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Abstract

For high precision in source estimates of magnetoencephalography (MEG) data,
high accuracy of the coregistration of sources and sensors is mandatory. Usually,
the source space is derived from magnetic resonance imaging (MRI). Sensor-to-MRI
coregistrations are the focus of this thesis. The quality of coregistrations is assessed
and the effect of their uncertainties on source estimates is analyzed. Both topics,
the quality assessment and the propagation of uncertainties to source estimates are
treated separately.

In this thesis, the target registration error (TRE) is proposed as criterion for the
quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in
coregistrations at all points of interest. In total, 5544 data sets with sensor-to-head
and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed.
An adaptive Metropolis algorithm was used to estimate the optimal coregistration
and to sample the coregistration parameters (rotation and translation). I found
an average TRE between 1.3 and 2.3mm at the head surface. A mean absolute
difference in coregistration parameters between the Metropolis and iterative closest
point algorithm of (1.9 +1.5)° and (1.1 +0.9) mm was found. A paired sample ¢-
test indicated a significant improvement in goal function minimization by using the
Metropolis algorithm. The sampled parameters allowed computation of TRE on the
entire grid of the MRI volume. Hence, I recommend the Metropolis algorithm for
head-to-MRI coregistrations.

The propagation of coregistration uncertainty to source estimates was performed
by using pseudospectral approximations of beamformer and standardized low reso-
lution tomography (sLORETA). This approach was tested for auditory, visual and
somatosensory brain activity with different signal to noise ratios and source orienta-
tion constraints on datasets of 20 subjects. By using pseudospectral approximations
as efficient surrogates, the spatial distribution of the source estimate maximum was
sampled for 50000 coregistrations. From the results, it can be concluded that it
is possible to apply stochastic spectral methods to MEG source estimation with
high accuracy. The investigated effects of coregistration uncertainties on source es-
timates are small, typically the maximum location varied within a range of 5mm,
which is in the range of the localization errors. Pseudospectral approximations of
the source estimates reduced computation times considerably by a factor of approx-
imately 10000 for beamformer and 50000 for SLORETA compared to the exact

original computations.






Kurzfassung

Fir eine hohe Préazision in der Schétzung von Gehirnaktivitat, ausgehend von
Daten der Magnetoenzephalographie (MEG), ist eine sehr genaue Koregistrierung
der Quellen und Sensoren notwendig. Ublicherweise werden hierbei die Quellorte
der Gehirnaktivitdt bezliglich zu Koordinaten der Magnetresonanztomographie
(MRI) angegeben. Die Sensor-zu-MRI Koregistrierungen sind der Schwerpunkt
dieser Arbeit. Die Qualitdt von Koregistrierungen wird bewertet und der Effekt
ihrer Unsicherheiten auf Schitzungen der Gehirnaktivitdt beziehungsweise auf
Quellschatzungen wird untersucht. Beide Themen, die Qualitdtsbewertung und die

Ubertragung der Unsicherheiten auf Quellschdtzungen werden separat behandelt.

In dieser Arbeit wird vorgeschlagen, den target registration error (TRE) als
Qualitatskriterium fiir Sensor-zu-MRI Koregistrierungen zu verwenden. Der TRE
kann den Effekt von Koregistrierungsunsicherheiten an beliebigen Punkten messen.
Insgesamt wurden 5544 Datenséitze mit Sensor-zu-Kopf und 128 Datensétze
mit Kopf-zu-MRI Koregistrierungen aus einem Labor analysiert. Ein adaptiver
Metropolis-Algorithmus wurde genutzt um optimale Koregistrierungen zu schéitzen
und um Stichproben ihrer Parameter (Rotation und Translation) zu zichen. Es
wurde ein TRE von 1.3 und 2.3mm an der Kopfoberfliche gefunden. Weiter
wurde eine mittlere absolute Differenz der Koregistrierungsparameter zwischen
Metropolis-Algorithmus und dem etablierten iterative closest point-Algorithmus
von (1.94+1.5)° und (1.1 £0.9) mm gefunden. Ein Zweistichproben-¢-Test zeigte
eine signifikante Verbesserung in der Optimierung der Zielfunktion durch den
Metropolis-Algorithmus. Die Stichproben der Parameter erlaubten die Berechnung
des TREs auf dem gesamten Gitter des MRI-Volumens.. Aus diesen Griinden wird
der Metropolis-Algorithmus fiir Kopf-zu-MRI Koregistrierungen empfohlen.

Die Ubertragung der Koregistrierungsunsicherheit auf Quellschitzungen erfolgte
unter Verwendung von speziellen Polynom-Entwicklungen des Beamformers und
der standardized low resolution tomography (SLORETA). Dieser Ansatz wurde fiir
auditorische, visuelle und somatosensorische Hirnaktivitéat mit verschiedenen Signal-
Rausch-Verhaltnissen und Beschrankungen der Quellorientierung auf Datensétzen
von 20 Probanden getestet. Durch die Verwendung von Polynom-Entwicklungen als
effiziente Surrogate wurde die ortliche Verteilung des Quellschdtzungs-Maximums
fiir 50000 Koregistrierungen ermittelt. Aus den Ergebnissen lésst sich schliefien,
dass es moglich ist, Polynom-Entwicklungen mit hoher Genauigkeit auf MEG-
Quellschiatzungen anzuwenden.  Die untersuchten Auswirkungen von Koreg-

istrierungsunsicherheiten auf Quellschatzungen sind gering, typischerweise variierte



v

die Position des Maximums innerhalb eines Bereichs von 5mm, was im Bereich
der Lokalisierungsfehler liegt. Polynom-Entwicklungen der Quellschétzungen re-
duzierten die Berechnungszeiten erheblich um den Faktor von etwa 10000 fiir
Beamformer und 50000 fiir sSLORETA im Vergleich zu den exakten Originalrech-

nungen.
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Nomenclature

Abbreviations

Al primary auditory cortex.
A4 auditory 4 complex.

A5 auditory 5 complex.

BA broadman area.

BEM boundary element method.
CC correlation coefficent.
CPU central processing unit.
EEG electroencephalography.
FEM finite element method.
GB gigabyte.

LBelt lateral belt complex.
LCMV linearly constrained minimum variance.
MAG magnification.

MBelt medial belt complex.
MEG magnetoencephalography.

MIPS MIPS Technologies, Incorporation.



xii

MRI

PBelt

PI

RAM
RDM
RI

RMS

sLORETA
SNR

SSS
STSdp

SVD

TA2
™

TRE

Vi

V2

Abbreviations

magnetic resonance imaging.

para-belt complex.

para-insular area.

random-access memory.
relative difference measure.
retro-insular cortex.

root mean square.

standardized low resolution brain electromagnetic tomography.
signal-to-noise ratio.

signal space separation.

dorsal bank of superior temporal sulcus posterior.

singular value decomposition.

anterior superior temporal area TA2 (Economo and Koskinas, 1925).
trademark.

target registration error.

primary visual cortex.

second visual area.



Mathematical notation xiii

Mathematical notation

A a scalar.

a spatial vector in three dimensional space.

a general vector.

lal, |a| absolute value of a scalar and norm of a vector, respectively.
diag (a) diagonal matrix with diagonal elements a.

a expected value of a spatial vector.

E[] expected value.

Var [] variance.

a, a estimates of a scalar and a vector, respectively.

T transposed.

quaternion [R] quaternion derived from a rotation matrix R.

ACB A is a subset of B.
AUB union of A and B.
A\ B set difference between A and B: set of all elements that are members

of A but not members of B.






Chapter 1

Introduction

As soon as measured data are evaluated in fields of science or engineering, un-
certainty analysis is an inevitable component of the interpretation of subsequent
results. Uncertainty analysis is on the one hand the assessment of sources of un-
certainty and on the other hand the estimation of the impact of these uncertainties
on derived quantities. This kind of analysis is essential for all sorts of quality as-
sessments or assurances. The aim of this thesis is the development of methods for
systematic quality assessments and assurances in magnetoencephalography (MEG)

analysis.

In many fields of medical engineering, quality assurance has high priority. There
are several publications in radiation therapy and protection, computer tomography
and magnetic resonance imaging (MRI) focusing on quality assessment and assur-
ance only (Brendemiihl et al., 2007; Weppler et al., 2018; Taguchi et al., 2018;
Kiistner et al., 2018). Extensive quality assurance are the basis of these diagnostic
or therapeutic modalities for clinical applications. However, in the field of electroen-
cephalography (EEG)/MEG this topic is underrepresented. The MEG is far from
clinical routines, although it would offer some advantages like high temporal resolu-
tion together with the availability of simple volume conductor modelling. Therefore,
it is necessary to develop the branch of quality assessments in the MEG field as a
basis for clinical applications. This thesis is a contribution to verification and val-
idation in neuroscience (Mulugeta et al., 2018) by means of analysing methods for
testing the robustness of MEG models.

MEG measures the magnetic flux or flux differences at several sensors around
the human head. The sources of interest of the measured magnetic flux data are
intracranial electric currents of neural activity. An important aim of MEG analysis

is to estimate parameters of these current sources e.g., the location and the ampli-
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tude. The analysis step of source parameter estimation from measured MEG data
is also referred to as source reconstruction. From the measurement to the source
reconstruction, a number of other analysis steps are involved and each comes with its
own uncertainties. Let me guide you from the perspective of an MEG data analyst

from the measurement to the source reconstruction, focusing on uncertainties.

At the sensor level, the magnetic flux of intracranial currents is usually in the
amplitude range of 1 to 100 fT and measurable frequencies range normally from 0.3
to 1000 Hz (Y. Lin et al., 2018; Milde et al., 2009; Papadelis et al., 2009). This signal
is interfered with magnetic flux of other electric currents within the human body
e.g., currents in the heart and other muscles. These interferences with magnetic
flux of the human body which do not originate in the brain are often referred to
as artefacts in MEG analysis. Several deterministic (signal space projection, jump
detection) (Nolte and Hamaéldinen, 2001; Cheveigné and Arzounian, 2018) and non-
deterministic (independent component analysis) methods (Escudero et al., 2007) are
extensively used for artefact rejection or reduction. Another source of uncertainty
at the sensor level is technical noise, either sensor noise or environmental noise.
Technical noise is assumed to be a stationary random process and often it is con-
sidered a zero mean Gaussian process within a predefined frequency band (Hansen,
Kringelbach, and Salmelin, 2010). Usually, it is described by its covariance matrix,
which is either estimated from empty room measurements or from time intervals
of measurements with subjects. None of these methods is able to detect or remove
artefacts without uncertainty and usually this source of uncertainty and its effects

are not analyzed.

Source reconstructions incorporate sensor level data, coregistration between the
MEG device and subject’s individual head coordinate system and preprocessed MRI
data in computational models of the physical system. To this end, anatomical infor-
mation of the MRI is used to model tissue conductivities and boundaries numerically
in a volume conductor model. One first challenge is the computation of the magnetic
field outside of the head for a certain electric source model within the brain, which
is also referred to as forward solution. Both, conductivities and their boundaries can
only be estimated with considerable uncertainties. Similar methods as in this thesis
have already been employed to predict the effect of conductivity uncertainties on
forward solutions and source reconstructions (De Staelen et al., 2013; Schmidt et al.,
2014; Saturnino et al., 2019). Numerical methods like boundary element method
(BEM) and finite element method (FEM) are used to compute forward solutions of
realistic head models and they are in general computationally expensive. The re-

construction of cortical activity by means of single or distributed sources from MEG



measurements is an ill-posed inverse problem. Many of these inverse problems add a
considerable computational burden on top of the computation of forward solutions.
Inverse problems also add their uncertainties e.g. in source positions and densities
and in the validity of their goal functions.

In the following, I briefly review some important uncertainty analysis methods
and their properties, which might be useful for MEG computations. The focus,

however, will be on stochastic spectral methods.

Monte Carlo sampling A sampling of deterministic computation results is re-
ferred to as Monte Carlo sampling, if the input is generated as independent realiza-
tions of random variables. The random variables in this context are defined before-
hand by fixed probability distributions. This approach is straightforward since the
computations stays unchanged and is only run for a number of input realizations.
Hence, Monte Carlo sampling is a stochastic collocation method. From the sam-
ples of Monte Carlo computation results, statistics e.g., mean, variance and higher
moments are estimated directly by using the estimators for independent random
variables. However, the convergence rates of the statistics are slow e.g., 1/v/M for
the mean, where M is the sample size. The slow convergence renders Monte Carlo
sampling unfeasible for computationally expensive problems. Accelerations of this
method have been proposed e.g., latin hypercubes (Loh, 1996) or low-discrepancy
point sets (Chen, Golberg, and Hon, 1998). These methods introduce a more sys-
tematic random sampling of computations, which increases convergence rates and
thus reduces the number of necessary samples. However, for high dimensional pa-
rameter spaces and expensive computations, accelerated Monte Carlo sampling is

still not practicable.

Perturbation methods If a computation result is the solution of a system of
differential equations with stochastic parameters, the perturbation method can be
applied. This method expands stochastic parameters by using truncated Taylor
series around their mean. The Taylor series are substituted back into the differential
equations and a more complex system of equations is obtained. Because of the
complexity of the expanded system, the Taylor series is typically truncated at second
order or below (Xiu, 2009). A subsequent limitation of perturbation methods is that
they do not perform well for large magnitudes of uncertainties (Xiu, 2009; Ghanem
and Spanos, 1991). The probability distribution function of the computation result
cannot be readily computed from the perturbation method (Ghanem and Spanos,
1991).
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Operator based methods The problem of solving differential equations is equiv-
alent to the problem of finding the inverse of a given operator. If it exists, the inverse
of an operator can be expanded in a convergent series (Ghanem and Spanos, 1991).
By using a series expansion of the inverse operator, the solution of a stochastic dif-
ferential equation can be expressed as a series of powers of the stochastic parameters.
This expansion is similar to the perturbation method and also limited to uncertain-
ties of small magnitudes (Xiu, 2009; Ghanem and Spanos, 1991). The inversion of
the operator is usually extremely laborious and practically often restricted to the

second order (Ghanem and Spanos, 1991).

Stochastic spectral methods A collection of methods for uncertainty analysis
are generalizations of the "Wiener-Hermite Chaos’ (Xiu and Karniadakis, 2002; Xiu
and Karniadakis, 2003; Xiu and Hesthaven, 2005). The computations are projected
on an orthogonal polynomial basis in the space of the random parameters. In this
work, such methods are referred to as stochastic spectral methods. In the literature,
different terms are used for stochastic spectral methods, which can be confusing
for the reader e.g., Wiener-Askey or generalized polynomial chaos (Xiu and Karni-
adakis, 2002; Xiu and Karniadakis, 2003; Weise et al., 2015). These methods have
been applied to a variety of mathematical and physical computations with good
convergence and efficiency (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002)
and are considered among the most widely used methods for uncertainty analysis
(Xiu, 2009). Stochastic spectral methods will be the focus of the uncertainty propa-
gation chapter of this work. Ghanem and Spanos (1991) applied stochastic spectral
methods to finite elments by using the polynomial basis as proposed by Wiener
(1938). This method was generalized by Xiu and Karniadakis (2002) to polynomi-
als of the Askey-scheme. From the perspective of application, the generalization by
Xiu and Karniadakis (2002) extends the choice of stochastic parameter distributions
from normal distributions to other continuous and discrete distributions. Stochas-
tic spectral methods provide advantages over other uncertainty analysis methods,
namely the availability of error measures for the approximation, expressions of sta-
tistical moments in closed forms and acceleration of the original simulator by means
of a fast surrogate. The probability density function of computations can be ap-
proximately sampled by Monte Carlo sampling or one of its accelerations on the
surrogate. An disadvantage of polynomial bases is that higher order polynomials
are prone to unstable swings. In stochastic spectral methods, these swings can occur

at places with a small likelihood in the input space. Another limitation of stochastic



spectral methods is that the probability distribution of the inputs must be known

in order to select the correct polynomial basis.

Outline of this thesis This paragraph briefly outlines this thesis and ends with a
list of its scientific contributions. In chapter 2, methods for estimating coregistration
uncertainties are proposed. The focus is set on quality assessment and the multi-
variate distribution of coregistration parameters. Subsequently, stochastic spectral
methods of uncertainty propagation are introduced in chapter 3. Applications to
MEG forward computations and solutions of related inverse problems are explained
in the same chapter. The results of both the coregistration uncertainty assessment
and uncertainty propagation are presented in chapter 4. Discussion of the findings
and conclusions of this thesis are given separately for uncertainty assessment and
propagation in chapter 5.

The work presented in this thesis provides the following scientific contributions:

e Quality assessment of MEG-to-MRI coregistrations by using the target regis-

tration error (TRE) as a quality measure.
e Improvement of head-to-MRI coregistrations by using a Metropolis algorithm.
e Conjunction of coregistration uncertainties and head movements

e Propagation of uncertainty from coregistration to forward computations and

source estimates.

e Sensitivity analysis of forward computations and source estimates for coregis-

tration parameters.






Chapter 2

Assessment of coregistration

uncertainties

2.1 Introduction to the problem

The accuracy of the coregistration for MEG source reconstructions is limited by
stochastic and systematic errors in the three measurement modalities involved:
MEG, 3D-digitizer and MRI. While several suggestions have been made in the past
to improve the accuracy of the coregistrations (Singh et al., 1997; Adjamian et al.,
2004; Troebinger et al., 2014; Meyer et al., 2017), no standard has been yet estab-
lished. In this thesis I assess the quality of coregistrations using target registration
error (TRE). TRE is an error vector, of a point localization, resulting from coreg-
istration uncertainties. I propose a sequence of methods that are able to estimate
TRE at any point of interest.

Coregistration procedures for MEG studies typically involve estimating sets of
homologous positions, or coordinates, across at least two out of the three data
modalities involved. Each of the three modalities, (MEG, 3D-digitizer and MRI),
provides a unique device coordinate system. The MEG device coordinate system
is defined by the MEG manufacturer to provide sensor positions. MRI acquires an
image relative to scanner-specific coordinates. During 3D-digitization, anatomical
landmarks are used to establish a subject-specific head coordinate system. Within
this thesis, all positions will be reported relative to this head coordinate system. The
term ‘MEG coordinates’ will refer to those which were originally given relative to the
MEG device coordinate system and subsequently transformed to the 3D-digitized
head coordinate system. Likewise, coordinates which are extracted from an MRI

scan and transformed to the 3D-digitized head coordinate system, will be referred
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to as ‘MRI coordinates’. In practice, the results of brain activity studies are typically
presented in head coordinates derived from brain internal fiducials only identifiable
in structural MRI data, for example, MNI-coordinates® (Evans et al., 1993).

For convenience, I will use the following labels for the different coregistrations.
MEG to head coordinate transformations will be referred to as MEG-to-head whereas
head to MRI coordinate transformations will be referred to as head-to-MRI. Both are
assumed to be proper rigid transformations (rotation and translation). To assess the
overall quality of the two coregistrations as a unit, they will be linked and referred
to as MEG-to-MRI.

There are a number of issues which contribute to coregistration uncertainty.
During MEG recordings the positions of the localization coils (coils for short) are
estimated via magnetic field measurements and inverse modeling. The solutions
depend on signal quality and coil positions relative to the sensors (Ahlfors and Il-
moniemi, 1989; Fuchs et al., 1995). However, the coils make contact with the skin
and can introduce error if their positions change while under tension. Further, MRI
scans may show systematic spatial deformations of the head shape, for instance due
to air-filled cavities in the head or even via physical deformations of the head sur-
face, for example by headphones. In addition, estimation of the skin surface from
MRI data depends on a threshold. The extracted surface may therefore appear
systematically above or below the actual skin surface. According to Singh et al.
(1997) defining anatomical landmarks, during the registration procedure, using two
points on the ears and a third on the nasion only allows repeatability on the order
of one millimeter at best. The overall accuracy of the 3D-digitizer is influenced by
the precision in digitizing the coil positions and the head shape. However, during
the digitization procedure these points can migrate slightly due to the elastic nature
of the human skin. Finally, coordinate transformations are based either on match-
ing corresponding points (fiducials) between two coordinate systems or on surfaces
(surface matching). Pure fiducial based coregistrations are sensitive to fiducial lo-
calization errors and are highly likely to suffer larger errors than surface matching
coregistrations when there are small numbers of fiducials (Singh et al., 1997; Hup-
pertz et al., 1998).

Several techniques have addressed the problem of fiducial localization errors.
One option is to fixate the participant’s head using bite bars or head casts (Singh

et al., 1997; Meyer et al., 2017). Another common approach is to digitize the

! At the Montreal Neurological Institute (MNI), brain atlases were constructed from different
sets of MR images. Different atlases are also named according to the number of MR images, which
are the basis of the atlases (e.g. MNI305).
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coils and head surface relative to an additional reference, attached to the subject’s
head (Polhemus, 2012). This technique does account for head movements during
digitization. However, the methods proposed in this thesis are also applicable to
other MEG-to-head coregistrations, which use either different definitions of the head

coordinate system or additional mechanical means.

Schwartz et al. (1996) compared the two registration families (fiducial-based
and surface matching) with respect to the head-to-MRI coregistrations. They used
between 2000 and 4000 head shape points for surface matching and 3 points for
pure fiducial-based registrations. Their surface matching algorithm was based on
a distance transform and the mean distance of all head shape points as cost func-
tion. They reported an accuracy improvement for the surface matching technique
compared to manual registrations. The achieved accuracy of the registration was
proportional to the number of head shape points. Registration errors of 0.740.3 mm
were reported, estimated on a 150 mm cube, sampled every 2 mm using simulation
tests. Huppertz et al. (1998) also estimated the accuracy of a surface matching
technique for head-to-MRI registrations for EEG data analysis. Between 1000 to
1800 head shape points were digitized and an iterative bisection search was used
for surface matching. They computed mean registration errors of 1.4 to 1.8 mm
for 7 fiducial points using a test-retest design with 10 repetitions and 20 subjects.
The larger registration error compared to Schwartz et al. (1996) might be related to
the points, where the registration error was measured. More specifically, Schwartz
et al. (1996) defined an equidistant grid in the MRI volume, while Huppertz et al.
(1998) used 7 fiducials at the head surface. Naturally, the points on the head sur-
face show larger mean registration errors due to rotation uncertainties than fiducial
points near the origin. Wagner and Fuchs (2001) used a similar approach to Hup-
pertz et al. (1998) utilizing approximately 300 head shape points. Their algorithm
minimizes the L'-norm of the distances of head shape points to the MRI surface.

Unfortunately, no information about the achieved accuracy was provided.

There is substantial variability in the literature concerning head-to-MRI coreg-
istration methods. For example, handheld laser scanners (Koessler, Cecchin, et al.,
2011; Hironaga et al., 2014) and photogrammetry systems (Koessler, Maillard, et al.,
2007; Baysal and Sengiil, 2010; Qian and Sheng, 2011) are proposed as alternatives
to the electro-magnetic 3D digitization of electrode positions or head surface scan-
ning. Baysal and Sengiil (2010) used a single camera photogrammetry system for
EEG electrode localization and reported a maximum localization error of 0.77 mm
with 25 electrodes. In a similar setting, Qian and Sheng (2011) reported a maxi-

mum localization error of 1.19 mm. They used 2 mirrors in addition to the system of
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Baysal and Sengiil (2010). Koessler, Maillard, et al. (2007) compared a geodesic pho-
togrammetry system with the Polhemus FASTRAK and other electrode digitization
techniques. They reported an root mean square (RMS) position error of 1.27 mm
for the geodesic photogrammetry system and 1.02mm for the Polhemus. Koessler,
Cecchin, et al. (2011) tested EEG-to-MRI coregistrations using a 3D laser scanner.
An average of 5263 face shape points were recorded and an iterative closest point
(ICP) algorithm was applied to the face shapes. They reported a mean residual error
of the electrode coregistration of 2.11 mm for 65 electrode positions. Hironaga et
al. (2014) proposed a 3D laser scanner system for the MEG-to-MRI coregistration.
They found superior registrations using the forehead surface compared to the upper
head shape. Further, they reported that TRE was at the submillimeter level using
their regional registration method. The methods, proposed below, can be directly
applied to data sets of the photogrammetry and laser scanner systems as mentioned
above.

Previous studies have often only provided RMS of matched point residuals, for
example, residuals of coil positions or head shape points, as a measure of the good-
ness of fit. It has been shown, however, that these RMS of residuals and TRE are
uncorrelated (Fitzpatrick, 2009). Hence, the RMS of residuals are not well suited
for determining the quality of the coregistrations. Finally, previous studies con-
cerned with the accuracy of coregistration measured or simulated TRE at only a
few points (Fuchs et al., 1995; Singh et al., 1997; Huppertz et al., 1998; Adjamian
et al., 2004). In this thesis I sample the distribution of coregistration parameters,
and therefore TRE becomes a computable measure at any point of interest. Conse-
quently, T propose an overall assessment of the quality of individual coregistrations
based on TRE.

2.2 Instrumentation

All data sets in the analysis were recorded using a Neuromag Vectorview MEG with
102 planar magnetometers and 204 planar gradiometers. In the laboratory, five
localization coils are always used. At the beginning of each measurement the five
coils are energized by currents of unique frequencies. This allows one to disentangle
the superimposed fields and to estimate each coil’s position, with respect to the MEG
device, separately. For the 3D-digitization of the coils and head shape, a Polhemus
FASTRAK system was used, which has a accuracy specification of 0.8 mm RMS for
all receiver positions in a radius of 760 mm from the transmitter (Polhemus, 2012).

This distance is never exceeded in the lab. The MRI surface extraction is based on
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the Freesurfer segmentation of 3T T1l-weighted MPRAGE or MP2RAGE images

with a voxel size of 1 mm x 1mm x 1 mm.

2.3 Head coordinate system

The definition of head coordinates depends on the MEG or EEG setup. In this thesis
Neuromag head coordinates were used. This coordinate system is often referred to
as RAS, which is a mnemonic for the axes’ pointing directions: right, anterior and
superior. The first axis of the head coordinate system is aligned with anatomical
points on each ear, with coordinates increasing from left to right. The second axis
intersects perpendicularly, at the origin with the first, such that it runs through the
nasion from posterior. Thereby, the origin is not necessarily located at the middle
between the ears. Again, the third axis intersects at the origin, perpendicular to
the first and second axes and coordinates are counted positive from inferior towards
the subject’s vertex. This coordinate system was defined in Ahlfors and Ilmoniemi
(1989) and is common for data acquisition with Neuromag devices (Elekta Neuromag

data acquisition user’s manual 2007, pages 25-26).

2.4 Rotation by quaternions

I used unit quaternions for the parametrization of rotations and their uncertainties
for the following reasons. Quaternions provide a convenient four-dimensional rep-
resentation of object rotations. They can be directly used to find the least squares
solution of the coregistration of two corresponding point sets, while prohibiting re-
flections (Besl and McKay, 1992). This is an advantage over the singular value
decomposition based method, which permits reflections and may thereby yield an
improper rotation matrix. Furthermore, quaternion parameters provide an efficient
method for three-dimensional rotations involving no trigonometric function compu-
tations. The quaternion-based rotation is continuous over the unit sphere in R%.
The axis of a rotation is defined by a unit vector #. A unit quaternion representing

the rotation around @ by an angle of § is written as

q =exp[(0/2) (u1t + uzj + uzk)]
= cos (0/2) + (u1t + u2j + usk) sin (6/2)
=qo+ q1i + @23 + g3k, (2.1)
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where ¢, j and k represent the three imaginary units of quaternions. Using eq. (2.1),

the rotation of a vector v around @ by an angle of § is defined by

—

7 =q(vni+vj+uvsk)g ' =R(q)V, (2.2)

where the inverse rotation quaternion g~!

is simply obtained by converting the sign
of the exponent in eq. (2.1) and R (q) denotes the respective rotation matrix as a
function of g. In the scope of this thesis, the imaginary parts of the quaternion are
referred to as rotation parameters and the real part is redundant for unit quater-
nions. The rotation matrix R(q) is derived from the quaternion without using

trigonometric functions as

B+E—a—a  2(qe— ) 2(q193 + 9042)
R(@)=| 2(qee+ewn) G+6-4d-43 2@s—qoqn) |, (23
2 (q193 — 90q2) 2(q2q3 + oq1) @+ a3 — @ — &

see equation (21) in Besl and McKay (1992) for reference. In order to evaluate
rotations using a spatial distance, the rotation effect at a radius R is used. On the
plane orthogonal to the rotation axis, a rotation by an angle of  relates to a distance

of R - 6. The relation of angles and unit quaternion parameters is derived from
qi + g5 + g3 = sin® (6/2) (24)

and for small angles 6 ~ 2,/¢f + ¢35 + ¢5. Hence the effect of rotations for points
at the surface of a sphere, with a radius R, is approximated by multiplying them
(41,42 ,q3) with the diameter of sphere 2R. This scaling is used in section 2.10,
where the rotation parameters are sampled together with the translation parameters
in the 6-dimensional parameter space. I selected R = 100 mm as a scaling radius to

approximate the radius of human heads.

2.5 Coregistration model

2.5.1 MEG-to-Head

This coregistration is based on M < 10 corresponding points, for example, coil
positions. Coil positions were first measured by the 3D digitizer and expressed in
the head coordinate system. They are estimated in MEG device coordinates based on
fitting a magnetic dipole field for each coil using mne-python (Gramfort, 2013). The
coregistration for the MEG-to-head alignment of the points A = (di, do, ..., du)
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—

localized in the MEG and B = <51, 52, ey bM) digitized in the head coordinate

system is given by

—

bm = R(p) dm + 5+ €m, m=12 ..., M, (2.5)

where the transformation is defined by the quaternion p dependent rotation R and
the translation § plus the error vector €,. The estimated solution to the coregistra-
tion problem is the set of parameters p and §', which minimizes the residuals gm in

the least squares sense according to

M
P, § = argmin Z \R (D) G + 5 — by (2.6)
p,§ m=1
b = R(p)im+5  (2.7)
bm = bm — bm (2.8)

I implemented the quaternion-based least squares solution for the problem in
eq. (2.6) as proposed by Besl and McKay (1992).

For approximate parameter covariance estimation, the problem in eq. (2.5) is

centred and linearized at the minimum of eq. (2.6) as

—

b;:n:Jm'(ﬁ17ﬁ25ﬁ37§17§27§3)+gm3 mzla 27 "'7M7 (29)

where the superscript © denotes vector subtraction of the respective mean

LM by = LM by, and the Jacobians read

0 25, —2b5, 1 0 0
Jn=| =205, 0 25, 0 1 0 |, (2.10)
25, —2b5, 0 0 0 1

(Wheeler and Ikeuchi, 1995). Under the assumption of homoscedastic errors e with
zero mean and variance o2, the parameter covariance matrix of the respective linear

least squares estimate of the quaternion p and translation g yields
2 T\ !
Var [p1, B, By, 51,52, 53] = o2 - () (2.11)

see equation (2.1.6) in Bjorck (2015), where J'T = (JlT, Ny AT J]—Lr[). As a result

of the centring, there is no coupling between quaternion and translation parameters
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and two matrices are derived separately as

-1
Var [p1, P2, p3] = <4 Z (|b - g;l?ff)) (2.12)

Var [51,52,53] = O’6 ~I/M, (213)

where I is the identity matrix of size 3. The right hand expression of eq. (2.12) is
equivalent to a related variance estimate, see equation (33) in (Markley and Mortari,

2000).

2.5.2 Head-to-MRI

This is a coregistration of N ~ 500 points describing the head shape as measured
by the 3D digitizer D = (a?l, do, ..., JN) A second list with a point matrix
E is estimated via the segmented MRI data E = {é}, €3, ..., €p}. The subset
F = (fi, f_’é, R fN> that best corresponds to D depends on the quaternion g and
the translation ¢ and is the result of the closest point operator C, defined by

ﬁL = argrpin\R(q) d, +1— ﬂQ , JFE E (2.14)
f
F=C(R(gD+117,E), 17=(1,...,1) e RV, (2.15)

For the operator C, I used an efficient balltree implementation of the scikit-learn
module (Pedregosa et al., 2012). Omitting the explicit notation of C, the head-to-
MRI problem reads as

fula, ) =R(@)dy + T+, n=12,...,N (2.16)

and a solution is
t:' gman|R £~ fn (q.9)]? (2.17)
= R(G)d, +1 (2.18)
Go=Fu(d0) - Fu. (2.19)

where 77 and 5n are the error and residual vectors, respectively. In realistic setups,
the optimization problem of eq. (2.17) may not have a unique solution and due to

the non-linearity of C, no closed-form solution is available. Thus, an approximate
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solution is found using an iterative closest point (ICP) algorithm, which is likely to
find local minima and therefore depends on the starting value (Besl and McKay,
1992). Hence, the starting value was manually set by utilizing the 3D-digitized
ear and nasion points and the 3D rendered MRI segmentation of the head shape.
The estimates {(j, t:} were computed by the ICP implementation in mne-python
(Gramfort, 2013). An overview of the coordinate system definitions and respective

coregistration parameters is depicted in fig. 2.1.

Figure 2.1: In the top row, the MEG, head and MRI coordinate systems are shown separately.
The MEG coordinates are denoted by (y, z) and the respective azes are plotted by dashed lines
relative to the contour of the MEG sensor configuration. Dotted lines represent the axes of
the head coordinates (y',2") and the head contour is outlined within the respective coordinate
frame. The MRI coordinate azes are plotted by dash-dotted lines, the respective coordinates
are denoted by (y”,2") and a sagittal MRI slice is shown accordingly. In the bottom row,
the notations and line styles are adopted from the top row and MEG /head and head/MRI
coordinates are depicted relative to egch other in the left and right bozx, respectively. The

parameter notations {P, §'} and {q, t_} denote rotations and translations of MEG-to-head
and head-to-MRI, respectively. Azxes scaling is identical for all of the five sub-figures.
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2.6 Data sets

2.6.1 MEG-to-Head

MEG data sets measured in the MEG laboratory in the years from 2007 to 2016
were retrieved from the archive and analysed. For this thesis, the term ‘MEG data
set’ denotes an MEG measurement block with coil position acquisition at the begin-
ning of the block. All included data sets had five coils attached to the participant’s
head. I further restricted the selection to MEG data sets where none of the 204
gradiometers were marked as a bad channel. In agreement with FElekta Neuromag
data acquisition user’s manual (2007, pages 38-39), two further quality control cri-
teria were taken into account. First, the goodness-of-fit value for each coil had to be
0.98 or larger. Second, the discrepancy between coil distances calculated from either
MEG localization or from 3D digitization had to be smaller than 5mm. In total,
7314 MEG data sets were considered, 5544 of them matched all of the selection
criteria and formed the basis of the MEG-to-head coregistration analysis. A total
of 1770 MEG data sets were rejected, 7 had bad gradiometers, 81 because of no
coil measurement, 349 had less than 5 active coils, 405 because of the discrepancy

between coil distances and 928 had goodness-of-fit values below 0.98.

2.6.2 Head-to-MRI

For the head-to-MRI coregistrations, only those MEG data sets were considered
for which a segmented MRI data set was available and which included more than
200 head shape digitization points. Head-to-MRI coregistrations were conducted
using MNE, where the head surface extracted from MRI is matched with the 3D-
digitized head shape using the ICP algorithm (Hamé&ldinen, 2010, pages 195-197).
Head shape points with a distance greater than 10 mm from the MRI surface were
excluded, as suggested by Hamaéldinen (2010, page 317). A total of 128 head-to-MRI
data sets were selected for the analysis. A total of 149 head-to-MRI data sets were
rejected because they had less than 200 head shape points. Most of the rejected
data sets were from a time prior to the laboratory adopting more strict procedures.

The recommended number of head shape points was increased over the years.

2.7 Scales of the coordinate systems

When coregistering data sets of different modalities, but from the same participant
(i.e. the same head), one would not expect a need to scale the dimensions. How-

ever, as briefly raised in the introduction, different methods may lead to systematic
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differences in the metrical scaling. Thus far, I had assumed identical scalings in
the different coordinate systems, that is, there is no change in length during the
transformations. This assumption, however, can be checked by analysing distance
measures within each coordinate system separately. The available data allowed pair-
wise comparisons of MEG with head and head with MRI coordinates. To this end, I
conducted a singular value decomposition (SVD) of the centred point clouds in both
coordinate systems. For convenience, I introduce the centring (demeaning) matrix
for M points .

Cy=1- MllT7 (2.20)

where I is the identity matrix of size M and 117 is an M x M matrix with each
element equal to one. For the centred point sets in the two coordinate systems
A¢ = AC); and B¢ = BC)y, this reads as

A =Uydiag (Ga) VJ (2.21)
B¢ =Ugdiag (dp) V3 (2.22)
c=15al/|7B| (2.23)

where ¢4 and o' are the vectors of the positive singular values. The scaling coef-
ficient ¢ between two systems is the quotient of the />-norms of the singular value

vectors. Table 2.1 shows a mean scaling of ¢ ~ 1.005 for MEG-to-head, which trans-

Table 2.1: Scaling statistics of MEG-to-head and head-to-MRI are tested (two-tailed t-test).

Type mean SD t-value p-value

MEG-to-head 1.005 0.007 50.309 < 0.001
Head-to-MRI 1.003 0.004 7.270 < 0.001

lates to a 0.5 mm difference at the head surface for a head radius of 100 mm. The
expected error for the coil locations is in a similar range of about 1 mm (Ahlfors and
Tlmoniemi, 1989; Fuchs et al., 1995). Thus, I assume that the MEG coordinates are
systematically scaled by a factor of 1.005 and applied the correction to the MEG
coordinates. The reason for this scaling effect might be the slight pressing force on
the coils during digitization, which shifts the coils inwards and thus introduces a
smaller scaling for digitization compared to MEG localization.

Table 2.1 shows a mean scaling of ¢ ~ 1.003 for head-to-MRI, which results
in a 0.3mm difference at the head surface. Both scaling values were significantly

different from 1. However, I have taken into account only the first and ignored the
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second. This is because of the large variability between subjects at the level of the
surface extraction from MRI data sets, in comparison to the estimated scaling value.
Furthermore, it is in agreement with Schwartz et al. (1996), who state that surface

matching is scaling independent if scaling effects are smaller than 3 mm.

2.8 Colil localization errors

The MEG-to-head coregistration is based on coil localizations. Fuchs et al. (1995)
investigated coil localization errors for three orthogonal coils (triplets), combined in a
coil set, using a 31-channel Philips MEG. They found that the coil localization error
depends on the coil position relative to the sensor array as well as on the signal
strength. For a coil position below the sensor array they reported the difference
between measured and true location to be less then 1.8 mm, with a mean of 1.1 mm.
The Neuromag Vectorview device uses simpler single coils (no triplets) and it is
a whole-head device with roughly ten times as many channels. I investigated the
device-specific error magnitude and its spatial dependency for data with 102 planar
magnetometers and 204 planar gradiometers. The coils were localized via their
magnetic fields, each coil being modeled as a magnetic dipole (Fuchs et al., 1995).
Coil localization was exclusively based on the data of the 204 gradiometers because
gradiometers have a higher signal to noise ratio for nearby sources due to their
inbuilt suppression of distant (interfering) sources. I estimated the variance of the
noise via the norm of the misfit x between the magnetic flux sensor signals s and
the modeled data

x(F)=s-G(7)a (%)+ s (2.24)
o2~ x|
noise ™ 504 — 4

(2.25)

- - N

where G (F) is the leadfield of the magnetic dipole at 7" and G (F) is the respective
pseudoinverse. The optimization has d = 6 degrees of freedom for each coil and I
assumed that the noise follows an independent normal distribution with zero mean,

o2

< ise Variance and the respective probability density mnoise in each channel. Without

prior knowledge about the parameters, the log-likelihood of the magnetic dipole

location, given the measurement data, is defined by

204

logm (7| 8) = 108 oise (X1 (7)) - (2.26)
=1
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Samples are drawn from the probability density 7 (7| s) of the coil location, given
the measurements, using the adaptive Metropolis algorithm of Haario, Saksman, and
Tamminen (2001) on the log-likelihood, see eq. (2.26). I performed 10 000 runs of the
Metropolis algorithm, including 1000 burn-in samples. In this test, 5 x 5544 coil
positions of the MEG-to-head data sets were included. The maximal spatial error
was only weakly dependent on the location in space. I estimated the dependency to
1.5 x 1073, which represents 0.15mm at a distance of 100 mm. Since this effect is
about a 10-th of the expected maximal error, I assumed equal coil localization errors
for the volume of interest. However, Fuchs et al. (1995) found a stronger dependency
of the localization error on the position relative to the sensors. This effect is likely
related to the shape of the sensor array, as they used a 31-channel Phillips-MEG
with parallel sensor orientation and a smaller head coverage compared to the whole

head, radially oriented sensor setup in this thesis.

2.9 Estimating errors from residuals

2.9.1 General considerations

This section is about the relation of errors, parameter estimates and residuals when
parameters of a model are estimated from a sample of observations. For the case
of coregistration estimation, the problem is defined in the previous section. Let
me therefore explain the relation of errors, parameter estimates and residuals by
investigating the MFEG-to-head problem of eq. (2.5). M corresponding points are
measured with three spatial dimensions in two coordinate systems. The problem is
the estimation of parameters of a proper rigid transformation, namely rotation and
translation, which transform the set of points from the first to the second system
by means of the minimum sum of squared residuals. From measurements, the set
of points are denoted by A = (@1, da, ..., dy) and B = (51, 52, el I;M) in the
first and second system respectively. Suppose, the vector set of the first system is

already centred by defintion and hence

M
ar=0. (2.27)
k=1
For the analysis of variances of residuals and parameter estimates, the problem

of eq. (2.5) is transformed to the case, where the true rotation and translation
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implement the identity operator pyue = (1, 0, 0, 0) and §yue = (0, 0, O)T:

-

bm =R (ptrue) C_im + gt'rue + E;n = 6m + E’m . (228)
Linearization at pgyye, Sirue and least squares fitting of the parameters gives

by = @ + Il + O (2.29)

T
v = (Pl, b2, P3, S1, S2, 83)

where J,, is the Jacobian of rotation and translation for the point @, at Pyue, Strue
and 6, are the residuals. The real quaternion part py of the Jacobian vanishes at
Pirue and hence the Jacobian reduces to the imaginary quaternion and translation.

According to eq. (2.29), the Jacobian reads

0 2a3,; —2a2;; 1 0 0
Jm = 72a3m 0 2a1m 01 0 . (230)
209, —2a1m 0 0 0 1

For the following consideration, the matrices A and B are vectorized to a and b by
means of

T
ST ST ST T 3M
a= (al,aQ,...,aM) = (a11, a21,---,a3p) € R (2.31)

the according error vector is € = b — a and the Jacobian becomes
T 4T T\' 3Mx6
J:(Jl,JQ,...,JM) € R3Mx6 (2.32)

In vectorized form, the relation between errors, parameter estimates and residuals
of the linearized problem reads
e=Jv+6 (2.33)

The least squares solution parameters v can be simply expressed by singular value
decomposition (SVD) of the Jacobian

J= U{l,...,3M}{1,...6,}SVT (2.34)
V= Vs—lU{TL,._’ﬁ}{L_“’SM}e, (2.35)

where U € R3M>3M 'y ¢ R6%6 are orthogonal matrices, and S € R6%6 is a diagonal
matrix. Left multiplication of eq. (2.33) by UT and substitution of the Jacobian by
its SVD gives

s _ T T T T

e=U'e=U U{l,...,3M}{1,...6,}SV v+ U J. (236)
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With eq. (2.35), it is obvious that
U{Tl,.,.,6}{1,...,3M}‘s =(0,0,...,0) € R (2.37)
and for shorter notation
3 T M—
0=Up  smq,.. 309 € R3M-6. (2.38)

To summarize the last steps, the residuals are projected onto its 3M — 6 dimensional
subspace by the left multiplication of U, respectively the first 6 elements of this
projection become zero and only the last 3M —6 elements are of interest and referred

to as 8. Because of the orthogonality of U

. SvT o AT
= _ _ (3M—6)x (3M —6) 6% (3M—6)
e 1 (v.5) (m I)(,,,a) TeR 0 ROV,

(2.39)
where I is an identity matrix and O is a zero matrix. The Jacobian of f is of

importance for the change of variables later and defined as

SVvT o
Jp = . 2.40
¥ ( o I) (2.40)

For the following consideration, a multivariate normal error distribution is assumed
with
€~ N (0,021) I € R3Mx3M (2.41)

and because of the orthogonality of U it is straightforward to conclude that also
E~N(0,021) I € R, (2.42)

The probability density function of a multivariate normal distribution with zero

mean and full rank covariance matrix C € RN*N reads
1 Lot 1
7 (§) = ———=ncxp [5€7C ¢, (243)
em™|C|
which yields in case of the errors
1 1
Tz () = ——exp [20&25&} . (2.44)



22 Chapter 2. Assessment of coregistration uncertainties

A change of variables gives the joint probability density of parameter estimates and

residuals as

™5 (1/, S) = |det Jy| (uTVSQVTu + 3%)} , (245)

—exp [
(27‘(‘)31\/[ O'?M 2062

where |det J¢| = /|det JTJ| and

M (= ~
g7 = vgeyT (18me (@ = dndy) - 0 (2.46)
0 MI.
The marginal probability densities of the parameter estimates and residuals are
found by
1 U -
m, (V) = /~0xp [2 5 (VTJTJV+6T6)]d6
V(@)™ 68V [det (J T 7)Y /93 &
= ! LA (2.47)
= exp 307 .

\/(2m)® det (JTT /02) 7|

and accordingly

(2.48)

N 1 1
75 (5> - \/(QF)SM—B U?(BM_6) P [203 } '

From eq. (2.47) follows the covariance of the parameter estimates as

-1
C\ pops = 0c (4 Z (|am| I-ad,ad )) (2.49)

C.= (o?/M)1, (2.50)

which is equivalent to equation (33) in (Markley and Mortari, 2000) for the quater-
nion parameters and the well known \/W characteristic for the standard error of
the mean. Since § = U{17“_,3M}{7,_“73]\4}5, the residuals are linear combinations of &
and hence are normally distributed as well. The variance estimate of the residuals
SM 652, with
the expected value of E [1:2] = (3M — 6) 2. Because U is orthogonal and therefore
does not change the sum of squares of a vector by matrix multiplication, it follows

23M 62, = 23M 6 52 From this relation follows the dependence of the variances

Ug relates to o2 in the probability density of the sum of squares z =
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of residuals and errors as
o 3M—6 ,

%= g O

So far, a mormal error distribution was assumed and the distribution of the

(2.51)

residuals was derived accordingly. In reality, the distribution of the errors is not
known a priori and needs to be inferred from the residuals. For the inference of
errors from residuals in the more general case compared to eq. (2.48), the error

probability density is only available in implicit form of the integral equation

s (5) = /QV e (Ue)dv. (2.52)

However, there might not be an analytical solution for eq. (2.52) and the estima-
tion of the complete 75 is prone to errors because of the high dimensionality of 5.
Further, in the case of coregistration estimation over different subjects respectively
different point set configurations, the Jacobian of the transformation changes for
each configuration and it is impossible to estimate 75. Therefore, I suggest to infer
the error distribution numerically by simulation of residuals from theoretical error
distributions. The integral in eq. (2.52) may change the shape of the probability
density e.g., from a triangular to a uniform density, but the distribution family is
not changed as drastically e.g., the uniform and triangular densities are both special
cases of the trapezoidal distribution. Therefore, it is nearby to infer the distribution
family of the errors from the residuals. This conclusion is applied in the next section

in order to estimate the error probability density.

2.9.2 Inference of errors by simulation

All residuals Sm and En, as defined in section 2.5, were separately concatenated
from either K = 5544 MEG-to-head or L = 128 head-to-MRI coregistrations in the
samples A and Z, respectively. The empirical distribution functions of a sample A
of size K is denoted by Fs x and may be defined in terms of the order statistics
Ay SAp) < <Ay by

0 ifz < A(l)
Fs g (2)=qk/K if Agy <oz <Api), 1<k<K (2.53)

(Pratt and Gibbons, 1981, their equation (2.1)). I modelled the distributions of the

error elements of €, and 7}, using theoretical distributions for continuous random
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variables, for example, a logistic or a normal distribution. However, the errors
cannot be assessed directly. Therefore, the optimal theoretical distribution for the
errors is chosen on the basis of the distributions of the residuals. From a list of
continuous candidate distributions I selected those with no, or one, shape parameter.
These were implemented in scipy and had good convergence (excluding rice and
erlang distributions). Overall, these criteria resulted in a list of 69 distributions. For
the n-th candidate with distribution function Gy, o (z | An, fn, 0rn), the parameters

shape A, mean pu,, and scale o,, were optimized according to

i = avgmin {5 | i (2) = G (o | A )| (2.5)
Aty 0 z

Yoo = aigmin {Sup |F§,L () = Gpo (x| X p, 0) |} (2.55)
O z
n=12...69,

where the optimization argument is the one-sample, two-sided Kolmogorov—Smirnov
statistic (Pratt and Gibbons, 1981, their equation (7.1)). The generalized normal
and the Students’s t-distribution yielded the smallest Kolmogorov—Smirnov statistics
in eq. (2.56) for the MEG-to-head Fj i (x) and head-to-MRI F¢ , (x), respectively.

The best fitting distributions were used as a basis to simulate residuals. Utilizing
the generalized normal distribution GAN ()\, 0, 02) for € I simulated 5()\, 02) by
replacing @,, with Gm = by + € in eq. (2.6). Accordingly, with the Student’s t-
distribution with shape A and scale 7 for 5 the residuals 7, ()\, 02) are simulated by
replacing d:l with c?n =C (d:;L7 E) + En in eq. (2.17). The two-sample, two-sided
Kolmogorov—Smirnov statistics (Pratt and Gibbons, 1981, their equation (3.1))

D (A, 0) = max |Fs i (x) = F5 i (x| A, 0) | and (2.56)
Dz (A o) = max |Fe,r (z) — Frp(z|A o) | (2.57)

were scanned for the set of parameters given in table 2.2, which was selected in
proximity of the optimum. Additionally, the mormal distribution was tested for
comparison (table 2.2). Scanning of the Kolmogorov—Smirnov goal function is not
deterministic since I drew samples from a distribution to simulate errors and resid-
uals. Therefore, error estimates of the Kolmogorov—Smirnov statistics were com-
puted via multiple simulations of error distribution parameters, more specifically,
5 simulations for MEG-to-head and 10 simulations for head-to-MRI. For head-to-

MRI, 5 simulations were insufficient because of higher variability in the correspond-
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Table 2.2: Shape and scale parameters of the error distributions that were used to scan the
Kolmogorov—-Smirnov goal function.

Type name shape scale in mm

MEG-to-head Gen. normal 1.7,1.8...2.1 1.30,1.35...1.55

Normal 0.90, 0.95...1.10
Head-to-MRI  Student’s t 3,4...7 0.90, 1.00...1.30
Normal 1.30, 1.35...1.60

ing Kolmogorov—Smirnov statistic. The minimum of the Kolmogorov—Smirnov goal
function corresponds to a certain distribution function, which is taken as a model
to approximate the error distribution. Hence, these distribution parameters were

utilized to sample the coregistration parameters in the following section.

2.10 Coregistration parameter sampling

In the previous section I approximated the distribution of errors for the point mea-
surement in the coregistration problem of eq. (2.5) and eq. (2.16). I denoted the
probability densities of the error distributions by 7. and m, for MEG-to-head and
head-to-MRI, respectively. For the sampling of coregistration parameter distribu-
tions, I considered the centred and pre-registered problems. The centring matrix
transforms the coregistration points into their centred representation, for example,
B¢. During pre-registration, coordinates from each modality are converted to head
coordinates and aligned with the corresponding data set. Having already applied a
least squares or ICP optimization, all that remains in terms of error iAs the misalign-

ment between the sets of data points and hence p = ¢ = 0 and §=t=0.

Log probability densities of a spatial error vector (e.g. @) are defined by

3
log 7 (@) = Z log7 (an) .
n=1

The log-likelihood of the MEG-to-head parameters {p, 5§}, given the observation B¢

and B¢ reads

-

M ~
log p (p7 5| B, Ec) = Z log e {R (p)bS, +5—15,] . (2.58)
m=1
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For the log-likelihood of the head-to-MRI parameters {q, f}, given the observation
F< and F<, the additional closest point operator C is required and log ¢ is therefore

equivalently defined as
A N 2 2,
log ¢ (q, t| ES, FC) = Zlogrﬁ [R(q) Cri-cC (R(q) W+t EC)} . (2.59)
n=1

Utilising the log-likelihood, the target distributions of the parameters p, § and q, ¢
given the observation, are sampled using a Metropolis algorithm on eq. (2.58) and
eq. (2.59), respectively. Metropolis algorithms draw samples from an unknown dis-
tribution using samples from a known distribution, which is referred to as proposal
distribution. The original Metropolis algorithm uses a fix proposal distribution.
However, the convergence rate of the sample, to the desired unknown distribution,
depends on the choice of the proposal distribution. The adaptive Metropolis algo-
rithm updates the proposal distribution by optimising the convergence using infor-
mation from the sample chain at the current state. Haario, Saksman, and Tamminen
(2001) used a Gaussian kernel proposal distribution with zero mean, hence only the
proposal covariance needed updating. An adaptive update scaling of the covariance
of 2.4%2/d was used, following Haario, Laine, et al. (2006), with the dimensionality
of the parameter-space d = 6. The algorithm is non-Markovian but it has correct
ergodic properties according to Haario, Saksman, and Tamminen (2001). During
parameter sampling, the adaptation of the Metropolis algorithm was performed for
each step. Before sampling, the rotation parameters were scaled by 2R = 200 mm to
homogenise the parameter space. The initial proposal variance was set to (5 mm)2
for the MEG-to-head parameters and to (0.5mm)? for the head-to-MRI parameters
based on prior experience. I performed 10° Metropolis algorithm iterations of the
MEG-to-head and 500 x N iterations of the head-to-MRI coregistrations, where N
is the number of head shape points. A burn in sample size of 1000 was used for
both MEG-to-head and head-to-MRI. The Metropolis sampling was implemented
using the software library of Parno, Davis, and Conrad (2017). Since the adaptive
Metropolis algorithm has correct ergodic properties, integral expressions over func-
tions of the probability density of the parameters like the mean and the variance
can be estimated by the respective expressions of sums over the functions on the
sample. Since the mean of the rotation parameters does not represent the mean
rotation in general, I decided to provide the sample MLE instead of the mean. In

the expression of the variance of a parameter x, the mean is replaced by the sample



2.11. MEG-to-MRI 27

MLE accordingly as

N
§ *Tn - xMLE

/ p(z)(z— l‘MLE do ~

—0o0

spread (z) = —@mLE), (2.60)

_ 2‘»—!

an

N

where p is the probability density and N is the sample size. Throughout this thesis,

the measure in eq. (2.60) is referred to as ‘spread’.

2.11 MEG-to-MRI

In the previous section, I referred to the centred and pre-registered problems for
each of the two coregistrations (MEG-to-head and head-to-MRI) separately. These
centrings introduce a systematic shift between the translation parameters in the
coordinate systems of both coregistrations. However, taking this into account is
straightforward. One has to add the mean point b of the first, and to subtract the
mean point d of the second coregistration, that is, de-centring after the first and re-
centring before the second transformation. Consequently, the chained coregistration
of a point @MEC based on the MEG-to-head and head-to-MRI, as computed by the

Metropolis algorithm, can be written as:

=

= R(Ql)'<R(pk) iMEC 1 5+ b — J>+tl (2.61)

e = R (quLe) - (R (pmLe) @M + e + b — J) + IMLE (2.62)

where g is the maximum likelihood estimate of the parameter from the Metropolis
algorithm. The indices k and [ in eq. (2.61) refer to the k-th and I-th subsample of
MEG-to-head and head-to-MRI Metropolis samples, respectively. For random sam-
pling, k and [ are drawn from the discrete uniform distribution of natural numbers
between 1 and the corresponding Metropolis sample size. Apart from the additional
indexing, the notation is adopted from eq. (2.5) and eq. (2.16), respectively (fig. 2.1).
I defined TRE 1,5 for the point @MEC by

5 (Y5 | pr, a5, ) = R — Gl (2:63)



28 Chapter 2. Assessment of coregistration uncertainties

The RMS of TRE, defined by

[9g12, (2.64)

Q=
Ma

RMS (¥) =

was used as a quality measure based on TRE at a specified point grid of size G.
Statistics of ¢ and RMS (¥) were estimated by computation of eq. (2.63) and
eq. (2.64) for a large number of subsamples {py, Sk} and {ql7 ﬁ}



Chapter 3

Uncertainty and sensitivity

analysis

3.1 Introduction

In the previous chapter, I proposed a method for assessing the quality of coreg-
istrations. This method is also used to assess the distribution of coregistration
uncertainties. Figure 3.1 depicts a typical MEG setup where the sensors are aligned

with a head model for estimation of brain activity from sensor data.

(a) (b)

Figure 8.1: The coregistration setup for one subject shown from two viewpoints (a) and (b).
Grey square shapes depict the magnetometers and white tori represent the localization coil
positions and orientations. The head surface, as extracted from MRI, is rendered in beige.
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Estimates of brain activity are also referred to as source estimates and their ac-
curacy depends on the coregistration of sensors and the head model. In this chapter,
a method is described to investigate the propagation of coregistration uncertainties
to source estimates. To this end, the method of stochastic spectral approximations
is introduced for the general propagation of input uncertainties to the output of
computations in section 3.2. In section 3.4 a method is proposed which transforms
Gaussian coregistration uncertainties in a way that stochastic spectral methods can
be applied. The subsequent section 3.5 describes the simulation of magnetic fields
from sources in predefined brain areas which is used later in this thesis. Stochastic
spectral methods are applied to the simulation of magnetic fields for a simplified
case of coregistration uncertainties. Section 3.6 is based on the simulation of mag-
netic fields and two methods of source estimation, namely the linearly constrained
minimum variance (LCMV) beamformer and the standardized low resolution brain
electromagnetic tomography (SLORETA) are introduced. For different test cases of
source estimates, stochastic spectral methods are applied and coregistration uncer-

tainties are propagated to beamformer and sSLORETA results.

3.2 Stochastic spectral methods

3.2.1 Representation of random processes on polynomial basis

Stochastic spectral methods expand a function f (x) using orthogonal polynomials
of random input variables. In the following, the expansion is described for the
univariate input space and later generalized to multivariate expansions. A univariate
orthogonal polynomial space with respect to the measure p (x) in € is spanned from

a set of polynomials 1), satisfying the orthogonality conditions
(s ) = (s ) - S (3.1)
where 0,y is the Kronecker delta and the inner product (-, -) is defined as
s ) = [ @)1 () p (@) da (3.2)

(Xiu and Karniadakis, 2002; Xiu, 2009). Here, the weighting function p (z) is a

probability density function. The unknown transfer function f (z) is expressed on
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the basis of 9, by the polynomial expansion

Fl@) =2 oty (2) (3.3)
p=0

where p is the polynomial order of ¢,. For example, f can be the magnetic field at a
sensor or brain activity at a point in the source space and x can be a shift or rotation
of the human head relative to the sensors. In practice, where f (x) describes a real
physical system, the contribution of the terms in eq. (3.3) is decreasing with higher
orders which allows to truncate the polynomial series at a finite polynomial order.

In this thesis, a truncated series of f up to the order P is denoted by f :

P

f@)~f(z)=) ey (a) . (34)

p=0

Xiu and Karniadakis (2002) have shown, that the statistical moments of such an
expansion converge to the real moments of any random function with finite second-
order moments. However, they further demonstrate that the convergence rate of
the expansion eq. (3.4) is optimal, in fact it is exponential, when the weighting
function p (x) of the polynomial basis is equal to the probability density function of
the random variable x. Subsets of polynomials in the Askey-scheme were found to
form an orthogonal polynomial basis with respect to probability density functions
of well known probability distributions (Xiu and Karniadakis, 2002; Xiu, 2009), for

example,
e Hermite polynomials: Gaussian distribution
e Laguerre polynomials: Gamma distribution
e Jacobi polynomials: Beta distribution
e Legendre polynomials: Uniform distribution.

This association of polynomials with certain probability distributions allows to ex-
pand each random input variable on the basis of an optimal orthogonal polynomial
set. In this thesis, only Gaussian input variables are considered and hence, the

polynomials 1,, are probabilists’ Hermite polynomials:

1 *° —z?
(Y, Un) = Nir [m U () Y () e 2 dz =n! - 0 - (3.5)
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It is straightforward to generalize the concept above to the K-variate random input
vector ¢ = (x1, 2, ..., xx) with K independent components. The joint probability

density function of x is then

K
=11 pr (@) (3.6)
k=1

where py (z)) is the probability density of the k-th input variable. According to
this, the K-variate orthogonal polynomials v, () are constructed as products of

univariate polynomials in each variable:

\I/’m(m) = Uy ($1)'¢m2 (xQ)..'d)mK (xK) ’ {mlv mz, ..., mK}:meMv (37)

where my, is the order of polynomial ¢, (z) and m is a multi-index of the multi-

index set M C Né( . Analogue to the univariate case, the orthogonality holds as:

K
k=1 (3.8)

(U, Up) = /Q\Ilm () Uy, () p(x) de

where  is the support of the random variables & The definition of M is critical
since it determines the number of basis polynomials. A possible choice for M are full
tensor index sets, where all combinations of polynomial orders up to P are employed
in each random variable. This choice is not desirable for practical computations as
the number of basis polynomials is (P + l)N and increases too much for large K
(Xiu, 2009). An alternative are total order multi-index sets, which limit the sum of

polynomial orders over all variables:

K
Mp = {meN§:|m|1:kagP}. (3.9)

k=1

The number of basis polynomials associated with total order sets Mp can be

expressed as the binomial coefficient (KI‘EP )

Total order sets are used in most
computations with stochastic spectral methods (Xiu, 2009). For this thesis, a variant
of total order sets is used, which is tailored to Gaussian numerical integration and

it is described in detail in section 3.2.2.
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3.2.2 Smolyak pseudospectral approximation method
Introduction

The analytic solution of spectral expansion coefficients can be expressed by the

integral
1
Crm = W 0, /Q f(@®) ¥y () p(x)dx. (3.10)

In almost all practical cases, however, it is not possible to find an analytic solution
of this integral. An alternative are non-intrusive approaches, which do not depend
on the governing equations and instead treat a simulator as a black box. One of
these approaches is the pseudospectral approximation method where the integral in
eq. (3.10) is computed numerically and hence, the function f (x) is only evaluated

at a finite number of quadrature nodes. For numerical integration schemes, let

N
QNpoy:an-y(xn)%/ y(x) - p(z)de (3.11)
n=1 Qp
be the univariate quadrature of a function y with weighting p, where N is the number
of nodes, w,, and z,, are the weights and nodes, respectively. Both w,, and x,, depend
on N and p. A rule Qy p is referred to as Gaussian quadrature when the integral
is solved exactly for polynomials of degree M = 2N — 1 or less. In other words
ZTJLI Wy Y (Tp) = fﬂg y (x)-p () dz, when y is a sum of polynomials up to the order
2N — 1. Dependent on the weighting, different terms are associated to quadrature
rules, for example Gauss-Legendre and Gauss-Hermite quadrature for uniform or
normal distribution weighting, respectively. Here, Gauss-Hermite quadrature is used
because it is optimal for normal inputs (as decribed in section 3.2.1). The nodes
of a univariate Gaussian quadrature ()n are the roots of the associated order N
polynomial. A multivariate quadrature in K variables, which is exact for all products
of univariate polynomials up the orders 2N; — 1,...,2Ng — 1 can be computed by

full tensor products ® of univariate rules as

N1 Ng
QNPOy:Z"'Zwnl"'wnK'y(Inu“-»an)
TLK=1

7’L1=1

(3.12)
= [QNlPl ®"'®QNKpK} oy
So far the exactness of integrating y (z) - p (x) was considered for polynomial y. The

integrand in pseudospectral approximations, however, is f () U,, () p () and it is

of greater interest here. Again, f (x) Uy, (x) is considered as a polynom. In the ideal
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case, where f and the polynomial basis have the same maximal polynomial order, a
quadrature rule is exact for transfer functions f up to the orders Ny, ..., Nx when
it is exact for polynomial orders 2Ny, ...,2Ng. Hence, the set of polynomial orders
up to NVi,..., N is also referred to as half-exact set of a quadrature rule. Figure 3.2
depicts the polynomial orders (a) of two variables, which can be exactly integrated

by the full tensor nodes (b).

a7 1.0 ‘ :
£ 6 e '
- [ _
Fq'; Z 0.5 . o o .
o ~ L |
= 3 g 00
£ 2 o5 " ¢ *
=}
'_>‘> 1 . . O
£ o ~1.0 ‘ ‘ ‘
~1.0-0.5 0.0 0.5 1.0
01234567 .
1

Polynomial order in x;
(a) (b)

Figure 3.2: Ezact (light grey) and half-exact (dark grey) sets of polynomial orders are de-
picted for a full tensor quadrature in (a). In (b), the corresponding quadrature nodes are
plotted.

This example shows 4 x 4 nodes which are needed to exactly integrate all poly-
nomial products of orders up to 7,7. Let f (z) be a polynomial of order M, then the
highest order integrand of an exact polynomial expansion of f is f (x) ¥ (x) p (),
which is of polynomial order 2M. For Gaussian quadrature rules, M + 1 nodes are
sufficient to exactly expand f. In this example, {0,..., M} is the half-exact set of
the quadrature rule with M + 1 nodes. This concept is generalized to the multi-
variate case and the half-exact set of the quadrature rule in fig. 3.2 is depicted by
dark grey squares in (a). The quadrature in fig. 3.2 is able to exactly expand a

polynomial function in two variables of orders up to 3, 3 in the transfer function f.

Smolyak quadrature

In the previous section, the basics of pseudospectral approximations and full tensor
quadrature were introduced. A problem with full tensor quadrature is the expo-
nential increase of quadrature nodes and hence, numerical computations, when the

number of input variables increases (curse of dimensionality). Smolyak algorithms
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help to reduce the cost by omitting the coupling of higher order quadrature in
different variables. Conrad and Marzouk (2013) motivated this approach by the
following example. They consider the function f (1, ¥2) = z{ + 2§ + 329, A full
tensor pseudospectral expansion would estimate all polynomial coefficients up the
orders m{x% and hence requiring 8 x 8 nodes of a Gaussian quadrature. However, in
this particular case, an exact expansion of f can be constructed more efficiently by
8 x 1, 1x 8 and 4 x 2 nodes. Smolyak algorithms make use of this approach since in
case of the presented spectral projection approach, the polynomial basis is known
(Conrad and Marzouk, 2013). For K inputs, Smolyak algorithms work for so-called
admissible multi-index sets. Here, a multi-index s € N{f refers to quadrature levels
in each input. An increment in the quadrature level is related to an increment in
the number of quadrature nodes. The backward neighborhood of a multi-index s is

defined as the multi-index set
- . K
ny(s):={s—up:Vke{l...K}, s—u, e N;'} . (3.13)

A multi-index set S is admissible if and only if for all multi-indices in S, the backward

neighborhood is a subset of S:
Vse S, ny(s)CS. (3.14)
Examples of admissible multi-index sets are total order multi-index sets
Sy:={se NI - |s|; < N}, (3.15)

where the sum of quadrature levels over all inputs is limited to N. Total order multi-
index sets are the most widely studied choice and suggested by Smolyak (Conrad
and Marzouk, 2013). The Smolyak algorithm defines the difference operators for a

set Q of univariate quadrature levels s as

Ao (Q) = Qny0)p, =0 (3.16)
Aks (Q) = QNk(s) PE QNk(sfl) prs S €Ny, (317)

where Q, () p, 18 @ univariate quadrature for input k with weighting pj, and Ny (s)

nodes. Let & (s) be the exact set of a univariate quadrature Qy; (5) .- Conrad and
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Marzouk (2013) have proven, that the multivariate Smolyak quadrature

A(2,8)0f=) [A15(Q @ ® Ak (Q)]o f

seS

(3.18)
= Z Cs [QN1(31)P1 Q- ® QNK(SK)PK] of
seS
is exact for all polynomial orders in
E(A(Q 8) 2 & (1)@ @ Ek (sk) - (3.19)

seS

The ¢s in eq. (3.18) are integer coefficients, resulting from a rearrangement of the
difference operators. The exactness relation of eq. (3.19) holds for quadrature rules
with nested exactness. That is, univariate quadrature rules with N, nodes must
include the exact set of their rules with less nodes. This condition is fulfilled for
most quadrature rules, for example for Gaussian quadrature which is used here. A

total order multi-index set in two dimensions up to the total level of 4
Sy={seNj:|sl1 <4}, (3.20)

combined with a simple linear growth of nodes N = s and Gaussian quadrature
(& (s) = 2s — 1) has an exact set as depicted in fig. 3.3 (a).
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Figure 3.3: The graphs depict polynomial exactness, nodes and weights of Gauss-Legendre
quadrature rules. Ezxact (light grey) and half-exact (dark grey) sets of polynomial orders are
depicted for different total order level sets and growth rules in the left graphs (a), (c) and
(e). On the right side (b), (d) and (f), the corresponding quadrature nodes and weights are
plotted. Black dots and circles represent positive and negative weights, respectively. The size
of the markers scales with the absolute weight values.
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The quadrature nodes for this example are plotted in fig. 3.3 (b). Similar exam-
ples are depicted in fig. 3.3 (¢), (d) and (e), (f) for an exponential growth of nodes
N =251 5> 1 and total levels of |s|; < 3 and |s|; < 4, respectively.

Smolyak pseudospectral approximation

In this section, the Smolyak algorithm from above is applied to estimate the coeffi-
cients of pseudospectral approximations. The Smolyak algorithm from section 3.2.2
can be transferred directly from univariate quadrature rules to pseudospectral ap-

proximations. The pseudospectral approximations in dimension k are defined as

qk(s)
1
Pyso f:= ; [MQM(S)% o(fvn)| (), (3.21)

where g, (s) is the polynomial truncation. Here, a polynomial truncation of g (s) =
floor ((2N (s) — 1) /2) = Ni (s) — 1 is used for Gaussian quadrature rules. Such a
truncation guarantees polynomial accuracy and avoids internal aliasing (Conrad and
Marzouk, 2013). Internal aliasing is an erroneous estimation of nonzero polynomial
coefficients for a function within the polynomial range of the pseudospectral ap-
proximation. The Smolyak pseudospectral approximation of a function f is defined
as

A(P,8)of =) caPalf), (3.22)

seS
which is constructed exactly like the Smolyak quadrature of eq. (3.18) with Q sub-
stituted for P. That is, quadrature rules are substituted for pseudospectral approx-

imations. The differential operators of pseudospectral approximations are

Ago(P):=0 (3.23)
Aps(P):=Pys — Pr(s—1), sSENy (3.24)

and Ps are full tensor approximations built around the polynomial accuracy of single
full tensor quadrature rules (Conrad and Marzouk, 2013). The half-exact set of a
Smolyak quadrature defines the polynomial range of the corresponding Smolyak
pseudospectral approximation. A Smolyak pseudospectral approximation is exact
for functions which can be expressed as a sum of polynomials within the polynomial
range of the approximation. Hence, Smolyak pseudospectral approximations have

no internal aliasing (Conrad and Marzouk, 2013). For example, in the figures 3.3
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the Smolyak pseudospectral approximations based on the nodes in the right graphs

are exact for the corresponding polynomial orders in dark grey in the left graphs.

Smolyak pseudospectral approximation example

The principles of Smolyak pseudospectral approximations are demonstrated on a
simple example. Let the function of interest be f (x1,22) = 2cosx1+3sinxze—1. The
inputs z1 and xo are independent random variables following a normal distribution
with zero mean and unit variance. Hence, Gauss-Hermite quadrature rules are
used in the following. For the approximation, a total order Smolyak level set S
with maximum order of 1 and the quadrature growth rule N (0) =1, N(1) =5
is chosen. That is, S = {{0, 0}, {0, 1}, {1, 0}} and three quadrature rules, one
with one node and two with five nodes each, are assigned. Again a polynomial
truncation of g (s) = N (s) — 1 is used. That is a maximal polynomial order of 4
in each variable. The set of basis polynomials {Ug 9, ¥1,0..., ¥o,4}, here 9 Hermite

polynom products, reads

o0 = vo (21) o (72) =

W10 =t (21) Yo (22) = 21

W 0 = g (x1) Yo (2) = 2F —

W30 = 3 (21) Yo (w2) = 2§ — 3 (3.25)
Wy,0 = 1y (x1) o (22) = 2] — 62F + 3

\11074 = @/}0 (1‘1) 1/}4 (132) = .ZE% — 627% +3.

From the Smolyak level set, the quadrature rules and the polynomial set, the

Smolyak algorithm defines the sum over the differential approximations as

AP, S)of=) A, ®Ag,, (3.26)

seS
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which reads in this example as

A(P,S)of=+ Z csVs —co,0Wo,0 +
sES, s2=0

A120A21

+ Z csVUs —co,0¥0,0+

s€S,s1=0 (327)

A11®A22
+co,0%0,0 — 0,
———

A11®A21

where the coefficient cg ¢ is computed from the central node (0,0). Hence, the
Smolyak pseudospectral approximation consists of three differential terms, where
each minuend and subtrahend is a pseudospectral approximation in its own right.
Figure 3.4 demonstrates the composition of this example in differential terms, where

the associated quadrature nodes are marked black.
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Figure 3.4: Ezxample of a Smolyak pseudospectral approzimation of the function f =
2cosxy + 3sinxe — 1. All four graphs depict the function f in black. In red, the zero
order approzimation (cg, o) estimated from one node is depicted. The differentials of the
fourth and zero order approximations are depicted in blue and green for inputs x1 and xo,
respectively. In pink, the sum of all three differential terms is depicted, this is the Smolyak
pseudospectral approximation of f. The black markers represent the quadrature nodes of
each term associated to the graphs.

Choosing quadrature growth rules

Here, only linear growth rules are briefly investigated. Smolyak pseudospectral
approximations are built around quadrature sets with certain growth rules. The
growth rules determine the number of quadrature nodes and hence the range of

polynomial orders of pseudospectral approximations. It is desirable to reduce the
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number of nodes for a given range of polynomial orders. Burkardt and Webster
(2014) proposed a Smolyak quadrature where only odd numbers of nodes are used.
They do this by lifting each even number rule up to the next odd rule, this does not
contradict with the Smolyak algorithm and it is efficient since odd rules usually share
the midpoint node and the same nodes are used for two polynomial orders. I followed
this idea and used the growth rule N (s) = 2s + 1 for my Smolyak pseudospectral
approximations, where NV is the number of nodes and s is the Smolyak level. Conrad
and Marzouk (2013) also recommended to add at least two nodes for each new level
in adaptive strategies (adaptive approximations are introduced in the next section).
Here, a total order multi-index set up to the level of 3 is used and with the growth

rule from above, the polynomial order range M is defined as

M o= {{2s1,...,255} € N 1 [s]; < 3}

(3.28)
M:={ny(m):¥Yme M} UM,

which is the half-exact set of the associated Smolyak quadrature. ng(m) is the

backward neighbourhood of m as defined in eq. (3.13).

Adaptive Smolyak pseudospectral approximation

So far, pseudospectral approximations were discussed for fixed multi-index sets. In
practise, often the convergence of such approximations cannot be estimated prior
to the evaluation of the function of interest. Hence it is desirable to adapt to a
function and refine an approximation in subspaces, where the error is large. Conrad
and Marzouk (2013) analyzed Smolyak multi-index sets and derived an error measure
for terms which can be refined. Let S be the current multi-index set, A multi-index
s € S can be refined if it has at least one admissible forward neighbour. The
admissible forward neighbourhood of s is the set of forward neighbours of s which
are not contained in S and which form again an admissible multi-index set if added
to S:

Nag (8) := {nEN{{\S:SEnb(n),nb(s)gS} . (3.29)

Let s be a multi-index with admissible forward neighbours and
M= M'U{s}, (3.30)

where M and M’ are admissible. Conrad and Marzouk (2013) assume that whenever
s changes the Smolyak approximation strongly, it probably represents a subspace

which needs further refinement. They estimate the change of Smolyak approxima-
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tions due to adding s to M’ by the triangle inequality

e(s) == |[A1s, (P) @+ ® Ag s, (P) 0 f|, > |A(P, M)o f—A(P, M')ofl,.
(3.31)
Their local error estimate € (s) is efficient since it does not change as M’ evolves
and hence needs to be computed only once for each s (Conrad and Marzouk, 2013).
The set of multi-indices in S with at least one admissible forward neighbour can be
defined as
K:= {SEnb(n):VneN{(\S, ny(n) C S} . (3.32)

At each adaptation, s € K is found that maximises € (s) and the admissible forward
neighbours of s are added (Conrad and Marzouk, 2013). As a termination criterion,

they proposed the global error indicator

cg=> €(s). (3.33)

sek
For this thesis, I decided against adaptation for a better comparability between the
approximations of different functions. But for other applications, the adaptability

is an important feature of Smolyak pseudospectral approximations.

3.2.3 Error estimates of spectral approximations

For the verification of spectral approximations, I define a measure which is closely
related to the one described by Weise et al. (2015). Here, the relative error of an

approximation p of a function p (x) is defined as

a9, (3.34)

where €2 is a region of interest, Aq is its area. The vectors p and p are reference
solutions and its approximations for an input sample X = (x1,...,xy), respectively.
E [p (¥, X)] denotes the mean reference solution over N samples at location 7. In
this thesis, the region of interest is defined by a discrete set of sources, the source
locations 7, and hence the integral in eq. (3.34) is approximated by the sum over this
set and the area by the number of sources. A disadvantage of this error computation

is that additional N evaluations of p (x) are required (Weise et al., 2015).
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3.2.4 Statistics from polynomial coefficients

From a stochastic spectral approximation f (x) ~ f (x) = > oses fsUs (x), the first
two moments of the output distribution of f (x) can be approximated in closed form

according to

E[f @) ~E[f(@)] = fo (3.35)
Varl[ (@] ~ Ve [ (@)] = |(F @) - E[f@)])"| = ¥ Fwe v 330

seS\0

where E [f ()] is the expected value and Var [f (x)] is the variance of f (x) (Xiu,
2009). The above relations follow from the orthogonality of the polynomials ¥y (x)

when the polynomial basis is matched with the input distribution of x.

3.2.5 Variance based sensitivity analysis

Provided that the input factors are statistically independent, the output variance
can be decomposed into first and higher order effects. In such a decomposition, first
order effects model the partial output variance due to variations of a single input
factor only. The remaining variance, which cannot be explained by first order effects
is due to interaction effects of two or more input factors on the output variance. For
a scalar function f () = f(x1, 9, ..., k) a variance based first order effect for

an input factor xp can be expressed as

Varg, [IEW [f 1 xk]] , (3.37)

where Vary, [] is the variance computed for all x5 and Eg,, [] is the mean computed
for all other inputs while keeping xj, fixed (Saltelli et al., 2010). The associated

normalized first order sensitivity index is expressed as

Self] = @iﬁ JEJ]C =

(3.38)

Sy is normalized between zero and one and measures the additive effect of zj on the
model output (Saltelli et al., 2010). In fig. 3.5, the relation between the means and
variances is demonstrated on an example function. From a pseudospectral approxi-
mation, the sensitivity indices are simply estimated from subsets of the coefficients.

Each index S [ f} is computed from the multi-index set My with non-zero indices
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Figure 3.5: First order sensitivity indices are demonstrated on the example function
f(x1,29) = 2cosxy + 3sinze — 1. The probability density of the inputs p(x1,x2) =
p1 (x1) pa (x2) is depicted (violet) below the function f (red mesh). On the planes f,z1 |
xo = —3 and f,x2 | 1 = =3, the mean functions E,, = Ezy and Ey, = Eg, are plotted,
respectively. The mean functions are computed with respect to the probability density p.
That is, the function values near (0,0) are higher weighted compared to f at more distant
inputs. From the distributions of the weighted E,, and E,,, their variances are computed,
their standard deviations are depicted by the read areas here. The sensitivity indices are
computed from these variances by normalization with the variance of f.
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only for the zj, of interest (Saturnino et al., 2019):

s 1 A
si|f] = vl 2 T ), (3.39)

where Var [ f (.’B)] is computed as in eq. (3.36). However, when a nonlinear function

g is applied to f, the sensitivity indices of g o f cannot be extracted from the
polynomial coefficients of f . For example, when f is a brain activity measure and its
pseudospectral approximation is f , then the maximum location of the brain activity
can be estimated by the nonlinear maximum function g applied to f. Although it
is possible to expand g o f, some disadvantages would arise, namely it would be
an approximation of an approximation with larger errors and in this example the
expansion needs re-computation for different magnetic fields. On the other hand, f
is already computational efficient and Monte-Carlo sampling would be appropriate.
An efficient sampling based approach for sensitivity indices was published by Saltelli
et al. (2010). They proposed to estimate Varg, {]Ew,% {g of | :ckH as

jng (A),- (9 (48), -9 (B),) (3.40)
=1

where A and B are independent sampling matrices of f on x with L rows and K
columns, K is the number of input factors and L is the number of computations per
matrix. The k-th column of matrix A(Blf) is equal to the k-th column of B and all
other columns of A(Bk) are equal to the associated columns of A. In eq. (3.40), the
notation g (A), refers to the l-th column of the evaluation matrix g (A). By using
eq. (3.40) for all K sensitivity indices, 2L evaluations of g o f are computed from A
and B and another K - L from A(Bk). In total the cost of the sensitivity indices is
L- (K + 2) evaluations of go f, with L sufficiently large, 500 or higher (Saltelli et al.,
2010). For this thesis L = 10000 is chosen for the estimation of sensitivity indices.
The sampling of the input space is performed by Sobol’ quasi-random sequences, as
proposed by Saltelli (2002) and Saltelli et al. (2010). If it is not possible to extract
the sensitivity indices from the polynomial coefficients, the method of Saltelli et al.

(2010) is used here.
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3.3 Coregistration parameter distribution

The coregistration parameters are derived from the Metropolis sampling and com-
puted in a similar way as the TRE which is described in section 2.11. Metropolis sam-
pling of head-to-MRI explicitly draws samples from the head-to-MRI coregistration
parameter distribution. For MEG-to-head, the parameter covariance CMEG-to-head
can be inferred from linearization, as described in section 2.5.1. By assuming normal
errors, MEG-to-head parameter samples are drawn from standard normal samples
and multiplied by C;/[/ég_t o-head- Here, the distribution of interest is the combination
of MEG-to-head and head-to-MRI uncertainties. The computations below are per-
formed in head coordinates. That is, all locations in source space, volume conductor
model and sensors are all given in head coordinates. MEG-to-head and head-to-MRI
parameters are both sampled in centred coordinates, see section 2.10 for details. In
the following, the centring effects are transformed to the uncentred head coordinates.
Let py and sj be the MEG-to-head parameters for centred and pre-registered MEG
coordinates. A point b in head coordinates is derived from a point a in the MEG

coordinates by adding the mean point b

ST

b=d+ (3.41)
and hence the coregistration R (py)d + 5 is transformed to head coordinates as
R (py) (5 — R (px) 5) +8k. That is, instead of 3} the shift vector becomes (3 —b For
head-to-MRI it is necessary to account for the difference between pre-registration
and maximum likelihood estimate. This is done by applying the inverse of the
maximum likelihood head-to-MRI to rotation and shift and is denoted by R’ and #':

R (q) = Ry R (@) (3.42)

and
t)= Ry (f — tmie) (3.43)

where g is the maximum likelihood estimate. Both steps together, the transfor-
mation from centred to head coordinates and accounting for the maximum likelihood
estimate in head-to-MRI yields a sample of the MEG-to-MRI translation uncertainty

in head coordinates as

S|

hii =T+ R (@) (5 - R(p)b+5—d) +d, (3.44)
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where b are the d MEG and MRI centres, respectively. The associated rotation

uncertainty is not affected by centring and simply sampled as

gr1 = quaternion [R' (a1) R(pk)] ) (3.45)

The indices k and [ in eq. (2.61) refer to the k-th and I-th subsample of MEG-to-
head and head-to-MRI samples, respectively. Apart from the additional indexing,
the notation is adopted from eq. (2.5) and eq. (2.16), respectively (fig. 2.1).

3.4 Definition of input variables

3.4.1 Static coregistration uncertainties

The representation of random processes in section 3.2.1 is based on theoretical uni-
variate input parameter distributions. Each input parameter is associated with
a theoretical distribution and all input parameters are independent random vari-
ables. In the uncertainty assessment chapter 2 I estimated normally and students-t
distributed errors for the MEG-to-head and head-to-MRI coregistrations. The pa-
rameters of the MEG-to-MRI coregistration are approximately normally distributed
with non-diagonal covariance matrices. A non-diagonal covariance matrix indicates
dependency between the parameters. In order to apply stochastic spectral methods,
the parameter covariance is decomposed into independent components using an sin-
gular value decomposition (SVD). The rotation and translation parameters g and
h of MEG-to-MRI are sampled as described in section 3.3. A transformation to

(g, ﬁ) from six independent and identically distributed Gaussian random variables
x with zero mean and variance 1, is found by CI%/I/EQGftofMRI’ with
) g11 g12 g13 hi1 hia s

1 : : : : : : (3.46)
gN1 gN2 9gn3 hni hn2 hys

Udiag(s) V' =

1/2 . T
CM/EGftofMRI =Vdiag(s) V",
where N is the sample size. With & as input variables and the transformation
(g, E) ~ C’,%A/EQG_tO_Mmm, it is possible to analyze functions of the coregistration

parameters by stochastic spectral methods on the basis of Hermite polynomials.
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For example the function f (g, fz) is expanded by

f<Ch1/|/E2G7tofMR|w) = Zfs‘l’s () . (3.47)

seS

3.4.2 Head movements

So far, in chapter 2, uncertainty of coregistrations is assessed for a moment in time or
for non-moving subjects. Although some methods have been developed to account
for head movements during MEG recordings, the standard MEG forward models are
computed for one static coregistration. Hence, head movements add further uncer-
tainty to the MFEG-to-head coregistration. In this section, I propose a method to
assess the amount of head movements during MEG recordings by means of a covari-
ance matrix. Further, the mean coregistration is estimated for the use in forward
models. For the coregistration uncertainty at a moment in time, I found approxi-
mately normally distributed parameters. Since the head movements are added to
these parameters independently and typically with a similar magnitude, in the order
of a few mm, I make use of the central limit theorem and assume that the sum of
static coregistration uncertainty and head movements is normally distributed.

In the laboratory the head movements are recorded by activating five head local-

TM oo ftware estimates MEG-to-

ization coils during the measurement. The MaxFilter
head coregistration parameters — rotation quaternions g; and translations ¢; — for
each second of the recorded data from the signals of the localization coils. Markley,
Cheng, et al. (2007) have shown that the average rotation E [g] of unit quaternions

q; can be found by the SVD

(a1, @2, ..., qr) = Udiag (o) VT

(3.48)
E[q] = (u11, w19, u13, ui4)"

as the first column eigenvector, where L is the length of the data in seconds. For
the estimation of rotation covariances, the inverse of the mean rotation is applied
to the rotations for centering. The centered quaternions are computed from these
rotations as

qf = quaternion [R (q,) R~ (E[q])] (3.49)

The mean of the translation parameters is E [f] = Elelt_Z. For the translation
covariances, the methods of chapter 2 are used and the MEG coordinate system
origin is initially shifted to the mean of the localization coil positions E [d], which is
computed from E[g] and E [i] Let the point @ME€ be a point in MEG coordinates,
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which is aligned in head coordinates by MEG-to-head as
aed = R(q)avE® +1;. (3.50)
The shift of the MEG origin to E [@] can be expressed as
@ = R(q) (" - E[d)) + 7+ R(a)E[d (3.51)
and the shifted translation vector is defined as
tio="1+R(a)E[d] . (3.52)

The covariance matrix of the MEG-to-head coregistration parameters due to head

movements is estimated as

1
Cmovement = ﬁMMT
o[ & & (3:33)
fio—E[t] ... tro—E[t)]) "

Because a static MEG-to-head coregistration uncertainty with covariance matrix
Cltatic 18 independent from head movements, the total MEG-to-head covariance

matrix for head movements and coil localization errors is

Cdynamic = Cmovement + Cstatic . (354)

3.4.3 Target registration error

By using the transformation of the coregistration parameters from section 3.4.1
it is straightforward to sample the TRE gg at a point @ in the head coordinate
system. Let C,%A/EQGftofMRl be the transformation matrix from six independent and
identically distributed standard Gaussian random variables x to the MEG-to-MRI
coregistration parameters (g, ﬁ) A sample of coregistration parameters is obtained
as

(9115 G2 g3y 1y bz, hs) ' = Cﬁn/ég_to_MRm- (3.55)

The TRE at @ is sampled accordingly as

G (g0 i) = Rg)a+Fi. (3.56)
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For a set of M points the mean RMS of TRE at these points is defined by

1S |1

M
E[RMS (¥)] = - > i > |dm (gz, fiz)l“‘, (3.57)
1

=1 m=

where L is the sample size of the mean estimation.

3.5 Forward modeling

3.5.1 Source space

In MEG forward computations, the magnetic flux is computed for given source con-
figurations. That is, each source is defined by its dipole location, orientation and
strength. A source space defines the space of dipole locations and dependent on
the modeling it can constrain dipole orientations, for example to surface normals.
Here, the dipole locations are defined by the vertices of the white matter triangula-
tion from the FreeSurfer software. Figure 3.6 depicts the FreeSurfer white matter
triangulation. Here, the triangulation is based on the topology of a recursively sub-
divided icosahedron with 5 subdivisions. This is done separately for left and right
hemispheres and results in 10242 sources per hemisphere. Sources with a distance
smaller than 5 mm to the closest volume conductor boundary are excluded from the

source space.
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(a) (b)

Figure 3.6: Source space triangulation from (a) saggital and (b) coronal view. The sources
are located at the vertices of the triangulation. Three red areas indicate the test patches of
auditory, visual and somatosensory sources.

The red patches in the left auditory, visual and somatosensory regions are used
for forward computations below. Source normal orientations are derived from a finer
FreeSurfer surface triangulation compared to the source space in fig. 3.6 by using
cortical patch statistics (F.-H. Lin et al., 2006). The normal orientations are used

to constrain the source estimates in sections 3.6.2 and 3.6.3.

3.5.2 Regions of interest

Many MEG studies are based on the stimulation of certain functional brain regions,
for example auditory stimuli are presented which are supposed to activate primarily
auditory regions. Hence, often also the source analysis is restricted to functional
regions of interest. Here, three regions of interest are defined, namely auditory, visual
and somatosensory regions. The definition of each region is derived from the human
cerebral cortex parcellation of Glasser et al. (2016). In table 3.1 parcellation labels

are listed for each region and left/right refers to the left/right brain hemispheres.
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Table 3.1: Definition of auditory, visual and somatosensory regions of interests from parcel-
lation labels.

auditory ‘ visual somatosensory
o left broadman area (BA) 52 o left primary visual cor- | e left BA 1
tex (V1)
e left primary auditory cortex (Al) o left BA 2
o left second visual area
e left auditory 4 complex (A4) (V2) o left BA 3a
o left auditory 5 complex (A5) e right V1 o left BA 3b

e left lateral belt complex (LBelt)
e left medial belt complex (MBelt)
e left para-belt complex (PBelt)

e left para-insular area (PI)

o left retro-insular cortex (RI)

e left dorsal bank of superior tempo-
ral sulcus posterior (STSdp)

e left anterior superior temporal
area TA2 (Economo and Koskinas,
1925) (TA2)

For the visual region, I decided to include the right V1 label. Figure 3.7 depicts

the result of the region of interest definitions for one subject.
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(a) (b)

Figure 3.7: The inner skull compartment and source space is shown from (a) saggital and
(b) azial views. Regions of interest are coloured in blue, green and red for the auditory,
visual and somatosensory regions, respectively.

3.5.3 Volume conductor and boundary element method

Bioelectrical effects due to brain activity are characterized by the second order el-

liptic partial differential equation
V(o (P V() =7 () , (3.58)

where o (7) is the specific electric conductivity of the tissue, ¢ (7) is the electric
potential and j () is the primary current density at source position 7, (Stenroos,
Maéntynen, and Nenonen, 2007). Let the primary current density be described by an
equivalent current dipole, with dipole moment p. From the Biot Savart law follows
the primary magnetic flux density by, of a current dipole inside infinite vacuum

space as
_ Hop X ("= 7p)
A |F— 73

boo (7) , (3.59)

where (7°) is the sensor position and pg is the magnetic permeability of the vacuum.
Primary current dipoles inside a conductive volume like the brain cause a secondary
magnetic flux density b, which is caused by the ohmic currents inside the volume

conductor. From the divergence theorem follows the expression of the secondary
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magnetic flux density as

L =/

Ho 1/ ) F—7
_ko - 45" x LT .
A ar (o1 Ul+)/an @ (7’ ) s X |F—F’|3 ) (3.60)

bvol (F) =

where o;_ and o;4 are the specific electric conductivities inside and outside of a
homogeneous compartment [ with boundary surface 9€2; and ¢ is the electric poten-
tial at the boundary surfaces (Geselowitz, 1970; Stenroos, Mantynen, and Nenonen,
2007). For this thesis, only one compartment, namely the inner skull comparment, is
used for volume conductor modeling and the secondary magnetic flux density reads

as

e (3.61)

The total magnetic flux density b at sensor position 7 due to a current dipole p at

7p is the sum of primary and secondary flux density
b (F) = bOO (F) + bvol (F) . (362)

In the computations for this thesis, the surface potential ¢ is computed by using
the Helsinki BEM library (Stenroos, Méntynen, and Nenonen, 2007). The surface
integral in eq. (3.61) is computed analytically over the triangulation of the inner
skull surface, where the element integrals are solved for the linear potential approach
(Ferguson, Xu Zhang, and Stroink, 1994). For source estimation it is convenient to
write the normal magnetic flux density by = b (7%) - ny at the MEG sensor positions

7k, with sensor orientation nj in terms of the matrix equation

b1 Plz
ba P1y
bs | =L | p1o |, LeRV3M (3.63)
bn DM =

where L is referred to as leadfield matrix and p,,, is the x-component of a dipole

moment at source position 7)., and so on for y and z.

3.5.4 Expansion of forward operators

Since both by, and b,,; depend on the sensor position relative to the source and

volume conductor position, both terms also depend on the MEG-to-MRI coregis-
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tration. The leadfield matrix from the previous section, which is also referred to as
forward operator, is the sum of primary and secondary magnetic flux density per
unit dipole moment:

L=L,+L,,. (3.64)

The effects of coregistration uncertainty on the forward operator are separately
analyzed for Lo, and L,,. Only uncertainties in the translations in x, y and z-
direction (hg, hy, h.) are analyzed. In this analysis, hs, hy and h, are independent
random variables following a Gaussian distribution with zero mean and standard

deviation of 2mm. The elements of the forward operator are expanded as

R h
zmm(hz,hy,hz)zzzmmsws<h’“ v hz)

2mm’ 2mm’ 2mm
seS

. h h h
lvolnm (hzy hya hz) ~ Zlvolnms\Ps < - N - ) (365)

2mm’ 2mm’ 2mm
seS

l"m(hz7 h?!’ hZ) ~ Z (Zoonms +[volnms) U ( i hy he ) .

2mm’ 2mm’ 2mm
seS

In this thesis, the expansions eq. (3.65) are used to approximate the forward operator

efficiently for a profound uncertainty and sensitivity analysis.

3.5.5 Error of forward computations

For the comparison of approximations with reference solutions at the sensors, the
relative difference measure (RDM) and the magnification (MAG) were introduced
(Meijs et al., 1989). The RDM measures differences in the field topography and is
not affected by scalings of the global field strength by positive factors. A minimal
RDM of zero indicates no topography differences between two fields. And a maximal
RDM of two is reached when one field is a negative multiplication of the other. The
MAG measures the error of global scaling between two fields, where a MAG of one

indicates no scaling error and MAGs of zero and infinity indicate maximal scaling
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errors. Both measures are defined according to

N b b
RDM = |)° L €[0,2]
n—1 N N
\/ > b2 \/ b2
n=1 n=1 (3.66)

MAG = |=2— >0,

where b, and l;n denote the reference and approximation field values at sensor n and

N is the number of sensors.

3.6 MEG source estimation

3.6.1 Introduction

For the estimation of locations and time courses of neural activity from MEG data,
a variety of different methods exist. Source estimators can be classified into three
main branches, dipole search methods, scanning methods and estimators of dis-
tributed sources. All classes of methods are based on the idea, that sensor data d of
measured brain activity can be expressed by the sum of fields from dipolar sources
in the brain plus noise. In the context of scanning and distributed inversion meth-
ods, source estimates are estimates of dipole moments for given sensor data. The
dipole moments, representing brain activity, are denoted by p and together with the

leadfield matrix from above, the sensor data read
d=Lp+v. (3.67)

Normally, it is assumed that the sensor noise v follows a multivariate Gaussian
distribution with zero mean and its covariance matrix C,, is estimated from the data.
For the formulation of source estimators, it is convenient to introduce a whitening
matrix Cy, Y 2, whitened data and leadfield as

d=C;Y%d

i_conp, (3.68)
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The purpose of this transformation is apparent when it is applied to eq. (3.67)
/2y follows a Gaussian distribution where the covariance matrix is equal
to the identity matrix I (Hamaélainen, F. H. Lin, and Mosher, 2010).

-1
because C,,

3.6.2 Beamformer

From the class of scanning methods, a vector beamformer is implemented for this

thesis. The LCMV beamformer is known to have the solution
-1
w7 (7) = (LT (M C;'L (m) IANG Yor (3.69)

at source location 7, where C’d_1 is the inverse of the data covariance matrix and
L is the leadfield matrix (Van Veen et al., 1997). Following Hillebrand and Barnes
(2003), an unfocussed beamformer is used in this thesis, where the data covariance

matrix is a scaled identity matrix Cy = oI and the beamformer weights become

W) = (LT MLE) LT (3.70)

In contrast to Hillebrand and Barnes (2003), the leadfield L () is not a column
vector, it consists of three columns L (7) = (Iy (F), L2 (F), 1, (F)), where the in-
dices t1, t2 and n decode the two cortical tangential and one cortical normal dipole
orientation, respectively. In order to be comparable with the distributed source esti-
mator, I decided to introduce a loose orientation parameter 6 which is implemented

in a prior source covariance matrix R, where

0
RY?2=10 (3.71)
0

o ™ O
_ O O

The loose orientation parameter can take values from zero to one, where a value
of zero results in a completely orientation constrained beamformer and a value of
one results in an unconstrained beamformer. That is, in the constrained case only
the cortical normal dipole component is estimated and the cortical tangential com-
ponents are zero. In the unconstrained case, the dipole orientation is free and it
is linearly optimized in the least squares sense. The whitened beamformer with

incorporated prior source covariance matrix reads

Wy (1) = RV (RVET (7L (M R'?) " RVET (7). (3.72)
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A solution to eq. (3.72) is found by the following SVD

U diag (o) V' = L (7) R'/?

~ (3.73)
W, (7) = RY?V diag (1/o1, 1/09, 1/o3)UT

For better numerical stability, eq. (3.73) is regularized by using the truncated SVD

~ . . oy 0] >01"€
Wy trune (F) = RY?V diag (1/s1, 1/52, ) U, 5 = . (3.74)
0 oy<o0y-¢€

where € is the machine precision. The third singular value is set to zero because the
MEG is only sensitive to two source orientations, which are associated to the two

first singular values. Finally, a noise normalized beamformer Zis computed as

Z77) = Wt/ \[ 5 LW e (F) W trane (7) } (3.75)

This beamformer is related to the Borgiotti-Kaplan beamformer (Sekihara et al.,
2001). Since ZT () is a function of the leadfield matrix, it is also a function of the

coregistration parameters  and can be expressed as Z7 (7, ).

3.6.3 sLORETA

From distributed source estimators, the standardized low resolution brain electro-
magnetic tomography (sSLORETA) is implemented for this thesis. It is based on
the widely used minimum norm estimate (MNE), where the dipole moments are

estimated as
~ ~ =~ _1 't e 7 A
M€= RLT(LRLT+ 1) d=Ad, AeRr™<V, (3.76)

where M is the number of source positions and N is the number of sensors and A
is a regularization parameter. In contrast to the beamformer, the leadfield of the

entire source space

L= (7)), o (P), Ly (F1) s ooy ba (Fn) s big (Fn) s b (Frn)) € RV3M(3.77)
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is involved and the prior source covariance matrix R is a square diagonal matrix of

size 3M, it is constructed from the loose parameter 6 as

g 00 ... 0
06 0 0

RY/2 00 0f. (3.78)
0 00 1

The loose orientation constraint was previously used by F.-H. Lin et al. (2006), where
they defined the loose parameter as sine of the angle to the cortical normal orien-
tation. It has been shown, that it is reasonable to choose A\ = 5%tr (iRiT> /N,
where £? is the power signal-to-noise ratio (SNR) of the whitened data. I fixed
€2 = 10 in the style of the default value of 9 in the MNE software (Himéldinen,
2010). In order to be comparable with other functional imaging methods (fMRI,
PET) and the noise normalized beamformer of this thesis, the SLORETA noise nor-
malization is applied to sMNE. The SLORETA method defines resolution matrix

diagonal elements as

1

= ([\ (iRiT + )\21) AT)” (3.79)

ny

for noise normalization (Pascual-Marqui, 2002). In this thesis the sSLORETA activity

estimate is computed for source position k as

SMNE sMNE GMNE T
sLORETA 3(k—1)+1" “3(k—1)+2° °3(k—1)+3
Sk =

\/ 2?21 T(3k—1)+l

The sLORETA operator is a function of source position 7 and coregistration param-

= ZLORETA (2 d. (3.80)

eters = and it can be expressed as Z3-ORETA (7 ).

3.6.4 Expansion of source estimators

Both estimators, the proposed beamformer and sSLORETA can be expressed as func-
tions of the coregistration parameters and approximated by polynomial expansions.
Let me therefore introduce a general matrix operator I' of size 3M x N, where M is
the number of source positions and N is the number of sensors. For this thesis, I" can
take four different forms, namely beamformer and sLORETA operator, each with

fixed orientation (f = 0) or loose parameter ¢ = 0.2. In any case, I is a function of
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the six coregistration parameters . The matrix elements of I' are denoted by v n

and a stochastic spectral approximation of I" reads

Ymn (T) = Z'?mns‘lls (x) . (3.81)
seS
Source estimates s for given sensor data d are computed by the matrix multiplication

s = I'd and its stochastic spectral approxmiation is

= smsVa(x)

seS

N
Sm (T) =Y [dn > Amnp¥s (x)

n seS

. (3.82)
'§ms = Zdnﬁmns .
n=1

That is, the polynomial coefficients of source estimates are obtained by a weighted
sum of the polynomial coefficients of the estimator, where the weights are the sensor
data. Hence, the coefficients of source estimators I' are computed only once and
used to efficiently compute the coefficients of source estimates s for different sensor
data.

3.6.5 Verification

Expansions of source estimators are applied to testing data, which consist of simu-
lated brain activity from three regions of interest and additive noise of three different
levels. For the computations, test patches were defined as subregions of the regions
of interest in the left auditory, visual and somatosensory cortex. More precisely, the
parcellation labels left PBelt, left 1 and left V1 were devided by using FreeSurfer
into 3, 6 and 8 divisions, respectively. The second, fourth and second division de-
fine the auditory, visual and somatosensory test patches, respectively. Test patches
contain the test sources as vertices and are visualized red in fig. 3.6 at the source

space triangulation.

In order to avoid an inverse crime in source estimation, the positions of the test
sources are shifted away from the original source space by a random vector following
a Gaussian distribution with zero mean and 1mm standard deviation in x, y and
z-direction. Each source was simulated as a fixed dipole with orientation normal to
the cortex and a dipole moment of 1nA m. For the additive sensor noise, a noise

covariance matrix C), was estimated from empty room measurements and a noise
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sample v was simulated as
1
v==-C"%, e~N(0,1I), (3.83)
a

where a is proportional to the amplitude SNR and for this thesis, values of 2, 10

and 50 are used.

3.6.6 Source amplitude maximum distribution

A distribution of source amplitude maximum locations is found by Monte Carlo sim-
ulation of source estimates from a distribution of coregistration parameters. Here,
the domain of maximum locations is the discrete space of source locations in a region
of interest. A maximum location is defined by the maximal source strength within
the region 2 as
Tmaz = argmax|s (7)|, 7€, (3.84)
7

where s () is the vector source estimate at 7. Since the maximum location is a
function of coregistration parameters, a sample (Faz1, Tmaz2s - - - Tmaz Ar) Of its dis-
tribution is sampled by Monte Carlo simulation from a sample of the coregistration
parameters. The spatial distribution of the maximum is modeled by the mean Frnaz

and standard deviations o1, 0, o3 on its three SVD-main axes:

1
M—l(

7:‘mal‘l - 'r?mazy e FmazM - "?’maz) = (ﬁl, ’JQ, ﬁi’)) dlag (017 g2, 03) v,
(3.85)

where the vectors ; are normalized oriented along the main axes.
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Figure 3.8: The ellipsoid represents a spatial confidence interval, where the surface intersects
with the uy, us and uz azes at £o1, oo and Loz, respectively.

Figure 3.8 depicts the surface of a spatial one standard deviation confidence
interval for an example maximum distribution. In the results section 4.3.2, the
maximum distribution is depicted by such wire frame surfaces in the source space. As
a measure of source localization errors, the absolute element-wise differences between
Trmaz and the center of the test patch are computed and denoted by 5= (0z, dy, 5Z)T

in the results section. These localization error elements are expressed as

596 :|77max:c - 'Fpatchz| 5 (386)

here exemplarily for the x axis, where Tpqsch o is the average z-location of the source

patch.






Chapter 4

Results

4.1 Errors and residuals

4.1.1 MEG-to-Head

The smallest value for the maximal deviation measured by the Kolmogorov—Smirnov
statistics (see eq. (2.57)), between the points and theoretical distributions was found
for the generalized normal distribution with shape A = 1.7 and which estimated
to Dy = 4.5x 1073 4+ 0.6 x 107*. The maximal Kolmogorov—Smirnov-value for
the normal distribution with scale o, = 1.05mm was only slightly larger: D; =
6.2 x 107340.8 x 1073. The normal distribution is the special case of the generalized
normal distribution with shape A = 2. Hence, I decided to approximate the error
distribution of e using the commonly used normal distribution. The probability

density of the error estimate ¢ was therefore defined as

e (2) = ﬁexp [_;‘QZ] . (4.1)

€

This choice provided control over the approximations, since closed form solutions are
available under the precondition of the normal distribution for the relation between
variances (error, residual, and parameter) in a least squares estimation (Fitzpatrick,
2009). The ratio between the variances of errors and residuals was found to be
ag/ag = 1.65 ~ 5/3, which is approximately the ratio of the number of data points
and the number of data points minus the degrees of freedom of the least squares fit,
namely 3M/ (3M —6) = M/ (M — 2).
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Figure 4.1: The MEG-to-head residuals Q—Q plot (a) depicts every 100th data point of the A-
quantiles over the A-quantiles. The r-value is the correlation coefficient between the paired
sample quantiles. The empirical distribution function of RMS of observed MEG-to-head
residuals is depicted in (b).

Figure 4.1a demonstrates the distribution-wise similarity between A and A using
a Q-Q plot, where é ~ A/ (0, (1.05 mm)Q). If both distributions were identical, the
Q—-Q plot would show a straight diagonal. Divergence from linearity at both ends
show that the deviations between the two distributions were mainly observed with
respect to the tails. The residuals A and A were distributed between —3 to 3mm,
with approximately zero median and mean. In fig. 4.1b, the distribution of observed
RMS of residuals is plotted for the 5544 MEG-to-head data sets. One RMS value
is calculated over the 5 residual vectors &y, of the coil positions. Figure 4.1b shows
that RMS values were smaller or equal to 2.5 mm for 99 % of the MEG-to-head data
sets. The RMS values were distributed between 0.4 to 3.6 mm, with a median of

1.3 mm.
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4.1.2 Head-to-MRI

Q-Q plot of residuals (¢ errors) Empirical residual distribution
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Figure 4.2: The Head-to-MRI residuals Q—Q plot (a) depicts every 100th data point of the
Z—quantiles over the Z-quantiles, where 1 follows the t-distribution with shape 4 and scale
1.1mm. The r-value is the correlation coefficient between the paired sample quantiles. The
empirical distribution function of RMS of observed head-to-MRI residuals is depicted in (D).

The smallest D<~ was found for a Student’s t-distribution with shape A = 4 and scale
7 = 1.1mm with Dg” =5x 1073 £ 1 x 1073, Hence, the probability density of the

error estimate 7] is expressed efficiently as

7 (2) o (1+x

2\ —(A+1)/2
7'2)\> , (4.2)
directly proportional to a normalization constant. A ratio between the variances of
errors and residuals of 0’727/0'? = (M?/(A=2)) /(7? = 2.87 was found. The Q-Q plot
in fig. 4.2a demonstrates the similarity between Z and Z in distribution, where 7
follows the t-distribution with shape 4 and scale 1.1 mm. Residual values of Z and
Z were in the range of —4 to 4 mm, as indicated in fig. 4.2a, with approximately zero
median and mean. The best fit normal error distribution yielded substantially worse
head-to-MRI residuals with a Kolmogorov—Smirnov statistic of DQ: =9x1073 +
7 x 107%. In fig. 4.2b, the distribution of observed RMS of residuals is plotted for
the 128 head-to-MRI data sets. One RMS value is calculated over the head shape

point residuals C_;L for each data set. An RMS of up to 2.2 mm was not exceeded for
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99 % of the head-to-MRI data sets. The RMS values were between 0.8 to 2.9 mm,

with a median of 1.4 mm.

4.2 Parameter-distribution sampling

4.2.1 MEG-to-Head and head-to-MRI

The MLEs and spreads of the coregistration parameters from the Metropolis al-
gorithm samples were averaged over the data sets in table 4.1. The first row in
table 4.1 demonstrates accurate estimates of the Metropolis algorithm with no dif-
ferences compared to the least squares estimates. For the MEG-to-head data sets I
found sample spreads of the Metropolis algorithm results of 0.6 to 0.9 mm for the
scaled quaternion parameters and 0.5 mm for the translations.

The spreads of MEG-to-head parameters in table 4.1 are identical, up to the first
decimal place, to the theoretical estimate of eq. (2.12) and eq. (2.13):

M o -1 0.8+0.1
200mm - o - | diag <4Z (|Egn|21—5$nE;T)> = 09+01 |mm
m=1 0.6

o/VM =0.5mm,

where o, = 1.05mm and M = 5. The numbers on the right hand side of the
equation refer to sample means and standard deviations over the 5544 data sets.
This comparison provides a quality check of the Metropolis algorithm.

The results of the sample spreads, of the head-to-MRI coregistration parameters
in table 4.1, are similar to the results of MEG-to-head, with slightly larger values in
the scaled quaternion part of 0.6 to 1.0 mm and smaller values in the translation part
of 0.2 to 0.4mm. Contrarily, the sample MLEs of head-to-MRI in table 4.1 show
deviations up to several millimeters. This indicates considerable difference between
the pre-registration of the ICP and the subsequent registration of the Metropolis
algorithm. A mean absolute difference of the ICP compared to the Metropolis algo-
rithm results of (1.9 & 1.5)° in the rotations and (1.1 4+ 0.9) mm in translations was
found. The respective paired differences of RMS of residuals were tested. According
to the t-statistic, RMS computed by the Metropolis MLE were significantly smaller
than RMS computed by the ICP fit with ¢ = 3.04 and two-sided p < 0.01. However,
the difference of the means was only in the order of 0.02 mm.

In order to test the correlation of RMS (¥) and RMS of residuals, I computed
these measures separately for MEG-to-head and head-to-MRI data sets. RMS (W)
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Table 4.1: Statistics of the Metropolis algorithm parameter results in mm.

MEG-to-head 2R-p, 2R - po 2R - p3 $1 So S3
MLE 0.0 0.0 0.0 0.0 0.0 0.0
Spread 0.84+0.1 0.94+0.1 0.6 0.5 0.5 0.5
Head-to-MRI 2R - q1 2R - q2 2R - q3 tl tQ t3
MLE 06+£33 04+24 —-02+13 01+07 —-02+12 0.1+£0.3
Spread 0.8+03 094+0.3 06+01 03+0.1 0.3+0.1 0.2

and RMS of residuals were computed separately over coil positions of MEG-to-head
and head shape points of head-to-MRI. Correlation coefficients were determined
accordingly over the 5544 and 128 data sets. Correlation coefficients of 0.017 and
—0.116 for MEG-to-head and head-to-MRI were found, respectively.

4.2.2 MEG-to-MRI

126 out of the 128 head-to-MRI data sets have a corresponding MFEG-to-head, taking
into account the selection criteria of section 2.6.1. If more than one MEG-to-head
data set corresponded to a given head-to-MRI, which occurred if more than one MEG
measurement block existed for a given session, only the first MEG-to-head block was
used. Figure 4.3 depicts the estimated RMS of TRE, denoted as RMS (¥), by the

number of head shape points for these data sets.
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Figure 4.3: The estimated RMS (¥) is plotted over the number of head shape points N. ¥
is computed at each head shape point. Data points indicate the mean over the samples of
RMS (W) and the dash-dotted line was fit to these points. The error bars show the 50th to
95th percentiles over the samples of the measure.

The estimation of TRE is based on drawing subsamples from corresponding
MEG-to-head and head-to-MRI Metropolis samples. The size of the subsamples
is the effective sample size of the respective Metropolis sample. Utilizing these
subsamples, the respective samples of the RMS (¥) were computed over the head
shape points according to eq. (2.63). In a few cases there are multiple TRE data per
head shape point numbers in fig. 4.3 due to coincidental digitization with the same
number of points. The error bars reflect the range, from the median to the 95th
percentile, over the samples of RMS (¥) whereas the points indicate the respective
means. I regard the 95th percentile as an upper bound of the RMS (¥) confidence
interval. The data sets show a mean RMS (¥) of 1.3 to 2.3 mm and an upper bound
of 2.1 to 4.0mm. Overall, both the mean and the upper bound decrease with the
number of head shape points. This TRE measure serves as a quality criterion for

MEG-to-MRI coregistrations and allows thresholding, for example, 2 mm.



4.3. Effects of coregistration uncertainties 71

S S 2.2
2.0
/— | — 1.8 é
7 ) A L
R \ ~ L P K J A =
N 47 13 =
o=
B ) 1.1
[5) N \9 q/S
pO < \/) 0.9
100 110 ’
I I

Figure 4.4: Estimates of TRE plotted as overlay onto the corresponding MRI slices. The
RMS of TRE is computed for all samples of all grid points. Black lines indicate the slices
in Freesurfer-MRI coordinates. The yellow crosshairs indicate the estimated minimum of
TRE. In the plots, A refers to anterior, P to posterior, I to inferior, S to superior, R to
right and L to left. On the left and right side, the coronal and sagittal cuts at slice 110 and
100 are plotted, respectively.

Figure 4.4 shows the estimated TRE at a fine grid on the MRI of one data
set. Analogue to TRE, the coregistration rotation error is estimated by the RMS
of \/m for the MEG-to-MRI rotation, which is easily sampled from the
Metropolis algorithm results and does not depend on the position in space. The
angular approximation of this rotation error, estimated for each subject, is between
0.8 to 1.8°, with the upper bound 95th percentile between 1.3 to 3.1°. The mean of

the rotation error, across subjects, gives an angular approximation of (1.1 £ 0.2)°.

4.3 Effects of coregistration uncertainties

4.3.1 Forward computation

The forward computation of a total magnetic field at the sensors is decomposed as
sum of primary b, and secondary b, field here. In this section, effects of coregis-
tration uncertainties on primary, secondary and total magnetic fields are presented.
The following figures show source orientations in z, y and z direction on the abscissa.
The distributions are sampled over auditory, visual and somatosensory sources of 20
subjects. Standard deviations of magnetic fields (see fig. 4.5) measure the change
in amplitude over the sensors. The median of the standard deviations, here over
subjects and sources, is smaller for the total field compared to the primary field
since primary and secondary currents are opposed to each other. For the x source

orientation (from left to right) in auditory regions, the deviations of primary and



72 Chapter 4. Results

b byl b
10
=t bl ]
72 abd 018 098 44, 160 010 4%

rTYyz TYZ xTYZ XTYZ TYZ TYZ TYZ TYZ TYZ
audi. vis. soma. audi. vis. soma. audi. vis. soma.

Figure 4.5: Standard deviations of magnetic fields over all magnetometers. The distributions
are sampled over sources of 20 subjects and three cortical regions. Fields are decomposed into
three orthogonal source orientations (x, y and z direction). The bozes are drawn around
the region between the first and third quartiles, with a horizontal line at the median value.
Whiskers extend from the box to the most distant values within 1.5 times the interquartile
range. Points that lie outside these limits are drawn separately as in black. The coloured
violin plots depict the probability density of the data, smoothed by a kernel density estimator.
On the abscissa of the graphs, the regions of interest, auditory, visual and somatosensory
are denoted by audi., vis. and soma., respectively.

secondary fields almost cancel each other out in the total magnetic field. This can
be explained when the volume conductor is compared to a sphere with origin at
(0, 0, 0) where the auditory cortex is on the z axis. In this case, a source orien-
tation in x direction is radial and it is known from analytic solutions for spherical
volume conductors that the primary and secondary field of radial sources cancel
each other out outside of the sphere (Sarvas, 1987). For visual and somatosensory
regions, the approximately radial orientations are y and z respectively and their
suppression is confirmed in fig. 4.5. The RDMs depicted in fig. 4.6 are computed
over all magnetometers. RDMs and MAGs are computed for a Gaussian sample of
shifts in z, y and z, see section 3.5.4, against the reference solution at zero shift.
Mean and standard deviation of RDMs and MAGs are computed over the sample of
shifts. Secondary fields from sources in z orientation show the largest RDM means
and standard deviations with medians of approximately 0.13 and 0.06, respectively.
For the total magnetic field, RDMs have a mean and standard deviation of ap-
proximately 0.07 and 0.03. Primary and secondary fields contribute approximately
equally to the RDMs of the total field.
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Figure 4.6: Mean (upper row) of magnetometer RDMs and corresponding standard deviation
(lower row) over a sample of shift parameters. The distributions are sampled over sources
of 20 subjects and three cortical regions. The boxes are drawn around the region between the
first and third quartiles, with a horizontal line at the median value. Whiskers extend from
the box to the most distant values within 1.5 times the interquartile range. Points that lie
outside these limits are drawn separately as in black. The coloured violin plots depict the
probability density of the data, smoothed by a kernel density estimator. On the abscissa of
the graphs, the regions of interest, auditory, visual and somatosensory are denoted by auds.,
vis. and soma., respectively.

First order sensitivity indices, as defined in section 3.2.5, in fig. 4.7 reveal smaller
sensitivity for the RDMs if source orientation and shift direction match. This cannot
be observed for total fields of the approximately radial source orientations (auditory

x, visual y and somatosensory z) because they produce small outside fields.
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Figure 4.7: First order sensitivity indices are plotted for the RDM-function of shifts in x,
y and z direction, where Sy is the index for the effect of shifts in k on the variance of the
RDM. The distributions are sampled over sources of 20 subjects and three cortical regions.
The boxes are drawn around the region between the first and third quartiles, with a horizontal
line at the median value. Whiskers extend from the box to the most distant values within
1.5 times the interquartile range. Points that lie outside these limits are drawn separately
as in black. The coloured violin plots depict the probability density of the data, smoothed by
a kernel density estimator. On the abscissa of the graphs, the regions of interest, auditory,
visual and somatosensory are denoted by audi., vis. and soma., respectively.

The sums of the RDM sensitivity indices in fig. 4.7 indicate that approximately
0.95 of the RDM variance can be explained by the first order indices.

Figure 4.8 depicts the means and standard deviations of magnification errors
(MAGsS) over the sample of shift parameters. Secondary fields from sources in z
orientation show the largest MAGs with means and standard deviations distributed
around 1.01 and 0.06. For the total field, MAGs have a mean and standard deviation
of approximately 1.003 and 0.04.
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Figure 4.8: The mean (upper row) and standard deviation (lower row) of magnetometer
MAGs over a sample of shift parameters. The distributions are sampled over sources of 20
subjects and three cortical regions. The bozes are drawn around the region between the first
and third quartiles, with a horizontal line at the median value. Whiskers extend from the box
to the most distant values within 1.5 times the interquartile range. Points that lie outside
these limits are drawn separately as in black. The coloured violin plots depict the probability
density of the data, smoothed by a kernel density estimator. On the abscissa of the graphs,
the regions of interest, auditory, visual and somatosensory are denoted by audi., vis. and
soma., respectively.

There are bigger MAGs of the total fields for visual sources (see fig. 4.8). This
effect can be caused by the small distance between sensors and sources in visual
regions. The subjects lean with the back of their heads on the helmet of the MEG.
This head position achieves nearly minimal distances between visual sources and the
sensors, which is clearly not the case for auditory (left) sources. For somatosensory
(cranial) sources, small distances to the sensors can also be achieved since the sub-
jects are told to touch the MEG helmet with the cranial part of their heads. This
is also confirmed by the results of the total fields in fig. 4.8, where similar median

values are found for somatosensory and visual sources.

4.3.2 Source estimates
Target registration errors

Below, results of the propagation of coregistration uncertainties to source estimates

are reported for 20 subjects. The extent of the uncertainties is quantified here by
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the mean RMS of the TRE, denoted as E[RMS (¥)] as in section 3.4.3. At the
head shape points a E[RMS (¥)] of (1.9 £0.7) mm (mean + standard deviation

over subjects) was found. Head movements were taken into account in this analysis.

Field topographies

The fieldmaps in fig. 4.9 (upper row) show typical forward computation magnetome-
ter topographies of the corresponding source patches, namely the primary auditory,
visual and somatosensory cortices in that order from left to right. The fieldmaps in
fig. 4.9 (lower row) show three different noise levels which are later combined with
the error-free forward computations of the upper row to simulate realistic scenarios.
The sum of forward computation and noise results in three amplitude SNRs which

are from here on refered to as small, medium and large SNR. The SNR of the visual

auditory visual somatosensory
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Figure 4.9: Upper row: Magnetic field topographies (forward model) of auditory, visual and
somatosensory source patches. Lower row: Topographies of different noise levels - large,
medium and small. Adding these noise topographies to the forward model leads to small,
medium and large SNR.

and somatosensory fields is higher compared to the SNRs of the auditory fields. This
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effect is caused by the distance of sources to the closest sensors, which is normally
greater for the auditory source patch compared to visual and somatosensory sources.
The weaker field strength for the auditory sources is already visible in fig. 4.9 (upper

row).

Source amplitudes

Below, topographies in the source space are depicted on the surfaces of the regions
of interest. The polynomial expansions were focused on the regions of interest and
therefore the results are not available for the whole brain. Figure 4.10 shows the
position and orientation of these regions in the brain. In fig. 4.11, the axes of the head

coordinate system are depicted. From the polynomial expansion of SLORETA, the

Figure 4.10: Regions of interest are encircled and zoomed in. The black border strips inside
the regions of interest mark the source patches. As an example, an sSLORETA source estimate
is depicted in the regions of interest.

mean, mean divided by standard deviation and the sum of the first order sensitivity
indices are depicted in fig. 4.12 for auditory sources. The figure shows SLORETA
results for medium SNR and loose parameter of 0. Statistics are visualized for the
dynamic distribution of coregistrations, see section 3.4.2 for a detailed description.
The sLORETA estimate, fig. 4.12 (a), is smooth in the auditory region and the
maximum is located within the source patch. Figure 4.12 (b) depicts the mean
estimate devided by its standard deviation. In fig. 4.12 (c), the sum of the SLORETA
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Figure 4.11: The head coordinate system is depicted for one subject from three viewpoints.
From left to right, the images show sagittal, coronal and axial views. The coordinate system
can be described by its axes orientations as right (z), anterior (y) and superior (z). In the
figures below, azes are always aligned in this coordinate system.

(a) (b) (c)

Figure 4.12: (a) Mean sSLORETA estimate for the auditory region. The mean was computed
over the distribution of sSLORETA estimates. Positive (red) and negative (blue) values re-
veal outward and inward oriented sources on the white matter (source space) triangulation,
respectively.

(b) Estimate of (a) divided by the corresponding standard deviation.

(c¢) Total first order sensitivity index of the auditory region. The total first order sensitivity
index is computed as the sum over six coregistration indices. This total indicex sums up to
values not greater than one.

The renderings are shaded, which results in darker colours in some regions.
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first order sensitivity indices is depicted. This sum is the normalized fraction of the
source amplitude variance which can be traced back to first order effects, that is
to each coregistration parameter alone. The difference of one minus that fraction
is explained by higher order interactions of these parameters. Here, outside of the
source patch at least 80% of the variance and within the patch more than 90% is
explained by first order effects. Figure 4.13 shows all SLORETA first order sensitivity
indices in the auditory region. The rotation and shift indices are depicted for the

axes x, y and z from left to right in the upper and lower row, respectively.

Figure 4.13: First order sensitiviy indices of the sSLORETA estimate are depicted for each
coregistration parameter in the auditory region. In the upper row the indices of rotation
parameters are shown for rotation axes x, y and z from left to right. The lower row shows
the indices of shift parameters in z, y and z from left to right. All indices are normalized
on each source position separately. The indices are computed from the coefficients of the
polynomial expansion.

A profound assessment of the results in fig. 4.13 is only possible when the results
of fig. 4.12 are taken into account. Within the auditory source patch and in its

vicinity, more than 90 % of the variance is explained by the first order effects, see
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fig. 4.12 (c). Hence, the first order sensitivity indices in fig. 4.13 provide detailed
information about the main source of variance. The sum of the 6 topographies
in fig. 4.13 yields fig. 4.12 (c). Since the sensitivity indices are normalized, it is
important to take a look at the topography of the absolute variance. Additionally,
only regions with large source activity are of interest here. Both, information about
the variance and the source activity is encoded in fig. 4.12 (a) and (b). The region of
large source activity is in the vicinity of the source patch where source orientations
are similar to the patch, see fig. 4.12 (a). Source location with large absolute values
in fig. 4.12 (a) and small absolute values in fig. 4.12 (b) are locations with large
variance, this is the case for the source patch, especially for the shallow part (closer
to the sensors) of the source patch. Within the source patch, highest sensitivity
indices are found for the shift in z, with a maximum value of approximately 0.9, see
fig. 4.13. This can be explained by the relation of auditory sources and the closest
sensors where only a shift in x direction changes the distance of sources to sensors
effectively. The other parameters move the sources approximately parallel to the
sensors. The triangular topography of the z-shift sensitivity index converges in the
deeper region of the auditory cortex. That is the expected result, since the shallow

sources are more affected by a change in distance between sources and sensors.

Source amplitude maximum distribution

By using polynomial expansions of the beamformer and sLORETA operators, the
amplitude maximum of source estimates was efficiently sampled for different coreg-
istrations. The sample of coregistration parameters follows the assessment of MEG-
to-MRI as described in section 3.4.1. Standard deviations of the spatial maximum
distribution were computed for the three main axes as singular values and denoted
as 01, 09 and o3. Figure 4.14 shows these maximum location standard deviations
in the shape of an ellipsoid for the auditory, visual and somatosensory regions. The
probabilities of the maximum location are colour-coded at the cortical surface. This
figure (4.14) is an example for the SLORETA maximum distributions of one subject
with a medium SNR and the loose parameter set to 0. Localization errors were com-
puted as spatial differences between the maximum of a source estimate and the mean
location of the associated source patch. The absolute means over these differences
for the coregistration sample are denoted by 0z, dy, d, in fig. 4.15 and fig. 4.16 for a
loose parameter of 0 and 0.2, respectively. In fig. 4.14 the mean maximum location
is at the center of the ellipsoids. Details about the computation of the d-values are
described in section 3.6.6. For a loose parameter of 0, beamformer and SLORETA

had similar localization errors with media d-values up to 5mm on each axis. The
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5mm

(d)

Figure 4.14: SLORETA mazimum location probability plotted for the auditory, visual and
somatosensory region (a), (b) and (c) respectively. Medium SNR and a loose parameter set
to 0 were used. The mazimum location probability is colour-coded according to the colourbar
in (d). The wire frame ellipsoids depict the standard deviations at the main axes of the
probability distribution, centred at the mean location. A wire frame cube with side length
5mm, aligned in x, y and z is placed at the location of the ellipsoid as a spatial reference.
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smallest localization errors were achieved in auditory regions, especially for medium
SNR where all errors were below 5mm. For a loose parameter of 0.2, the beam-
former had larger localization errors compared to a loose parameter of 0. Especially
in auditory regions, the differences are large, for example median é-values of between
5 to 10 mm were found for the z-axis. SLORETA had very similar localization errors
for loose parameters of 0 and 0.2.

Figures 4.17 and 4.18 depict spatial standard deviations of maximum locations
of 20 subjects with different SNRs and loose parameters. In these figures, o1, 092, 03
denote the main axes of the maximum distribution ellipsoids, as described in sec-

tion 3.6.6. The strongest effect of coregistration uncertainties is observed in

auditory visual somatosensory
beamformer sSLORETA beamformer sSLORETA beamformer sLORETA

small SNR
d/mm

medium SNR
d/mm

Figure 4.15: Violine plots of localization errors in auditory, visual and somatosensory regions
for small and medium SNRs and loose parameter of 0. The distributions are sampled over
20 subjects. Bozxes are drawn around the region between the first and third quartiles, with
a horizontal line at the median value. Whiskers extend from the box to the most distant
values within 1.5 times the interquartile range. Points that lie outside these limits are drawn
separately as in black. The coloured violin plots depict the probability density of the data,
smoothed by a kernel density estimator.

beamformer estimates with loose parameter set to 0.2. Here, median values of
approximately 4mm to 7mm are obtained for the maximum location standard de-
viation on the first main axis (01). The SLORETA results show almost no difference
between loose parameters set to 0 or set to 0.2. For a loose parameter of 0, the
beamformer and SLORETA results are similar, with a median oy value between 2

and 4mm. Different SNRs values have resulted in small changes of maximum dis-
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Figure 4.16: Violine plots of localization errors in auditory, visual and somatosensory regions
for small and medium SNRs and loose parameter of 0.2. See fig. 4.15 for details on statistics,
bozxes and violin plots.
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Figure 4.17: Violine plots of maximum location statistics in auditory, visual and somatosen-
sory regions for small and medium SNRs and loose parameter of 0. See fig. 4.15 for details
on statistics, boxes and violin plots.
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Figure 4.18: Violine plots of mazimum locatioon distribution statistics in auditory, visual
and somatosensory regions for small and medium SNRs and loose parameter of 0.2. See
fig. 4.15 for details on statistics, boxes and violin plots.

tributions only. The beamformer results with loose parameter of 0 tend to yield
smaller o7 for small SNR compared to medium SNR. Higher than medium SNR do

not result in further improvements with respect to coregistration uncertainties.

4.3.3 Error estimates

Error estimates of the polynomial expansions were conducted, following the pro-
cedure of Weise et al. (2015). For this purpose, 1000 evaluations of the polyno-
mial expansion were compared against exact computations of the beamformer and
sLORETA solutions in the regions of interest. For one subject, errors of a beam-
former estimate are depicted on the regions of interest in fig. 4.19. The topographies
of fig. 4.19 (a), (b) and (c) reveal the spiky characteristic of the relative error mea-
sure and care must be taken by interpreting the results. Large relative errors can
occur where the variance of the source estimates, due to coregistration uncertain-
ties, is small. The relative error measure was used in this thesis in order to compare
the results to Weise et al. (2015). Below the average over the regions of interest
is computed to obtain a global error measure for the regions. Figure 4.20 depicts
error statistics from 20 subjects for different SNRs, loose parameters and regions of
interest. The sSLORETA errors are considerably larger than the beamformer errors.

Largest errors are observed in the visual and auditory regions while the errors in
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(d)

Figure 4.19: Error of the polynomial expansion of the beamformer estimate compared to
exact solutions shown for the auditory (a), visual (b) and somatosensory (c) region. The
M. In the statistics below, the means
|p(7.X)~Elp(7.X)]]

of this measure over the regions of interest are reported (see eq. (3.34)). Medium SNR and
a loose parameter set to 0 were used.

values decode the relative error measure

somatosensory regions are clearly smaller. Overall, the third quartiles of the errors
are not greater than 0.005. Small SNR causes larger SLORETA errors compared to
medium SNR. The beamformer expansion errors were larger when setting the loose
parameter to 0.2 compared to 0. Larger SNRs are not depicted in the figures because
the results were almost identical to medium SNR. Weise et al. (2015) found relative
errors between 0.1 to 1% for three inputs and an order 7 polynomial expansion.
They used the order 7 polynomial expansion as reference and found errors of the
derived statistics, namely mean, standard deviation and derivative-based sensitivity
indices below 1% for an order 4 polynomial expansion. The errors of the statistics
of the order 4 polynomial expansion were interpreted as acceptable. They also re-
ported relative errors of the 4 polynomial expansion of approximately 3 %. In this
thesis, order 6 polynomial expansions were used and maximal relative errors of 1.8 %

were found for the SLORETA estimate in visual regions for medium SNR.
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Figure 4.20: Statistics of the relative error measure eq. (3.34) over 20 subjects for loose
parameters of 0 and 0.2 in the upper and lower row, respectively. On the abscissa of the
graphs, the regions of interest, auditory, visual and somatosensory are denoted by a., v. and
s., respectively. Bozes are drawn around the region between the first and third quartiles,
with a horizontal line at the median value. Whiskers extend from the box to the most distant
values within 1.5 times the interquartile range. Points that lie outside these limits are drawn
separately as in black. The coloured violin plots depict the probability density of the data,
smoothed by a kernel density estimator.
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Discussion and conclusions

5.1 Quality assessment of MEG-to-MRI coregistrations

5.1.1 Findings

Using an adaptive Metropolis algorithm to sample the six-dimensional coregistration
parameter space, and subsequent MLE, I was able to confirm the results of the
least squares approach to MFEG-to-head coregistrations and further, to improve the
results of the ICP algorithm for head-to-MRI coregistrations. Interestingly, the
Metropolis algorithm provides parameter sets with ergodic properties that allow
estimating confidence intervals of the coregistration parameters. Target registration
error (TRE), for instance, is a function of the coregistration parameters at any point
in space. Statistical indices of TRE can be derived via the proposed Metropolis
sampling.

I found that it is possible to approximate the empirical distributions of residuals
in MEG-to-head and head-to-MRI coregistrations by replacing the point errors with
samples from normal and Student’s t-distributions, respectively. The empirical dis-
tributions indicated that 99 % of the data sets yielded RMS of residuals not larger
than 2.5 mm for MEG-to-head and 2.2 mm for head-to-MRI coregistrations. Thus,
dependent on the MEG lab, RMS values larger than these thresholds may indicate a
problem in the measurement procedure. However, this provides only a preliminary
assessment where the given thresholds are exceeded in about 1% of the data sets.
Further, RMS of residuals are not well suited as a quality measure for coregistration,
as they do not correlate with the actual errors i.e. TRE (Fitzpatrick, 2009). This
was confirmed in the present study where very small correlation coefficients, of 0.017
and —0.116, were observed over the 5544 MEG-to-head and 128 head-to-MRI data
sets. An adaptive Metropolis algorithm was used to sample the probability density of
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the coregistration parameters for each data set. For the MEG-to-head data sets, the
MLEs of the Metropolis algorithm were equal to the least squares estimates. This
was the expected result as I used the probability density of a normal distribution for
the errors and in this case the least squares estimate is equal to the MLE (Press et
al., 1992, equation 15.1.3). For the head-to-MRI data sets, the Metropolis algorithm
computed different MLE coregistration parameters compared to the ICP algorithm.
RMS of residuals were significantly reduced by the Metropolis algorithm compared
to the ICP. This may be explained by the fact that the ICP algorithm finds a local
minimum dependent on the initial state of the iteration (Besl and McKay, 1992).
Optimizations of the head-to-MRI coregistration have to deal with the difficulty
that the underlying data of both modalities does not match, only a subset of points
of one modality matches points of the other. Such optimizations depend on both
the initial rotation and translation, and are also referred to as local shape-matching
(Besl and McKay, 1992). And although Besl and McKay (1992) propose sampling
the initial rotation and translation parameters for the local shape matching using
the ICP algorithm, this method is not common practice in MEG labs, nor is it im-
plemented in commonly used packages such as MNE or mne-python. Compared to
ICP, the Metropolis algorithm searches more globally and it is less dependent on its
initial state. Samples can be drawn from the complete parameter distribution. Vari-
ance and higher moments can be estimated from the Metropolis samples because
of the correct ergodic properties (Haario, Saksman, and Tamminen, 2001). How-
ever, these advantages are achieved at much higher computational costs compared to
ICP. A standard desktop computer (random-access memory (RAM): 15.58 gigabyte
(GB), MIPS Technologies, Incorporation (MIPS): 4x6 784, central processing units
(CPUs): Core trademark (TM) i7-2600K 3.40 GHz) takes approximately 50 minutes
of computation to run a head-to-MRI Metropolis algorithm with 296 500 steps (593
head shape points).

For the translation parameter estimates, the head-to-MRI yielded smaller vari-
ances compared to the MEG-to-head coregistrations. The high accuracy of the
head-to-MRI translation parameters can be explained by the larger number of data
points compared to the MEG-to-head coregistrations. Interestingly, rotation param-
eters were similar between MEG-to-head and head-to-MRI. This may be explained
by the spherical nature of the head; spheres are rotation invariant in the head-to-MRI

coregistration problem.

For the investigated data sets, an average RMS of TRE at the head surface
of 1.7mm was observed. An average RMS of the rotation errors of 1.1° was found,

which was well predicted by the root of the sum over the squared quaternion spreads
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from table 4.1. Hillebrand and Barnes (2003) found a TRE threshold of 2mm at
the cortical surface for anatomically constrained beamformers. They suggest that
the use of anatomical constraints with beamformers is only beneficial if the MEG-
to-MRI coregistration and segmentation errors are smaller than 2mm and 10° at
the cortex. This result was later confirmed by Hillebrand and Barnes (2011) for the
estimation of the source extent. The findings of this thesis showed, on average, a
smaller TRE than the critical 2 mm value reported by Hillebrand and Barnes (2003)
and Hillebrand and Barnes (2011), but 2 mm was still completely within the range of
the TRE distributions. However, with respect to rotations, the results of this thesis
were consistently below the critical threshold of 10°. I found an upper 95th percentile
of the coregistration rotation error of 3.1° at maximum. That is, the measurements
described in this thesis are sufficiently accurate to practically avoid rotation errors
greater than 4°. On the other hand do orientations of the cortical surface also depend
on the segmentation, which may result in source orientation errors in the order of
10°. In contrast to Hillebrand and Barnes (2003) and Hillebrand and Barnes (2011),
I did not assess TRE at the cortical surface but at head shape points because of the
availability of this surface without conducting further segmentation. However, using
the Metropolis sampling of the coregistration parameters, I am able to compute TRE
at any point in space. For source reconstruction, TRE can be estimated at various
points of interest in the source space or at the entire cortical surface. For example,
fig. 4.4 shows TRE computed on a coronal and sagittal slice. The sagittal grid
on the right side of the figure shows a small TRE in frontal regions of the brain.
These regions were close to the centre of the coil positions, where the MEG-to-head
produces the smallest TRE, and also close to the face, where the digitization provides

more specific coregistration information compared to occipital regions.

Several studies have addressed the improvement in coregistration error stemming
from particular measurement steps. Singh et al. (1997) aimed to reduce the fiducial
localization error effects using a bite bar. They evaluated their strategy using Monte
Carlo simulations and were able to substantially improve the stability of their coreg-
istrations, in comparison to the pure fiducial-based method. At the time of Singh
et al. (1997), tracking of head position and rotation, during head shape digitization,
had not been established and, thus, the bite bar was essential to stabilise the head
relative to the digitization reference. A similar bite bar system was also proposed
by Adjamian et al. (2004) which, reduced the fiducial localization error by approx-
imately a factor of two. They also reported that the bite bar can cause discomfort
and introduces artifacts for some subjects. In the laboratory, coils are placed freely

on the anterior, upper part of the subject’s head surface, independent of anatom-
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ical landmarks. To compensate for head movement during 3D-digitization, head
position and rotation are tracked using an additional reference, mounted on special
glasses, which is common practice in present day MEG laboratories. No additional
mechanical hardware, for example, bite bars or individual head casts, are used to
restrict the movement of the subject’s head. The methods of assessing coregistra-
tion errors suggested in the current report are not affected by mechanical hardware,
although, if individual head casts are used a different approach for the assessment
of the head-to-MRI coregistration is needed. Meyer et al. (2017) suggested the use
of head casts that fit to the reconstructed surface of the MRI of individual subjects.
They estimated a maximal coregistration error of 1.2 mm by using such head casts.
Depending on the shape of the subjects head, there was some flexibility in the posi-
tioning of the head, relative to the cast, which was tracked by a reference coil on the
subject’s nose, in addition to the coils in the cast. They report a predominant uncer-
tainty of about 1.2 mm standard deviation of the head position relative to the cast
in the z-axis (superiorly oriented head coordinate). However, potential movement
of the subject’s head, in a head cast, presents a problem that was not addressed by

the assessments of this thesis.

Besides coregistration, head movement during data acquisition or between mea-
surement blocks are related sources of error in MEG source reconstructions. Uutela,
Taulu, and Hadméildinen (2001) compared two methods, a correction of sensor signals
by alignment of minimum norm estimates and a correction of forward calculations.
They found that both methods can efficiently reduce the effect of head movement in
typical MEG studies. Later, an alternative method of sensor signal correction, based
on multipole expansions, was proposed by Taulu and Kajola (2005) which is nowa-
days widely used with Neuromag devices. All of these methods rely on the accurate
estimation of head positions during the MEG measurement. Hence, their accuracy
is intrinsically limited by the error of MEG-to-head coregistrations. The magnitude
of head movements is often greater than the errors of MEG-to-head coregistrations
especially between measurement blocks and in studies with children. For example,
Wehner et al. (2008) reported an average head position displacement of 12 mm from
the beginning to the end of the experiment. Compared to other sources of error, such
as sensor noise and head movement, the MEG-to-MRI coregistration error provides
an absolute limit to the accuracy of source localization, which, cannot be reduced

by longer measurements or sophisticated head movement corrections.
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5.1.2 Practical recommendations

To facilitate a straightforward implementation of the proposed Metropolis algorithm
for head-to-MRI coregistration in different laboratories, I recommend the estimation
of error variance from the residuals according to the ratio a% / a? = 2.87 =~ 3, which
was found in the present study. For the acquisition of O'g, I suggest the use of existing
procedures from the respective laboratories (e.g. the ICP). From this starting point,
the estimation of error variance can be validated by error simulations and subsequent
head shape matchings. I recommend starting with variations of normal or Student’s
t-distributions. As soon as a theoretical error distribution is found, with satisfying
Kolmogorov-Smirnov statistics and a satisfying Q—Q plot of simulated and observed
residuals, Metropolis sampling of the log-likelihood eq. (2.59) can be started. For
MEG-to-head coregistration the Metropolis algorithm is not required in the case of
approximately normally distributed errors, of similar size as reported in the present
study. Assuming the latter conditions are met, parameter samples of MEG-to-head
can be generated by using o - (J T )71 of eq. (2.11) as the covariance matrix and

a standard normal random number generator. The MFEG-to-head error variance

2

2 can be estimated from residuals as 02 = 02M/ (M — 2). This is the theoretical

o
ratio for linear least squares fits (Bjorck, 2015, page 214) of rotation and translation
parameters, where M is the number of coils. Optimal coregistration parameters are
found in closed form for MEG-to-head and from the maximum likelihood estimate
of the Metropolis sample for head-to-MRI. For corresponding parameter samples of
MEG-to-head and head-to-MRI, TRE is estimated by computation of eq. (2.61),
eq. (2.62) and eq. (2.63).

For the digitization of the head-to-MRI data sets a large number of head shape
points was used and facial features, (e.g. bridge of nose) were emphasized. Hence,
it is difficult to determine the exact contributions, to TRE, of the sheer number
of points involved and the number of facial features used. Taking into account the
spatial distribution of TRE, in fig. 4.4, I suggest it might also be beneficial to acquire
more head shape points in areas with the highest errors, such as the inion, which
tends to have unique spatial features. A similar argument can be made for coil
placement. The hair complicates the attachment of the coils at occipital regions,
which is the reason for a more frontal coil placement in the laboratory. If possible, I
recommend attaching at least one coil to an occipital location. I recommend using
a large number of head shape points, about 600 yielded the smallest TRE in the
current study, emphasis on facial features as well as the inion. However, the sheer
number of head shape points is not a guarantee for good coregistration. As seen

in fig. 4.3, the largest number of head shape points resulted, accidentally, in the
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largest TRE. Therefore, and in agreement with Hillebrand and Barnes (2003) and
Hillebrand and Barnes (2011), I recommend checking that the mean RMS of TRE
is not greater than 2 mm at the head surface.

Computations of TRE, like in fig. 4.4, are useful for coil placement and head
shape digitization optimizations in EEG applications as well. For example, for
accurate reconstructions of brain activity in the visual cortex it is beneficial to
refine the head shape digitization at occipital regions. In this case, TRE at the
visual cortex is the measure of interest. Coregistrations for EEG only involve the
head-to-MRI problem although head shape digitization is more challenging due to
the electrode cap, compared to the MEG procedure. As a result of the electrode
cap, the number of head shape points is usually smaller in the EEG coregistration
compared to the equivalent procedure in MEG. For this reason, the uncertainties of
the fit are likely to be higher for EEG compared to the results of the present study.
I believe that the availability of TRE at regions of interest would be useful for the

digitization optimization in EEG.

5.1.3 Conclusion

Quality assessment of MEG-to-MRI coregistrations can be achieved by using the
Metropolis sampling algorithm of the coregistration parameters and subsequently
evaluating TRE. Further, I propose establishing this assessment procedure in EEG
and MEG laboratories and suggest reporting TRE in the study publications, espe-
cially if source estimates are reported. I recommend the application of the Metropolis
algorithm to achieve higher accuracy when estimating the parameters of the head-
to-MRI problem. Due to the superior results compared to the ICP, and the avail-
ability of parameter distribution samples and derived measures like TRE, I suggest

the Metropolis algorithm also for EEG coregistration fits.
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5.2 Effects of coregistration uncertainty on forward

computations

The BEM forward computations were decomposed into primary and secondary fields.
Both components produce magnetic field standard deviations in the same order of
magnitude, for example between approximately 1 and 4T for auditory sources of
1nA m. The effect of coregistration on topography and amplitude changes is similar
between primary and secondary fields.

For the total magnetic field, a Gaussian coregistration uncertainty with standard
deviation of 2 mm in each axis relates to median RDMs and MAGs of approximately
0.07 £ 0.02 and 1.00 £ 0.04, respectively.

The RDMs are less sensitive to a shift along the direction of the source orienta-
tion compared to orthogonal shifts. This can be explained by the relation of source
orientation and sensor topography. A source orientation parallel to the y-axis is
related to a magnetic field zero-crossing along the y-axis and a small shift in y pro-
duces a smaller difference in topography than shifts in « or z, because the strongest
gradient is parallel to # and z-shifts move the topography along this gradiant while
z-shifts modify it. In a similar setup, Zetter et al. (2018) investigated the effect
of coregistration uncertainties on forward computations and source reconstructions
for on-scalp MEG (by simulating optically pumped magnetometers). As opposed to
this thesis, their translation uncertainties were added independently to each sensor
position. They sampled their translation uncertainties from uniform distributions
within centered spheres. For different error levels, the radii of the spheres were de-
fined according to their RMS position errors of 2, 4 and 6 mm. Their error level of
2mm RMS is most comparable to the uncertainties observed and discussed in this
thesis. For this error level, they found a mean correlation coefficent (CC) of 0.997

in sensor topographies for shallow sources. The CC is defined as

(b-E[b)- (b-EH)

cc : (5.1)

- ’b—]E[b]’-’B—IE[B]

where b is the reference topography and b is the topography from the displaced
sensors. It follows from the definition of the RDM that RDM? a2 (1 — CC). This
is a good conversion if the means over the topographies are small compared their
standard deviations and it converges when the means approach zero. Hence, Zetter
et al. (2018) have found an RDM of 0.077 transforming their (CC = 0.997), which
is in fine agreement with the results of this thesis (median RDMs of 0.07 & 0.02).
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MAGs depend mainly on the distance between sources and sensors and hence
larger MAGs are found for visual and somatosensory sources compared to auditory
sources. The reported mean MAGs were always greater than 1. This result is ex-
plained by the distribution of the 1/r? characteristic of the magnetic field amplitude,
where r is the distance between source and sensor. The mean of two MAGs resulting

from an increase and decrease of the distance by ¢, is

r2 n 2 B r2 (r + 6r)2 + 72 (r— 67«)2 B r? (2r2 + 2572,)
2(r—6,)°  2(r+6,)° 2(r2 — 62)° T 22— 62)?

7

where the first fraction on the left hand side is expanded by (r + 8,)* and the second
one by (r — 5,n)2. The result is obviously greater than 1 for 62 < 3r2. Hence, for
symmetrical distributions of reasonably small increases and decreases of the distance
between sources and sensors, the mean MAG is greater than one.

By using polynomial expansions of the BEM forward computation, the compu-
tation time was reduced by a factor of approximately 40 compared to sheer Monte
Carlo sampling on a standard desktop machine (RAM: 15.58 GB, MIPS: 4x6 784,
CPUs: Core TM i7-2600K 3.40 GHz). However, the BEM computation is already
very efficient for different coregistrations because only the surface integrals over
the precomputed potentials at the boundary surfaces add a computational burden.
When FEM forward computations are involved, the computation of the magnetic
field for different coregistrations is computationally more expensive. Hence, polyno-
mial expansions of FEM computations can achieve a higher speed up here compared

to BEM.

From the forward computation results, it can be concluded:

1. Tt is not possible to accurately approximate the coregistration effects by using

primary or secondary fields alone.

2. The effects of coregistration uncertainty on RDMs are small and hence, only

small effects on source localization errors are expected.

3. The effects on MAGs are very small and only affect the amplitudes, not the

topographies, in the source space.

4. BEM forward computations are efficient for different coregistrations and poly-
nomial expansions reduced computation times by a factor of approximately
40.
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5.3 Effects of coregistration uncertainty on source esti-

mates

The propagation of coregistration uncertainty to source estimates was performed by
using Smolyak pseudospectral approximations of beamformer and sLORETA. This
approach was tested for auditory, visual and somatosensory brain activity with dif-
ferent SNRs and loose parameters on datasets of 20 subjects. The mean RMS of
TRE at the head shape points of these subjects was (1.9 + 0.7) mm (mean + stan-
dard deviation over subjects). By using pseudospectral approximations as efficient
surrogates of inverse operators, the distribution of the source estimate maximum
was sampled for 50000 coregistrations. For this purpose, the sampling of coregis-
trations was built on the results of the assessment part of this thesis. The efficient
polynomial surrogate of the source estimates reduced the computation times by a
factor of either approximately 10000 for beamformer or approximately 50000 for
sLORETA compared to the exact reference computations. These large reductions of
computation times are possible because the computation of forward solutions plus
whitening, SVD, noise normalization et cetera were replaced by polynomial evalua-
tion and a matrix product. The size of the matrices is the number of polynomials
in the expansion (here 377) times the number of sources in the region of interest
(here between hundred and thousand) times 3 (for dipole triplets). The greater re-
duction of the SLORETA compared to the beamformer can be explained by the fact
that sloreta is based on the entire source space. In contrary, the beamformer can
be computed for each source independently, which is beneficial when only regions of
interest are analyzed. The computation times were estimated from 1000 evaluations
on a standard desktop machine (RAM: 15.58 GB, MIPS: 4x6 784, CPUs: Core TM
i7-2600K 3.40 GHz).

The approximation errors had in the worst case (SLORETA in visual regions)
an upper 95 percentile of less than 1% which indicates high accuracy (Weise et al.,
2015). Compared to sSLORETA, the beamformer approximation errors are clearly
smaller. This is due to the lesser degrees of freedom for the beamformer compared to
sLORETA. SLORETA includes a coupling of different sources in its pseudoinverse
which may result in higher order polynomial terms.

By using the polynomial expansion coeflicients of source estimates, statistics and
sensitivity indices were computed in closed form for source amplitudes. This analysis
revealed for example, that auditory SLORETA amplitudes were most sensitive to the
coregistration parameters which mainly affected the distance between sources and

closest sensors. In MEG analysis, however, the source estimation amplitudes itself
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are not as informative as its spatial and temporal distribution. Hence, the polyno-
mial expansions were used to efficiently sample the spatial maximum distribution
of the estimates for uncertain coregistrations. In such cases, where the expansion is
used as efficient approximation, it is not as important to use an orthogonal polyno-
mial basis as in cases where the statistics are directly derived from the coefficients.
That is, for the distribution of the maximum location a non-orthogonal basis could
be used providing even more efficient approximations. However, when the Smolyak
pseudospectral approximation is used, adaptation can also provide more accurate
and more efficient approximations compared to the fixed polynomial set of this the-
sis. The fixed polynomial sets were used for a better comparability of the expansion
errors, for between beamformer and SLORETA or between loose parameter of 0 and
0.2.

In this thesis, the results for dynamic coregistration uncertainties were reported,
that is, head movements are included in the uncertainties. When I compared the re-
sults with the static uncertainties for one single head position, I found only negligible
differences to the dynamic ones. This is related to the observation, that the subjects
moved their heads only a few millimeters at maximum. The MEG recordings were
conducted with adults, who are able to keep their heads well at one position for
several minutes. This would be different with children since they move their heads

much more during recordings (Wehner et al., 2008).

The effect of coregistration on the maximum location was similar between beam-
former and sSLORETA with fixated orientations (a loose parameter of 0). On the
main axis, the median location standard deviation was between 2 and 4 mm, depen-
dent on the region, SNR and method, where the median was computed over subjects.
For slightly variable orientations (loose parameter of 0.2), the beamformer maximum
showed larger spatial deviations. Hence, when using orientation constraints, I rec-
ommend to use a strictly fixated (loose parameter of 0) surface normal constraint for
beamformers. In this thesis, localization errors were computed as spatial differences
between the mean maximum location (centre of the ellipsoids) and the centre of the
source patches. Compared the standard deviation of the maximum location, similar
localization errors are found with median values almost always smaller then 5 mm
per axis. This is in contrast to the results of Zetter et al. (2018), who reported similar
localization errors but smaller effects of coregistration uncertainty on the localiza-
tion errors. Zetter et al. (2018) investigated the effect of coregistration uncertainty
on source estimates in on-scalp MEG. They found that sensor position errors of less
than 4 mm increase any of their source estimation error metrics by no more than

8 %. On the one hand, this could be explained by the different error metric. They
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reported the effect on the localization errors while in this thesis the effect on the
maximum location itself was computed. On the other hand they used a different
definition of coregistration uncertainty. In on-scalp MEG, each sensor is localized
individually with respect to the head. This changes the nature of coregistration
uncertainties: in this thesis (sensors inside the MEG helmet), the uncertainties are
systematic shifts or rotations of the whole sensor array, while in on-scalp MEG, the
dominant uncertainty is sensor-wise (Zetter et al., 2018). Sensor localization un-
certainties are likely to cancel each other out to a certain extent, depending on the
number of sensors. This may explain the smaller localization errors found by Zetter
et al. (2018). Concerning the forward solutions, Zetter et al. (2018) found com-
parable difference measures on the field topographies as found in this thesis. This
may reveal that it is not straightforward to link localization errors and measures of
field topography differences like the RDM if the sensor arrays are different. When
sensor-wise errors yield similar RDMs as systematic shifts or rotations of the whole
sensor array, it is likely to find smaller effects on the source localization errors for

Sensor-wise errors.

The head position measurements, which were assessed in this thesis, were con-
ducted according to the following MEG guidelines. Bagié¢ et al. (2011) recommend
to use at least three localization coils, the data reported in this thesis was measured
with five localization coils. Hence, I recommend using at least five localization coils
in order to achieve the accuracy reported in this thesis. It is recommended that the
coil positions are covered by the sensor array (Gross et al., 2013) which was ful-
filled for the data reported in section 4.3. Bagi¢ et al. (2011) and Hari et al. (2018)
further recommend to continuously measure head positions during recordings which
was done for the data of all 20 subjects reported in section 4.3. In section 3.4.2,
a method is proposed to incorporate continuously measured head positions in the
distribution of coregistration parameters. This method was used in all uncertainty
analyses reported in section 4.3.2. All coregistrations of this thesis were visually in-
spected as recommended by Gross et al. (2013). The MRIs used in this thesis follows
the recommendation of 1 mm slice thickness and skin to skin MRI head coverage for
proper coregistration (Burgess et al., 2011). Burgess et al. (2011) recommend the
digitization of at least 100 head shape points for coregistration. The number of head
shape points of the 20 subjects was between 475 and 857 in this thesis. For reporting
on spatial coordinates, Keil et al. (2014) recommend detailed methods for obtaining
these parameters and providing a measure of spatial variability or measurement er-
ror. In this thesis, source localization errors, confidence ellipsoids of source locations
and the TREs are provided.
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For compensation of head movements or as general noise reduction, the signal
space separation (SSS) (Taulu and Kajola, 2005) is commonly used as an early
pre-processing step in the MEG analysis. The compensation of head movements
requires continuous recording of the localization coil signals which typically operate
close the upper frequency band limit of the recording. These coil signals need to
be removed before MEG analysis by low pass filtering which effectively reduces the
bandwidth of the data. This compromise between head positions and bandwidth
is usually decided in favor of head positions, which is also the recommendation of
clinical MEG guidelines (Bagié¢ et al., 2011; Hari et al., 2018). When the SSS is
applied, a linear combination of harmonic components is fitted to the MEG data.
The harmonic components are grouped into internal and external ones. SSS discards
the external ones and reconstructs cleaner MEG data by backprojecting the internal
components only (Garcés et al., 2017). For the internal components, an expansion
origin needs to be chosen inside the head volume. The effect of the position of that
origin on forward solutions and source estimates could be investigated by polynomial
expansions according to the methods of this thesis. Since the SSS reduces the
dimensionality and especially limits the spatial frequency of the data (Garcés et al.,
2017), it affects source estimates. Besides the origin, the number of internal and
external components as well as the regularization is variable in the SSS method.
Hence, the methods proposed in this thesis could be applied to SSS and sensitivities
of source estimates to individual variables could be investigated.

By using the uncertainty propagation methods of this thesis, it is possible to
analyse the effects on source estimation amplitudes and maximum locations. Such an
analysis can assist the decision whether a movement compensation, for example via
a signal space separation (Taulu and Kajola, 2005), should be used. The maximum
location confidence ellipsoid can also be used to decide whether a measurement block
should be excluded or not.

From the uncertainty analysis of source estimates, it can be concluded:

1. Tt is possible to apply stochastic spectral methods to MEG source estimation

with high accuracy.

2. The investigated effects of coregistration uncertainties on source estimates are
small, typically the maximum location varied within a range of 5mm. This
is in the range of the localization errors. That is, high accuracy in source

estimation was achieved for TREs of approximately 2 mm.

3. Polynomial expansions of the source estimates reduced computation times con-

siderably by a factor of approximately 10000 for beamformer and 50000 for
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sLORETA compared to the exact original computations. This speedup en-

abled the Monte Carlo simulations of this thesis.






References

Adjamian, P. et al. (Mar. 2004). “Co-registration of magnetoencephalography
with magnetic resonance imaging using bite-bar-based fiducials and surface-
matching”. In: Clinical Neurophysiology 115.3, pp. 691-698.

Ahlfors, Seppo P. and Risto J Ilmoniemi (1989). “Magnetometer position indica-
tor for multichannel MEG”. In: Advances in Biomagnetism. Ed. by Samuel J
Williamson et al. Boston, MA: Springer US, pp. 693-696.

Bagi¢, Anto L. et al. (2011). “American Clinical MEG Society (ACMEGS) Clinical
Practice Guideline (CPG) #1 (ACMEGS CPG#1): Recording And Analysis Of
Spontaneous Cerebral Activity”. In: Journal of clinical neurophysiology 28.4,
pp- 348-354.

Baysal, Ugur and Gokhan Sengiil (Apr. 2010). “Single camera photogrammetry sys-
tem for EEG electrode identification and localization”. In: Annals of Biomedical
Engineering 38.4, pp. 1539-1547.

Besl, P.J. and Neil D. McKay (Feb. 1992). “A method for registration of 3-D
shapes”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
14.2, pp. 239-256.

Bjorck, Ake (2015). “Linear Least Squares Problems”. In: Numerical Methods in
Matriz Computations. Cham: Springer International Publishing, pp. 211-430.
Brendemiihl, Astrid et al. (2007). “Intensity-Modulated Radiation Therapy — Qual-
ity Assurance with the Mutual Information Index (MI)”. In: Advances in Medical
Engineering. Ed. by Thorsten M Buzug et al. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 205-210.

Burgess, Richard C. et al. (2011). “American clinical magnetoencephalography so-
ciety clinical practice guideline 2: Presurgical functional brain mapping using
magnetic evoked fields”. In: Journal of Clinical Neurophysiology 28.4, pp. 355—
361.

Burkardt, John and Clayton Webster (2014). “Slow Growth for Gauss Legendre
Sparse Grids”. In: pp. 1-6.



102 References

Chen, C.S., M.A. Golberg, and Y.C. Hon (July 1998). “Numerical justification of
fundamental solutions and the quasi-Monte Carlo method for Poisson-type equa-
tions”. In: Engineering Analysis with Boundary Elements 22.1, pp. 61-69.

Cheveigné, Alain de and Dorothée Arzounian (2018). “Robust detrending, rerefer-
encing, outlier detection, and inpainting for multichannel data”. In: NeuroImage
172, pp. 903-912.

Conrad, Patrick R. and Youssef M. Marzouk (Jan. 2013). “Adaptive Smolyak Pseu-
dospectral Approximations”. In: STAM Journal on Scientific Computing 35.6,
A2643-A2670.

De Staelen, R. H. et al. (2013). Bayesian inference in the uncertain EEG problem
including local information and a sensor correlation matrix.

Economo, C. von and G.N. Koskinas (1925). Die Cytoarchitektonik der Hirnrinde
des Erwachsenen Menschen: Textband und Atlas. Wien: Springer.

FElekta Neuromayg data acquisition user’s manual (2007).

Escudero, Javier et al. (Nov. 2007). “Artifact Removal in Magnetoencephalogram
Background Activity With Independent Component Analysis”. In: IEEE Trans-
actions on Biomedical Engineering 54.11, pp. 1965-1973.

Evans, A.C. et al. (1993). “3D statistical neuroanatomical models from 305 MRI
volumes”. In: 1993 IEEE Conference Record Nuclear Science Symposium and
Medical Imaging Conference. IEEE, pp. 1813-1817.

Ferguson, A.S., Xu Zhang, and G Stroink (May 1994). “A complete linear discretiza-
tion for calculating the magnetic field using the boundary element method”. In:
IEEE Transactions on Biomedical Engineering 41.5, pp. 455-460.

Fitzpatrick, J Michael (2009). “Fiducial registration error and target registration
error are uncorrelated”. In: Proc. SPIE. Vol. 7261, pp. 1-12.

Fuchs, Manfred et al. (Apr. 1995). “Coordinate system matching for neuromagnetic
and morphological reconstruction overlay”. In: IEEE Transactions on Biomedical
Engineering 42.4, pp. 416-420.

Garcés, Pilar et al. (Dec. 2017). “Choice of Magnetometers and Gradiometers after
Signal Space Separation”. In: Sensors 17.12, p. 2926.

Geselowitz, D. (June 1970). “On the magnetic field generated outside an inhomoge-
neous volume conductor by internal current sources”. In: IEEFE Transactions on
Magnetics 6.2, pp. 346-347.

Ghanem, Roger G. and Pol D. Spanos (1991). Stochastic Finite Elements: A Spectral
Approach. New York, NY: Springer New York, p. 222.

Glasser, Matthew F et al. (July 2016). “A multi-modal parcellation of human cere-
bral cortex”. In: Nature 536, p. 171.



References 103

Gramfort, Alexandre (2013). “MEG and EEG data analysis with MNE-Python”. In:
Frontiers in Neuroscience 7.12, pp. 1-13.

Gross, Joachim et al. (2013). “Good practice for conducting and reporting MEG
research”. In: NeuroImage 65, pp. 349-363.

Haario, Heikki, Marko Laine, et al. (Dec. 2006). “DRAM: efficient adaptive MCMC”.
In: Statistics and Computing 16.4, pp. 339-354.

Haario, Heikki, Eero Saksman, and Johanna Tamminen (Apr. 2001). “An adaptive
Metropolis algorithm”. In: Bernoulli 7.2, pp. 223-242.

Hamaéldinen, Matti S. (2010). MNE software User’s Guide. 11.

Hamaéldinen, Matti S., Fa Hsuan Lin, and John C. Mosher (2010). “Anatomically
and Functionally Constrained Minimum-Norm Estimates”. In: MEG: An Intro-
duction to Methods, pp. 1-31.

Hansen, Peter C., Morten L. Kringelbach, and Riitta Salmelin (2010). MEG: An
Introduction to Methods.

Hari, Riitta et al. (2018). “IFCN-endorsed practical guidelines for clinical magne-
toencephalography (MEG)”. In: Clinical Neurophysiology 129.8, pp. 1720-1747.

Hillebrand, Arjan and Gareth R. Barnes (Dec. 2003). “The use of anatomical con-
straints with MEG beamformers.” In: NeuroImage 20.4, pp. 2302-2313.

— (Feb. 2011). “Practical constraints on estimation of source extent with MEG
beamformers”. In: NeuroImage 54.4, pp. 2732-2740.

Hironaga, Naruhito et al. (Dec. 2014). “Proposal for a new MEG-MRI co-
registration: a 3D laser scanner system”. In: Clinical Neurophysiology 125.12,
pp. 2404-2412.

Huppertz, H.-J et al. (May 1998). “Estimation of the accuracy of a surface matching
technique for registration of EEG and MRI data”. In: Electroencephalography and
Clinical Neurophysiology 106.5, pp. 409-415.

Keil, Andreas et al. (2014). “Committee report: Publication guidelines and recom-
mendations for studies using electroencephalography and magnetoencephalogra-
phy”. In: Psychophysiology 51.1, pp. 1-21.

Koessler, L., T. Cecchin, et al. (Mar. 2011). “EEG-MRI co-registration and sensor
labeling using a 3D laser scanner”. In: Annals of Biomedical Engineering 39.3,
pp. 983-995.

Koessler, L., L. Maillard, et al. (Apr. 2007). “Spatial localization of EEG electrodes”.
In: Neurophysiologie Clinique/Clinical Neurophysiology 37.2, pp. 97-102.

Kistner, T et al. (2018). “A machine-learning framework for automatic reference-
free quality assessment in MRI”. In: Magnetic Resonance Imaging 53, pp. 134—
147.



104 References

Lin, Fa-Hsuan et al. (Jan. 2006). “Distributed current estimates using cortical ori-
entation constraints”. In: Human Brain Mapping 27.1, pp. 1-13.

Lin, Yicong et al. (2018). “Lateralization value of low frequency band beamformer
magnetoencephalography source imaging in temporal lobe epilepsy”. In: Fron-
tiers in Neurology 9.10.

Loh, Wei Liem (1996). “On latin hypercube sampling”. In: Annals of Statistics 24.5,
pp- 2058—-2080.

Markley, F. Landis, Yang Cheng, et al. (2007). “Quaternion Averaging”. In: NASA
Goddard Space Flight Center, pp. 1-10.

Markley, F. Landis and Daniele Mortari (2000). “New developments in quaternion
estimation from vector observations”. In: Advances in the Astronautical Sciences
106, pp. 373-393.

Meijs, Jan W. H. et al. (1989). “Method”. In: 10 36.10, pp. 1038-1049.

Meyer, Sofie S. et al. (Jan. 2017). “Flexible head-casts for high spatial precision
MEG”. In: Journal of Neuroscience Methods 276, pp. 38—45.

Milde, Thomas et al. (2009). “Modelling of cortical and thalamic 600Hz activity by
means of oscillatory networks”. In: Journal of Physiology-Paris 103.6, pp. 342—
347.

Mulugeta, Lealem et al. (2018). “Credibility, Replicability, and Reproducibility in
Simulation for Biomedicine and Clinical Applications in Neuroscience”. In: Fron-
tiers in Neuroinformatics 12.

Nolte, G. and Matti S. Hamiélainen (Nov. 2001). “Partial signal space projection for
artefact removal in MEG measurements: a theoretical analysis”. In: Physics in
Medicine and Biology 46.11, pp. 2873-2887.

Papadelis, Christos et al. (2009). “MEG’s ability to localise accurately weak transient
neural sources”. In: Clinical Neurophysiology 120.11, pp. 1958-1970.

Parno, Matthew, Andrew Davis, and Patrick R. Conrad (2017). MIT Uncertainty
Quantification Library (MUQ). https://bitbucket.org/mituq/mugq.

Pascual-Marqui, R. D. (2002). “Standardized low resolution brain electromagnetic
tomography (SLORETA)”. In: Methods & Findings in Experimental € Clinical
Pharmacology 24, pp. 5—-12.

Pedregosa, Fabian et al. (Jan. 2012). “Scikit-learn: machine learning in Python”. In:
The Journal of Machine Learning Research 12, pp. 2825-2830.

Polhemus (2012). 3SPACE FASTRAK User Manual. 6.

Pratt, John W and Jean D Gibbons (1981). “Kolmogorov-Smirnov Two-Sample
Tests”. In: Concepts of Nonparametric Theory. New York, NY: Springer New
York, pp. 318-344.



References 105

Press, William H et al. (1992). Numerical recipes in C: the art of scientific computing.
2nd ed. New York, NY, USA: Cambridge University Press.

Qian, Shuo and Yang Sheng (Nov. 2011). “A single camera photogrammetry system
for multi-angle fast localization of EEG electrodes”. In: Annals of Biomedical
Engineering 39.11, pp. 2844-2856.

Saltelli, Andrea (May 2002). “Making best use of model evaluations to compute
sensitivity indices”. In: Computer Physics Communications 145.2, pp. 280-297.

Saltelli, Andrea et al. (Feb. 2010). “Variance based sensitivity analysis of model out-
put. Design and estimator for the total sensitivity index”. In: Computer Physics
Communications 181.2, pp. 259-270.

Sarvas, J. (Jan. 1987). “Basic mathematical and electromagnetic concepts of the
biomagnetic inverse problem”. In: Physics in Medicine and Biology 32.1, pp. 11—
22.

Saturnino, Guilherme B. et al. (Mar. 2019). “A principled approach to conductiv-
ity uncertainty analysis in electric field calculations”. In: Neurolmage 188.12,
pp- 821-834.

Schmidt, Christian et al. (2014). “Impact of Uncertain Head Tissue Conductivity
in the Optimization of Transcranial Direct Current Stimulation for an Auditory
Target”. In:

Schwartz, D. et al. (Dec. 1996). “Registration of MEG/EEG data with 3D MRI:
methodology and precision issues”. In: Brain Topography 9.2, pp. 101-116.

Sekihara, Kensuke et al. (2001). “Reconstructing spatio-temporal activities of neural
sources using an MEG vector beamformer technique”. In: IEEE Transactions on
Biomedical Engineering 48.7, pp. 760-771.

Singh, K. D et al. (Feb. 1997). “Evaluation of MRI-MEG / EEG co-registration
strategies using Monte Carlo simulation”. In: Electroencephalography and Clinical
Neurophysiology 2.102, pp. 81-85.

Stenroos, Matti, V. Mantynen, and J. Nenonen (Dec. 2007). “A Matlab library for
solving quasi-static volume conduction problems using the boundary element
method”. In: Computer Methods and Programs in Biomedicine 88.3, pp. 256—
263.

Taguchi, Katsuyuki et al. (2018). “Spatio-energetic cross-talk in photon counting
detectors: Numerical detector model (PcTK) and workflow for CT image quality
assessment”. In: Medical Physics 45.5, pp. 1985-1998.

Taulu, Samu and Matti Kajola (June 2005). “Presentation of electromagnetic mul-
tichannel data: The signal space separation method”. In: Journal of Applied
Physics 97.12, p. 124905.



106 References

Troebinger, Luzia et al. (Feb. 2014). “High precision anatomy for MEG”. In: Neu-
rolmage 86, pp. 583-591.

Uutela, K, Samu Taulu, and Matti S. Himéldinen (Dec. 2001). “Detecting and Cor-
recting for Head Movements in Neuromagnetic Measurements”. In: NeuroImage
14.6, pp. 1424-1431.

Van Veen, B.D. et al. (1997). “Localization of brain electrical activity via lin-
early constrained minimum variance spatial filtering”. In: IEEE Transactions
on Biomedical Engineering 44.9, pp. 867-880.

Wagner, Michael and Manfred Fuchs (2001). “Integration of functional MRI, struc-
tural MRI, EEG, and MEG”. In: International Journal of Bioelectromagnetism
3.1, pp. 1-15.

Wehner, Daniel T. et al. (Apr. 2008). “Head movements of children in MEG: Quan-
tification, effects on source estimation, and compensation”. In: Neurolmage 40.2,
pp. 541-550.

Weise, Konstantin et al. (July 2015). “Uncertainty Analysis in Transcranial Mag-
netic Stimulation Using Nonintrusive Polynomial Chaos Expansion”. In: IEEE
Transactions on Magnetics 51.7, pp. 1-8.

Weppler, Sarah et al. (2018). “Framework for the quantitative assessment of adaptive
radiation therapy protocols”. In: Journal of Applied Clinical Medical Physics
19.6, pp. 26-34.

Wheeler, Mark D. and Katsushi Ikeuchi (1995). “Iterative Estimation of Rotation
and Translation using the Quaternion”. In:

Wiener, Norbert (1938). “The Homogeneous Chaos”. In: 60.4, pp. 897-936.

Xiu, Dongbin (2009). “Fast Numerical Methods for Stochastic Computations : A
Review”. In: Communications in Computational Physics 5.2, pp. 242-272.

Xiu, Dongbin and Jan S. Hesthaven (Jan. 2005). “High-Order Collocation Methods
for Differential Equations with Random Inputs”. In: STAM Journal on Scientific
Computing 27.3, pp. 1118-1139.

Xiu, Dongbin and George Em Karniadakis (Jan. 2002). “The Wiener—Askey Polyno-
mial Chaos for Stochastic Differential Equations”. In: STAM Journal on Scientific
Computing 24.2, pp. 619-644.

— (May 2003). “Modeling uncertainty in flow simulations via generalized polyno-
mial chaos”. In: Journal of Computational Physics 187.1, pp. 137-167.

Zetter, Rasmus et al. (Nov. 2018). “Requirements for Coregistration Accuracy in
On-Scalp MEG”. In: Brain Topography 31.6, pp. 931-948.



List of Figures

2.1

3.1

3.2

In the top row, the MEG, head and MRI coordinate systems are
shown separately. The MEG coordinates are denoted by (y, z) and the
respective axes are plotted by dashed lines relative to the contour of
the MEG sensor configuration. Dotted lines represent the axes of the
head coordinates (y/,2’) and the head contour is outlined within the
respective coordinate frame. The MRI coordinate axes are plotted by
dash-dotted lines, the respective coordinates are denoted by (y”, z")
and a sagittal MRI slice is shown accordingly. In the bottom row, the
notations and line styles are adopted from the top row and MEG /head
and head/MRI coordinates are depicted relative to each other in the
left and right box, respectively. The parameter notations {p, §'} and
{q, t:} denote rotations and translations of MEG-to-head and head-
to-MRI, respectively. Axes scaling is identical for all of the five sub-
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The coregistration setup for one subject shown from two viewpoints
(a) and (b). Grey square shapes depict the magnetometers and white
tori represent the localization coil positions and orientations. The

head surface, as extracted from MRI, is rendered in beige. . . . . . .

Exact (light grey) and half-exact (dark grey) sets of polynomial or-
ders are depicted for a full tensor quadrature in (a). In (b), the

corresponding quadrature nodes are plotted. . . . . ... ... ...
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The graphs depict polynomial exactness, nodes and weights of Gauss-
Legendre quadrature rules. Exact (light grey) and half-exact (dark
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