect to the axial Peclet number
Pez;M; while keeping Peq;M fixed. As expected, no effect of
Pez;M can be seen on the first moments. However, the
second, third and fourth moments are decreasing on
increasing the value of Pez;M (or on decreasing the value of
axial dispersion Dz). Finally, Figure 13 shows the plots of
radial moments with respect to the radial coordinate q for
two different values of radial Peclet number Peq;M: For
larger value of Peq;M (or smaller smaller value of Dq), one
can see changes in the radial moments along the radial
coordinate. However, radial moments remain constant for
smaller value of Peq;M (or larger value of Dq). These results
agree with those obtained in Figures 7 and 11.

Conclusion

A linearized non-equilibrium and non-isothermal two-
dimensional lumped kinetics model was formulated and
solved analytically to study the influence of thermal varia-
tions on the liquid chromatographic process. The model
equations comprise of partial differential equations coupled

with differential and algebraic equations. The finite Hankel
transform, the Laplace transform, the eigen-decomposition
technique, and a conventional technique for the solutions of
ODEs were jointly applied to obtain analytical solutions of
the model for Dirichlet boundary conditions. The numerical
inversion was employed to get solutions in the actual time
domain, as analytical Hankel-Laplace inversions were not
possible. These analytical solutions were used to deduce
numerical moments of concentration profiles. These
moments could be helpful to explore and investigate the
process in more depth. The high-resolution finite volume
technique was extended to solve the full nonlinear model
numerically. The numerical solutions were used to verify the
ranges of validity of our analytical results. The determined
analytical solutions and numerical moments will be helpful
to investigate and interpret mass and energy profiles in non-
equilibrium and non-isothermal liquid chromatographic col-
umns of cylindrical geometry without performing costly
experiments in the laboratory.
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