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Abstract 

Aging is accompanied by unisensory decline; but to compensate for this, two complementary 

strategies are potentially relied upon increasingly: first, older adults integrate more information 

from different sensory organs.  Second, according to predictive coding (PC) we form ‘templates’ 

(internal models or ‘priors’) of the environment through our experiences.  It is through increased life 

experience that older adults may rely more on these templates compared to younger adults.  

Multisensory integration and predictive coding would be effective strategies for the perception of 

near-threshold stimuli, but they come at the cost of integrating irrelevant information.  Their role 

can be studied in multisensory illusions because these require the integration of different sensory 

information, as well as an internal model of the world that can take precedence over sensory input. 

Here, we elicited a classic multisensory illusion, the sound-induced flash illusion, in younger (mean: 

27 yrs) and older (mean: 67 yrs) adult participants while recording the magnetoencephalogram. 

Older adults perceived more illusions than younger adults.  Older adults had increased pre-stimulus 

beta(β)-band activity compared to younger adults as predicted by microcircuit theories of predictive 

coding, which suggest priors and predictions are linked to β-band activity.  In line with our 

hypothesis, transfer entropy analysis and dynamic causal models of pre-stimulus MEG data revealed 

a stronger illusion-related modulation of cross-modal connectivity from auditory to visual cortices in 

older compared to younger adults. We interpret this as the neural correlate of increased reliance on 

a cross-modal predictive template in older adults that is leading to the illusory percept.  
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Introduction 

Predictive coding theory suggests that our perceptual experience is determined by a fine 

balance between internal predictions based on priors acquired over the course of our lives and 

incoming sensory evidence.  Sensory evidence and priors are thought to be fused in a Bayesian way, 

to arrive at a posterior representing the best guess regarding the state of the world, producing our 

perception. Aging research offers an opportunity to probe this suggestion, as the amount of 

information accumulated in our priors increases throughout one’s lifetime, while the precision of 

unisensory evidence degrades at later stages in life. The first factor will strengthen the influence of 

predictions, while the second reduces the influence of unisensory evidence.  Together, they should tip 

the balance to a state, where perception is increasingly dominated by predictions.  Investigating this 

change in balance is possible using perceptual illusions that arise when predictions take precedence 

over sensory evidence, such as the sound-induced flash illusion (SiFi). 

The SiFi is the perception of two visual flashes when only one flash is indeed presented along 

with two auditory beeps, in relatively short succession.  This illusion occurs because the auditory 

modality has a higher temporal acuity compared to the visual system1-3, thus we instinctively rely on 

cross-modal predictions generated by the auditory system4.  Accordingly, older adults perceive more 

SiFi across a wider temporal binding window (TBW) compared to young adults1-5.  This is because older 

adults are more likely to integrate multisensory stimuli compared to young adults6.  This was originally 

thought of as beneficial, as it effectively compensated for the “loss of sensitivity” in unisensory acuity7.  

However, it can also have a detrimental effect, as older adults integrate more sensory information 

across a longer time span, irrespective of its relevance to a task, compared to younger adults4.     

To date, the neural underpinnings as to how older adults integrate more information over 

time are far from understood.  However, following the line of argument of predictive coding, it is 

possible that older adults rely on increased top-down ‘template’ information (i.e. priors) compared to 

young adults.  Perceptual illusions rely on such perceptual ‘templates’ of our environment, which are 

ultimately violated, but still take precedence.  The internal ‘template’ relevant/responsible for the SiFi 

is that an auditory event should be accompanied by a visual object – thus, when one flash is presented 

accompanied by two beeps, an additional visual object is perceived8,9. 

If the predictive coding account is correct in its relation to aging and multisensory integration, 

then (i) illusions based on predictions should become more frequent with age.  (ii) The 

neurophysiological signature of the illusory perception should also be found as a general marker when 

comparing young versus older participants. (iii) Due to the predictive nature, this signature should be 
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found preceding the illusion, and (iv) it should be found in the β-band - according to recent 

neurophysiological accounts of predictive coding10. and results from our group11. (v) The 

neurophysiological correlates of the aging process should manifest as network effects in terms of 

information transfer and effective connectivity, where brain areas generating reliable predictions 

should increase their influence over other brain areas that deliver less precise sensory evidence. 

To assess the neurophysiological correlates of illusory perception and effects of aging, we used 

magnetoencephalography (MEG) combined with beamformer source reconstruction.  For the analysis 

of network effects, we used a novel combination of information theory, in particular transfer entropy 

(TE) estimation, and dynamic causal modelling (DCM).  TE and DCM are complementary techniques; 

TE quantifies information transfer between network nodes, i.e. it focuses on network links that 

channel new information into a node for computation12.  In terms of inference, TE is an exploratory 

technique while DCM models the physiological coupling between hidden states of the network 

nodes13, and is a confirmatory approach based on comparing models.   Hence, we used the TE-derived 

network as the basis for a family of DCM models to confirm the structure of the network relevant for 

the perception of the SiFi, through model comparison.  In the winning network, we then looked for 

quantitative variations in connection strength with age indicative of increased influences of cross-

modal predictions in older participants. 

 

Results 

Increased SiFi in Older Participants 

In order to determine the earliest illusion stimulus-onset asynchrony (SOA) which will 

differentiate the age groups, participants were presented with a version of the SiFi to assess their 

temporal binding window outside the MEG.  In the illusion condition, two beeps and one flash were 

presented (2 beeps/1 flash).  The SOA between the auditory stimuli varied between 50 ms, 100 ms, 

150 ms, 200 ms, 250 ms, 300 ms, and 500 ms.  Control conditions were also presented (2 beeps/2 

flashes and 1 beep/1 flash), with control and 2 beeps/1 flash trials randomly permuted within a single 

block.  Participants indicated the number of perceived flashes. In additional unimodal conditions, 

presented in separate blocks, participants indicated the number of beeps or flashes (see Suppl. 

Materials).  Older adults perceived significantly more illusions than young adults [F(1,34) = 6.31, partial 

eta2 = 0.15, p = 0.02].  There was also a significant Age Group x SOA interaction in the 2 beeps/1 flash 

condition [F(6,204) = 3.19, partial eta2 = 0.09, p = 0.005], driven by more perceived illusions for older 

compared to younger adults between SOAs 100 ms – 500 ms (See Figure 1). Illusion perception 

between the age groups began to diverge at 100 ms (p = 0.002).  These effects were not related to 
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response bias, as there were no group differences in the multisensory control conditions (see Suppl. 

Materials, also for unimodal results). 

 

----------- Place Figure 1 about here ----------- 

 

Neurophysiological signature of the illusory perception  

In order to determine the neural activity underlying the increased illusion perception, both 

groups performed the same task inside the MEG - with the exception that only the 100-ms SOA: 2 

beeps/1 flash condition, two-beeps, one-flash only, and two-flash conditions were presented.  This 

was done to optimize the number of illusion trials.  Epochs were cut to lengths of 1000 ms before the 

onset of the first audio-visual stimulus and 620 ms after the first stimulus. 

To understand whether there was an age-independent factor determining a subject's 

propensity for perceiving an illusion, we performed a 2x2 between-groups permutation-based ANOVA 

with factors Age (young vs. older) and Propensity for Illusions (perceived illusion (PPI) vs. perceived no 

illusion (PPNI); see Methods) on the squared amplitude of the sensor-level time-frequency 

transformed data. Special care was taken to define the appropriate permutations for a factorial 

design14,15 (see Methods).  Older adults had significantly greater β-band activity (12Hz – 30Hz) 

compared to young adults in the time range of -250 ms – 75 ms relative to the onset of the first 

stimulus (p = 0.002).  However, there was no main effect of the factor Illusion-propensity nor an 

interaction between both factors.  There were no significant differences in other frequency bands. 

We focussed our further network analysis of the MEG recordings to the time interval and 

frequency range of the differential sensory-level activity between the groups with a propensity to 

see the illusion vs. those with a propensity to see no illusion in order to determine how the network 

is used between groups.  First, dynamic imaging of coherent sources (DICS)16, a frequency-domain 

adaptive spatial filtering algorithm, was used to identify the sources of the increased β-band activity.  

Beamforming revealed peak activity within this time interval to occur in the right middle temporal 

gyrus (50 -30 -10), right middle frontal gyrus (30 20 30), and bilateral fusiform gyrus (±20 -70 -10) 

(see Figure 2).   

 

----------------- Place Figure 2 about here ----------------- 
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Information Transfer within the Network 

To infer the network underlying the perception of the SiFi, we used a combination of TE 

estimation and DCM. DCM uses Bayesian inference to obtain the most likely model of physiological 

interactions given the data.  This Bayesian approach requires that plausible models enter the DCM 

analysis as priors.  A common approach is to define models from relevant neural sources determined 

by beamforming.  Furthermore, we were interested in the interaction between the sources of activity 

found here and the primary auditory (BA22) and visual areas (BA18).  However, to explore the entire 

model space of the eight sources using DCM, would require the generation of 228 = 

268,435,456 models [
1

2
𝑛(𝑛 − 1) = 28] possible edges/connections] for each type of model 

connection (excitatory, inhibitory, and mixed).   

This brute-force approach is computationally intractable.  Furthermore, the models specified in 

DCM must be biophysically motivated and may not be randomly generated14,15.  However, it is rarely 

the case that all effective connections (or lack thereof) are known between each of the cortical areas 

in question.  To reduce the model space to a tractable size and to plausible models only, we took 

advantage of the MEG’s temporal precision and estimated transfer entropy (TE) between source time 

courses.  TE is a model-free measure of information transfer between two processes17; the resulting 

network of information transfer between neural sources represents candidate connectivity relevant 

for solving a given task.  Because we estimated bivariate TE from multiple sources it is very likely that 

some of the inferred links are indeed spurious due to cascade or common driver effects18,19. The TE 

network is thus a highly plausible starting point for building a model of effective connectivity 

underlying the neural computation but may be further refined by DCM.   

We estimated delay-sensitive TE20 from reconstructed state spaces21 using individually 

optimized embedding parameters for each participant22 (see Suppl. Materials for details on TE 

estimation).  We estimated TE for each pairwise combination of sources in each participant and tested 

these TE values for statistical significance using a permutation test against surrogate data23.  We thus 

obtained networks for individual participants, which we then combined into group-level networks for 

propensity to perceived illusion (PPI) and propensity to perceived no illusion (PPNI), across the age 

groups, using a binomial test of individual links across all participants, irrespective of age (see Figure 

3; see Suppl. Materials for a detailed description).   
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----------------- Place Figure 3 about here ----------------- 

 

We then took the union of the group-level networks for the PPI and the PPNI groups and 

constructed DCM models to find the links that explained differences in performance between age 

groups.  To avoid statistical ‘double-dipping’, for each participant TE estimation was performed on the 

odd-numbered trials and DCM on the remaining even trials.  In order to confirm and refine the model, 

we used a systematic approach, where DCM was applied hierarchically in three steps, where the first 

two steps were aimed at obtaining a parsimonious, common model describing data for both groups 

of old and young participants while the third step then investigated age-related modulations of model 

parameters in this common model. 

The aim of the first DCM analysis step was to determine if the union model or small variations 

of it offered a good description of data for age both groups and whether small variations to it would 

yield higher model evidence, indicating the need for a more thorough pruning of the union network.  

In this first TE inspired DCM analyses, for both age groups, twenty-four models were generated.  The 

links for the DCM models were a union of the PPI and PPNI illusion TE models.  The frequency range 

of interest was constrained to the β-band.  Model 1 consisted of all links, with all links being active.  

Models 1.2-1.24 systematically removed one link, to identify any possible links whose removal might 

affect the model evidence.  Models 1.25 and 1.26 consisted of only the links in either the illusion or 

no illusion TE models, respectively (see Figure 3).  The resulting winning model was model 1.5, which 

was close to the union model, but had link Left BA18 to Right BA22 removed (see Table 1 in Suppl. 

Materials).   

As the first DCM analysis step indicated an improvement of model evidence via pruning of links, 

a second DCM analysis was conducted to remove additional spurious effects due to common drives 

and cascade effects from the winning model (1.5) of the previous DCM analysis. This had to be done 

in a systematic and computationally tractable fashion24-26, because simply scanning models with all 

further possible combinations of pruned links would have resulted in a set of 227 models. We therefore 

employed a strategy where pruned links constrained each other based on membership in acyclic 

triangles in the network graph (see Methods). The winning model for both the young and older adults 

was model 2.10 suggesting that the same network is used in both groups.  We verified this by 

comparing the model distributions in the two groups via the model comparison statistics in the 

Variational Bayesian Analyses toolbox27.  There was positive evidence against different model 
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distributions between the two age groups (log Bayes factor = 6.68), confirming that both groups 

indeed employ the same neural network to perform the task (see Figure 4a). 

The third stage of DCM analyses studied which links in the common network were modulated 

by the illusory percept in each age group. Thus, we examined the individual modulatory links in the 

binary connectivity matrix (B-matrix).  The results from this DCM analysis found the winning model 

with respect to a modulation of connection strength by the illusory percept for the young adults was 

model 3.9 while the winning model for the older adults was model 3.7.  Separate independent t-tests 

with factor age group were conducted for each modulation (see Figure 4b).  Older adults showed 

increased modulation of links from: the left primary auditory (BA22) cortex to right fusiform cortex (t 

= 2.06, p = 0.045); right fusiform cortex to right middle temporal gyrus (t = 1.67, p = 0.011); and right 

auditory cortex (BA22) to left fusiform cortex (t = 2.71, p = 0.009), compared to the younger adults.  

Younger adults had greater modulation of the link from the right visual cortex (BA18) to the left 

fusiform cortex (t = -2.25, p = 0.03), and from right BA22 to left BA22 (t = -2.11, p = 0.041).  

 

----------------- Place Figure 4 about here ----------------- 

 

Discussion 

Previous studies have demonstrated that older adults as well as some patient populations have 

increased rates of illusory percepts. Predictive coding theories offer a parsimonious explanation for 

this effect when taking into account that the amount of accumulated prior information increases over 

the life-span, while the precision of unisensory evidence decreases. Together these changes should 

favour interpretations of the world based on priors over veridical ones. Thus, comparing the neural 

basis of illusory percepts in young and old participants offers both, a critical test of microcircuit 

theories of predictive coding, as well as an opportunity for novel insights into perceptual changes in 

ageing.  

We found that modulations of effective connectivity linked to illusory vs. veridical percepts 

carried clear signatures of cross-modal predictions in the older participants, whereas modulations in 

the younger participants were linked to changes in connections within unisensory networks only. This 

pattern of results aligns with a predictive coding account of ageing-related illusory perception. The 

link between the cross-modal use of priors and illusory percepts in older participants is further 

strengthened by the observation that older participants had increased activity in the β-band in the 
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pre-stimulus phase.  This strengthens the link because recent microcircuit theories of predictive coding 

suggest that priors or predictions are generated in cortical layers 5 and 6 and are signalled in the β-

band28.  A result seemingly conflicting with the link between β-band activity and priors (predictions) 

related to illusions is the fact that we found no significant effect of illusion-propensity across subjects 

on β-band activity. Yet, when analysing illusion vs. no-illusion conditions within subjects, we indeed 

found a trend towards increased pre-stimulus β-band activity for trials where an illusion is perceived 

compared to trials were no illusion is perceived (Suppl. Materials). Thus, we attribute the failure to 

observe β-band effects of illusion-propensity to the difficulty to separate age and illusion-related 

effects.  

In addition to the more frequent occurrence of illusory precepts in older participants, they also 

exhibited more illusory percepts over a wider range of SOA. We interpret this as a widening of the 

acceptance window for binding auditory and visual events, brought about by the necessity to interpret 

degraded inputs from the visual system4,29. 

We note that the illusion-related changes in effective connectivity as detected by our combined 

information-theoretic and DCM analysis were found between early and late sensory processing areas. 

This is in contrast to previous research that suggested that illusory percepts were caused by enhanced 

early sensory integration only, in young adults30-32.  There are at least three reasons for this 

discrepancy between these findings. First, mechanisms related to cross-modal illusions may be 

detectable better in the older participant group as they are more dominant there, favouring their 

detection in our special study cohort. Second, transfer entropy compares favourably with other 

methods of finding connectivity33,34 as it is sensitive also to non-linear coupling (e.g. as required by 

communication between frequency bands).  Third, the approach of model comparison based on DCM 

offers the possibility to disentangle effects due to structural differences in task-related networks 

(which were absent between groups) and illusion-related modulations of coupling strength (which 

were present and differed between groups).  

 Previous studies have suggested alternative explanations for illusory percepts in older people, 

e.g., relating them to an age-related delay in neural processing35-37.  This is an unlikely explanation for 

our findings.  When analysing the time course of the neural activity at the source-level, it was clear 

that the β-band activity in older adults was not delayed, compared to younger adults (see Figure 2B).  

In fact, for older adults who are more likely to perceive the illusion, the increase in amplitude of the 

β-band activity begins slightly earlier than their younger counterparts.  Therefore, the results 

illustrated here are not likely due to neural delays caused by ageing. 
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From a purely methodological perspective, the current study is one of the first to combine 

exploratory (TE) and confirmatory (DCM) approaches to the analysis of network activity. While this 

has been suggested theoretically before for the combination of Granger Causality and DCM13, some 

comments related to the practical application are in order. First, we stress that applying the two 

analyses to separate data sets (e.g. odd and even numbered trials) is necessary to avoid variants of 

double dipping. Second, after deriving an estimate of the network structure from an exploratory 

approach, a confirmation of the network structure by model comparison requires the formulation of 

multiple plausible network models. Here, the original suggestion has been to use an increasing 

number of eigenmodes of the functional connectivity matrix for this purpose38.  However, we here 

opted for a targeted removal of links from triangular network motifs indicative of common driver and 

cascade effects. This was done because such spurious links are known to appear in bivariate network 

analyses via transfer entropy, and were considered the main problem for the a priori validity of our 

models25,39-41. 

In sum, our results suggest that the decrease of unisensory acuity and the accumulation of prior 

knowledge over the life span lead to a perception of the world increasingly dominated by this prior 

knowledge. Accordingly, older compared to younger adults had increased rates of illusory percepts, 

and showed modulations of cross-modal connections linked to these illusions. At the level of 

oscillatory neural activity both ageing and the behavioural occurrence of illusions were linked to 

increases in β-band activity. This supports recent neurophysiological accounts of predictive coding 

where priors and predictions are carried by β-band activity. 

Methods 

Participants 

In this experiment, 25 healthy young adults (11 males) between the ages of 21-28 and 28 

healthy older adults (12 males) between the ages of 58-72 took part.   All participants were right-

handed.  Older adults were given the Consortium to Establish a Registry for Alzheimer disease (CERAD) 

questionnaire to ensure they did not suffer from age-related cognitive deficits42,43.  All participants 

were also given the D2 attentional test44.  All participants performed within their age-related norms. 

 

Behavioural-only SiFi 

Apparatus and Stimuli 
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The visual stimuli were presented on a 24” flat panel computer monitor with a refresh rate of 

60 Hz.  The visual stimulus was a white circular disk, subtending 2° of visual angle.  This disk was placed 

4° of visual angle below the fixation cross.  The presentation duration of the disk was 16 ms. 

The auditory stimulus consisted of a 16 ms, 3500 Hz pure tone with a total rise- and decay-time 

of 20 µs and a sound pressure level at approximately 65 dBA.  The auditory stimuli were presented 

using closed, circum-aural headphones (AKG, Austria, model: K271).   

Design and Procedures 

The design of the experiment was based on a 3x7 repeated-measures design with Modality 

(vision-only, auditory-only, and audiovisual) and Stimulus-onset Asynchrony (SOA; 50 ms, 100 ms, 150 

ms, 200 ms, 250 ms, 300 ms, and 500 ms) as factors.  The dependent variable was accuracy.  The factor 

Modality was blocked and the order randomized between participants.  Participants received 

instructions and were given a short practice block to ensure they understood the task.   

Within each block, the participants’ task was to indicate how many stimuli (visual or auditory) 

were presented.  At the beginning of each trial, a fixation cross was presented at the centre of the 

computer screen.  Participants were instructed to maintain their eye gaze on the cross throughout the 

experiment.  If two stimuli were presented, the first stimulus was presented followed by a variable 

SOA, between 50 ms and 500 ms.  Then, the second stimulus was presented.  Afterwards, participants 

indicated via button press how many stimuli were presented.  Each trial was followed by an inter-trial 

interval (ITI) between 1000 ms and 1500 ms (step sizes of 250 ms; see Figure 1).  While reaction times 

were recorded, participants were asked to emphasize accuracy over speed. The experiment was 

programmed in Presentation (Neurobehavioral Systems, CA, USA). 

 

---------------- Place Figure 5 about here ---------------- 

 

The unimodal-only blocks were separated into two separate blocks.  In the vision-only block, 

one or two flashes were presented and the participant’s task was to indicate how many flashes were 

presented.  In the auditory-only block, one or two beeps were presented and the participant’s task 

was to indicate how many beeps they heard.  There were 140 trials in each of the unimodal blocks, 70 

trials where one stimulus was presented and the remaining trials where two stimuli were presented, 

with an equal number divided between the SOA conditions. 
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The audiovisual block contained 210 trials in total.  The audiovisual block contained two control 

conditions (1 beep/1 flash and 2 beeps/2 flashes) as well as the illusion condition (2 beeps/1 flash).  In 

the illusion condition, the visual flash was presented at the same time as the first auditory beep.  The 

second beep was presented at one of the previously indicated SOAs.  In the control conditions, the 

audio-visual pairs were presented simultaneously.  The second beep-flash pair in the 2 beep/2 flash 

control condition was presented at a variable SOA, relative to the first pair. This was done to minimize 

response bias towards responding to the auditory stimuli.  The participants’ task was to ignore the 

auditory stimuli and indicate how many visual flashes were presented.  All responses were made via 

computer keyboard.   

 

MEG Methods 

MEG was recorded in accordance to the suggested guidelines45.  Participants were in a seated 

position, in a 275-channel, whole-head MEG with axial gradients (Omega 2005, VSM MedTech Ltd., 

BC, Canada).  The sampling rate was 1200 Hz. Data were transformed to a synthetic third order axial 

gradient representation, and band-pass filtered in hardware between 0.1-300 Hz.  Four EOG, two 

EMG, and two ECG electrodes were placed on the participant’s face and clavicle to record eye blinks, 

facial movements, and heart rate, respectively.  Head localization was continuously recorded. 

Visual stimuli were delivered via a video projector (Sanyo xp41) and back-projected to a semi-

transparent screen at a distance of 60 cm from the participant’s head. Auditory stimuli were generated 

by a computer sound card (Creative Labs; Audigy 32) before going through sound conducting tubes 

into the MEG chamber.  These sound-conducting tubes were connected to plastic ear moulds 

(ProPlugs, Doc’s).  The sound pressure level was the same as in the behavioural experiment.   

The task inside the MEG was similar to the task outside the scanner, with the following 

differences.  There were four experimental conditions (2 beeps/1 flash, two-flashes, one-flash, and 

two-beeps).  In the 2 beeps/1 flash, 2-beeps, and 2-flashes conditions, the second stimulus was always 

presented at an SOA of 100 ms.  After 500 ms, the response screen was presented and participants 

indicated how many flashes were presented.  In the two-beep condition, participants should respond 

‘0 flashes’.  Trials were rejected if participants responded before the response screen.  The inter-trial 

interval was jittered between 850 ms – 1250 ms. 

There were 200 repetitions in the 2 beeps/1 flash condition, 100 repetitions of single flash 

condition, and 100 repetitions of the two beeps condition.  Fifty, 2-visual flashes trials were also 

presented.  This was done to minimize the possible bias to respond ‘one flash’.  Participants responded 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/178095doi: bioRxiv preprint 

https://doi.org/10.1101/178095


13 
 

` 

using a MEG compatible 5-button response box (Cambridge Research Systems, LTD) with their right 

hand.  All trials were randomized across 5 experimental runs.  Each run lasted approximately seven 

minutes.  Participants received a short break between each run.  

MEG analyses 

Pre-processing 

All MEG data processing, except TE and DCM analyses, were carried out using FieldTrip46.  

Eight sensors (MRF22, MLT44, MRC12, MRC25, MRF22, MRO21, MRO53, and MRF11) had elevated 

noise levels and were thus excluded from the analyses. 

Trials were cut from 1000 ms before the onset of the first audio-visual stimulus to 620 ms after 

the first stimulus.  Trials containing eye blinks or muscle artefacts were removed by automated 

artefact rejection routines and subsequent visual inspection.  

On average, young adults perceived 61.80% of 2 beep/1 flash trials (122 trials) as illusions, older 

adults perceived 64.74% of 2 beeps/1 flash trials (130 trials) as illusion.  Three young and twelve older 

adults were removed from the analyses because of excessive artefacts.  After artefact rejection, 

between 50–120 trials survived in each condition.   

Based on their behavioural performance, participants within each age group were rank-ordered 

based on the proportion of perceived illusions.  Then, a median-split was taken to place participants 

into two groups (Propensity to Perceive Illusion (PPI) and Propensity to Perceive No Illusion (PPNI)).  

As a result, after pre-processing, 12 young adults were placed in the PPI group and 10 young adults in 

the PPNI group.  There were seven older adults placed in the PPI group, and nine older adults in the 

PPNI group (mean of perceived illusion in each group: Young PPI = 67.52%; Young PPNI = 11.57%; 

Older PPI = 10.44%; Older PPNI = 75.76%).   

To ensure that the MEG results were not confounded by an uneven number of trials between 

the Perceived Illusion and Perceived No-Illusion conditions, stratified sampling was applied by 

randomly removing trials from the condition with the most trials until an equal number of trials was 

present in both conditions. 

Time-frequency analyses 

A time-frequency analysis, using Morlet wavelets, was computed (wavelet length = 5 cycles, 

size of the Gaussian taper = 3).  This procedure resulted in a single-trial estimation of 2 Hz to 60 Hz 
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power, in 2 Hz steps.  The baseline interval was between -1000 ms and -500 ms before the onset of 

the first stimulus.  Finally, trials for each condition were averaged for each participant.   

We extended the cluster-based permutation statistics implemented in the Fieldtrip toolbox to 

a 2x2 independent groups ANOVA, with factors Age (young vs. older) and Illusion (percentage of 

perceived illusion vs. perceived no illusion trials). Induced power for each condition was averaged 

within each participant then submitted to an ANOVA and F-values for the main effects or the 

interaction were computed for each sensor.  Sensors where the F-value surpassed a critical F-value 

corresponding to an alpha level of 0.05 were selected and assigned to clusters based on their spatial 

adjacency.  Neighbouring sensors were defined based on the template-approach implemented in 

Fieldtrip. The average minimum of neighbouring channels for the cluster analysis was 8.7 neighbours. 

Cluster-level statistics were calculated by taking the sum of the F-values within each cluster. These 

calculations were performed for each main effect and the interaction separately.  The observed 

cluster-level statistics were then tested against the distribution of the maximum cluster-level statistics 

gained from Monte-Carlo simulations with 2000 permutations for each effect.  At each permutation, 

group and condition assignments were shuffled and the estimation of F-values and the clustering 

procedure were repeated on the resampled data. The resulting maximum cluster values were used to 

construct the maximum cluster-level distribution under the null hypothesis.  Clusters were considered 

to be significant at an alpha level of 0.05 if the originally observed cluster value was greater than the 

95th percentile of the maximum cluster-level statistic distribution.  Cluster-based statistical tests 

effectively circumvent the multiple comparison problem by reducing the dependent variable to the 

maximum cluster size of neighbouring data bins showing the same effect47. 

Special care has to be taken to define the appropriate permutations for a factorial design48,49.  

Permutations were restricted to occur within each factor (e.g. Age), while the assignment of 

participants to levels of the other factor (e.g. Illusion) was kept constant.  For example, when testing 

the main effect of Age, the factor of propensity to perceive an illusion was held constant.  No exact 

permutation tests based on the F-statistic exist for the interaction effect; since restricting permutation 

of the observations such that neither group main effect affects the corresponding F-ratio would leave 

no possible permutations of the data.  An approximate test can be constructed by restricting 

permutations of factor levels to occur between one factor and subsequently permuting whole subjects 

across groups. Though variability due to the main effects is not held constant under such a 

permutation scheme, their variability impinges on all terms of the model, giving a reasonable 

approximate test. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/178095doi: bioRxiv preprint 

https://doi.org/10.1101/178095


15 
 

` 

Source Reconstruction 

Dynamic imaging of coherent sources (DICS), a frequency-domain adaptive spatial filtering 

algorithm was used to identify the sources of the effects found at the sensor-level, implemented in 

the Fieldtrip toolbox.  While the DICS algorithm was designed to compute source coherence estimates, 

we used real-valued filter coefficients only and therefore restricted our analysis to the local source 

power50. The real part of the filters reflects the propagation of the magnetic fields from sources to 

sensors, as this process is supposed to happen instantaneously51.  First, illusion and no-illusion trials 

were combined into one data set. Cross-spectral density matrices were computed for the task period 

of -250 – 0.75 ms, in β-band, based on the statistical analysis of spectral power at the sensor level 

(spectral smoothing indicated in parenthesis): 21 Hz (9 Hz).  Subsequently, data from both response 

categories were projected separately into source space using the common spatial filter from the 

previous step. The source analysis was separately conducted on the activity of the two conditions, and 

the difference between the projected sources was tested for significance as described above.  Source 

activity was interpolated onto individual anatomical images from magnetic resonance imaging (MRI) 

and subsequently normalized onto the standard Montreal Neurological Institute (MNI) brain using 

SPM8 in order to calculate group statistics and for illustrative purposes.  A linearly constrained 

minimum variance (LCMV) approach was used to project the frequencies of interest into source 

space24. The combined filters were regularized at 5%52.   

Beamformer filters were computed as “common filters” based on the activation and baseline 

data across all conditions. Using common filters for activation and baseline and all conditions allows 

for subsequent testing for differences between conditions; using common filters ensures that 

differences in source activity do not reflect differences between filters.  Spatial filtering of the sensor 

data for source statistics was then performed by projecting single trials through the common filter for 

each condition separately.  

Connectivity Analyses 

Previous studies using dynamic causal modelling (DCM) had to balance the number of models 

that needed to be created from identified sources versus computational time. This is because if all 

possible models were to be built from a set of identified sources and connections, this would result in 

an intractable model spaces as well as the inclusion of physiologically implausible models.  To 

overcome this hurdle, we took advantage of the MEG’s temporal precision and performed transfer 

entropy analyses on half of the data (odd trials from all participants).  Transfer entropy (TE) is a model-

free measure of information transfer, it quantifies the additional information we can gain about a 
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random process 𝑌 if we not only know 𝑌’s past, but also the past of a second process 𝑋. Information 

transfer is then quantified as the conditional mutual information  

𝑇𝐸(𝑋 → 𝑌, 𝑡, 𝑢) = 𝐼(𝑌𝑡; 𝑋𝑡−𝑢 ∨ 𝑌𝑡−1), 

between the future value  𝑌𝑡 of the process 𝑌at time 𝑡, and the past state 𝑋𝑡−𝑢, conditional on the 

past state𝑌𝑡−1. Here, 𝑢 is the reconstructed physical interaction delay 𝛿 between both processes. The 

delay is reconstructed by finding 

𝛿 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑢

(𝑇𝐸(𝑋 → 𝑌, 𝑡, 𝑢)). 

Prior to TE estimation, we reconstructed states 𝑋𝑡−𝑢, 𝑌𝑡−1 from scalar time series using a time-

delay embedding21, with embedding parameters found through optimization of Ragwitz' criterion20. 

Parameter optimization and delay-sensitive TE estimation from the ensemble of trials was done using 

the MATLAB toolbox TRENTOOL23,41, that implements the Kraskov-Stögbauer-Grassberger estimator 

for mutual information53.  We used permutation testing against shuffled surrogate data to establish 

statistical significance for estimated TE values23.  

 We estimated TE for each possible pairwise connection in individual subjects, obtaining single-

subject networks of information transfer. From single-subject networks we constructed group-level 

networks for the following groups: PPI and PPNI, by including links that were significant in at least 50% 

of the subjects within a group. The thresholding procedure corresponds to a one-sided Binomial test 

over subjects under the null hypothesis of significant links 𝑘 being 𝐵(𝑘 ∨ 𝑝0, 𝑛)-distributed, with 𝑝0 =

0.05 and 𝑛 = 19 for the PPI group and 𝑝0 = 0.05 and 𝑛 = 15 for the PPNI group. The threshold of 

50% significant links is equivalent to an alpha level of 1e-10.  We combined both group-level networks 

by taking the union of both sets of links.  

Using the resulting TE network, the model space for DCM was dramatically reduced.  DCM was 

performed using the Statistical Parametric Mapping, version 8 (SPM8), Matlab toolbox53.  Overall, 

three separate DCM analyses were conducted.  All DCMs were fit to the remaining (even) trials.  As 

the activation occurred mostly before the presentation of the stimuli we employed a resting-state 

paradigm, using the linear neural mass model to calculate cross-spectral density of steady-state 

responses54,55.  The time window was from 250 ms before stimuli onset to 75 ms post-stimuli onset.  

The data was detrended by simply removing the mean and the data was not subsampled.  Eight modes 

were selected.  Wavelet parameters were the same as those used to calculate the induced activity at 

the sensor-level. 
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A single equivalent current dipole for each source was selected as the electromagnetic model. 

The sources included into the model were the right middle temporal gyrus, right middle frontal gyrus, 

left fusiform gyrus, right fusiform gyrus, bilateral primary auditory cortex (Brodmann area 22), and 

bilateral primary visual cortex (Brodmann area 18).  Network inputs were not selected given that this 

was a resting-state design.  Random effects Bayesian model selection (BMS) was utilised to take into 

account the inter-individual variability in the structure of each model56.  Separate model families were 

created for each type of interaction available (excitatory, inhibitory, and mixed).  Then, a separate 

BMS was performed within the winning interaction-type family.  In all cases, the family with purely 

excitatory interactions was the overall winner.  Subsequently, the individual models within the 

excitatory family were compared using Bayesian Model Selection57,58. 

For all DCM analysis steps, the union of the illusion and no illusion TE networks was the basis 

for investigated DCM models.  A hierarchical approach was taken for the analyses, where the first two 

steps tested for spurious links in the TE network and the third step tested for modulations in the 

winning model.  In the first DCM analysis step, Model 1.1 consisted of all links and all links were 

modulated.  Models 1.2-1.24 consisted of all links, minus one to test for the possible presence spurious 

links that would trigger a second more in-depth analysis.  All remaining links were modulated.  Models 

1.25 and 1.26 consisted of only the links from TE models for the group with high illusion propensity 

and the group with low illusion propensity, respectively.  The frequency range of interest for DCM was 

limited to the β-band, because the network nodes had been defined via the sources found in this band.   

In the second DCM analysis step, triggered by the finding that pruning links increases model 

evidence, we tested for simple common drive and cascade effects by removing multiple potentially 

spurious network links simultaneously from the winning model from the first DCM step25,26,40, based 

on their membership in acyclic triangles in the directed network graph.  Acyclic triangles may indicate 

spurious links, either due to one node driving the dynamics in the other two nodes (common drive 

effect), or due to a cascade of information transfer, where two consecutive links lead to spurious 

information transfer between the first and the third node (cascade effect)18.  In such an acyclic triangle, 

only one of the two potentially spurious links can be actually spurious, because the two effects are 

mutually exclusive. This leads to a set of constraints on possible link-removals when trying to account 

for cascade and common driver effects. 

Thus, in the alternative models, we systematically destroyed acyclic triangles, while making sure 

that no more than one of the two potentially spurious links was removed from all triangles in any given 

model.  Possible combinations of simultaneously removable links were identified by encoding 
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removable links as a Boolean function. This resulted in 20 possible models (see supplementary 

materials for a detailed list of all models). 

After estimating model evidences for all candidate models, we tested the hypothesis that the 

model distributions differed between age groups versus the hypothesis that it was not different. To 

this end we used Bayesian group comparison as implemented in the Variational Bayesian Analyses 

toolbox27.  Accordingly, the third step of the DCM analysis was carried out on the common winning 

model for both groups. 

A third DCM analyses was conducted on the winning model from the second (refined) DCM 

analysis, to determine which links were modulated by illusory percepts.  In this analysis, all links were 

maintained (A-matrix) but the modulation of individual links was systematically removed (B-matrix) 

(see Table 1 for a list of all β-band modulation values).  We then statistically compared the illusion-

trial related modulation in connectivity strength between the young and the older age group using t-

tests.  
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Figure Caption 

 

1. Behavioural results for the 2 beeps/1 flash condition.  Older adults were less accurate (i.e., 

perceived more illusions) across the 100 ms – 500 ms SOA conditions, compared to young 

adults. 

2. A) Topological plot representing the locations of the significant MEG channels for the main 

effect of Age Group.  The crosses indicate the significant channels.  B) The average β-band 

power over time for the significant channels.  C) Source localisation results from the 

beamformer analysis. 

3. A)  The combined results of the perceived illusion and perceived No illusion trials, from the 

transfer entropy analyses.  This also includes links that are associated with both percepts. B) 

represents the differences between the perceived illusion-only and perceived no illusion-

only conditions.  Connections which are present in A) but not in B) indicate that those 

connections are present in both conditions. 

4. A) The winning model from the DCM analyses.  This represents the structure of the network 

that is active in both young and older adults.  B) represents the links which demonstrate 

significantly more β-band activity between the age groups. 

5. A timeline of a 2 beeps/1 flash condition.  After a variable inter-trial interval, a white disk 

(flash) is presented along with a 3500 Hz tone (beep) for 16 ms.  After a variable SOA, the 

second beep is presented.  In the 2 beep/2 flashes condition a second white disk would be 

presented along with the second beep. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Information 

Methods 

MRI Scanning Parameters.  

MRI images were collected using a 3 Tesla Siemens Allegra scanner (Siemens, Erlangen, 

Germany) at the Brain Imaging Center, Frankfurt using a 4 channel head coil.  The subjects' position 

was head-first supine and slice order was descending.  A magnetization-prepared rapid acquisition 

gradient-echo (MP-RAGE) sequence was applied with the following parameters: TR: 2200 ms; TE: 3.93; 

flip angle: 9°; matrix: 256x256; FOV: 192 mm; voxel size: 1.0x1.0x1.0 mm3; number of slices: 160; 

distance factor: 50%.  The duration of the sequence was 4 minutes.  These scans were taken several 

weeks following the MEG testing. 

 

Results 

Behavioural 

Unimodal  

To determine the unimodal temporal acuity for the visual and auditory system alone, 2x2x8 

Greenhouse-Geisser corrected mixed ANOVA was conducted with the factors Age Group (young vs. 

older) as the between-subjects factor, Modality (vision-only vs. auditory-only), and SOA (0 ms, 50 ms, 

100 ms, 150 ms, 200 ms, 250 ms, 300 ms, and 500 ms) as the within-subjects factor.  There was no 

main effect of Age Group [F(1,25) < 1, n.s.].  There was a main effect of Modality, with greater accuracy 

in the auditory-only condition (96.96%) compared to the vision-only condition (87.53%) [F(1,25) = 

26.82, p < 0.0001].  There was also a main effect of SOA, with greater accuracy as the SOA increased 

(see Figure 1) [F(7,175) = 26.73, p < 0.0001].  There was a significant interaction between Modality 

and SOA [F(7,175) = 8.53, p < 0.0001].  A post-hoc analyses revealed that performance in the visual 

condition was significantly worse than the auditory condition in the 50 ms and 100 ms conditions (all 

ps = 0.05).   Performance in the 50 ms SOA condition was significantly worse than all other SOAs in the 

vision-only condition (all ps = 0.05).  There were no other significant interactions. 
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Figure 1. A graph of behavioural performance in the vision-only and auditory-only 
conditions. Overall, performance was better in the auditory-only conditions compared to 
the visual-only conditions.  There was not significant difference between age groups. 

 

Multisensory  

To test for statistically relevant differences in accuracy, we conducted A 2x3x7 Greenhouse-

Geisser corrected mixed-measures ANOVA was conducted with Age Group (young vs. older) as the 

between-subjects factor and Modality (2 flashes vs. 2 beeps vs. 2 beeps/1 flash) and SOA (50 ms, 100 

ms, 150 ms, 200 ms, 250 ms, 300 ms, and 500 ms) as within-subjects factors.   

There was a significant main effect between young (87.87%) and older adults (81.60%) 

[F(1,34) = 4.18, p = 0.05].  There was a significant main effect between the AV Conditions [F(2,68) = 

54.10, p < 0.0001], with the highest accuracy in the 1 flash/1 beep (95.12%) and 2 beeps/2 flashes 

(95.63%) compared to the 2 beeps/1 flash condition (63.99%; all ps < 0.0001).  There was a 

significant main effect of SOA [F(6,204) = 36.60, p < 0.0001], with accuracy improving as the SOA 

increased (50 ms = 71.24%; 100 ms = 78.46%; 150 ms = 84.98; 200 ms = 88.21%; 250 ms = 87.99%; 

300 ms = 88.89%; 500 ms = 94.63%).  There was a significant interaction between AV Condition and 

Age Group [F(2,68) = 5.36, p = 0.007].  A posthoc test revealed older adults were significantly worse 

in the 2 beeps/1 flash condition compared to other conditions and young adults, including 

performance from young adults in the 1 beeps/1 flash condition (all ps < 0.01).  There was also a 

significant difference between young adults in the 2 beeps/1 flash compared to all other conditions 

(all ps < 0.01).  Finally, there was a significant interaction between the three factors [F(12,408) = 
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3.20, p = 0.0002].  Another post hoc revealed performance in the 50 ms 2 beeps/1 flash condition 

was significantly worse when the older and younger participants (all ps < 0.05; see Figure 2).  Older 

adults perceived more illusions compared to the younger adults, from 100ms-300ms (all ps < 0.05; 

see Figure 2).  There were no significant differences between the two groups in the control 

conditions.  Furthermore, there was no significant difference between the two groups in either 

unimodal conditions.  The increase in perceived illusion for older adults was not related to a 

difference in unisensory acuity.   

 

 

Figure 2. A graph of the multisensory conditions.  There were no significant differences in 
the two control conditions (2 beeps/2 flashes and 2 beeps/1 flash) between the age 
groups. 

 

MEG Results 

A cluster-based permutation statistics, implemented in the Fieldtrip toolbox, to a 2x3 mixed-

design ANOVA with Age Group (young vs. older) and the Illusion (illusion and no-illusion conditions) 

as the within participants sensor-level analysis revealed a trend towards increased β-band activity to 

trials where participants (regardless of age) perceived the 2-beeps/1flash condition as an illusion, 
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compared to no illusion (p = 0.100; see Figure 3).  This trend occurred between -5 ms – 9 ms over the 

frontal sensors then extending over the right parietal sensors. 

 

 Figure 3. A figure representing the sensors associated with increased β-band activity in 
perceived illusion trials compared to perceived no-illusion trials.  The sensors most 
associated with the increase in β-band activity are indicated by an “X”. 

 

DCM results 

The winning model for both the young and older adults was model 2.10 suggesting that the 

same network is used for both groups.  To compare the Bayesian model Selection between the two 

groups, we used the model comparison statistics in the Variational Bayesian Analyses toolbox1.  

There was little model evidence for a different pattern of model evidence between each age group 

(model evidence = 6.6789; see Figure 1).  

B0 results 

The results from the third DCM analysis found the winning model for the young adults was 

model 3.9 while the winning model for the older adults was model 3.7.  Separate independent t-

tests were conducted for each modulation (see Figure 4 for a summary of results).  Older adults 

showed increased modulation of the left primary auditory (BA22) cortex to right fusiform cortex (t = 

2.06, p = 0.045); right fusiform cortex to right middle temporal gyrus (t = 1.67, p = 0.011); and right 
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auditory cortex (BA22) to left fusiform cortex (t = 2.71, p = 0.009), compared to the younger adults.  

Younger adults had greater modulation from the right visual cortex (BA18) to the left fusiform cortex 

(t = -2.25, p = 0.03), and from right BA22 to left BA22 (t = -2.11, p = 0.041).  
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DCM Models 

Table 1 
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Table 1. Tables of the links (X) which were included in each model.  Model 1 contains all the links in 

the combined (illusion and no illusion) transfer entropy model.  Models 23 and 24 represents the 
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illusion-only and no illusion-only models from the transfer entropy analyses.  For models 2-22, one 

link was removed.  For the sake of clarity, “O” represent the missing links in each model.  The 

winning model was model 9. 
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Table 2. A separate set of DCM models were created to remove cascades and common drive 

artefacts.  “X’s” represent the links in each model; “O’s” represent the missing links in each model.   

Models 2-20 are replications of models 1-10, respectively; with the exception that with each model, 

the link between the right middle temporal gyrus and right BA22 was also removed. 
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