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Abstract 34 

Consuming more energy than is expended may reflect a failure of control over eating behaviour 35 

in obesity. Behavioural control arises from a balance between two dissociable strategies of 36 

reinforcement learning: model-free and model-based. We hypothesized that weight status 37 

relates to an imbalance in reliance on model-based and model-free control, and that it may do 38 

so in a linear or quadratic manner. To test this, 90 healthy participants in a wide BMI range 39 

(normal-weight (n=31), overweight (n=29), obese (n=30)) performed a sequential decision-40 

making task. The primary analysis indicated that obese participants relied less on model-based 41 

control than overweight and normal-weight participants, with no difference between overweight 42 

and normal-weight participants. In line, secondary continuous analyses revealed a negative 43 

linear, but not quadratic, relationship between BMI and model-based control. Computational 44 

modelling of choice behaviour suggested that a mixture of both strategies was shifted towards 45 

less model-based control in obese participants. Furthermore, exploratory analyses of separate 46 

weights for model-free and model-based control showed stronger reliance on model-free 47 

control with increased BMI. Our findings suggest that obesity may indeed be related to an 48 

imbalance in behavioural control as expressed in a phenotype of less model-based control 49 

potentially resulting from enhanced reliance on model-free computations.  50 
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Introduction 51 

Obesity is the result of systematically consuming more energy than is expended. This can be 52 

seen as a failure of control over eating behaviour 1–3 and could result from altered processing 53 

of reward 4. As a consequence, appetitive and often high-caloric foods are over-consumed 54 

despite negative consequences, such as the uncomfortable feeling of being full, feelings of 55 

regret, or long-term health risks. Such failures of behavioural control in obesity may arise from 56 

alterations in reinforcement learning 5. Indeed, obesity-related impairments in reward- and 57 

punishment-based cue-conditioning have been observed in the context of both food and 58 

monetary outcomes 6, as well as impairments in appetitive conditioning in the context of 59 

chocolate rewards 7 (but see 8). Furthermore, obese participants exhibited impairments in 60 

learning from negative outcomes when money or points served as an incentive 6,9,10. These 61 

studies have focused on forms of learning that mostly resemble retrospective model-free ‘trial-62 

and-error’ reinforcement learning. However, behavioural control arises from a balance 63 

between model-based and model-free control 11,12. Model-based control relies on an internal 64 

model of the environment to enable forward planning. As a result, this system is flexible (but 65 

cognitively costly), allowing us to be goal-directed even when the environment changes, e.g. 66 

abrupt change in the current outcome value, changes. In contrast, the model-free system is 67 

cognitively inexpensive and fast (but inflexible) and is thought to underlie habitual control. To 68 

better understand this balance in obesity, the current study investigates relative reliance on 69 

model-based and model-free control of choice behaviour.  70 

Indirect evidence links obesity to reduced model-based, or rather, goal-directed control. 71 

Previous outcome devaluation studies tapping into goal-directed and habitual control of food 72 

choices in obesity have shown a negative correlation between goal-directed control and 73 

degree of obesity in humans 13,14. That is, the higher the BMI, the less participants adjusted 74 

their food choices after devaluation of one of the two choices. Behavioural adjustment after 75 

outcome devaluation of non-food rewards related positively to model-based, but not model-76 

free control, in healthy human participants performing a two-step decision-making task 15–17 77 

(but see 18). Alterations in model-based vs. model-free control have been associated with 78 

behavioural inflexibility as observed in clinical populations such as metamphetamine addiction, 79 

obsessive compulsive disorder, and binge eating disorder 19,20, as well as in a general 80 

population sample reporting symptoms of the same disorders and of other eating disorders 21. 81 

However, Voon et al. 19 did not find differences in model-based and model-free control between 82 

obese participants without binge eating disorder and non-obese control participants. The 83 

absence of an association between obesity and model-based or model-free control seems 84 

surprising, given the above-mentioned obesity-related performance differences in simple 85 
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reinforcement learning tasks and outcome devaluation tasks, resembling more model-free and 86 

model-based control, respectively.  87 

We propose two reasons why the study by Voon et al. 19 might have lacked power to detect 88 

obesity-related group differences in model-based and model-free control. First, rather subtle 89 

behavioural alterations are to be expected in obese individuals that are physically healthy. With 90 

a relatively low contrast in body mass index (BMI) between the obese and non-obese  group 91 

(BMI [kg/m2]: obese: M=31.49, SD=3.6; non-obese: M=23.54, SD=2.9), and an average BMI 92 

for the obese group only slightly above the cutoff for obesity (>30 kg/m2), such behavioural 93 

alterations may be difficult to detect. Second, the relationship between BMI and model-based 94 

and model-free control may in fact be quadratic in nature, thus masking potential obesity-95 

related differences. A quadratic relationship with degree of obesity has indeed been observed 96 

for reward sensitivity 22 and cognitive restraint of eating behaviour 23. Furthermore, obesity may 97 

quadratically relate to alterations in striatal dopamine tone 24. This is relevant because there is 98 

accumulating evidence that different measures and manipulations of dopamine transmission 99 

overall relate positively to model-based control as measured in the two-step task 25–29.  100 

In the current study, we aimed to address the two issues raised above by including (1) more 101 

highly obese individuals to boost the contrast between groups, and (2) an intermediate 102 

overweight group for more sensitivity to detect the existence of potential linear or quadratic 103 

relationships between weight status and behavioural control. The original two-step task was 104 

implemented to disentangle and directly compare the reliance on model-based and model-free 105 

control 16,25,30. We hypothesized that weight status relates to the degree to which individuals 106 

rely on model-based and model-free learning, and that it may do so in a linear or quadratic 107 

manner.  108 

 109 

Materials and methods 110 

Participants  111 

The results reported in this study are based on data from 90 healthy right-handed participants 112 

in a wide BMI range (45 women; age [years]: M=26.9; SD=3.6; range: 21-35; BMI [kg/m2]: 113 

M=27.9, SD=6.4, range = 18.4 - 47.6). Participants were recruited based on their BMI status, 114 

i.e., normal-weight (n(women) = 31(16), BMI [kg/m2] = 18.5-24.9), overweight (n(women) = 115 

29(14), BMI [kg/m2] = 25-29.9) and obese (n(women) = 30(15), BMI > 30)(Table 1). Note that 116 

the reported data were acquired in two parts. Fifty-seven datasets were acquired as a part of 117 

several studies running in the department between October 2012 and August 2014. Data 118 

acquisition of overweight and obese participants was not completed at the time due to logistic 119 
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reasons. To finally conclude the study, the remaining participants were tested between 120 

February and March 2018 (n=37, for details see Supplemental Figure 1). Part of the reported 121 

data have previously been published in a study comparing relative reliance on model-based 122 

and model-free control to habit propensity in a slips-of-action task in specifically normal-weight 123 

women and men (n=28) 16. Participants were tested at the Department of Neurology of the 124 

Max Planck Institute for Human Cognitive and Brain Sciences (Leipzig, Germany) and received 125 

monetary compensation on an hourly basis, as well as a bonus based on their task 126 

performance (between 3 to 10 Euros). All participants gave written consent prior to the study. 127 

The study was carried out in accordance with the Declaration of Helsinki and approved by the 128 

Ethics Committee at the University of Leipzig, Germany.  129 

After having provided informed consent, weight and height of the participants was measured, 130 

followed by the two-step task (for details see Experimental paradigm). Participants were then 131 

asked to complete a number of self-report questionnaires – validated in German – for 132 

characterizing the sample: Beck’s Depression Inventory (BDI) 31 to assess possible depressive 133 

symptoms (cut-off for exclusion >18, indicating possibility of moderate to severe depression), 134 

the Behavioural Inhibition System / Behavioural Activation System questionnaire (BIS/BAS) 135 
32,33 to assess punishment and reward sensitivity, the Three-Factor Eating Questionnaire 136 

(TFEQ)34,35 to assess eating behaviour in terms of cognitive restraint, disinhibition and hunger, 137 

the UPPS Impulsive Behaviour Scale36,37 to assess impulsive behaviour in terms of Urgency, 138 

lack of Premeditation, lack of Perseverance, and Sensation seeking, and the Yale Food 139 

Addiction Scale (YFAS) 38,39 to assess symptoms that could be indicative of food addiction. 140 

Finally, participants performed several cognitive tests to examine their potential relation to 141 

performance on the task: the Viennese Matrices Test (VMT) 40 to assess non-verbal IQ. We 142 

also administered a computerized version of the Visual Paired Associates test of the Wechsler 143 

Memory Scale (VPA) 41,42 to assess visual short term memory. Participants were included if 144 

none of the following exclusion criteria applied: estimated non-verbal IQ (<85 based on the 145 

VMT), known metabolic disorders (e.g., diabetes), smoking, (history of) neurological, 146 

psychiatric, or eating disorders, symptoms of depression, drug or alcohol dependence, current 147 

pregnancy, and psychological treatment. In total 94 participants were tested of which 3 148 

participants did not complete the experimental paradigm and 1 participant was excluded from 149 

analysis because of an estimated non-verbal IQ below 85. 150 

 151 

Experimental paradigm 152 

We administered a sequential decision making task 16,25,30, in which participants were asked to 153 

make two subsequent decisions on each trial to earn a monetary reward (20 cents) or no 154 
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reward (Figure 1a). At the first stage, participants were asked to choose between two grey 155 

stimuli, which would bring them to one of two second-stage stimulus pairs (the green or yellow 156 

pair). One of the grey first-stage stimuli was connected commonly (70%) to the green and 157 

rarely (30%) to the yellow stimulus pair, and vice versa for the other grey stimulus (Figure 1b). 158 

The first-stage stimuli and transition probabilities were fixed throughout the experiment. After 159 

selecting one of the two second-stage stimuli, participants either received the monetary reward 160 

or not (Figure 1c). The probability of receiving reward for each of the four second-stage stimuli 161 

changed slowly and continuously according to Gaussian random walks to ensure continuous 162 

learning. The changes were kept consistent for all participants performing the experiment. 163 

Participants completed a total of 201 trials. Prior to the experiment, participants went through 164 

elaborate computer-based instructions and were then asked to explain the task including its 165 

first-stage transition probabilities to the experimenter. Open questions were addressed by the 166 

experimenter. The instructions included a detailed knowledge of common (70%) and rare 167 

(30%) transitions after first-stage choices, and the slowly changing probabilities after second-168 

stage choices. After the instructions participants performed 56 training trials with a different set 169 

of stimuli. Participants were made aware that the height of their financial bonus depended on 170 

the accumulated reward in the task.   171 

172 

Figure 1. The two-step task 25,30. (a) Trial structure of an example trial with a rare 173 

transition, which allows for the dissociation of model-based and model-free control of 174 
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behaviour. (b) Transition structure showing how each first-stage stimulus (grey) leads 175 

to one of the two second-stage stimulus pairs (green or yellow) in 70% of the trials 176 

(common, blue arrows) and to the other pair in 30% of the trials (rare, red arrows). (c) 177 

Possible outcomes (reward, no reward). Reward probability for the four second-stage 178 

stimuli varies throughout the task according to random walks to encourage continuous 179 

learning. 180 

 181 

Data analysis 182 

Calculation of first-stage stay probabilities on the two-step task, as well as computational 183 

modeling of participants’ choice behaviour were performed using in-house scripts in Matlab 184 

(version 2017b, The MathWorks, Inc.). Statistical analyses of self-reported, behavioural, and 185 

computational data were run in R Studio (version 3.4.4., R Core Team, 2018) and SPSS 186 

(version 24, IBM Corp., 2018). The R package ggplot2 was used to plot the results 45. 187 

Shapiro-Wilk’s test of normality and Levene’s test of equality of variance were ran for all group 188 

characteristics, including scores on self-reported questionnaires and neuropsychological tests, 189 

as well as for the raw stay probabilities (per condition), and for the estimated model 190 

parameters.  191 

The alpha level was set to .05 (a = .05) for all a priori analyses of interest. Note that for post 192 

hoc analyses, we did not correct for multiple comparisons as these results are exploratory and 193 

should be interpreted as such.  194 

Partialh2 (hp
2) is reported as an effect size for all parametric univariate analyses because it 195 

meaningfully describes effects in a design in which multiple measures have been 196 

experimentally manipulated (as in the two-step task), and it yields very similar estimates as h2 197 

for analyses that only include a between-group variable 46,47. Note that hp
2 does not depend on 198 

the number of variables in the model and, thus, can be compared across studies. For non-199 

parametric Kruskal-Wallis tests, h²H was calculated as follows: (H – k +1) / (n – k), with H reflecting 200 

the test statistic, k the number of groups, and n the total sample size 48. 201 

To check the robustness of our findings and rule out that any observed effect of group on 202 

behaviour could have been driven by age 21,49,50 or IQ 16,21,51,52 rather than weight status, we 203 

reran all models post hoc including age and non-verbal IQ as covariates of no interest.  204 

 205 

 206 
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Characterization of the groups 207 

We tested for group differences in age and sex to confirm that the groups were well-matched. 208 

BMI was analysed to confirm the grouping of participants into normal-weight, overweight and 209 

obese participants. Group analysis of cognitive tests (including non-verbal IQ) and self-210 

reported questionnaire data were run to further characterize the sample.  211 

For normally distributed data (age, VPA score, BIS/BAS, UPPS), we ran a one-way ANOVA 212 

with between-subjects factor weight group for each measure. Upon violation of the assumption 213 

of normality or equality of variance (BMI, non-verbal IQ, BDI, TFEQ, YFAS symptom score), 214 

the Kruskal-Wallis test by ranks was performed. Sex distribution between groups was analysed 215 

using Chi-Square Test. Group differences were followed up by post hoc parametric 216 

(independent T-test) or nonparametric (Mann-Whitney U Test) pairwise comparisons. 217 

 218 

Raw behaviour according to first-stage stay probabilities  219 

Investigating the likelihood with which participants choose a first-stage stimulus depending on 220 

the previous trial type (Rewarded/Unrewarded, Common/Rare), gives an insight into how much 221 

they relied on model-based or model-free control. Therefore, we calculated first-stage stay 222 

probabilities as the proportion of trials in which participants chose the same first-stage stimulus 223 

as in the previous trial (coded as ‘stay’) for each of the conditions (Rewarded Common, 224 

Rewarded Rare, Unrewarded Common, Unrewarded Rare). We then analysed participants’ 225 

stay probabilities using ANOVA with the between-subject factor Group (Normal-weight, 226 

Overweight, Obese), and within-subject factors Reward (Rewarded, Unrewarded) and 227 

Transition (Common, Rare). Because the aim was to test for a three-way interaction and the 228 

group sizes are well balanced, type III sums of squares were calculated in this analysis.  229 

A purely model-free agent relies on whether or not the previous trial was rewarded, irrespective 230 

of transition probability (Common/Rare). If rewarded, the previous first-stage choice should be 231 

repeated. If not, it may be better for the model-free agent to switch to the other first-stage 232 

stimulus. As a consequence, model-free control is reflected in a main effect of Reward. On the 233 

other hand, a purely model-based agent optimally relies both on reward and transition 234 

probability of the previous trial. A model-based agent will also stay with a previous first-stage 235 

choice when a common trial was rewarded, and switch when a common trial was not rewarded. 236 

However, the model-based agent differs in choice behaviour following rare trials. That is, in 237 

contrast to a purely model-free agent, a model-based agent can infer that when a rare trial was 238 

rewarded, reward probability on the current trial is higher if one chooses the other first-stage 239 

stimulus (switch), and vice versa for unrewarded rare trials (stay). Model-based control is 240 
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therefore reflected in the interaction between Reward and Transition. Here, we were mainly 241 

interested in group differences in model-based and model-free control and thus focused on 242 

the Group x Reward x Transition interaction and Group x Reward interaction on stay 243 

probabilities, respectively.  244 

We hypothesized that the relationship between weight status and model-based or model-free 245 

control might be linear or quadratic in nature. To investigate the nature of these relationships, 246 

we next performed planned pairwise group comparisons on the Reward x Transition interaction 247 

term (i.e., (Rewarded Common – Rewarded Rare) – (Unrewarded Common – Unrewarded 248 

Rare)) and on the main effect of Reward (i.e., (Rewarded Common + Rewarded Rare) – 249 

(Unrewarded Common + Unrewarded Rare)) on stay probabilities.  250 

Finally, we ran two post hoc linear models (lm() from the R stats package): (1) on the Reward 251 

x Transition interaction term, and (2) on the main effect of Reward to investigate the existence 252 

of a linear and quadratic relationship with BMI on a continuous scale. Both models included 253 

BMI and BMI2 as orthogonal predictors.  254 

 255 

Computational modeling  256 

To investigate how participants’ choices were affected by reward and transition probability 257 

throughout the experiment rather than in the previous trial alone, we computationally modeled 258 

choice behaviour. We implemented a hybrid of a model-free and model-based reinforcement 259 

algorithm as is described in detail in our previous work 16,25 and in the original paper 30.  260 

In short, the model-free algorithm (SARSA(l)) included a learning rate for each stage (a1, a2) 261 

and a parameter l, which allows the second stage prediction error to affect the next first-stage 262 

values (Q). The model-based algorithm learns values by planning forward and computes first-263 

stage values by multiplying the value of the better second-stage option with the associated 264 

transition probabilities. Then, the model-free and model-based first-stage decision values are 265 

connected in the hybrid algorithm:  266 

𝑄"𝑠$, 𝑎'( = 𝜔	𝑄,-"𝑠$, 𝑎'( + (1 − 	𝜔)	𝑄,3"𝑠$, 𝑎'(	 267 

where 𝑄"𝑠$, 𝑎'(  denotes the decision value of the chosen stimulus 𝑎'  from the first stage 268 

stimulus pair 𝑠$, and 𝜔 captures the relative weighting of the model-based (𝑄,-"𝑠$, 𝑎'() and 269 

model-free algorithm (𝑄,3"𝑠$, 𝑎'(). The weighting parameter 𝜔  is the main parameter of 270 

interest and can take a value between 0 and 1. If 𝜔 = 1, first-stage choices are purely controlled 271 
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by model-based control, and if 𝜔 = 0, they are purely controlled by model-free control. Note 272 

that at the second stage 𝑄𝑛𝑒𝑡 = 	𝑄,- = 𝑄,3 because reward probabilities are not fixed.   273 

Finally, the decision values were transformed into action probabilities using the softmax 274 

function for 𝑄𝑛𝑒𝑡:  275 

𝑃(𝑎8,9 = 𝑎:𝑠8,9( = 	
𝑒𝑥𝑝(𝛽8>	𝑄?@9"𝑠8,9 , 𝑎( + 𝜌 ∙ 𝑟𝑒𝑝(𝑎)D)

∑ exp	(IJ 𝛽8>	𝑄?@9"𝑠8,9 , 𝑎′( + 𝜌 ∙ 𝑟𝑒𝑝(𝑎′)D
 276 

where 𝛽8 controls the stochasticity of choices at stage 𝑖 = 1 or 2, and repetition parameter 𝜌 277 

reflects choice perseveration at the first stage.  278 

The model had a total of seven parameters that were bounded by transforming them to a 279 

logistic (𝛼N, 𝛼O, 𝜆, 𝜔)  or exponential (𝛽N, 𝛽O)  distribution. To infer the maximum-a-posteriori 280 

estimate of each parameter for each subject, the (empirical) Gaussian prior distribution was 281 

set to the maximum-likelihood estimates given the data of all participants and then expectation-282 

maximization was used 53. We report the negative log-likelihood (-LL) as a measure of model 283 

fit. Lower values reflect better model fit.  284 

To assess reliance on model-based and model-free control over first-stage choices separately, 285 

we calculated 𝛽,-  and 𝛽,3	 by multiplying the first-stage stochasticity parameter 𝛽N  with 286 

weighting parameter	𝜔, such that 𝛽,- = 𝛽N* 𝜔 and 𝛽,3 = 𝛽N* (1 − 𝜔)16,54. Note, the resulting 287 

parameters were not normally distributed. For the sake of completeness, we also inferred the 288 

equivalent version of the model with separate ß’s for MF and MB directly from the data 54 289 

instead of re-computing the ß’s from 𝜔. 290 

We assessed group differences in 𝜔 using ANOVA with between-group factor weight status, 291 

as well as in 𝛽,- and 𝛽,3	using Kruskal-Wallis test by ranks. Planned pairwise comparisons 292 

were performed as part of the ANOVA or using Mann-Whitney U test as a nonparametric 293 

alternative. For each of these analyses, the alpha level was set at .05. Finally, we investigated 294 

the relationship between these performance measures and weight status on a continuous 295 

scale by running a post hoc linear regression model for each. Each model included BMI and 296 

BMI2 as orthogonal predictors. The dependent variables in the three models were 𝜔, 𝛽,- and 297 

𝛽,3. 298 

After having detected between-group differences on the model parameters’ of interest, an 299 

important sanity check is whether the inferred parameters actually reproduce the observed 300 

behavioural data in terms of stay probabilities. To do so, we re-ran the model based on each 301 

individual’s inferred parameters to generate data for each individual (1000 simulations per 302 

subject) and performed the original ANOVA.  303 
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Results 304 

Characterization of the groups 305 

Table 1 summarizes the weight groups (normal-weight (NW), overweight (OW), and obese 306 

(OB)) in terms of age, sex and BMI, as well as in terms of their scores on the cognitive tests 307 

and self-report questionnaires. The groups were well matched on sex and age, and did not 308 

differ in visual short-term memory (VPA), or non-verbal IQ as measured on the Viennese 309 

Matrices Test (VMT). However, a trend-level group difference was observed for non-verbal IQ, 310 

with numerically higher IQ scores for the normal-weight and overweight relative to the obese 311 

group (Table 1). We did observe a group difference in the average number of depressive 312 

symptoms (KW(2) = 11.5, p = .003, h²H = .11) even though the scores are not clinically relevant 313 

in the current sample. This difference was driven by the obese participants having a higher 314 

symptom score relative to normal-weight, but not overweight, participants (post hoc pairwise 315 

comparisons: NW vs. OB, p = .004; OW vs. OB, p = .137; NW vs OW, p = .254). The average 316 

number of food addiction symptoms also differed between the groups (KW(2) = 17.3, p < .001, 317 

h²H = .18), again, driven by a higher number of symptoms for obese relative to normal-weight, 318 

but not overweight, participants (post hoc pairwise comparisons: NW vs. OB, p < .001; OW vs. 319 

OB, p = .159; NW vs OW, p = .242). In terms of self-reported eating behaviour (TFEQ) the 320 

groups differed in disinhibition (KW(2) = 16.9, p < .001, h²H = .17) and restraint (KW(2) = 7.2, p 321 

= .027, h²H = .06). Disinhibition scores were higher for obese relative to both normal-weight and 322 

overweight participants and somewhat higher for overweight relative to normal-weight 323 

participants (post hoc  pairwise comparisons: NW vs. OB, p < .001 ; OW vs. OB, p = .010; NW 324 

vs OW, p = .076). Restraint scores were highest for overweight participants and lower for 325 

normal-weight, but not obese participants (post hoc  pairwise comparisons: NW vs. OB, p < 326 

.375 ; OW vs. OB, p = .374; NW vs OW, p = .013). No other group differences were observed.  327 

 328 

Raw behaviour according to first-stage stay probabilities  329 

Analysis of stay probabilities (Figure 2a) revealed that participants’ first-stage choices were 330 

significantly affected by reward (main effect Reward: F(1,87) = 27.2, p < .001, hp
2 = .238) as 331 

well as by the combination of reward and transition probability (interaction Reward x Transition: 332 

F(1,87) = 183.4, p < .001, hp
2 = .678) on the previous trial. This is in line with previous research 333 

25,30 and suggests that, across groups, the participants relied on both model-based and model-334 

free choice strategies, respectively. Transition probability alone did not significantly affect 335 

participants’ first-stage choices (Transition: F(1,87) = 3.4, p = .070, hp
2  = .037).  336 

The weight groups significantly differed in the use of a model-based choice strategy (Figure 337 

2b) as reflected by a significant three-way Group x Reward x Transition interaction on stay 338 
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probabilities (F (2,87) = 4.3, p = .017, hp
2 = .090), but not in the use of a model-free choice 339 

strategy (Group x Reward: F (2,87) = 1.8, p = .174, hp
2 = .039, Figure 2c). Planned 340 

comparisons of the Reward x Transition interaction between groups showed that the three-341 

way interaction was driven by a significantly higher interaction term for normal-weight relative 342 

to obese (p = .017) and for overweight relative to obese (p = .010) participants, whereas 343 

normal-weight and overweight participants did not differ from each other (p = .817).  344 

We observed no Group x Transition interaction (F (2,87) = 1.2, p = .297, hp
2 = .028), nor a main 345 

effect of Group (F (2,87) = 1.7, p = .187, hp
2 = .038) on stay probabilities. These results suggest 346 

that choices of obese participants relied relatively less on model-based control than those of 347 

normal-weight and overweight participants. 348 

Table 1. Group characteristics displaying mean (standard deviation) and range if not 349 

otherwise stated, followed by the test-statistic and p-value of group comparison for 350 

each measure.  351 

  
Normal-weight  Overweight Obese  p 

test-
statisti

c 
n 31 29 30   
sex (F:M) 16:15 14:15 15:15 ns 0.07c 
age 26.9 (3.3) 21-34 26.0 (3.7) 21-35 27.8 (3.8) 22-34 .166 1.8F 
BMI (kg/m2) 21.6 (1.8) 18.4-24.8 26.9 (1.3) 25.1-29.9 35.4 (4.5) 30.2-47.6 <.001 79.1KW 

Cognitive tests  
Non-verbal IQ$ 119.

9 
(12.1) 95.0-

136.5 
117.

3 
(10.6) 93.0-136.5 111.

2 
(16.4) 85.0-

136.5 
.084 5.0KW 

VPA score 12 (3.9) 3-18 13.2 (3.1) 7-18 12.2 (3.2) 6-18 .381 1.0F 

Self-report questionnaires  
BDI  3.6 (3.3) 0-14 4.9 (3.2) 0-11 6.8 (4.2) 0-17 .003 11.5KW 
BIS/BAS            
   BIS 20.0 (3.4) 14-28 19.8 (4.3) 11-27 19.5 (4.0) 7-27 .884 0.1F 
   BAS drive 12.1 (2.1) 7-16 12.0 (1.8) 9-16 11.5 (1.7) 8-16 .449 0.8F 
   BAS fun 12.1 (1.8) 9-16 12.0 (1.8) 8-15 12.0 (1.9) 8-16 .972 0.03F 
   BAS reward 16.8 (2.0) 12-20 17.0 (2.1) 11-20 16.0 (2.0) 10-19 .141 2.0F 
TFEQ            
   Restraint 5.0 (3.2) 0-15 8.1 (4.6) 0-18 6.4 (4.7) 0-18 .027 7.2KW 
Disinhibition 4.9 (2.1) 0-9 6.3 (3.3) 2-15 8.3 (3.3) 3-16 <.001 16.9KW 
   Hunger 5.7 (3.3) 1-13 5.1 (4.1) 0-13 7.1 (3.4) 1-14 .066 5.4KW 
UPPS            
   Urgency 26.8 (5.8) 15-42 25.4 (5.1) 17-36 27.7 (6.6) 13-39 .314 1.2F 
   (lack of)  
Premeditation 

22.2 (4.1) 12-31 22.7 (4.6) 16-36 22.3 (4.0) 12-29 .904 0.1F 

  (lack of) 
Perseverance 

20.1 (6.0) 12-44 19.4 (5.6) 10-34 21.3 (5.3) 12-34 .438 0.8F 

   Sensation  
   seeking 

31.8 (6.6) 18-44 31.6 (8.5) 17-48 28.0 (7.4) 14-40 .090 2.5F 

YFAS 
 (#symptoms) 

0.8 (0.7) 0-2 1.3 (1.4) 0-7 1.9 (1.0) 0-4 <.001 17.3KW 

Abbreviations: n = number of participants; F:M = the ratio of females to males; VPA = Visual Paired Associates test 352 
of the Wechsler Memory Scale; BDI = Beck’s Depression Inventory; BIS/BAS = Behavioural Inhibition System / 353 
Behavioural Activation System; TFEQ = Three-Factor Eating Questionnaire; UPPS = Urgency, lack of 354 
Premeditation, lack of Perseverance, and Sensation seeking; YFAS = Yale Food Addiction Scale.  355 
$Non-verbal IQ was calculated based on the Viennese Matrices Test (VMT).  356 
c Chi square test for frequency data (degrees of freedom: 2).  357 
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F F-test with for normally distributed scores (degrees of freedom: 2,87).  358 
KW Independent-Samples Kruskal-Wallis Test of distributions for non-normally distributed scores (degrees of 359 
freedom: 2).  360 
 361 
 362 
Post hoc simple effects analyses were performed to further investigate the three-way 363 

interaction on stay probabilities and revealed a striking difference between the groups. 364 

Interestingly, we observed a Group x Reward interaction for rare (F(2,87) = 4.2, p = .018), but 365 

not common trials (F(2,87) < 1, p = .497). This in turn was driven by a simple main effect of 366 

Group on stay probabilities following rewarded rare trials (F(2,87) = 4.6, p = .012), but not 367 

unrewarded rare trials (F(2,87) < 1, p = .688). The simple effect of Group was also reflected in 368 

a Group x Transition interaction for rewarded (F (2,87) = 3.8, p = .026), but not unrewarded 369 

trials (F (2,87) = 2.4, p = .100). Finally, pairwise group comparisons of rewarded rare trials 370 

showed that obese participants were more likely to stay with their previous first-stage choices 371 

when a rare trial had been rewarded relative to normal-weight (t(59) = -2.5 , p = .014) and 372 

overweight participants (t(57) = -2.9 , p = .006), with no difference between normal-weight and 373 

overweight participants (t(58) = 0.3, p = .766). This is of interest because it is participants’ 374 

behaviour following rare trials that allows us to dissociate model-based from model-free 375 

control. Increased staying after a rare rewarded trial hints at more model-free control, even 376 

though this effect was not sufficiently strong to come out as a significant interaction between 377 

Group and Reward. Nevertheless, it seems that the observed group difference in model-based 378 

control may in fact be driven by enhanced reliance on model-free computations (see 379 

Discussion for more).  380 

Next, we addressed the question if reliance on model-based and model-free control related to 381 

obesity in a linear and/or quadratic manner. Because the traditional weight categories of 382 

normal-weight, overweight and obese individuals reflect unequal intervals in terms of BMI, we 383 

turned to BMI as a continuous variable, even though the study was designed for group-based 384 

analyses. We ran two linear regression models including BMI and BMI2 as orthogonal 385 

predictors in each, and investigated their relationship with the (1) Reward x Transition 386 

interaction term, and (2) the main effect of Reward on stay probabilities. BMI related negatively 387 

to the Reward x Transition interaction term (bBMI = -.28, p = .007), but no additional quadratic 388 

relationship was observed (bBMI
2 = .10, p = .319)(Figure 2d). Together, BMI and BMI2 389 

explained a significant proportion of variance in the effect of Reward and Transition on choice 390 

strategy (adjusted R2 = .069, F(2,87) = 4.3, p = .017). In line with the absence of a Group x 391 

Reward effect on stay probabilities, we did not observe a linear or quadratic relationship 392 

between BMI and the main effect of Reward on stay probabilities (bBMI = .08, p = .463; bBMI
2 = 393 

.01, p = .892)(Figure 2e), nor did the model explain a significant proportion of variance (R2 = 394 

-.016, F (2,87) = 0.3, p = .756). 395 
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Figure 2. Stay probabilities. (a) Average stay probabilities per condition for each group. 397 

Error bars represent ±1 SEM. (b) On the group level, the use of a model-based choice 398 

strategy (i.e., the Reward x Transition interaction term) was lower for obese relative to 399 

normal-weight and overweight participants, whereas (c) the use of a model-free choice 400 

strategy (i.e., the main effect of Reward) did not differ significantly between groups. The 401 

box plots in (b) and (c) show the median and interquartile range for each group, with 402 

the black dot denoting the mean. (d) On the continuous level, the Reward x Transition 403 

interaction term was negatively related to BMI, with no additional significant quadratic 404 

relationship. (e) No linear or quadratic relationship was observed between BMI and the 405 

main effect of Reward. The scatter plots in (d) and (e) show the model fit (black line) and 406 

confidence interval (shaded) of the respective regression models with predictors BMI 407 

and BMI2. Individual data points are color-coded based on weight group for illustrative 408 

purpose.  409 

 410 

Computational modeling of choice behaviour  411 

Computational modeling of behaviour allowed us to take into account participants’ choices  412 

throughout the experiment rather than only considering the effect of the previous trial. For a 413 

summary of all parameters and group comparisons, see Table 2.  414 

The parameter w was of initial interest because it reflects participants’ relative reliance on 415 

model-based vs. model-free control. A purely model-based agent has an w of 1, whereas a 416 

purely model-free agent has an w of 0. As expected, we observed a significant group effect on 417 

w (F (2,87)  = 5.3, p  = .007, hp
2 = .109)(Figure 3a). Planned comparisons showed that the 418 

group effect on w was driven by higher values for normal-weight relative to obese (t(59) = 2.1, 419 

p = .042) and overweight relative to obese participants (t(57) = 3.1, p = .003). Although 420 

overweight participants numerically had the highest w values, there was no statistical 421 

difference with normal-weight participants (t(58) = -1.1, p = .265).  422 

To investigate the nature of the relationship between w and weight on a continuous scale (i.e., 423 

BMI), we again ran a post hoc regression model including the linear term BMI and quadratic 424 

term BMI2 as predictors. The linear term related negatively to values of w with lower values in 425 

individuals with a higher BMI (bBMI = -.23, p = .030), whereas the quadratic term did not 426 

significantly add to the model (bBMI
2 = -.005, p = .964)(Figure 3b). In total, the model explained 427 

3.1% of variance in w (adjusted R2 = .031, F (2,87) = 2.4, p = .093), which reflects only a small 428 

effect of BMI on reliance on model-based vs. model-free control.  429 

 430 
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431 

Figure 3. Relative reliance on model-based and model-free control (omega). (a) On the 432 

group level, omega was significantly lower for obese relative to normal-weight and 433 

overweight participants. The box plot reflects the median, interquartile range, and mean 434 

value (black dot) for each weight group. (b) On the continuous level, omega was 435 

negatively related to BMI, with no additional significant quadratic relationship. The 436 

scatter plot shows the model fit (black line) and confidence interval (shaded) of the 437 

regression model. Individual data points are color-coded based on weight group for 438 

illustrative purposes. 439 

 440 

Next, we investigated the reliance on model-based and model-free control separately by 441 

deriving bMB and bMF from the model parameters b1  and w. These ß’s reflect the stochasticity 442 

with which participants made first-stage choices; a high (low) value reflects low (high) 443 

stochasticity and thus stronger (weaker) reliance on that type of control. Because the resulting 444 

ß’s were not normally distributed, we performed non-parametric group analysis for each ß (bMB 445 

and bMF). Surprisingly, no group difference was observed for bMB (KW(2) = 1.7, p = .434, h²H < 446 

.001)(Figure 4a), nor for bMF (KW(2) = 3.9, p = .144, h²H = .02)(Figure 4b). However, continuous 447 

analyses revealed a significant positive linear, but not quadratic, relationship between bMF and 448 

BMI (bBMI = .247, p = .019; bBMI
2 = -.133, p = .199; adjusted R2 = .06, F (2,87) = 3.7, p = 449 

.028)(Figure 4d), whereas no significant relationship between bMB and BMI was observed (bBMI 450 

= -.008, p = .939; bBMI
2 = -.147, p = .169; adjusted R2 = -.0008, F (2,87) < 1, p = .386)(Figure 451 

4c).  452 

 453 
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 454 

Figure 4. Stochasticity of model-based and model-free choices (model 1). (a) No group 455 

difference was observed for bMB nor (b) bMF. The box plots in (a) and (b) reflect the 456 

median, interquartile range, and mean value (black dot) for each weight group. (c) On 457 

the continuous level, no linear or quadratic relationship was observed between BMI and 458 

bMB. (d) A positive linear relationship was observed between BMI and bMF reflecting 459 

reduced stochasticity of model-free choices with higher BMI. The scatter plots in (c) and 460 

(d) show the model fit (black line) and confidence interval (shaded) of the regression 461 

models. Individual data points are color-coded based on weight group for illustrative 462 

purposes.  463 

 464 
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For the sake of completeness, we also inferred the equivalent version of the model with 465 

separate ß’s for MF and MB directly from the data 54 instead of re-computing the ß’s from w. 466 

The model was otherwise identical to the original model including w (Supplemental Table 1) 467 

and yielded highly similar results as described in the previous paragraph. There was a slight 468 

group difference in bMB at trend level (KW(2) = 5.4, p = .067, h²H = .04), but no difference in bMF 469 

(KW(2) = 3.6, p = .165, h²H = .02). On a continuous level, bMF was again linearly related to BMI 470 

(bBMI = .249, p = .018; bBMI
2 = -.072, p = .492; adjusted R2 = .046, F (2,87) = 3.1, p = .046), and 471 

no relationship was observed between bMB and BMI (bBMI = -.084, p = .432; bBMI
2 = -.077, p = 472 

.470; adjusted R2 = -.010, F (2,87) < 1, p = .565)(Supplemental Figure 2).  473 

None of the other model parameters differed significantly between the groups (model 1: Table 474 

2; model 2: Supplemental Table 1). This indicates that the groups did not differ in terms of 475 

first or second stage learning rates (a1, a2), stochasticity of first or second stage choices (b1, 476 

b2), the tendency to persevere independent of reward or transition (r), the eligibility parameter 477 

(l), and importantly, how well the model fit participants’ data (-LL). 478 

Table 2. Summary and group comparisons of all model parameters 479 

Para- 
meter Group Mean (SD) 

Quantiles test-
statistic p 25% 50% 75% 

w NW 0.66 (0.09) 0.58 0.68 0.72 
5.3F .007 OW 0.68 (0.09) 0.63 0.68 0.75 

OB 0.60 (0.11) 0.52 0.60 0.70 
a1 NW 0.47 (0.17) 0.33 0.48 0.63 

<1KW .867 OW 0.47 (0.21) 0.34 0.55 0.65 
OB 0.46 (0.29) 0.23 0.42 0.73 

a2 NW 0.54 (0.23) 0.41 0.62 0.70 
<1F .560 OW 0.56 (0.19) 0.47 0.56 0.68 

OB 0.50 (0.21) 0.35 0.50 0.70 
b1 NW 7.7 (2.6) 5.3 7.8 9.0 

1.6KW .447 OW 9.0 (4.0) 6.3 8.1 10.7 
OB 8.6 (3.2) 6.9 7.6 11.3 

b2  NW 4.3 (1.7) 2.8 4.1 5.4 
<1KW .955 OW 4.0 (1.2) 3.2 4.2 4.8 

OB 5.2 (3.7) 3.3 4.0 5.4 
l NW 0.53 (0.23) 0.36 0.54 0.71 

<1F .967 OW 0.53 (0.18) 0.38 0.56 0.69 
OB 0.55 (0.22) 0.41 0.55 0.69 

r NW 0.14 (0.05) 0.10 0.14 0.18 
3.0F,# .057 OW 0.14 (0.04) 0.11 0.13 0.16 

OB 0.15 (0.06) 0.13 0.16 0.18 
-LL NW 175.7 (40.9) 141.1 174.0 207.6 

1.5F .225 OW 169.8 (44.8) 137.8 157.4 188.6 
OB 155.7 (50.7) 128.3 157.9 193.3 

NW = normal-weight  480 
OW = overweight  481 
OB = obese  482 
F F-test for normally distributed parameters (degrees of freedom: 2,87).  483 
KW Independent-Samples Kruskal-Wallis Test of distributions for non-normally distributed parameters (degrees of 484 
freedom: 2). #One formal outlier was observed in the obese group and excluded from the analysis of this 485 
parameter (degrees of freedom: 2,86).   486 

 487 
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Finally, we ran simulation recovery analyses for both models to assess whether the model 488 

parameters captured the observed behavioural data. Based on the estimated parameters, we 489 

simulated choice behaviour on the task and investigated stay probabilities. For both models, 490 

the reported significant Group x Reward x Transition interaction was fully reproduced indicating 491 

that the model captured important aspects of the data. 492 

 493 

Correcting for age and IQ 494 

To check the robustness of our findings and rule out that the observed group differences could 495 

be explained by age 21,49,50 or IQ 16,21,51,52 rather than weight status, we reran all models post 496 

hoc including age and non-verbal IQ as covariates of no interest. In case of nonparametric 497 

tests, the analyses were performed after having regressed out age and non-verbal IQ from the 498 

dependent variables using linear regression.  499 

Adding the covariates did not change the results qualitatively - the outcomes were largely in 500 

line with the original analyses and suggest that weight status, over and above age and IQ, 501 

explains unique variance in the degree to which individuals rely on measures of model-based, 502 

and possibly model-free, control (see Supplemental Table 2 for a graphical overview of the 503 

outcomes of all analyses of interest). Notably, the reported group differences in model-based 504 

control, as observed in stay probabilities, and the relative reliance on model-based and model-505 

free control, as reflected in the model parameter w, were relatively robust when correcting for 506 

age and non-verbal IQ. However, the pairwise comparison in model-based control between 507 

normal-weight and obese participants did not reach significance. Furthermore, on the 508 

continuous level we observed a similar negative relationship between BMI and model-based 509 

control (stay probabilities) and again a positive relationship between BMI and model-free 510 

control (bMF ) for both computational models (see Supplemental Materials for statistics).  511 

 512 

Discussion 513 

The aim of this study was to investigate the relationship between weight status (i.e., normal-514 

weight, overweight, and obese) and reliance on model-based and model-free control in the 515 

two-step task 16,25,30. Our results indicate that obese participants relied less strongly on model-516 

based control than overweight and – to a lesser extent – normal-weight participants, with no 517 

difference in performance between overweight and normal-weight participants. This was 518 

observed in group analysis of participants’ choice behaviour (i.e., stay probabilities), as well 519 

as in the continuous analysis where BMI negatively related to model-based choice behaviour. 520 
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No quadratic relationship with BMI was observed. Furthermore, computational modeling of 521 

participants’ choices revealed a similar group difference in the weighting of model-based and 522 

model-free control (i.e., w) that was driven by less model-based (vs. model-free) control for 523 

obese relative to overweight and normal-weight participants. Secondary continuous analyses 524 

of the randomness of participants’ choices, captured by the model parameters ßMB and ßMF, 525 

instead revealed a positive linear relationship with model-free, not model-based, control. This 526 

relationship was not observed at the group level.  527 

Although seemingly contradictory, together these findings may in fact suggest that the 528 

observed obesity-related difference in model-based control is driven, in part, by enhanced 529 

reliance on model-free computations. This interpretation concurs with our post hoc simple 530 

effects analyses of stay probabilities, which revealed that the group difference in model-based 531 

control was driven by an increased inclination of obese (relative to normal-weight) to stay with 532 

their choice specifically after trials on which a rare transition led to reward. Rare trials are the 533 

trials of interest in this task, because performance following rare trials is used to dissociate 534 

model-based from model-free choices. Common trials on the other hand lead to the same 535 

decision in model-based and model-free agents. The group difference was only observed for 536 

rewarded, not unrewarded rare trials. We speculate that obese individuals may more easily fall 537 

back on model-free control, or in other words be more reactive after having been rewarded 538 

than normal-weight participants, whilst relying similarly on model-based control in the case of 539 

no reward. The current task is not designed to address this subtle effect, which could explain 540 

why it was not reflected in a group difference in model-free control in the analysis of stay 541 

probabilities as well as of ßMF. 542 

Our findings are in contrast to those of a previous study by Voon et al. 19 using the same 543 

paradigm. When comparing non-obese controls and obese participants with and without binge-544 

eating disorder, Voon et al. 19 reported no difference in the weighting parameter w between 545 

obese participants without binge-eating disorder and non-obese controls, whereas w was on 546 

average lower for obese participants with binge-eating disorder relative to matched non-obese 547 

controls. Interestingly, our findings in healthy obese participants better match the previous 548 

findings in obese participants with binge-eating disorder. It should be noted however that w, 549 

and thus the reliance on model-based over model-free control, was much higher in the current 550 

study (mean (SD) omega: 0.6 (0.11) vs. 0.3 (0.24), range = 0-1). The discrepancy between the 551 

studies can be explained by several factors. First, the current study tested a more severely 552 

obese group than the Voon-study with a mean BMI of 35.4 kg/m2 (SD: 4.5) vs. 31.5 kg/m2 (SD: 553 

3.6). In fact, in terms of BMI our sample was closer to the binge-eating group (mean 554 

BMI[kg/m2]: 35.0, SD: 5.6). It may thus be the case that the reported finding of a lower 555 

weighting parameter w in binge-eating disorder in the Voon-study can partially be explained 556 
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by the severity of obesity. Alternatively, the obese participants in our sample might 557 

unbeknownst fulfill criteria for binge-eating disorder, as we did not conduct a full psychiatric 558 

screening. Second, we included an intermediate weight group for increased sensitivity to 559 

detect group differences and potential quadratic effects that might otherwise remain 560 

uncovered. The group difference in model-based control in the current study was indeed 561 

mostly driven by the difference between overweight and obese participants. We therefore 562 

recommend that cognitive studies of obesity should include a wide BMI range, preferably also 563 

sampling severe to morbid obesity to assess for quadratic relationships, and to carefully 564 

disentangle between contributions of weight status and compulsive measures such as binge-565 

eating symptoms.  566 

The observed difference in reliance on model-based control in obesity generally concurs with 567 

previous outcome devaluation studies in relation to obesity that found reduced goal-directed 568 

control 13,14. Goal-directed and model-based control are often equated 11 and have been found 569 

to relate, albeit weakly 15–17. However, the concepts measured in the two types of tasks do not 570 

reflect the exact same constructs. Whereas the two-step task is designed to dissociate model-571 

based and model-free control, it is difficult to disentangle reliance on goal-directed and habitual 572 

control in outcome devaluation paradigms in humans. Goal-directed and habitual control are 573 

thought to be organized hierarchically rather than in parallel. That is, the goal-directed system 574 

may benefit from habits in goal-pursuit and thus rely on the habit system 55, and the habit 575 

system may affect what goals are selected and pursued by the goal-directed system 56. 576 

Empirical evidence for the existence of such hierarchies comes from a new generation of 577 

sequential decision-making tasks 57–59. It will be relevant for future studies to focus on habitual 578 

goal-selection in the context of obesity, as has been suggested for addiction and other 579 

disorders of compulsivity 56, and investigate if it relates more closely to maladaptive eating 580 

behaviour in daily life.  581 

The current study has several limitations. First, the dataset was collected in two parts with a 582 

sampling bias in terms of group and sex (see Supplemental Figure 1). Due to this bias we 583 

could not meaningfully account for sex and sample (2012-2014 vs. 2018) as covariates of no 584 

interest, because variance explained by sample and weight group or sample and sex cannot 585 

be disentangled in our design 60. However, the task was identical in both sampling periods and 586 

administered in very similar lab spaces within the department. More importantly, extensive 587 

computerized instructions were implemented to minimize variability in performance due to 588 

differences in instructions between experimenters. We are therefore fairly confident that the 589 

observed group differences in model-based and model-free control in the task are not 590 

confounded by sampling period. Second, as emphasized above, the observed group 591 

differences are subtle with modest effect sizes and await replication. We speculate that these 592 
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differences may be more pronounced when taking into account participants’ diet rather than 593 

obesity. Rodent studies suggest that rather than obesity, the intake of high fat and/or sugar 594 

diets may better predict alterations in dopamine-transmission 61–66. We expect these changes 595 

to be at the heart of the maladaptive behavioural control in obesity 24 and there is accumulating 596 

evidence that different measures and manipulations of dopamine transmission overall related 597 

positively to model-based control as measured in the two-step task 25–29. Whether diet rather 598 

than obesity relates to maladaptive behavioural control needs to be addressed in further 599 

studies. A third limitation is that, although the continuous analyses converge with the observed 600 

group differences in model-based control and strengthens the conclusion that obesity is indeed 601 

associated with altered reliance on model-based vs. model-free control, the design of the 602 

current study was not optimal for this type of analysis. BMI was not equidistributed across the 603 

complete sample due to the group-based recruitment-strategy. Hence, the current study might 604 

have been underpowered to robustly show true effects between BMI and behavioural control 605 

strategies on a continuous level. In particular the linear relationship between BMI and model-606 

free control needs to be interpreted with care, as we did not observe this effect in the group-607 

based analysis. Despite these limitations, the findings from our two independent analysis 608 

approaches did converge. That is, analysis of raw choice behaviour in terms of stay 609 

probabilities and of parameters from the computational modeling (w, ßMB, ßMF) both point to 610 

alterations in the reliance on model-based vs. model-free control in obesity. Simulation 611 

recovery analysis of the parameter estimates of the computational models further strengthened 612 

our confidence in the observed findings, because it recovered the observed three-way 613 

interaction between group, reward and transition probability on stay probabilities.  614 

In conclusion, we found evidence for a relationship between the degree of obesity and reliance 615 

on model-based and model-free control relative to overweight and normal-weight participants, 616 

which was linear rather than quadratic in nature. Obesity was associated with relatively lower 617 

model-based control compared to normal-weight and overweight. The estimates of model-free 618 

control from the computational modeling approach were consistently higher with increased 619 

BMI. Together, these findings suggest that it is a combination of decreased model-based and 620 

increased model-free control in this task that characterizes the obese group. Whether or not 621 

the observed effects are dopamine-mediated, as hypothesized, remains an open question that 622 

warrants further investigation, for example, by pharmacologically manipulating dopamine 623 

transmission, or investigating the interaction between BMI and individual differences in 624 

dopamine transmission in terms of genetic or epigenetic variation.  625 

 626 

 627 
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Supplemental Table 1. Summary and group comparisons of all parameters of model 2 826 

Para- 
meter Groups Mean (SD) 

Quantiles test-
statistic p 25% 50% 75% 

a1 NW 1.5 (2.5) 0.54 0.80 1.3 
<1.0KW .279 OW 0.62 (2.5) 0.48 0.80 1.5 

OB 6.1 (26.9) 0.26 0.54 1.1 
a2 NW 1.6 (6.3) 0.32 1.0 3.9 

<1.0KW .640 OW 0.90 (2.4) 0.40 1.2 1.7 
OB -1.1 (8.3) -0.12 0.65 1.1 

bMB NW 5.0 (2.5) 2.7 4.3 6.9 
5.4KW .067 OW 5.9 (3.0) 3.8 5.3 7.8 

OB 4.4 (2.3) 2.8 3.9 5.3 
bMF  NW 2.5 (0.74) 1.9 2.3 2.8 

3.6KW .165 OW 2.5 (0.95) 2.0 2.3 2.8 
OB 3.1 (1.3) 2.1 2.8 3.9 

b2 NW 4.3 (1.7) 2.9 4.2 5.3 
<1.0KW .979 OW 4.1 (1.2) 3.1 4.2 4.9 

OB 5.2 (3.8) 3.2 4.0 5.4 
l NW 1.4 (12.7) 0.38 0.73 1.7 

<1.0KW .990 OW 2.0 (4.7) 0.53 0.75 3.2 
OB -1.9 (13.3) 0.39 0.80 1.7 

r NW 1.0 (0.44) 0.70 0.97 1.4 
5.3KW .069 OW 1.2 (0.56) 0.89 1.2 1.4 

OB 1.2 (0.66) 0.88 1.4 1.6 
-LL NW 175.5 (40.9) 139.7 173.5 207.3 2.3KW .316 

OW 166.5 (41.4) 137.5 157.4 188.6 
OB 155.6 (50.5) 128.8 157.4 192.8 

NW = normal-weight  827 
OW = overweight  828 
OB = obese  829 
KW Independent-Samples Kruskal-Wallis Test of distributions for non-normally distributed parameters (degrees of 830 
freedom: 2).   831 
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Supplemental Table 2. Overview of the outcomes of the analyses of interest. The study 832 

was designed primarily for group-based analysis (left column), but also permitted 833 

secondary continuous analysis of BMI (right column). The colors highlight whether the 834 

measure reflects model-based (blue) or model-free control (yellow), or relative reliance 835 

on model-based and model-free control (green). For each measure, the original analysis 836 

is reported (bright shade) as well as the covariate analysis with covariates age and non-837 

verbal IQ (light shade).   838 

  
 Group-based (primary) Continuous (secondary) 

Behavioral     
Stay probabilities   

Interaction  
Reward x 
Transition 

MB 
ANOVA ! 

OB<[OW,NW] BMI & BMI2 ! 
negative linear 

with covariates  !^ 

OB<[OW,NW^] with covariates  ! 
negative linear 

Main effect 
Reward 
 

MF 
ANOVA X BMI & BMI2 X 

with covariates  X with covariates  X 

Computational modelling   
Model 1      

w MB vs. 
MF 

ANOVA ! 

OB<[OW,NW] BMI & BMI2 ! 
negative linear 

with covariates ! 

OB<OW with covariates X 

bMB  MB 
Kruskal-Wallis X BMI & BMI2 X 

Covariates 
regressed out X with covariates !^ 

negative quadratic 

bMF MF 
Kruskal-Wallis X BMI & BMI2 ! 

positive linear 
Covariates 

regressed out 
!^ 

OB>NW with covariates ! 
positive linear 

Model 2      

bMB  MB 
Kruskal-Wallis !^ 

 BMI & BMI2 X 
Covariates 

regressed out X with covariates X 

bMF MF 
Kruskal-Wallis X BMI & BMI2 ! 

positive linear 
Covariates 

regressed out X with covariates ! 
positive linear 

MB = model-based 839 
MF = model-free 840 
NW = normal-weight  841 
OW = overweight  842 
OB = obese  843 
! = a statistical difference is observed 844 
X = no statistical difference is observed 845 
^ observed difference at trend level  846 
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Post hoc covariate analysis 847 

See Supplemental Table 2 for a graphical overview of the outcomes of all analyses of interest. 848 

We found that the reported group differences in model-based control as observed in stay 849 

probabilities and the relative reliance on model-based and model-free control as reflected in 850 

the model parameter w were robust when correcting for age and non-verbal IQ. That is, we 851 

still observed a Group x Reward x Transition interaction at trend level (F (2,85) = 2.6, p = .080, 852 

hp
2 = .058), that was driven by a larger interaction term for overweight relative to obese 853 

participants (p = .048), and a similar trend for normal-weight relative to obese participants (p 854 

= .052). The three-way interaction was again complemented by the continuous analysis, which 855 

showed a negative linear, but no quadratic relationship between BMI and the Reward x 856 

Transition interaction term (bBMI = -.533, p = .018, bBMI
2 = .143, p = .512, R2 = .141, F(4,85) = 857 

4.7, p = .002). Also the absence of a group difference on model-free control in terms of stay 858 

probabilities was unaltered, as no Group x Reward interaction was observed (F (2,85) = 2.3, p 859 

= .121, hp
2  = .048), nor a significant relationship between BMI and the main effect of reward in 860 

continuous analysis (bBMI = .083, p = .456; bBMI
2 = .006, p = .956, R2 = -.030, F (4,85) = 0.3, p 861 

= .844). Furthermore, the group difference in w was still significant (F(2,85) = 3.3, p = .044, hp
2 862 

= .071) and was driven by lower reliance on model-based vs. model-free control for obese 863 

relative to overweight individuals (p = .013). In contrast to the original analysis, no significant 864 

difference was observed between obese and normal-weight participants (p = .119). On the 865 

continuous level, the linear relationship between BMI and w was no longer significant when 866 

adding the covariates (bBMI = -.17, p = .102; bBMI
2 = -.053, p = .605, adjusted R2 = .111, F (4,85) 867 

= 3.8, p = .007). 868 

Covariate analysis of the model parameters bMB and bMF now revealed a group difference in 869 

bMF  at trend level (KW(2) = 5.0, p = .081), which was driven by a significantly higher bMF  for 870 

obese relative to normal-weight (p = .023), but not overweight participants, whereas still no 871 

group difference was observed for bMB (KW(2) = 2.2, p = .336). These findings were 872 

complemented by continuous analysis of BMI and bMB and bMF. That is, the group difference in 873 

bMF was reflected in a significant positive relationship with BMI as before (bBMI = .269, p = .010; 874 

bBMI
2 = -.128, p = .202; adjusted R2 = .141, F (4,85) = 4.6, p = .002), whereas the absence of 875 

a group effect on bMB could  in fact be explained by a quadratic relationship with BMI at trend 876 

level (bBMI = .061, p = .570; bBMI
2 = -.184, p = .083; adjusted R2 = .051, F (4,85) = 2.2, p = .077). 877 

However, only the positive relationship between BMI and bMF was robust against a slight 878 

change in the computational model (i.e., model 2) in which bMF and bMB were estimated 879 

separately(bBMI = .253, p = .016; bBMI
2 = -.056, p = .582; adjusted R2 = .042, F (2,87) = 2.9, p = 880 

.059).  881 
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Supplemental Figure 1. Overview of participants per group for the two test time frames. 882 

A large part of the dataset was acquired between 2012 and 2014 1,2 and consisted 883 

predominantly of normal-weight and overweight participants. Data acquisition was 884 

finally completed in 2018 by testing the remaining obese and overweight participants.  885 
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Supplemental Figure 2. Stochasticity of model-based and model-free choices (model 2). 895 

(A) On the group level, bMB  exhibited a group difference at trend level. (B) No group 896 

difference was observed for bMF. The box plots in A and B reflect the median, 897 

interquartile range, and mean value (black dot) for each weight group. (C) On the 898 

continuous level, no linear or quadratic relationship was observed between BMI and 899 

bMB. (D) A positive linear relationship was observed between BMI and bMF. The scatter 900 

plots in C and D show the model fit (black line) and confidence interval (shaded) of the 901 

regression models. Individual data points are color-coded based on weight group for 902 

illustrative purposes. 903 
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