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Abstract1

First-order partial differential equations are frequently applied for the simulation of adsorption and2

reaction processes. The numerous numerical methods available are typically applied without any3

further modifications despite of various well-known errors caused by, for example, numerical4

dissipation and crude approximations of certain phenomena. In this work, we analyzed a classical5

mixing cell model that is capable to simulate isothermal liquid chromatographic separation processes6

with incompressible mobile phases. This model corresponds to a 1D model of a chromatographic7

column discretized with a first-order finite volume method. It is our aim to counteract actively two8

errors, namely numerical dispersion (i.e. the second-order spatial derivative in truncation error) and9

partition inconsistency related to the nonlinear partition quantified by a competitive adsorption10

isotherm model. The new numerical method introduced in this article maintains characteristics of the11

first-order base scheme (non-oscillatory and conditionally stable) and offers enhanced accuracy12

(smaller numerical errors and improved description of shock waves). Furthermore, the method does13

not require solving the system of differential-algebraic equations that cause large matrix computations,14

but rather solves nonlinear equations ‘cell-by-cell’. The numerical routines can be easily parallelized15

to accelerate computation time with multi-core CPUs. To test the method developed, four-zone16

simulated moving bed adsorption as a challenging example was considered, which causes dynamically17

changing complex concentration profiles by periodic operation using several columns.18

19
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1. Introduction1

The convection dominated component mass balances of columns packed with solid adsorbents2

is represented by the system of hyperbolic first-order partial differential equations. These equations3

provide very useful information to understand the complex retention behaviors of adsorbates and to4

design proper processes. Going beyond this basic model, chromatographic columns have been5

successfully modelled with various models of different complexities describing the most relevant6

thermodynamic and kinetic phenomena (Guiochon et al., 1994; Kim et al., 2017). In these models, the7

second-order spatial derivatives quantify unavoidable physical dispersion effects in the conservation8

laws. The partition equilibria between the two phases involved tend to be nonlinear and are coupled9

for higher concentrations. Therefore, there is no analytical solution available. Thus, proper numerical10

methods are required to solve this type of problems.11

Often periodically operated multi-column configurations are applied to improve the efficiency12

of chromatographic separation processes with preparative purpose. To perform chromatographic13

separations with liquid mobile phases, one of the most promising continuous processes is the multi-14

column simulated moving bed (SMB) process. Since its introduction in the 1960s (Broughton et al.,15

1970), it is widely used in the petrochemical, fine chemical, sugar, and pharmaceutical industries. The16

conventional SMB process was developed for the separation of binary or pseudo-binary mixtures17

using four distinct zones that are divided by two inlets and two outlets, so that it consists at least four18

columns (at least one column per zone). Because of its structural and operational complexities,19

mechanistic approaches are commonly applied to the process design, and process simulation is20

unavoidable (Wu et al., 1998; Migliorini et al., 1999; Lee et al., 2014). The control of the SMB21

process for dynamic optimization has been recently studied to resolve model-system mismatch22

problems (Klatt et al., 2002; Andrade Neto et al., 2016; Lee et al., 2018).23

To solve the mass balance equations of chromatographic single or multi-column processes,24

many methods have been addressed for the discretization of the conservation laws. Various simulation25

tools were developed. Leão and Rodrigues (2004) compared four different PDE solver packages for26

the simulation of the true moving bed system. One of the simplest method is the finite difference27
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method (FDM) exploiting a first-order upwind discretization scheme (UDS). Higher order schemes1

were introduced to reduce numerical errors, such as the Lax-Wendroff scheme and the biased upwind2

discretization schemes (Courant et al., 1952; Lax & Wendroff, 1960; Loureiro & Rodrigues, 1991).3

Other approaches are the finite volume method (FVM) with flux limiters based on total variation4

diminishing (TVD) to avoid the spurious oscillations (LeVeque, 2002) and the finite element method5

(FEM) with moving nodes to reduce computational load (Coimbra et al., 2000). Since oscillatory6

errors cause critical problems in the simulation of physical systems, weighted essentially non-7

oscillatory (WENO) schemes were introduced (Liu et al., 1994). However, rigorous mass balance8

models discretized with the above-mentioned high-order and high-resolution schemes have two9

significant limitations;10

· As the column model becomes more rigorous and complex, the number of parameters to be11

measured or estimated increases, e.g. parameters for mass transfer model.12

· High-order and high-resolution numerical schemes can provide accurate solutions only if13

complex numerical routines and larger computation resources are invested.14

Due to these restrictions, a rather simple 1D process model discretized with the FDM exploiting the15

first-order UDS is widely used to simulate the chromatographic processes. This approach can be16

applied matching the spatial node numbers to the experimentally determined numbers of theoretical17

plates (NTP) of the column in order to passively introduce the second-order numerical error matching18

the corresponding physical dispersion effect (Rouchon et al., 1987; Czok & Guiochon, 1990a; Czok &19

Guiochon, 1990b; Heuer et al., 1995). This method requires only relatively short computation times,20

and is rather accurate, when all components have identical or similar dispersion coefficients (or NTPs)21

and the migration velocities of the solutes do not change dynamically with concentrations.22

In this work, the first-order UDS, which is non-oscillatory and conditionally stable if it23

satisfies the Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1928), was considered to24

quantify the corresponding numerical errors using Taylor series expansions. The error of second-order25

spatial derivatives were actively modulated to compensate the physical dispersion effect. An additional26

model-scheme mismatch error, designated in this article as partition inconsistency error caused by27
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non-linear competitive adsorption isotherms, was quantitatively evaluated. A numerically efficient1

method was developed and demonstrated based on counteracting both errors simultaneously.2

3

2. Numerical Scheme4

For isothermal liquid chromatographic processes with an incompressible mobile phase (the5

mobile phase flow-rate is constant), one of the simplest mass balance models is the following one-6

dimensional hyperbolic system of first-order partial differential equations,7

డ௖೔
డ௧

+ ܨ డ௤೔
డ௧

+ ௅ݑ
డ௖೔
డ௭

= 0 ℎݐ݅ݓ ܨ = (ଵିఌ)
ఌ

, ݅ ∈ ௌۼ (1)8

where ܿ௜ and ௜ are respectively the concentration of soluteݍ ݅ in the mobile and stationary phases, is9 ܨ

the phase ratio, ,is the void fraction of the chromatographic column ߝ ௅ is the interstitial velocity of10ݑ

the mobile phase, and ௌ is the set of solutes. Assuming that two phases are thermodynamically11ۼ

equilibrium (typically quantified using adsorption isotherm models), the stationary phase12

concentrations are functions of the mobile phase concentrations, ௜ݍ = ݂(ܿ௜|݅ ∈ ௌ). By substitutingۼ 13ݍ

by ܿ, the mass balance equation, Eq. (1) can be rewritten as a canonical first-order wave equation (or a14

convection equation),15

డ఑೔௖೔
డ௧

+ ௅ݑ
డ௖೔
డ௭

= 0 (2-1)16

and the partition parameter, ௜ is a function ofߢ ௜ݍࣞ ࣞܿ௜⁄ , which is the total derivative of ௜ with17ݍ

respect to ܿ௜,18

௜ߢ = ቀ1 + ܨ ࣞ௤೔
ࣞ௖೔
ቁ ℎݐ݅ݓ ࣞ௤೔

ࣞ௖೔
= ∑ ൬

ௗ௖ೕ
ௗ௖೔

డ௤೔
డ௖ೕ
൰௝∈ۼೄ (2-2)19

Assuming that the partition parameters, ௜ are constant, Eq. (2-1) can be rewritten as,20ߢ

డ௖೔
డ௧

+ ௌ,௜ݑ
డ௖೔
డ௭

= 0 ℎݐ݅ݓ ௌ,௜ݑ = ௨ಽ
఑೔

(2-3)21

This equation describes waves travelling with the constant migration velocity, ௌ,௜. However, the22ݑ

partition parameters imply the thermodynamic equilibria as shown in Eq. (2-2). Thus, the migration23
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velocity may vary while the solutes travel through the column. However, in convection-dominant1

systems, ௌ,௜ can never be faster thanݑ ௅. This means that the partition parameters are physically2ݑ

meaningful only if they are equal or greater than 1. Eq. (2-1) is the well-known fundamental3

equilibrium model of chromatography and capable to simulate essential features of liquid4

chromatographic separation processes (DeVault, 1943; Guiochon et al., 1994).5

While the equilibrium model (also known as the ideal model), Eq. (1) describes dominant6

mass transfer by convection and retention by adsorption in the chromatographic column, band-7

broadening effects, which are mainly caused by diffusion/dispersion and limited mass transfer8

between two phases, is still missing. In order to achieve higher accuracy, it is a simple and efficient9

way to introduce a second-order longitudinal dispersion term that captures unavoidable band10

broadening effects through diffusive-transport phenomena taking place inside of packed columns into11

Eq. (2-1). Thus, it is called the equilibrium-dispersive model and can be rewritten as,12

డ఑೔௖೔
డ௧

+ ௅ݑ
డ௖೔
డ௭

= ௅,௜ܦ
డమ௖೔
డ௭మ

(3-1)13

where ௅,௜ is the apparent longitudinal dispersion coefficient of soluteܦ ݅, which implies above14

mentioned band-broadening effects. It is the goal of this work to provide an efficient numerical15

solution for this type of 1D column mass balance equations, which form the core of reliable single and16

multi-column models. For this, we will exploit below the well-known analogy between Eq. (3-1) and a17

corresponding model considering the column as a series of a finite number of sequentially connected18

mixing cells (MC) (Martin & Synge, 1941; Craig, 1944; Kramers & Alberda, 1953). Using Laplace19

transforms, the MC scheme was extended to solve the dynamic models that includes various mass20

transfers between two phases in linear chromatography (Villermaux, 1987). Assuming established21

equilibria, the discretized mass balance equations of a specific cell n in such a cascade are:22

఑೔(௡,௧ା∆௧)௖೔̅(௡,௧ା∆௧)ି఑೔(௡,௧)௖೔̅(௡,௧)
∆௧

+ ௅ݑ
௖೔̅(௡,௧)ି௖೔̅(௡ିଵ,௧)

∆௭೙
= 0, ݊ ∈ ஼ۼ = {1, … , ஼ܰ} (3-2)23

The introduced average mobile phase concentrations, ܿ௜̅ are24

ܿ௜̅(݊, (ݐ = ଵ
∆௭೙

∫ ܿ௜(ݖ, ௡∆௭೙ݖ݀(ݐ
(௡ିଵ)∆௭೙

, ∑ ಴ۼ∋௡௡ݖ∆ = ஼25ܮ
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and ݐ∆ ௡ are respectively the discretized time step and the length of cellݖ∆ ݊, ஼ܮ  is the column length,1

஼ܰ denotes the last cell in the column, and ஼ is the set of discretized cells in the column.2ۼ

The second-order derivative terms, which describe the physical dispersion effect, are omitted3

in computation in the MC scheme. However, the numerical errors are quantified and manipulated to4

compensate the missing physical dispersion terms. Therefore, solving Eq. (3-1) with the MC scheme is5

equivalent to solving hyperbolic conservation laws, Eq. (1). In the next section, we will analyze Eq.6

(3-2) in more detail and exploiting connections to Eq. (3-1).7

8

2.1.Mixing cell model with first-order upwind scheme9

Assuming that the cell lengths, ௡ are all identical andݖ∆ ,݊)௜ߢ is locally constant to (ݐ ,݊)௜ߢ̅ 10(ݐ

in to ݐ ݐ + Eq. (3-2) can be rewritten as a convection equation with constant parameters,11 ,ݐ∆

,݊)௜ߢ̅ (ݐ ௖೔̅(௡,௧ା∆௧)ି௖೔̅(௡,௧)
∆௧

+ ௅ݑ
௖೔̅(௡,௧)ି௖೔̅(௡ିଵ,௧)

∆௭
= 0 (4-1)12

Assuming that the migration velocities of solutes are locally constant between the cells ݊ and ݊ − 1,13

this equation is equivalent to,14

௖೔̅(௡,௧ା∆௧)ି௖೔̅(௡,௧)
∆௧

+ ,݊)തௌ,௜ݑ (ݐ ௖೔̅(௡,௧)ି௖೔̅(௡ିଵ,௧)
∆௭

= 0 (4-2)15

where ,݊)തௌ,௜ݑ is the locally constant migration velocity of the solute (ݐ ݅. The necessary condition to16

make Eqs. (4-1) and (4-2) identical is,17

,݊)௜ߢ̅ ,݊)തௌ,௜ݑ(ݐ (ݐ = ௅ݑ (4-3)18

Note that ௜ is constant for a certain cell in the time intervalߢ̅ i.e. the representative value of ,ݐ∆ ,݊)௜ߢ 19(ݐ

and ,݊)௜ߢ ݐ + ,Furthermore .(ݐ∆ തௌ,௜ is constant for neighbored cells at a certain time, i.e. the20ݑ

representative value of ݊)ௌ,௜ݑ − 1, and (ݐ ,݊)ௌ,௜ݑ 21.(ݐ

In FVMs with flux limiters (LeVeque, 2002), two constant migration velocities at the inlet and22

outlet of the cell were used, so that this method provides second-order accuracy when the solution is23

smooth (e.g. in case of rarefaction waves) or the first-order accuracy when the solution is steep or24
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discontinued (e.g. in case of shock waves). However, FVMs do not guarantee that Eqs. (4-1) and (4-2)1

are identical. Let us call this type of numerical error an inconsistency error, which we will further2

discuss later.3

Using Taylor series expansions of the time and spatial derivatives for the mean fluid phase4

concentrations,5

ܿ௜̅(݊, ݐ + (ݐ∆ = ܿ௜̅(݊, (ݐ + ݐ∆ డ௖೔̅(௡,௧)
డ௧

+ (∆௧)మ

ଶ
డమ௖೔̅(௡,௧)

డ௧మ
+ (∆௧)య

଺
డయ௖೔̅(௡,௧)

డ௧య
+⋯ (5-1)6

and7

ܿ௜̅(݊, (ݐ = ܿ௜̅(݊ − 1, (ݐ − ݖ∆ డ௖೔̅(௡,௧)
డ௭

+ (∆௭)మ

ଶ
డమ௖೔̅(௡,௧)
డ௭మ

− (∆௭)య

଺
డయ௖೔̅(௡,௧)
డ௭య

+ ⋯ (5-2)8

The error of second-order derivatives can be quantified. The right hand sides of the following9

equations allows quantifying numerical errors of the MC scheme  with the locally constant partition10

parameter,11

௜ߢ̅
డ௖೔̅
డ௧

+ ௅ݑ
డ௖೔̅
డ௭

= ௨ಽ∆௭
ଶ
(1 − ࣝ௜)

డమ௖೔̅
డ௭మ

+ ௨ಽ(∆௭)మ

଺
൫3ࣝ௜ − 2ࣝ௜ଶ − 1൯ డ

య௖೔̅
డ௭య

+⋯ , ࣝ௜ = ௨ಽ∆௧
఑ഥ೔∆௭

(6-1)12

and with the locally constant migration velocity,13

డ௖೔̅
డ௧

+ തௌ,௜ݑ
డ௖೔̅
డ௭

= ௨ഥೄ,೔∆௭
ଶ

(1− ࣝ௜)
డమ௖೔̅
డ௭మ

+ ௨ഥೄ,೔(∆௭)మ

଺
൫3ࣝ௜ − 2ࣝ௜ଶ − 1൯ డ

య௖೔̅
డ௭య

+ ⋯ , ࣝ௜ = ௨ഥೄ,೔∆௧
∆௭

(6-2)14

where ࣝ௜ is the Courant number of solute ݅. Note that the Courant numbers are a function of the locally15

constant partition parameter, ,௜, or the locally constant migration velocityߢ̅ തௌ,௜, respectively. The16ݑ

Courant number may violate the CFL condition if ௜ orߢ̅ തௌ,௜ values are physically inconsistent. The17ݑ

even-order derivative terms on the right hand side cause smearing errors and the odd-order derivative18

terms cause wiggle errors (LeVeque, 2007). Later we will consider again the second-order physical19

dispersion term, see Eq. (3). The parameter of the second-order derivative in the truncation error of Eq.20

(6-2) contains the locally constant migration velocity, the representative migration velocity of the21

neighbored cells ݊ and ݊ − 1 at time This means that the truncation errors of the neighbored cell22 .ݐ

mass balances are coupled, i.e. it is complicated to quantify the numerical errors cell-by-cell. Because23
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of this reason, let us consider Eq. (6-1) for further development of numerical approach and introduce1

here the second-order numerical error as,2

ࣩ஽,௜ = ே,௜ܦ
డమ௖೔̅
డ௭మ

ℎݐ݅ݓ ே,௜ܦ = ௨ಽ∆௭
ଶ
(1− ࣝ௜) (7)3

where, ࣩ஽,௜ and ே,௜ are theܦ numerical dispersion error and the numerical dispersion coefficient4

(analog to the physical dispersion) of solute ݅, respectively.5

To retrieve the original convection equation, Eq. (3), the accumulation term should satisfy the6

following condition,7

డ఑೔௖೔̅
డ௧

= ௜ߢ̅
డ௖೔̅
డ௧

+ ࣩ௉,௜ (8-1)8

and the locally constant partition parameter can be approximated as,9

௜ߢ̅ = 1 + ܨ డ೟௤ത೔
డ೟௖೔̅

, డ೟௤ത೔
డ೟௖೔̅

= lim∆௧→଴
∆೟௤ത೔
∆೟௖೔̅

= lim∆௧→଴
௤ത೔(௡,௧ା∆௧)ି௤ത೔(௡,௧)
௖೔̅(௡,௧ା∆௧)ି௖೔̅(௡,௧)

(8-2)10

where ത௜ is the average concentration of soluteݍ ݅ in the stationary phase of cell n and ࣩ௉,௜ is the11

partition inconsistency error. Note that the condition same as Eq. (8-1) can be considered for the12

convection term of compressible and/or variable density mobile phase conditions, డ௨ಽ௖೔̅
డ௭

, even though it13

is not considered in this article. In general, the partition inconsistency error is zero if a physically14

meaningful partition coefficient (̅ߢ௜ ≥ 1) exists. However, ௜ represents lumped partition information15ߢ̅

during and may be inconsistent in case of competitive adsorption. If the partition parameter is16 ݐ∆

smaller than 1 (ࣝ௜ > 1), it violates the CFL condition and the solution is unstable. In this case, smaller17

time steps should be applied to obtain physically meaningful partition parameters as described in18

Appendix A. To avoid this complex and time consuming computation, let us consider a partition19

inconsistency error if the partition parameter, ௜ violates the following physically meaningful bounds,20ߢ̅

1 ≤ ⌊௜ߢ̅⌋ ≤ ௜ߢ̅ ≤ ⌈௜ߢ̅⌉ (9-1)21

where the special brackets and ⌊ݔ⌋ denote the physically possible minimum and maximum values22 ⌈ݔ⌉

of respectively. From these criteria, the mentioned ,ݔ partition inconsistency error can be quantified as,23
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ࣩ௉,௜ =

⎩
⎨

⎧
డ఑೔௖೔̅
డ௧

− ⌊௜ߢ̅⌋
డ௖೔̅
డ௧

, ௜ߢ̅ < ⌊௜ߢ̅⌋
0, ⌊௜ߢ̅⌋ ≤ ௜ߢ̅ ≤ ⌈௜ߢ̅⌉
డ఑೔௖೔̅
డ௧

− ⌈௜ߢ̅⌉
డ௖೔̅
డ௧

, ௜ߢ̅ > ⌈௜ߢ̅⌉
(9-2)1

or2

ࣩ௉,௜ =

⎩
⎪
⎨

⎪
ܨ⎧ ∆௤ത೔

∆௧
− ܨ ቔ∆೟௤ത೔

∆೟௖೔̅
ቕ ∆௖೔̅
∆௧

, ௜ߢ̅ < ⌊௜ߢ̅⌋

0, ⌊௜ߢ̅⌋ ≤ ௜ߢ̅ ≤ ⌈௜ߢ̅⌉

ܨ ∆௤ത೔
∆௧
− ܨ ቒ∆೟௤ത೔

∆೟௖೔̅
ቓ ∆௖೔̅
∆௧

, ௜ߢ̅ > ⌈௜ߢ̅⌉
(9-3)3

Now, the quantified partition inconsistency error can be expressed as a function of the concentrations4

in the stationary phase.5

The discretized convection equation differs from the original convection equation, Eq. (2-1)6

due to two introduced distinct numerical errors, ࣩ஽ ,௜ and ࣩ௉,௜.7

డ఑೔௖೔̅
డ௧

+ ௅ݑ
డ௖೔̅
డ௭

= ࣩ஽ ,௜ + ࣩ௉,௜ (10-1)8

The left hand side is the original convection equation that should be zero, and the right hand side9

captures the numerical errors caused by the MC scheme. Note that the numerical errors (the right hand10

side) arise only if the original convection equation (the left hand side) is numerically solved with the11

MC scheme. This means that the concentration variables inside of the numerical error formulae, ࣩ஽,௜12

and ࣩ௉,௜ should be quantified and subtracted from the numerical solution of the left hand side. Thus,13

the numerical routines for solving Eq. (10-1) should be divided into two sequential steps; at first, the14

left hand side is numerically solved with the MC scheme, and then the numerical errors are quantified15

by solving the right hand side in order to allow error modulation. For linear isotherms (constant16

partition and non-competitive, i.e. ࣩ௉,௜ = 0), this equation can be rewritten as,17

௜ߢ
డ௖೔̅
డ௧

+ ௅ݑ
డ௖೔̅
డ௭

= ௘ܦ
డమ௖೔̅
డ௭మ

, ௘ܦ = ௨ಽு
ଶ

= limࣝ→଴ܦே,௜ = ௨ಽ∆௭
ଶ

(10-2)18

where ௘ is the apparent dispersion coefficient (note that it is assumed that all solutes have the same19ܦ

dispersion coefficient) and is the height of equivalent theoretical plate. If the Courant number is20 ܪ

small enough, the apparent dispersion coefficient can be replaced to the numerical dispersion21
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coefficient, i.e. the numerical dispersion can compensate physical dispersion effect. This is one special1

case of the passive counteraction schemes applied, e.g. by (Czok & Guiochon, 1990a; Czok &2

Guiochon, 1990b). The general discretized convection equation, Eq. (10-1) provides a useful formula3

for treating incompressible chromatographic separation problems that may include mass transfer4

resistance and even reactions occurring in the mobile and stationary phases inside of a mixing cell.5

6

2.2.Modified dispersion applying a fictitious dispersion coefficient7

Let us handle now the physical dispersion term only as a certain portion of numerical8

dispersion error that should not eliminated from the solution. Let us subtract the numerical errors9

identified above from the physical dispersion term in Eq. (3-1);10

డ఑೔௖೔̅
డ௧

+ ௅ݑ
డ௖೔̅
డ௭

= ௅,௜ܦ
డమ௖೔̅
డ௭మ

− ࣩ஽,௜ −ࣩ௉,௜ (11-1)11

or12

డ఑೔௖೔̅
డ௧

+ ௅ݑ
డ௖೔̅
డ௭

= ிܦ ,௜
డమ௖೔̅
డ௭మ

− ࣩ௉,௜ (11-2)13

where ி,௜ܦ) ி,௜ is the newly introduced fictitious dispersion coefficientܦ  = ௅,௜ܦ − ே,௜). Then the right14ܦ

hand side of Eq. (11) indicates the numerical error compensation (including physical dispersion)15

caused in the convection equation. The sign of the fictitious dispersion coefficient indicates which16

dispersion effect is dominant. If the physical dispersion coefficient is smaller than the numerical17

dispersion coefficient (ܦி,௜ < 0), the numerical solution of the convection equation is too dispersed. In18

this case, the numerical solution of the convection equation should be further compressed (or19

dispersed if ி,௜ܦ > 0) exploiting the fictitious dispersion coefficient (Figure 1).20

To quantify the mass transferred in accordance with the fictitious dispersion between two21

neighbored cells, let us consider an isolated two-cell system. The transferred mass by fictitious22

dispersion between the cells ݊ and (݊ + 1) is proportional to the concentration gradient. Assuming that23

the concentration gradient and the fictitious dispersion coefficient are locally constant in the time24

interval, ,the masses transferred by fictitious dispersion between two neighbored cells ,ݐ∆ ஽,௜ is,25ܯ
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,݊)஽,௜ܯ (ݐ = ,݊)ഥி,௜ܦ஼ܣߝ− (ݐ ቄ௖೔̅(௡ାଵ,௧)ି௖೔̅(௡,௧)
∆௭

ቅ∆ݐ (12-1)1

The average fictitious dispersion coefficient obtained from the average Courant number is,2

,݊)ഥி,௜ܦ (ݐ = (௅ݑ)௅,௜ܦ −
௨ಽ∆௭
ଶ
ቄ1− ࣝ೔(௡ାଵ,௧)ାࣝ೔(௡,௧)

ଶ
ቅ (12-2)3

where ஼ܣ  is the cross-sectional area of the column, and ഥி,௜ is the average fictitious dispersion4ܦ

coefficient of solute ݅. The physical dispersion coefficient is a function of the mobile phase flow-rate5

(however, it was assumed that the physical dispersion coefficient is constant in this work) and the6

numerical dispersion coefficient is a function of the Courant number. In the mixing cell model,7

ݐ∆ ≤ ݖ∆ ⁄௅ݑ  and ⌊ிܦ⌋ = ⌊ேܦ⌋− = ݖ∆௅ݑ− 2⁄ . Therefore, ݐ∆ഥி,௜ܦ2 ⁄ଶ(ݖ∆) ≥ −1. Analogue to that the8

CFL condition for the second-order derivative term should hold, ห2ܦഥி,௜∆ݐ ⁄ଶ(ݖ∆) ห ≤ 1. Under9

compression conditions (ܦഥி,௜ < 0), the same discretized time step can be used. However, the10

discretized time may be further divided to several smaller time step in dispersion condition (ܦഥி,௜ > 0)11

to satisfy the CFL condition, หܯ஽,௜ห ≤ |ܿ௜̅(݊+ 1, (ݐ − ܿ௜̅(݊, 12.|(ݐ

13

2.3.Active counteraction against both identified numerical errors14

The considered numerical errors discussed above, namely the numerical dispersion and15

partition inconsistency errors, can be quantitatively subtracted from the numerical solution of the MC16

formulation of the convection equation. For this, the numerical computation method needs to be17

divided in two steps. The first step is solving the convection equation with the MC scheme, and the18

second step is applying the active counteraction (AC) against the numerical errors.19

20

Step 1: MC Scheme21

Appling uniformly the same and ݖ∆ ݐ∆ = ݖ∆ ⁄௅ݑ  to Eq. (3-2), the discretized convection22

equation of cell ݊ at time becomes,23 ݐ
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൛ܿ௜̅#(݊, (ݐ + ,݊)#ത௜ݍܨ ݖ∆ൟ(ݐ = {ܿ௜̅(݊, (ݐ + ,݊)ത௜ݍܨ ݖ∆{(ݐ + {ܿ௜̅(݊ − 1, (ݐ − ܿ௜̅(݊, {(ݐ ∆௭
ఌ

(13-1)1

where ܿ௜̅# and ത௜# are respectively the equilibrium cell concentrations of soluteݍ ݅ in the mobile and2

stationary phases after exclusively due to convection. The boundary conditions, the inlet and outlet3 ݐ∆

concentrations are given as,4

ቊ
ܿ௜̅(1, (ݐ = ܿூ̅௡௟௘௧,௜
ܿை̅௨௧௟௘௧,௜ = ܿ௜̅( ஼ܰ , (ݐ (13-2)5

where the subscripts, and ݐ݈݁݊ܫ denote the column inlet and outlet, respectively. Depending on6 ݐ݈݁ݐݑܱ

the isotherm model, ܿ௜̅# and ത௜# can be analytically (in case of linear isotherm models) or numerically7ݍ

(in case of non-linear isotherm models) solved cell-by-cell. The results of solving the pure convection8

equations, ܿ௜̅# and ത௜#, provide the initial concentrations for the AC scheme applied in the second step.9ݍ

10

Step 2: AC Scheme11

In this step, the numerical errors caused in the above MC scheme are quantified and12

effectively eliminated from the solution of MC scheme. To incorporate the partition inconsistency13

error, the maximum and minimum bounds of ௜ and the corresponding errorߢ̅ ࣩ௉,௜ should be obtained14

from the thermodynamic properties of the considered physical system. For example, we consider15

below a quite flexible and widely applicable generalized competitive Langmuir isotherm (Mazzotti,16

2006) as,17

ത௜ݍ = ௔೔௖೔̅
ଵା∑ ௣ೕ௕ೕ௖ೕ̅ೕ∈ۼೄ

, ௝݌ = ൜1, ݊ܽ݅ݎ݅ݑ݉݃݊ܽܮ
−1, ݅ݐ݊ܣ − ݊ܽ݅ݎ݅ݑ݉݃݊ܽܮ (14-1)18

The necessary condition for positive quantities of adsorbed solutes is,19

1 +∑ ௝݌ ௝ܾܿ௝̅௝∈ۼೄ > 0 (14-2)20

where ܽ௜ and ܾ௜ are the Langmuir isotherm parameters of solute ݅ and ௝ is the assignment constant of21݌

solute ݆. If any of ௝ is –1, this isotherm model is only valid in the concentration range where the22݌
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denominator is greater than zero. Since the type of adsorption isotherm behavior varies with ௝, it is1݌

not easy to identify the maximum bound of ∆௧ݍത௜ ∆௧ܿ௜̅⁄  if any of the ௝ is –1.2݌

௝݌∀ ݂݅ = 1, ⌊௜ߢ̅⌋ = 1 ≤ ௜ߢ̅ ≤ 1 + ௜ܽܨ = ⌈௜ߢ̅⌉ (15-1)3

or4

௝݌∃ ݂݅ = −1, ⌊௜ߢ̅⌋ = 1 ≤ ௜ߢ̅ (15-2)5

As shown in Eq. (9-3), the modulation of partition inconsistency error can be applied only to the6

stationary phase concentration while the modulation of numerical dispersion error is applied to the7

mobile phase concentration. Because of infinite upper bounds for anti-Langmuirian isotherms, only8

the lower bounds were considered, cf. Eq. (15-2).9

݂݅ ௜ߢ̅ < 1, ൜
௜ߢ̅ = 1
,݊)#ത௜ݍ∆ (ݐ = ,݊)#ത௜ݍ (ݐ − ,݊)ത௜ݍ (ݐ (16)10

where ത௜# is the stationary phase concentration form of theݍ∆ partition inconsistency error (= ∆௧
ி
ࣩ௉,௜).11

Note that a physically feasible ,݊)#ത௜ݍ∆) ௜ value exist in generalߢ̅ (ݐ = 0). Thus, the numerical12

dispersion coefficient, ,ே,௜ can be quantified. On the other handܦ ௜ is enforced to be 1 and all13ߢ̅

numerical error can be compensated by the partition inconsistency error (ܦே ,௜ = 0). Note that the14

locally constant partition parameter is related to the locally constant migration velocity due to the15

necessary condition, Eq. (4-3). If the partition inconsistency error arises, the mass in the stationary16

phase should be manipulated to satisfy ௜ߢ̅ = 1. This means that the mass in the stationary phase that17

occur partition inconsistency, ത௜# should be eliminated from the cell. To keep the total mass balance,18ݍ∆

we handled the quantified partition inconsistency error as a fictitious dispersion in the stationary phase19

to spread out the neighbored cells. The corresponding fictitious stationary phase fluxes between the20

cells ݊ and ݊ + 1, ,݊)௤ത,௜ߜ are,21 (ݐ

,݊)௤ത,௜ߜ (ݐ = ∆௨ೄ,೔(௡,௡ାଵ,௧)∆௤ത೔
#(௡ାଵ,௧)

∆௨ೄ,೔(௡,௡ାଵ,௧)ା∆௨ೄ,೔(௡ାଵ,௡ାଵ,௧)
− ∆௨ೄ,೔(௡,௡,௧)∆௤ത೔

#(௡,௧)
∆௨ೄ,೔(௡,௡,௧)ା∆௨ೄ,೔(௡,௡ିଵ,௧)

, ݊ ∈ ஼ۼ − { ஼ܰ} (17-1)22

and the fictitious stationary phase fluxes at both ends of the column are assumed to be zero,23
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,௤ത,௜(0ߜ (ݐ = )௤ത,௜ߜ ஼ܰ , (ݐ = 0 (17-2)1

Thus, the difference of the migration velocities between cells ݊ and ݉ is,2

,݉,݊)ௌ,௜ݑ∆ (ݐ = หݑௌ,௜(݊, (ݐ − ,݉)തௌ,௜ݑ ห(ݐ (17-3)3

Using the modified dispersion model with the fictitious dispersion coefficient, the fictitious mobile4

phase flux between the cells ݊ and ݊ + 1, ௖ߜ ,̅௜(݊, is,5 (ݐ

௖ߜ ,̅௜(݊, (ݐ =
ெವ೔(௡,௧)

ఌ஺಴∆௭
= −ቀ ∆௧

(∆௭)మ
,݊)#ഥி,௜ቁ∆ܿ௜̅ܦ ,(ݐ ݊ ∈ ஼ۼ − { ஼ܰ} (18-1)6

and the fictitious mobile phase fluxes at both ends of the column are assumed to be zero,7

௖ߜ ,̅௜(0, (ݐ = ௖ߜ ,̅௜( ஼ܰ , (ݐ = 0 (18-2)8

With the fictitious concentration fluxes in the mobile and stationary phases, the pure convection9

solution using MC scheme (Step 1) can be updated to,10

ܿ௜̅#(݊, ݐ + (ݐ∆ = ܿ௜̅#(݊, (ݐ + ݊)௖̅,௜ߜ − 1, (ݐ − ,݊)௖̅,௜ߜ (ݐ (19-1)11

,݊)#ത௜ݍ ݐ + (ݐ∆ = ,݊)#ത௜ݍ (ݐ + ݊)௤ത,௜ߜ − 1, (ݐ − ,݊)௤ത,௜ߜ (ݐ (19-2)12

The updated concentrations, ܿ௜̅#(݊, ݐ + and (ݐ∆ ,݊)#ത௜ݍ ݐ + may violate physical boundaries (causing13 (ݐ∆

negative concentrations and/or over compressed concentrations by unexpected profile compression).14

To avoid these violations, the following mass flux limiters can be applied.15

උܿ௜̅#(݊, ݐ + ඏ(ݐ∆ ≤ ܿ௜̅#(݊, ݐ + (ݐ∆ ≤ ඃܿ௜̅#(݊, ݐ + ඇ(ݐ∆ (20-1)16

and17

0 ≤ ,݊)#ത௜ݍ ݐ + (ݐ∆ (20-2)18

To obtain the solute migration velocities, one should consider the total derivative of the isotherms with19

respect to the mobile phase concentrations as shown in Eq. (2-2). However, since there is no20

concentration gradient in the mixing cell, let us assume that the solute migration velocities in each cell21

can be obtained from the partial derivatives as,22
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,݊)ොௌ,௜ݑ (ݐ = ௨ಽ
ଵାி

ങ೜ഥ೔(೙,೟)
ങ೎ത೔(೙,೟)

(21-1)1

where ,݊)ොௌ,௜ݑ is the migration velocity of solute (ݐ ݅ in cell ݊ at time The position of discretized2 .ݐ

concentration profiles in the cell ݊ after can be obtained as shown in ݐ∆ Figure 2. Therefore, possible3

upper and lower bounds of ܿ௜̅#(݊, ݐ + are obtained as,4 (ݐ∆

ඃܿ௜̅#(݊, ݐ + ඇ(ݐ∆ = max ൮

௨ෝೄ,೔൫௡ି
భ
మ,௧൯௖೔̅(௡ିଵ,௧)ା଴.ଶହ൛௨ෝೄ,೔൫௡ି

భ
మ,௧൯ି௨ෝೄ,೔(௡ିଵ,௧)ൟ{௖೔̅(௡,௧)ି௖೔̅(௡ିଵ,௧)}

௨ෝೄ,೔൫௡ି
భ
మ,௧൯

൛௨ಽି௨ෝೄ,೔൫௡ି
భ
మ,௧൯ൟ௖೔̅(௡,௧)ା଴.ଶହ൛௨ෝೄ,೔(௡,௧)ି௨ෝೄ,೔൫௡ି

భ
మ,௧൯ൟ{௖೔̅(௡ିଵ,௧)ି௖೔̅(௡,௧)}

௨ಽି௨ෝೄ,೔൫௡ି
భ
మ,௧൯

൲ (21-2)5

and6

උܿ௜̅#(݊, ݐ + ඏ(ݐ∆ = min ൮

௨ෝೄ,೔൫௡ି
భ
మ,௧൯௖೔̅(௡ିଵ,௧)ା଴.ଶହ൛௨ෝೄ,೔൫௡ି

భ
మ,௧൯ି௨ෝೄ,೔(௡ିଵ,௧)ൟ{௖೔̅(௡,௧)ି௖೔̅(௡ିଵ,௧)}

௨ෝೄ,೔൫௡ି
భ
మ,௧൯

൛௨ಽି௨ෝೄ,೔൫௡ି
భ
మ,௧൯ൟ௖೔̅(௡,௧)ା଴.ଶହ൛௨ෝೄ,೔(௡,௧)ି௨ෝೄ,೔൫௡ି

భ
మ,௧൯ൟ{௖೔̅(௡ିଵ,௧)ି௖೔̅(௡,௧)}

௨ಽି௨ෝೄ,೔൫௡ି
భ
మ,௧൯

൲ (21-3)7

where ොௌ,௜൫݊ݑ − భ
మ, ൯ is the average migration velocity of soluteݐ ݅ in the cells ݊ − 1 and ݊ (=8

൛ݑොௌ,௜(݊, (ݐ − ݊)ොௌ,௜ݑ − 1, ൟ(ݐ 2⁄ ). In case of rarefaction waves, a stepwise profile is broadened, but a9

stepwise profile is overlapped under shock wave conditions. Therefore, ഥி,௜ܦ) ௖̅,௜ for compressionߜ < 0)10

is allowed to have bigger value (shock wave condition, but restricted to smaller value in rarefaction11

wave condition). The mass flux caused by profile dispersion is not limited (the dimensionless fictitious12

dispersion coefficient can be smaller than –1, and the size of mass flux can greater than the mass13

difference in the mobile phase of neighbored cells, Figure 1). Therefore, the maximum time step for14

the profile dispersion was set to ଶ(ݖ∆) ൫4ܦி,௜൯ൗ  (equivalent to 0.5 of the dimensionless dispersion15

coefficient in Figure 1). After refining the calculations using the numerical errors, newly assigned16

concentrations of the mobile and stationary phases are not thermodynamically equilibrium. Therefore,17

finally the following equations have to be solved cell-by-cell.18

ܿ௜̅(݊, ݐ + (ݐ∆ + ,݊)ത௜ݍܨ ݐ + (ݐ∆ = ܿ௜̅#(݊, ݐ + (ݐ∆ + ,݊)#ത௜ݍܨ ݐ + (ݐ∆ (22)19

In summary, the described two-step MC-AC scheme quantifies two numerical errors of the20

explicit MC scheme, and actively modulate these errors to compensate the physical dispersion effect.21
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Therefore, good accuracy may be achievable compared to the MC scheme. In the MC scheme, the1

masses accumulated in the cells can be explicitly assigned cell-by-cell, and in the AC scheme, the2

quantified numerical errors can be explicitly modulated cell-by-cell. Newton-Raphson method3

(Burden et al., 1993) was used for two steps of nonlinear adsorption equilibria, Eqs. (13-1) and (22).4

Nonlinear solvers are iterative and require (#ۼௌ) by (#ۼௌ) matrix inversion. This means that the5

nonlinear solver is the most time-consuming numerical routine, but can be executed cell-by-cell.6

Therefore, the computation time of MC-AC scheme is twice as the computation time of MC scheme.7

However, the approach suggested does not require any higher order scheme to improve the solution8

accuracy. It is easy to be implemented for parallel computation.9

10

2.4.Case study: Four-zone simulated moving bed chromatography11

To test the proposed MC-AC scheme instead of a single-column batch process, we chose a12

challenging periodically operated multi-column continuous process. In multi-column continuous13

process, the concentration profiles are built up by superposing newly fed profiles on the existing14

profiles. Therefore, superposed complex wave patterns can be developed.15

One of the most powerful liquid chromatographic separation process is four-zone SMB that is16

applicable for the continuous separation of binary and pseudo-binary mixtures. Figure 3 illustrates the17

periodic operation of four-zone closed-loop SMB. Each zone is divided by four external stream ports,18

Feed, Desorbent, Extract, and Raffinate. The ports are periodically switched to the next position19

toward the same direction of the mobile phase flow, so that the stationary phase flow is simulated to20

the opposite direction of the mobile phase flow. With this simulated counter-current flow of the21

mobile and stationary phases, the feed mixture is continuously separated into two outlets, Extract and22

Raffinate. In the Extract, the more-retained solute is collected, whereas the less-retained solute is23

collected in the Raffinate. Because of continuous feeding of mixture, newly fed mixture profiles are24

superposed on the early fed mixture profiles, and the internal concentration profiles are finally built up25

to cyclic steady-state (CSS) profiles. The four-zone SMB process has five operating conditions, four26
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mobile phase flow-rates in the zones and one port switching interval. The periodically changing1

boundary conditions of the zones are,2

ܿ௓ଵ,ூ௡௟௘௧,௜ = ொೋర௖ೋర,ೀೠ೟೗೐೟,೔ା(ொೋభିொೋర)௖ವೞೝ್,೔
ொೋభ

= ொೋర௖ೋర,ೀೠ೟೗೐೟,೔
ொೋభ

(23-1)3

ܿ௓ଶ,ூ௡௟௘௧,௜ = ܿ௓ଵ,ை௨௧௟௘௧,௜ (23-2)4

ܿ௓ଷ,ூ௡௟௘௧,௜ = ொೋమ௖ೋమ,ೀೠ೟೗೐೟,೔ା(ொೋయିொೋమ)௖ಷ೐೐೏,೔
ொೋయ

(23-3)5

ܿ௓ସ,ூ௡௟௘௧,௜ = ܿ௓ଷ,ை௨௧௟௘௧,௜ (23-4)6

where the subscripts, and ݀݁݁ܨ denote the ܾݎݏܦ Feed and Desorbent ports, the subscripts, ܼ1 to ܼ47

denote the zones 1 to 4, and ܳ is the volumetric flow-rate. A solute-free solvent was used at the8

Desorbent port, i.e. ܿ஽̅௦௥௕,௜ = 0.9

In this work, the main goal is not finding conditions to separate the feed mixture, but to test10

the proposed numerical scheme. Therefore, several sets of operating conditions were arbitrary chosen.11

Hereby it was intended to generate internal concentration profiles that have sharp and superposed12

shocks. Four connected columns (one column per zone) were used. The dimension of the columns13

considered was 2.5 cm × 10 cm (I.D. × Length). The total void fraction, was = 0.69 (the phase ratio,14 ߝ

To visualize the internal concentration profiles of the chosen SMB system, the normalized15 .(0.45 = ܨ

axial distance, ݖ ⁄஼ܮ , from the desorbent port toward the liquid phase flow direction was set as an x-16

axis. Thus, the concentration profiles, ܿ௜̅(ݖ ⁄஼ܮ ) over the zone 1 (0 to 1 of ݖ ⁄஼ܮ ) through the zone 4 (317

to 4 of ݖ ⁄஼ܮ ) can be generated. To obtain the profiles at CSS, the process simulation was done up to18

20th port switching interval.19

From these profiles, a hodograph analysis can be applied. As described in Section 2.3, the20

MC-AC scheme requires the second equilibrium computations, Eq. (22) to modulate numerical errors21

quantified with the simple approximation to avoid complex computation (Appendix A). This means22

that the characteristics of the first-order PDEs, Eq. (A-3) may be violated if the second step AC23

scheme modulate the numerical errors improperly. To evaluate the numerical solution of MC-AC24
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scheme, the hodograph analysis was carried out for binary mixture systems (two-dimensional plane),1

which can be analytically solved.2

For the convection equations of binary system (the more-retained solute, A; the less-retained3

solute, B), the characteristic directions on the hodograph, can be analytically obtained from the4 ±ߞ

following equations in Riemann problem (Rhee et al., 1989),5

,஺ܿ)±ߞ ܿ஻) = ௗ௖ಳ
ௗ௖ಲ

= ଵ
ଶ
ቀడ௤ಲ
డ௖ಳ

ቁ
ିଵ
ቊቀడ௤ಳ

డ௖ಳ
− డ௤ಲ

డ௖ಲ
ቁ± ටቀడ௤ಳ

డ௖ಳ
− డ௤ಲ

డ௖ಲ
ቁ
ଶ

+ 4 డ௤ಲ
డ௖ಳ

డ௤ಳ
డ௖ಲ

ቋ (24)6

The points on the hodograph plane, (ܿ஺, ܿ஻) has two characteristic directions. For the generalized7

Langmuir isotherms, the sign of direction varies in terms of the assignment parameters, ௜. For8݌

example, in Langmuirian isotherms case (߲ݍ஺ ߲ܿ஻⁄ < 0 and ஻ݍ߲ ߲ܿ஺⁄ < 0), the characteristic9

directions; is positive and ିߞ ିߞ) ା is negative. However, the signs are oppositeߞ > 0 and ାߞ < 0) in10

anti-Langmuirian case (߲ݍ஺ ߲ܿ஻⁄ > 0 and ஻ݍ߲ ߲ܿ஺⁄ > 0).11

Based on the equivalent true moving bed analysis (Storti et al., 1993), the hodograph lines12

around the ports follow the characteristic directions of the corresponding port concentrations if the13

inlet and outlet concentrations of the port are the same. For well-posed CSS profiles, i.e. the14

concentrations at the Desorbent port are zero, the hodograph lines can be obtained from the following15

equations and two axes (ܿ஺ = 0 and ܿ஻ = 0) assuming that ܿ௓ଶ,ை௨௧௟௘௧,௜ = ܿ௓ଷ,ூ௡௟௘௧,௜,16

ܿ஻ − ܿ௓ଷ,ூ௡௟௘௧,஻ = ,൫ܿ௓ଷ,ூ௡௟௘௧,஺±ߞ ܿ௓ଷ,ூ௡௟௘௧,஻൯൫ܿ஺ − ܿ௓ଷ,ூ௡௟௘௧,஺൯ (25)17

where ܿ௓ଷ,ூ௡௟௘௧,஺ and ܿ௓ଷ,ூ௡௟௘௧,஻ represent the concentrations at the Feed port. This hodograph analysis18

can assess if a numerical method provides thermodynamically consistent solutions.19

20

2.5.Implementation of computation routines21

To implement the proposed numerical method, all computation routines were coded with C++22

language and compiled with Microsoft Visual C++® compiler (Ver. 19, included in Microsoft Visual23

Studio® 2015 Express Edition). To solve the nonlinear equation system, the Newton-Raphson method24
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was used. For parallel mixing cell computation (Figure 4), Microsoft Parallel Pattern Library® (PPL)1

was used. All computation time was measured in CPU time, and the Amdahl’s law (Amdahl, 1967)2

was used to measure the efficiency of parallelized computation.3

ܵ( ஼ܰ௎) = ே಴ೆ
ே಴ೆି(ே಴ೆିଵ)௥ುೌೝೌ೗೗೐೗

(26)4

where, ܵ is the speedup ratio compared to the speed of single computation unit, ஼ܰ௎ is the number of5

computation unit involved, ௉௔௥௔௟௟௘௟ݎ  is the ratio of parallelized computation.6

To compare the numerical method proposed in this work to other numerical methods, a7

commercial simulator, Aspen Chromatography® (Ver. 8.8, AspenTech Inc. USA) was used for8

applying the first-order upwind scheme (UDS), fourth-order biased upwind scheme (BUDS), and the9

finite volume method with OSPRE flux limiter (OSPRE). The commercial simulator solves the10

differential-algebraic system of equations (DAEs) with an ODE solver. In this work, fourth-order11

adaptive Runge-Kutta method was chosen to solve ODEs (Appendix B). Since it is not easy to12

compare the computation times obtained from disparate computation routines, the relative13

computation times of the MC-AC and OSPRE schemes to the first-order upwind scheme with 50 cells14

(nodes) per column were compared. Since there is no available analytical solution for non-linear15

isotherms system, reference solutions obtained by the MC scheme with ஼ = 10000 cells per column16ۼ#

were used to calculate ଵ andܮ ஶ errors as,17ܮ

ଵܮ =
∑ ቆ

ቚ೎ത಴ೌ೗,೔(೙)ష೎തೃ೐೑,೔(೙)ቚ
೎ಷ೐೐೏,೔

ቇ೔∈ܵۼ ,೙∈ܥۼ

(ܥۼ#)(ܵۼ#)
(27-1)18

ஶܮ = max௜∈ܵۼ,௡∈ܥۼ ൬
ห௖಴̅ೌ೗,೔(௡)ି௖ೃ̅೐೑,೔(௡)ห

௖ಷ೐೐೏,೔
൰ (27-2)19

where the subscripts, and ݈ܽܥ ܴ݂݁ denote the calculated numerical solution and the corresponding20

reference solution, respectively.21

22

3. Results and Discussion23

As mentioned above, the internal profiles of SMB process are built up inside of the columns24

from cycle to cycle until a cyclic steady-state (CSS) is reached. If the operating conditions are well25
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chosen to avoid any recycling of solutes through the Desorbent port, the internal concentration profiles1

are located around the Feed port, and various shapes of shock and rarefaction wave combinations can2

be developed. To evaluate the accuracy and efficiency of the proposed MC-AC scheme, two different3

operating conditions were analyzed assuming typical parameters of the generalized Langmuir4

isotherms, Eq. (14-1) as shown in Table 1. To generate reasonable retention of solutes, the Henry’s5

constant of the most-retained solute, ܽ஺ was set to 4.0 and the ܾ௜ parameters were set to have the same6

maximum adsorption capacity, i.e. ܽ௜ ܾ௜⁄ = ௝ܽ ௝ܾ⁄ . Then the adsorption isotherm equations are7

thermodynamically consistent. The feed concentrations and the isotherm parameters, ܿி௘௘ௗ,௜ and ܾ௜8

were arbitrarily chosen to describe significant nonlinear behaviors, which form dispersed rarefaction9

and sharp shock waves. In most of SMB processes, the mobile phase condition is isocratic (constant10

and identical solvent compositions in the feed and desorbent streams), so that the isotherm model11

considered in this work does not contain any parameter for adsorbable solvent. However, the12

numerical method introduced in this article may be also applicable to the solvent-gradient SMB13

process (Abel et al., 2002, 2004) with appropriate isotherm models for gradient elution.14

The port switching interval, ௌ was fixed to 4 min. Thus, the operating conditions could be15ݐ

specified by fixing four internal zone flow-rates, ܳ௓ଵ to ܳ௓ସ. In Langmuirian isotherms, the front end16

of elution band forms shock. Therefore, the shapes of shock fronts can be changed by the flow-rates of17

the zones 3 and 4. In the SMB-Condition 1, the flow-rates of the zones 3 and 4 were chosen to form18

the superposed multiple shocks in the zone 3 (2 to 3 of ݖ ⁄஼ܮ ). On the other hand, the steep-and-narrow19

shocks were formed in the zone 4 (3 to 4 of ݖ ⁄஼ܮ ) in the SMB-Condition 2 (cf. Figure 5). These two20

conditions were used to evaluate the MC-AC scheme in the following Sections 3.1 to 3.5.21

22

3.1.Mixing cell scheme (MC scheme)23

At first, the solutions of MC scheme were compared in various numbers of cells. Since the24

second-order numerical error term is the most dominant in truncation error, the right hand side of Eq.25

(6), so that the numerical solutions are more dispersed when smaller number of cells was used in the26
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MC scheme. Figure 5 illustrates the computed internal concentration profiles at the end of 20th port1

switching interval by the MC scheme with various numbers of cells for the Conditions 1 and 2 (Table2

1). The Desorbent and Feed ports are located at 0 and 2 of ݖ ⁄஼ܮ .3

For Condition 1 (Figure 5a), the more-retained solute profile was not reached to Raffinate port4

and the ports were switched to the next positions, so that the multiple superposed shocks were formed5

in the zone 3 (between Feed and Raffinate ports, 2 to 3 of ݖ ⁄஼ܮ ). The concentrations at the outlet of6

the zone 2 were different from the feed concentrations (ܿ௓ଶ,ை௨௧௟௘௧,஺ < ܿி௘௘ௗ,஺ and ܿ௓ଶ,ை௨௧௟௘௧,஻ >7

ܿி௘௘ௗ,஻), so that small humps were observed (the point A in Figure 5a).8

For Condition 2 (Figure 5b), the front shocks of both solutes pass through the zone 3, and the9

steep-and-narrow shock wave profiles were formed in the zone 4 (between Raffinate and Desorbent10

ports, 3 to 4 of ݖ ⁄஼ܮ ). In CSS, the zone 3 is completely saturated with the feed concentrations, and the11

adsorption and desorption profiles are formed in the zones 4 and 2, respectively. Therefore, this12

condition is a typical Riemann problem.13

As the number of cells increases, the numerical errors, which occur the numerical dispersion14

effects, were reduced in the MC scheme. This means that the numerical solution becomes closer to the15

exact solution of the equilibrium model. Therefore, we computed the internal concentration profiles of16

Conditions 1 and 2 using the MC scheme with ஼ۼ#  = 10000, and used them as the reference solutions17

of the equilibrium model. All simulations were performed up to 20 port switching intervals, which18

were sufficient to reach the CSS, to obtain the solution in CSS.19

20

3.2.Mixing cell with active counteraction scheme (MC-AC scheme)21

To reduce the numerical errors, the suggested AC scheme was applied. Figure 6 shows how22

the MC-AC scheme compresses the internal concentration profiles for the cases of 20 and 200 cells.23

Since the size of cell, ∆z in Eq. (4), represents the resolution of numerical solutions, the solution with24

20 cells provides slightly dispersed profiles. If any numerical dispersion takes place, the solutions25

should have broadened elution bands like Figure 5. However, the elution bands in Figure 6 was26
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broadened as much as the cell size, increased, i.e. the resolution of numerical solution decreased,1 ݖ∆

and only 200 cells were large enough to obtain the same accuracy as the reference solutions.2

The MC-AC scheme requires one more step of cell equilibration, Eq. (22) for the numerical3

error treatment. This means that the characteristics of the first-order PDEs, Eq. (25) may be broken if4

the numerical errors are not correctly modulated. The profiles of the reference and MC-AC solutions5

were compared on the hodograph plane as shown in Figure 7 (cf. Figure B-2 in Appendix B). The6

hodograph lines obtained from Eq. (25) represent the exact solution (#ۼ஼ = ∞).7

In Condition 2, a typical Riemann problem, the characteristic lines at the feed concentrations8

were perfectly matched with the hodograph lines of the reference solution (Lines BC and CD in9

Figures 7b and 7d). The point C indicates the feed port concentrations, which are the same as the feed10

concentrations in Condition 2.11

In Condition 1, a small curvature (the point E in Figures 7a and 7c) was observed on the line12

BC of the reference solution because of asymptotic CSS characteristics (Zhong et al., 1996). Since the13

zone 2outlet and the zone 3 inlet concentrations were not the same at the end of port switching interval,14

small humps (indicated at the point A in Figure 5a) were located in the zone 2 and transferred in the15

rarefaction waves during next port switching intervals. However, it was difficult to identify in the16

solutions of the MC-AC scheme because of insufficient resolutions (barely seen in Figure 7c).17

In both tested conditions, the hodograph lines of 20 cells were deviated from the reference18

lines because of poor resolution (Figures 7a and 7b). However, the hodograph lines of ஼ = 200 cells19ۼ#

perfectly matched to the reference lines (Figures 7c and 7d). This means that the second computation20

step for the AC scheme does not violate the characteristics of the governing PDEs.21

Due to the additional second step for the AC scheme, the computation time of the MC-AC22

scheme was almost doubled (Figure 8a) compared to the MC scheme. This additional second step for23

the AC scheme must be performed after the MC scheme, so that the extra computation time for the AC24

scheme was not shortened in parallel computation. However, the MC-AC scheme can be easily25
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implemented for the parallel computation. Even though the parallel computation routines were not1

fully optimized, 78% of computation routines were parallelized (Figure 8b).2

All computations were done in a desktop PC with Intel i7® CPU. This CPU supports the3

simultaneous multi-threading (SMT) technology (HyperThreading®). This means that up to two4

computation units (threads) can be assigned to the same CPU core to improve efficiency of CPU usage.5

Since all parallelized computation routine uses the same part of CPU core (arithmetic-logical and6

floating-point units), and a certain overhead is required for scheduling the parallelized computation7

units, the computation speed of SMT was even slower than the speed of the single threading.8

9

3.3.Comparing the MC-AC scheme with other schemes10

As shown above, the MC-AC scheme can improve the accuracy of the MC scheme by11

efficient modulation of the numerical errors. However, many commercial process simulation tools are12

already available exploiting high-order and high-resolution schemes. To compare the developed13

scheme with well-established schemes, three different numerical schemes were considered, namely the14

first-order UDS, the fourth-order BUDS, and the FVM with the OSPRE flux limiter. The recently15

developed high-order WENO schemes were not considered in this work because they have many16

variations and are still under development (Jiang & Shu, 1996; von Lieres & Andersson, 2010). These17

schemes use high-order (usually the fifth-order or higher) scheme with weighted sub-stencils, so that18

they provide highly accurate and non-oscillatory solutions with heavy load of computation and proper19

weight factors of sub-stencils (Alhumaizi, 2004; Črnjaric-Žić et al., 2004; John & Novo, 2012).20

The three above-mentioned schemes were compared with the MC-AC scheme with the same21

number of cells. For the commercial simulator, the same number of spatial nodes was set. Figure 922

compared four tested numerical schemes in Condition 1, respectively. As expected, the UDS scheme23

provides significantly dispersed solution, and the BUDS scheme provides spurious oscillations around24

steep shock waves. The FVM with OSPRE flux limiter (the second-order scheme) provides relatively25

good numerical solution and it is comparable to the MC-AC scheme. The discretization methods use26
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the Taylor’s series expansion to approximate the time and spatial derivatives in the PDEs, so that their1

solution implies the numerical dissipation errors that need to be eliminated by proper high-order2

schemes or alternative flux limiters based on TVD. This means that it is difficult to avoid smearing or3

spurious oscillation errors if the number of nodes or cells are not big enough.4

In Figures. 10c and 10d, the OSPRE scheme generates significantly dispersed profiles when5

only 20 spatial nodes were used. However, the MC-AC scheme actively subtract the quantified6

numerical errors during each cell computation, so that the numerical solutions obtained from 20 cells7

have much less smearing errors without spurious oscillation. As mentioned in Section 2.1, the FVMs8

with flux limiters take the average fluxes that may cause an inconsistency error, so that the positions of9

shock waves are shifted as the number of spatial nodes decreased. However, the AC scheme quantifies10

partition inconsistency errors to eliminate them from the solution and to obtain the physically feasible11

Courant number for the profile compression or dispersion. Therefore, the positions of shock waves are12

the same even though the number of cells is very small (Figures 10a and 10b).13

Figure 11 shows the ଵ andܮ ஶ errors of the MC-AC and OSPRE schemes for Conditions 114ܮ

and 2. The OSPRE scheme has the second-order accuracy. However, this accuracy decreases near the15

shock wave to obtain non-oscillatory solution. Because of this accuracy switching by the flux limiter16

(the second-order accuracy is switched to the first-order accuracy around sharp shock, so that the17

errors near shock waves are more significant than other errors as shown in Figure 9c), the slopes of the18

ଵ error for the OSPRE scheme are close to 1. The MC-AC scheme also has the first-order accuracy19ܮ

because of the base MC scheme. Therefore, the slopes of the ଵ error for the MC-AC scheme are also20ܮ

close to 1, but errors at the same ஼ۼ#  were much smaller than the OSPRE scheme. In the reference21

solution, the solution has stepwise shock waves, so that the ஶ error was not significantly improved22ܮ

(improved ஶ accuracy cannot be achieved if the same or better resolution is not used compared to the23ܮ

reference solution). Moreover, the OSPRE scheme finds wrong shock wave position because of the24

partition inconsistency error.25

To compare the computation speeds of the coded routines and the commercial simulator, the26

relative speed of the MC-AC scheme to the speed of the MC scheme with 50 cells,27
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{Speed of MC− AC Scheme} {Speed of MC Scheme with 50 cells}⁄ , and the relative speed of the1

OSPRE scheme to the speed of the UDS scheme with 50 spatial nodes,2

{Speed of OSPRE Scheme} {Speed of UDS Scheme with 50 nodes}⁄ , were compared. Figure 123

shows the comparisons of the MC-AC and OSPRE scheme performances. Since the flux limiter (not4

only the OSPRE scheme) limits the solution gradient when the solution is close to shock, the5

performance gap between the MC-AC and OSPRE schemes in Condition 1 (superposed multi-step6

shock wave condition) was greater than Condition 2. All four performance lines have the similar7

slopes (0.52 ~ 0.63) in Conditions 1 and 2, so that the MC-AC scheme is approximately 10 times8

faster or approximately 1/5 smaller ଵ error level than the OSPRE scheme at the sameܮ ଵ error level or9ܮ

at the same computation speed, respectively.10

The MC-AC scheme cannot overcome the convergency characteristics of the base MC scheme,11

i.e. the first-order accuracy. However, it can significantly remove the two numerical errors that are12

quantified by the AC scheme, and accelerates computation with small number of cells to provide13

relatively good solution.14

15

3.4.Potential of reducing the cell numbers with MC-AC scheme16

In Sections 3.1 to 3.3, we considered only the first-order PDEs solution, i.e. Eq. (3-1) without17

physical dispersion, ௅,௜ = 0. However, in preparative and production scale process, the convection is18ܦ

not strongly dominant. This means that the elution bandwidth is significantly broadened by physical19

dispersion, and the precise prediction of broadened bandwidth is important to design or control20

chromatographic separation process. Therefore, it is desirable that the numerical solutions obtained21

from different number of cells or spatial nodes should provide the same degree of dispersion. This22

means that the numerical errors caused in different number of cells or spatial nodes should be the same.23

As tested in Section 3.3, only the MC-AC scheme provides accurate elution bandwidths, so24

that Figure 13 compared the dispersed numerical solutions obtained by the MC-AC scheme with25

various number of cells. Two physical dispersion coefficients considered, 0.1 cm2/min and 1.026
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cm2/min were arbitrary chosen because those are typical lower and upper bounds of apparent1

dispersion coefficients in preparative chromatography. Because of poor resolution caused by large2

volume of cell, only the numerical solutions with 10 cells provide more dispersed concentration3

profiles around the steep shock wave (Figures 13a and 13b). This means that the numerical dispersion4

errors are effectively modulated to compensate the physical dispersion effect. Consequently, the model5

parameters estimated with different number of cells can be identical or very close for the same6

physical system. Therefore, the parameters estimated with this scheme are more reliable than the ones7

from other numerical methods that essentially contains specific numerical errors.8

In Table 2, the contributions of numerical computation routines of the MC-AC scheme were9

compared in terms of the number of routine calls and the average iteration number of the nonlinear10

solver. In the MC-AC scheme, there are two serial computation routines, the convection routine in the11

MC scheme ( ∆ܰ௧ is the number of MC routine calls) and the numerical error modulation routine in the12

AC scheme (ܴ∆௧ is the number ratio of AC routine calls to ∆ܰ௧). Since the discretized time step for13

convection was decided by the length of the cell (∆ݐ = ݖ∆ ⁄௅ݑ ), ∆ܰ௧ values were all the same for14

different ௅,௜ cases. However, the discretized time step for the numerical error modulation routine is15ܦ

related to the CFL condition for the second-order dispersion term as described in Section 2.2 so that16

the time step smaller than the convection routine may be applied if ௅,௜ too large compared to the time17ܦ

step (Note ݐ∆ = ݖ∆ ⁄௅ݑ ) . Under well determined ஼ܰ conditions (ܴ∆௧ < 5.0), the computation speeds of18

different ௅,௜ cases were close each other. Inܦ ܴ∆௧  > 1.0 conditions, the discretized time step is divided19

into several sub-steps to satisfy ݐ∆ഥி,௜ܦ2 ⁄ଶ(ݖ∆) ≤ 0.5 and additional serialized computation steps are20

required for the profile dispersion in the AC scheme. However, dispersed profiles decreases steep21

jump of concentrations, so that the nonlinear solver can find the solution in less iterations and22

compensate extra computation time. If ஼ۼ#  is too small (ܴ∆௧ > 5.0), the reduced computation time of23

the nonlinear solver cannot compensate increased computation time for profile dispersion (the24

nonlinear solver requires at least ~5 average iterations in these cases), and the computation speed25

decreases.26
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Consequently, the ratio quantity, ܴ∆௧  value can be used to determine a proper number of cells.1

If , ܴ∆௧ = 1, the fictitious dispersion coefficient is negative, and the profiles are compressed by the AC2

scheme. This means that the number of cells is smaller than the conventional MC scheme with the3

passive counteraction scheme, and the error of numerical solution is only proportional to the resolution4

(the size of cells). The computation speed is not significantly slowed down in ܴ∆௧ ≤ 5.0. Therefore,5

one can decide the right number of cells (the size of cells) corresponding to the desired accuracy6

(resolution) up to ܴ∆௧ = 5.0.7

8

3.5.Simulation of diverse dispersion system with MC-AC scheme9

In the cases studied above, both solutes have the same physical dispersion coefficients, and it10

is possible to solve the PDEs using the passive counteraction, that is the same as the MC scheme with11

designated cell size. However, it is not possible to acquire suitable numerical solution if the solutes12

have quite diverse physical dispersion coefficients as described in Figure 14. We tested two different13

dispersed systems for the Conditions 1 and 2. In Figures 14a and 14c, the less-retained solute has quite14

large physical dispersion coefficient, ௅,஻ = 1.0, and the more-retained solute has no dispersion. The15ܦ

opposite cases were shown in Figures 14a and 14c. This dispersion difference can be realized by the16

selective mass transfer rates between two phases. It can be a critical factor for separations if17

convection is not strongly dominant to the migration velocity (Guiochon et al., 1994). To assess the18

front and rear ends of the elution bands, the numerical solutions of the diverse physical dispersion19

systems obtained using the MC-AC scheme with 50 cells were compared with the reference solutions20

(solution for non-dispersive system). If the solute is non-dispersive, ௅ = 0.0, the elution band should21ܦ

be close to the elution band of the reference solution, but the elution band is broadened if the solute is22

under the dispersive condition, ௅ = 1.0. As shown in Figure 14, the elution bands of the non-23ܦ

dispersive solutes were perfectly matched with the corresponding elution bands in the reference24

solutions. In Figure 14d, the elution order of front ends were turned around. Both solutes have close25

shock front migration velocities by convection (two shock fronts are close in the reference solution).26

However, the exceptional dispersion accelerates the front-end migration velocity of the more-retained27
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solute, and the dispersed profile of the more-retained solute migrates faster than the shock profile of1

the less-retained solute.2

To simulate the diverse dispersion system studied in this section with MC scheme or other3

numerical schemes, the large number of cells (spatial nodes) is required to describe the profile of the4

least dispersed solute while it is too lavish for the simulation of other more dispersed solutes. The MC-5

AC scheme can provide relatively good accuracy both less and more dispersed solutes.6

7

3.6.Simulation of various isotherm shapes and multi-component systems with MC-AC8

scheme9

The Langmuir adsorption isotherm is well-known and thermodynamically consistent.10

However, it is one of the simplest isotherm models in liquid chromatography, so that many empirical11

and theoretical isotherm models were introduced to describe complex adsorption behaviors (Guiochon12

et al., 1994). In this work, the generalized Langmuir model, which is commonly used for the mixed13

system of Langmuirian and anti-Langmuirian adsorptions by switching the sign of the Langmuir14

adsorption model parameters in the denominator, was also tested. As shown in Table 3, four different15

combinations of adsorption types, SMB-Conditions 3 to 6 were tested: Langmuirian (݌஺ = ஻݌ = 1;16

Condition 3), mixed (݌஺ = 1, ஻݌ = −1; Condition 4), mixed (݌஺ = −1, ஻݌ = 1; Condition 5), and17

anti-Langmuirian (݌஺ = ஻݌ = −1; Condition 6). Since some of ܾ௜ parameters are negative, so that the18

necessary condition for generalized Langmuir isotherms, Eq. (14-2) may be violated at the same feed19

concentration condition as the Conditions 1 and 2. Therefore, ܾ௜ parameters were one order of20

magnitude smaller. To obtain clear adsorption and desorption profiles of Riemann problems, fast flow-21

rates of the zones 1 and 3 were set compared to the Conditions 1 and 2. In this simulation work, the22

commercial chromatographic process simulator was unstable with generalized Langmuir isotherms (in23

anti-Langmuirian and mixed condisions). It seems that the anti-Langmuirian and mixed conditions24

occur significant partition inconsistency errors, i.e. the Courant numbers in the computational nodes25

often violate the stable condition, 0 ≤ ࣝ௜ ≤ 1, so that the conventional discretization methods fall to26
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providing unstable solutions. Therefore, the proposed MC-AC scheme could not compared with the1

widely-established numerical methods in these conditions.2

Figure 15 compared four different adsorption types, the Conditions 3 to 6. For all four3

different types, the MC-AC scheme could provide good solution with 50 cells compared to the4

reference solutions (MC scheme with 10000 cells). Since the flow-rates in zones 1 and 3 are much5

faster than Conditions 1 and 2, i.e. it requires more discretized time steps to compute (∆ݐ = ݖ∆ ⁄௅ݑ ),6

the computation time was slower than Conditions 1 and 2 (cf. Conditions 1 and 3 to 6 in Table 4).7

When 200 cells were involved, i.e. the cell size is small enough to provide good resolution, the8

solutions are perfectly matched to the reference solutions, and the computation time was9

approximately 800 times faster than the reference scheme (cf. Table 4).10

As the number of solutes increases, the isotherm behaviors are more complex, and it is not11

easy to get an accurate solution because of significant partition inconsistency error. In the MC-AC12

scheme, the partition inconsistency error is quantified to be actively modulated. Therefore, it can13

provides good solutions for multi-component systems. Up to 5-component system (SMB-Conditions 714

to 9 in Table 3), the MC-AC scheme was applied to simulate the SMB process at the Condition 1,15

which provides complex superposed shock fronts. To apply adsorption nonlinearity similar to the16

Condition 1, the same total feed concentration was tested. From the binary system (the Conditions 117

and 2 in Table 1), one component (solute B in Conditions 7 to 9) that retains between the binary18

system solutes (solutes A and C in Conditions 7 to 9) and two more components (solutes D and E) that19

retain less than the solute C were add with arbitrarily decided isotherm parameters, ܽ௜. The isotherm20

parameters, ܽ௜ was decided to maintain the thermodynamic consistency (ܽ௜ ܾ௜⁄ = ௝ܽ ௝ܾ⁄ ). In the21

quinary system (Condition 9), the selectivity of the most- and the least-retained solutes, ܽ஺ ܽா⁄  = 8.22

This means that widely diverse retention system in the SMB process was tested. If the selectivity is too23

broad, other advanced operation strategies, such as solvent-gradient SMB should be applied.24

Figure 16 compared the numerical solutions from binary (Condition 1) to quinary systems25

with their reference solutions (MC scheme with 10000 cells). The MC-AC scheme can provide26

accurate solutions even though multiple components generate complex shock waves. The elution27
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profiles between 2 to 3 of ݖ ⁄஼ܮ  become more complex as the number of solutes increases. However,1

the MC-AC scheme with 50 cells (limited resolution) can provides good approximated profiles.2

Especially, the position of shock fronts were perfectly matched with the reference solutions (cf. Figure3

B-1 in Appendix B). To obtain the solutions similar to the reference solution accuracy (similar ଵ4ܮ

errors), more cells that can provide finer resolution were required as a mixture is more complex. The5

numerical solution with 500 cells was closely matched to the reference solution in the quinary system6

(cf. Conditions 1 and 7 to 9 in Table 4).7

8

4. Conclusion9

This article provides a rapid and accurate numerical method capable to solve dynamic10

problems occurred in chromatographic separation processes. The classical mixing cell (MC) scheme11

corresponds to the finite volume method (FVM) with the first-order upwind discretization scheme12

(UDS). It should be noted that all physicochemical phenomena could take place inside the cell with13

the unit volume properties and models. Due to the simplicity of the MC scheme, the numerical errors14

could be quantitatively evaluated. The second-order derivative term in truncation error was actively15

modulated to compensate the physical dispersion effect by applying the modified dispersion model16

with the fictitious dispersion coefficient. The addtitional partition inconsistency error caused by17

discretizing the continuous and differentiable solution section to finite volume element could be also18

quantified and effectively corrected. This partition inconsistency error is amplified if the adsorption19

isotherms are nonlinear and competitive. By quantifying and modulating the above-mentioned errors20

with the active counteraction (AC) scheme, the accuracy of the mixing cell (MC) scheme can be21

remarkably improved. This was proven in the simulations of challenging multi-column simulated22

moving bed (SMB) process for various adsorption isotherm types. It can be effectively applied for23

numerous other configurations of chromatographic process including control problems.24
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Appendix A1

To illustrate the computational complexity of physically meaningful partition parameters, let2

us consider binary system (solutes A and B) that causes rarefaction and shock waves (Figure A-1). If3

all cell concentrations are well posed on the characteristic lines on the hodograph plane, cf. Eqs. (24)4

and (25), the locally constant partition parameters obtained from Eq. (8-2) are physically meaningful.5

On the other hand, the physically meaningful representative values should be obtained. The one6

possible way is using the following weighted averages in a rarefaction wave condition,7

௜௥௪ߢ̅ = 1 + ி
∆௧
൜∆ݐ௥௪ ௤ത೔

ೝೢ(௡,௧ା∆௧ೝೢ)ି௤ത೔(௡,௧)
௖೔̅
ೝೢ(௡,௧ା∆௧ೝೢ)ି௖೔̅(௡,௧)

+ ݐ∆) − (௥௪ݐ∆ ௤ത೔(௡,௧ା∆௧)ି௤ത೔
ೝೢ(௡,௧ା∆௧ೝೢ)

௖೔̅(௡,௧ା∆௧)ି௖೔̅
ೝೢ(௡,௧ା∆௧ೝೢ)

ൠ (A-1)8

and in a shock wave condition,9

௜௦௪ߢ̅ = 1 + ி
∆௧
൜∆ݐ௦௪ ௤ത೔

ೞೢ(௡,௧ା∆௧ೞೢ)ି௤ത೔(௡,௧)
௖೔̅
ೞೢ(௡,௧ା∆௧ೞೢ)ି௖೔̅(௡,௧)

+ ݐ∆) − (௦௪ݐ∆ ௤ത೔(௡,௧ା∆௧)ି௤ത೔
ೞೢ(௡,௧ା∆௧ೞೢ)

௖೔̅(௡,௧ା∆௧)ି௖೔̅
ೞೢ(௡,௧ା∆௧ೞೢ)

ൠ (A-2)10

where the superscripts, and ݓݎ denote the rarefaction and shock wave conditions, respectively.11 ݓݏ

The characteristic hodograph directions at the point, ൫ܿଵ̅, ܿଶ̅, … , ܿே̅ೄ൯can be obtained using the12

following system of equations (Rhee et al., 1989),13

ࣞ௤തభ
ࣞ௖భ̅

= ࣞ௤തమ
ࣞ௖మ̅

= ⋯ =
ࣞ௤തಿೄ
ࣞ௖̅ಿ ೄ

(A-3)14

These equations provides ௌ directions for a certain hodograph point, so thatۼ# possible15 !(ௌۼ#)

trajectories should be considered. Applying the entropy conditions correspondent to the physical16

system, which is related to the elution order of solutes in adsorption, one correct wave trajectory17

should be chosen.18

For example, two transient concentration points, (ܿ஺̅௦௪ , ܿ஻̅௦௪) and (ܿ஺̅௥௪, ܿ஻̅௥௪) should be obtained19

in binary mixture as shown in Figure A-1, and the corresponding transient concentration point should20

be chosen for a rarefaction or shock wave trajectories, respectively.21

22
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1

2

Figure A-1.  Schematic hodograph illustrations of rarefaction (upper) and shock (lower) waves in3

binary mixture system (solutes A and B, competitive Langmuir isotherms, and solute A4

is more-retained).5

6

7
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Appendix B1

In the chosen commercial simulator, Aspen Chromatography® (and most of commercial PDE2

solvers for the hyperbolic conservation laws), the PDEs are transformed to the DAEs by taking3

discretized fluxes as,4

ௗ௖೔̅(௡,௧)
ௗ௧

= ௜,௡൛ℱ௜൫݊ߙ − భ
మ, ൯ݐ − ℱ௜൫݊+ భ

మ, ൯ൟݐ (B-1)5

where ℱ௜൫݊ − భ
మ, ൯ andݐ ℱ௜൫݊+ భ

మ, ൯ are the entering and leaving fluxes of theݐ nth spatial node at time 6,ݐ

௜,௡ is the system parameter. The fluxes can be expressed as a linear combination of concentrations7ߙ

using a proper numerical scheme.8

൮

ௗ௖భ̅(ଵ,௧)
ௗ௧
⋮

ௗ௖̅ಿ ೄ(ே಴ ,௧)

ௗ௧

൲ = ऋ ∙ ቌ
ܿଵ̅(1, (ݐ

⋮
ܿே̅ೄ( ஼ܰ , (ݐ

ቍ (B-2)9

where ऋ is the square matrix that contains the system parameters and adsorption isotherms. The10

sparsity of matrix ऋ is depends on the chosen numerical scheme. For example, the OSPRE scheme11

take three spatial nodes, ݊ − 1, ݊, and ݊ + 1. Therefore, the matrix ऋ is ௌۼ#) ∙ ௌۼ#)-஼)-byۼ# ∙ ஼)12ۼ#

tri-diagonal matrix. To simplify the computation, it is assumed that the fluxes are locally constant, i.e.13

the matrix ऋ is constant. Therefore, Eq. (B-2) is not identical to,14

൮

ௗ఑భ(ଵ,௧)௖భ̅(ଵ,௧)
ௗ௧
⋮

ௗ఑ಿೄ(ே಴ ,௧)௖ ̅ಿ ೄ(ே಴ ,௧)

ௗ௧

൲ = ऌ ∙ ቌ
ܿଵ̅(1, (ݐ

⋮
ܿே̅ೄ( ஼ܰ , (ݐ

ቍ (B-3)15

where ऌ is the square matrix that contains the system parameters. It causes the partition inconsistency16

error, which increases where the isotherms are nonlinear and competitive. Figure B-1 shows the17

examples for binary linear isotherms and quinary Langmuir isotherms. The solutions obtained using18

the MC-AC and OSPRE schemes were compared. In linear isotherms, adsorption of each components19

are not nonlinear nor competitive, so that there is no inconsistency (the positions of front and rear ends20

are located at the same positions of the reference solutions as shown in Figures B-1a and B-1c).21

However, in Langmuir isotherms, competitive nonlinear isotherms, significant inconsistency arose22
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during the discretized numerical approximation, and causes inaccurate migration velocity. As shown1

in Figures B-1d, the shock wave positions were deviated in the OSPRE scheme if small number of2

spatial nodes were used ஼ = 50). The shock front of solute C is located in the middle of total elution3ۼ#

band (the position of shock wave is affected by all other solutes), so that its position was significantly4

deviated compared to other shock waves. These partition inconsistency errors can be minimized by5

using dense spatial nodes that requires enormous computation resources, e.g. the computed profiles6

with ஼ۼ#  = 500 were closely matched to the reference solution, but its computation time was 1357

times longer than ஼ۼ#  = 50. On the other hand, the MC-AC scheme eliminates quantified partition8

inconsistency error, so that the position of the shock waves are identical in both ஼ۼ#  = 50 and ஼ۼ#  =9

500 profiles.10

11

Figure B-1.  Numerical scheme comparisons of internal concentration profiles obtained from binary12

mixture and linear isotherms system and quinary mixture and Langmuir isotherms13

system.14

a) MC-AC scheme, Linear system; b) MC-AC scheme, Condition 9;15

c) OSPRE scheme, Linear system; d) OSPRE scheme, Condition 9;16
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Linear system: ,஺ = 4ܪ ஻ܪ  = 2, ܳ௓ଵ to ܳ௓ସ = 30, 10, 30, 10 ml/min1

Interpolated concentration profiles, at the end of 20th cycle operation, ௅,௜ = 0.2ܦ

Figure B-2 compares the characteristic hodograph lines obtained from the reference and OSPRE3

solutions (cf. Figure 8). In low-resolution conditions, ஼ = 20, the OSPRE solutions imply4ۼ#

significant numerical errors, the partition inconsistency and numerical dispersion errors. The5

characteristic lines are deviated from the reference solutions when complex shock waves amplify the6

partition inconsistency error (Figure B-2a), and the nodes involved to describe the steep-and-narrow7

shock wave are not sufficient to eliminate the numerical dispersion error (Figure B-2b). These errors8

can be minimized by increasing the number of nodes, ஼ۼ#  = 200 in Figures B-2c and B-2d.9

10

Figure B-2.  Comparisons of the characteristic hodograph lines of the reference and OSPRE11

solutions.12

a) ஼ۼ#  = 20, Condition 1; b) ஼ۼ#  = 20, Condition 2;13

c) ஼ۼ#  = 200, Condition 1; d) ஼ۼ#  = 200, Condition 2;14

At the end of 20th cycle operation, ௅,௜ = 0, cf. Figure 8.15ܦ

16
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Table 1

SMB-Condition
Operating Conditions1) Isotherms, ;[-] ࢏ࢇ [L/g] ࢏࢈࢏࢖
ܿி௘௘ௗ,௜

2)

[g/L]
ܳ௓ଵ to ܳ௓ସ
[ml/min]

A B

1 10 27; 9; 12; 9
4.0; 0.2 2.0; 0.1

2 10 27; 9; 18; 6
1) Port switching interval, ௌ = 4 minݐ
2) The same concentration for all solutes, ݅ = A, B
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Table 2

࡯ۼ# ࢚∆ࡺ
1) 0.0 = ࢏,ࡸࡰ 0.1 = ࢏,ࡸࡰ 1.0 = ࢏,ࡸࡰ

ܴ∆௧2) ഥܰே௅3) s/cycle4) ܴ∆௧2) ഥܰே௅3) s/cycle4) ܴ∆௧2) ഥܰே௅3) s/cycle4)

C
on

di
tio

n 
1

10 1680 1.00 19.4 0.008 1.00 19.4 0.008 1.13 9.92 0.008
20 3360 1.00 19.4 0.029 1.00 19.4 0.029 1.67 7.43 0.029
50 7920 1.00 20.1 0.122 1.00 11.7 0.113 4.42 6.12 0.142
100 15780 1.00 20.7 0.491 1.14 10.8 0.467 9.30 5.66 0.590
200 31260 1.00 21.7 1.689 1.74 8.39 1.397 19.6 5.36 2.742
500 78180 1.00 27.3 8.602 4.48 7.63 8.630 50.2 5.02 26.55

C
on

di
tio

n 
2

10 1740 1.00 16.5 0.008 1.00 16.6 0.008 1.18 7.71 0.008
20 3300 1.00 17.1 0.026 1.00 17.1 0.022 1.97 6.74 0.030
50 7920 1.00 17.5 0.109 1.02 14.8 0.114 4.51 5.53 0.135
100 15720 1.00 17.8 0.431 1.24 8.64 0.383 9.46 5.16 0.556
200 31320 1.00 18.0 1.593 2.00 7.77 1.420 19.7 4.88 2.652
500 78180 1.00 21.0 7.743 4.57 7.01 8.605 50.2 4.64 25.99

1) Number of discretized time computation for convection

2) ࢚∆ܴ = {୒୳୫ୠୣ୰ ୭୤ ୢ୧ୱୡ୰ୣ୲୧୸ୣୢ ୲୧୫ୣ ୡ୭୫୮୳୲ୟ୲୧୭୬ ୤୭୰ ୣ୰୰୭୰ ୡ୭୰୰ୣୡ୲୧୭୬}
{୒୳୫ୠୣ୰ ୭୤ ୢ୧ୱୡ୰ୣ୲୧୸ୣୢ ୲୧୫ୣ ୡ୭୫୮୳୲ୟ୲୧୭୬ ୤୭୰ ୡ୭୬୴ୣୡ୲୧୭୬}

3) Average iteration number of the nonlinear solver
4) Computation speed, 1 cycle = 1 port switching interval



45

Table 3

SMB-Condition
Operating Conditions1) Isotherms, ;[-] ࢏ࢇ [L/g] ࢏࢈࢏࢖
ܿி௘௘ௗ,௜

2)

[g/L]
ܳ௓ଵ to ܳ௓ସ
[ml/min]

A B C D E

3 10 50; 10; 50; 10 4.0; 0.02 2.0; 0.01 -- -- --
4 10 50; 10; 50; 10 4.0; 0.02 2.0; −0.01 -- -- --
5 10 50; 10; 50; 10 4.0; −0.02 2.0; 0.01 -- -- --
6 10 50; 10; 50; 10 4.0; −0.02 2.0; −0.01 -- -- --
7 7 27; 9; 12; 9 4.0; 0.2 3.0; 0.15 2.0; 0.1 -- --
8 5 27; 9; 12; 9 4.0; 0.2 3.0; 0.15 2.0; 0.1 1.0; 0.05 --
9 4 27; 9; 12; 9 4.0; 0.2 3.0; 0.15 2.0; 0.1 1.0; 0.05 0.5; 0.025

1) Port switching interval, ௌ = 4 minݐ
2) The same concentration for all solutes
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Table 4

Condition ࡭࢖ ࡮࢖ ࡯ۼ# s/cycle1) Speed-up2) Errors ࡯ۼ# s/cycle1) Speed-up2) Errors
ଵܮ ஶܮ ଵܮ ஶܮ

3 1 1 50 0.209 13786 6.01e-3 0.477 200 3.448 834 1.25e-3 0.417
4 1 −1 50 0.211 13245 7.69e-3 0.508 200 3.439 812 1.00e-3 0.325
5 −1 1 50 0.220 12509 6.19e-3 0.427 200 3.437 802 1.07e-3 0.333
6 −1 −1 50 0.208 14842 7.15e-3 0.416 200 3.616 855 1.71e-3 0.605

Condition ௌۼ# ࡯ۼ# s/cycle1) Speed-up2) Errors ࡯ۼ# s/cycle1) Speed-up2) Errors
ଵܮ ஶܮ ଵܮ ஶܮ

1 2 50 0.122 11339 6.94e-3 0.331 200 1.689 818 1.48e-3 0.422
7 3 50 0.308 11454 7.04e-3 0.702 300 9.299 380 1.13e-3 0.514
8 4 50 0.383 12662 9.80e-3 0.989 400 20.81 233 1.57e-3 0.952
9 5 50 0.698 12448 1.31e-2 0.496 500 51.60 168 1.98e-3 0.455

1) Computation speed, 1 cycle = 1 port switching interval
1) Computation speed ratio to the reference solution (MC scheme, ஼ۼ#  = 10000)
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