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We describe the occurrence of electron temperature gradient driven micro-instabilities in the
helical states of RFX-mod reversed-field pinch plasmas. These plasmas are usually characterized
by the presence of large, radially localized electron temperature gradients. Using realistic geometry
and profiles, micro-tearing modes and electron-temperature-gradient modes turn out to regularly
coexist in the region of the temperature barrier. In the paper, we discuss the main features of such
instabilities, especially focusing on the distinctive aspects of the helical geometry with respect to
the toroidal symmetry.

I. INTRODUCTION

In the last years, there has been a remarkable effort
to characterize the reversed-field pinch (RFP) configura-
tion in terms of micro-instabilities and related turbulence
processes. The driving motivation is the development of
experimental scenarios with reduced large-scale magnetic
chaos, with ensuing better confinement properties of the
plasma. In the two major RFP experiments – MST and
RFX-mod – this has been obtained either suppressing the
overall spectrum of resonant tearing modes (by means
of pulsed-poloidal-current-drive techniques, in the MST
device [1]), or making the plasma evolve towards a he-
lical state (by increasing the plasma current, letting the
innermost resonant tearing mode grow until saturation,
and controlling the secondary modes, in the RFX-mod
device [2]).

In the previous studies, ion-temperature-gradient
(ITG) mode turbulence has been investigated initially,
finding a rather high stability threshold and strong zonal
flows, also in the presence of impurities [3–8]. After-
wards, the direct observation of fluctuations in the men-
tioned experimental scenarios has been characterized in
terms of microturbulence itself: trapped electron mode
(TEM) for the density fluctuations in MST, driven by
the high density gradients close to the edge region [9],
and microtearing mode (MTM) for the high-wavenumber
magnetic fluctuations in RFX-mod, driven by the elec-
tron temperature gradients in the region surrounding the
helical core [10, 11]. Concerning the latter case, we re-
mark that the modelling was based on an axisymmetric
approximation of the plasma, with the potentially crit-
ical consequences that such an approach could have on
the results. In fact, the inclusion of a proper geometric
treatment for the RFX-mod helical plasmas has already
revealed its importance for the estimate of the ITG mode
stability, zonal flows, and turbulent transport levels [12].

In this paper, indeed, we aim to address the role of
micro-instabilities in the region of the electron tempera-
ture barriers in helical RFX-mod configurations, dealing
with a full geometric description of the plasma and with
realistic plasma profiles. For this, we make use of mag-

A #28624, t = 85ms

s 0.40 0.45 0.50 0.55 0.60

q 0.125 0.123 0.121 0.117 0.112

ŝ -0.12 -0.27 -0.51 -0.83 -1.22

1/LTe 2.25 3.49 4.03 3.50 2.51

1/Lne 0.00 0.00 0.00 0.01 0.02

βe [%] 0.82 0.78 0.72 0.68 0.66

B #30843, t = 74ms

s 0.45 0.50 0.55 0.60 0.65

q 0.124 0.123 0.121 0.116 0.110

ŝ 0.01 -0.26 -0.66 -1.13 -1.70

1/LTe 1.70 4.94 8.03 3.28 2.56

1/Lne 0.00 0.01 0.01 0.02 0.04

βe [%] 0.74 0.70 0.59 0.52 0.52

TABLE I. Main parameters for two RFX-mod experimen-
tal cases at different radii: A (shot #28624) and B (shot
#30843).

netic equilibria reconstructed with the VMEC code [13],
assuming magnetic surface integrity everywhere. The
Eulerian gyrokinetic code GENE [14] is then used for
local electromagnetic linear analyses, linked to the 3D
equilibria by means of GIST [15], an interface code able
to provide the necessary geometric information for GENE
to work, mainly used for turbulence studies in the stel-
larator.

MTMs and electron-temperature-gradient (ETG)
modes turn out to be the most unstable modes in the
experimental scenarios chosen for our analysis. In this
work, we will characterize their typical wavenumbers,
amplitude and eigenfunction structures, as well as the
dependence on some basic macroscopic parameters like
the plasma β. Similarly to [12], to highlight the role of
the geometry, a comparison with an axisymmetric equi-
librium will be done. The entire work is focused on linear
results, but a discussion on the possible consequences on
electron heat transport will be included in the conclu-
sions of the paper.
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FIG. 1. RFX-mod shots #28624, t=85 ms (case A, left col-
umn), and #30843, t=74 ms (case B, right column): φ = 0
section of the equilibrium magnetic surfaces (1st row), q pro-
files (2nd row) and Te profiles (3rd row) as a function of the
normalized toroidal flux s. Shaded areas represent the radial
region subject to gyrokinetic analysis.

Aa (A → axisymmetric)

s 0.40 0.45 0.50 0.55 0.60

q 0.130 0.126 0.121 0.116 0.110

ŝ -0.51 -0.63 -0.79 -0.99 -1.26

TABLE II. Geometric parameters for the axisymmetric con-
figuration Aa.

II. HELICAL CONFIGURATIONS

The helical equilibria are reconstructed with the spec-
tral code VMEC [13]. Similarly to the approach carried
out in [12], the q profile is slightly modified in the plasma
edge keeping it positive. This adjustment of q allows us to
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FIG. 2. Geometric coefficients vs the longitudinal coordi-
nate z for cases A and B (blue and red, respectively), for
the stellarator-symmetric flux tubes α = 0 (solid lines) and
α = π/7 (dotted lines). The dashed lines in the lower frame
represent the global magnetic shear ŝ = 〈ŝloc〉z.

use the normalized toroidal flux s = ψt/ψt,edge as a radial
label (which would otherwise decrease with the poloidal
flux ψp in the region with q < 0), which is the coordi-
nate normally used by the numerical codes interfaced to
VMEC, including GIST. On the other hand, since the
RFX-mod helical states are characterized by a very shal-
low reversal (q(a) & −0.01), this modification impacts
just the last 2–3 centimeters at the edge, without alter-
ing at all the results in the core region.

In the paper, we will deal with two RFX-mod exper-
imental cases, called A and B, with the main features
summarized in Fig. 1. The two cases are both character-
ized by a helical configuration with seven-fold symmetry,
(m,n) = (1, 7), with a rather similar q but different Te
profile (the gradient is much larger in the case B). The
shaded areas represent the radial regions under investi-
gation, which are indeed characterized by the presence
of large temperature barriers. The Te profiles are built
from a mapping of the Thomson scattering data on the
VMEC equilbria. The resulting Te(s) profiles are suffi-
ciently well resolved at mid radius. On the other hand,
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FIG. 3. Linear GENE calculations of the growth rate γ and
real frequency ω for cases A (1st column) and B (2nd column)
at different radii, α = 0. Solid lines correspond to modes with
tearing parity (MTM), dashed line to modes with ballooning
parity (ETG).

the ion temperature is only partially known; based on
spectroscopic and neutral-particle-analyzer data [16], for
its profile we assume Ti/Te ∼ 0.7 in the core and Te ∼ Ti
in the edge, with a resulting lower ion temperature gra-
dient (approximately halved, in the region of the elec-
tron temperature barrier); concerning the following gy-
rokinetic results, we remark (and anticipate) that their
robustness has been checked against different plausible Ti
profiles, showing that the unstable modes (mainly MTM
and ETG) are scarcely coupled to ITG modes, which
are sub-dominant. Finally, the electron density profile
ne(s) is almost flat, as usual in most of the RFX-mod
experimental scenarios, including the helical states [16].
Some important parameters for the gyrokinetic analy-
sis are reported in Table I. Here, the (global) magnetic
shear is defined as ŝ = 2sq′(s)/q, the electron temper-
ature and density gradient as 1/LTe = −T−1

e dTe/d
√
s

and 1/Lne = −n−1
e dne/d

√
s, respectively, and the elec-

tron plasma beta as βe = 8πneTe/〈B〉2, where 〈·〉 is the
average on the surface s = const.

For the reconstruction of the flux tube domain, we
rely on the code GIST [15]. GIST provides a full ge-
ometric description of the metric tensor, curvature, Ja-
cobian and parallel gradients needed for the gyrokinetic
code GENE [14] to work. Starting from the VMEC co-
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FIG. 4. φ and A‖ eigenfunctions for case A at s = 0.5, for
different wavenumbers kyρs.
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FIG. 5. Growth rate and real frequency as a function of the
ballooning angle θ0 for case A, s = 0.45, at different binormal
wavenumbers kyρs, for the two stellarator-symmetric tubes
α = 0 (left) and α = π/7 (right). Solid lines correspond to
modes with tearing parity (MTM), dashed line to modes with
ballooning parity (ETG).

ordinates (s, ϑ, φ), with ϑ and φ the VMEC poloidal an-
gle and the cylindrical toroidal angle, the straight-field-
line poloidal angle is built from the VMEC stream func-
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FIG. 6. Dependence of the growth rate on kyρs for different
values of β (nominal experimental value, half of its value, and
zero), for case A, s = 0.45, α = 0 flux tube. Solid lines cor-
respond to modes with tearing parity (MTM), dashed line to
modes with ballooning parity (ETG). The dotted line repre-
sents modes with ballooning parity and positive real frequency
(ITG), appearing for β = 0 at low kyρs.
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FIG. 7. Growth rate as a function of the collisionality normal-
ized to the experimental value for case A, s = 0.45, α = 0 flux
tube. As usual, solid lines correspond to modes with tearing
parity (MTM), dashed line to modes with ballooning parity
(ETG).

tion λ, θ = ϑ + λ(s, ϑ, φ). The GIST coordinates are
triplets (x, y, z), defined as x = s1/2 (radial coordinate),
y = (s1/2/q) (qθ − φ)|s=s0 ≡ (s1/2/q)|s=s0 α (binormal
coordinate), z = θ (parallel coordinate).

As extensively discussed in [12], two stellarator-
symmetric flux-tubes can be reconstructed in our helical
state with seven-fold symmetry, (m,n) = (1, 7), one with
α = 0 and the other with α = π/7, centered in the out-
board mid-plane at φ = 0 section and in the outboard
mid-plane at φ = −π/7, respectively. In Fig. 2, some
important geometric quantities are shown as a function
of z for the α = 0 and α = π/7 tubes, for A and B; they
are the gxx and gyy components of the metric tensor,
the curvature ωk = (B̂

√
gxxκnorm + gxyκgeo)/g

xx (with
κnorm and κgeo the normal and geodesic components of
the field line curvature, respectively), and the local mag-
netic shear ŝloc = d(gxy/gxx)/dz, with the dashed lines
representing the values of the (global) magnetic shear,
given by ŝ = 〈ŝloc〉z = 2sq′(s)/q. The stellarator sym-
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FIG. 8. Comparison of helical (α = 0) and axisymmetric
growth rates (upper frames) and corresponding geometric co-
efficients (lower frames), case A (left) and B (right). In the
upper frames, solid lines correspond to modes with tearing
parity (MTM), dashed line to modes with ballooning parity
(ETG).

metry [17] of the flux tubes is indeed characterized by
the even symmetry of the above quantities with respect
to the longitudinal coordinate, and odd for other coef-
ficients, e.g., gxy. In Sec. III D we will discuss also the
comparison with an axisymmetric configuration. In that
case, the dependence on the binormal coordinate α is ab-
sent, i.e., every field line on an axisymmetric surface has
the same geometric features.

III. GYROKINETIC INVESTIGATIONS

A. Linear analysis with nominal plasma parameters

Based on the previously defined flux tube domain,
the code GENE can now be used to solve the gyroki-
netic equation in realistic conditions. Our linear simu-
lations include two fully kinetic species, without impuri-
ties. In order to resolve elongated eigenfunctions and long
tails in the electrostatic potential, a longitudinal domain
z ∈ [−48π,+48π] to z ∈ [−64π,+64π] has been assumed,
depending on the radial position and on the related global
magnetic shear, with a discretization of 64 grid points
per poloidal turn. In the parallel velocity and magnetic
moment space, we set (v‖, µ) ∈ [−3vth, 3vth]× [0, 9T/B],
with 64× 16 grid points. Parallel vector potential fluctu-
ations are included, as well as the electrostatic potential
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FIG. 9. (1st row) φ and A‖ MTM eigenfunctions for case A,
s = 0.45, kyρs = 1.5, and (2nd row) comparison with the
related axisymmetric geometric, s = 0.5, kyρs = 0.5.

ones. For our simulations we use a Landau-Boltzmann
collision operator, and the collision frequency is calcu-
lated assuming Zeff = 1.6, where Zeff =

∑
j njZ

2
j /ne

is the effective ion charge considering all the present
ion species j with charge state Zj and respective den-
sity nj . Convergence tests have been done to estab-
lish the correct range of hyper-diffusion, in particular in
the longitudinal coordinate z in order to damp unphys-
ical oscillations at high |z| without affecting much the
growth rate and real frequency of the mode. We inves-
tigate the occurrence of both tearing parity modes, with
φ(−x, y,−z) = −φ(x, y, z), A‖(−x, y,−z) = A‖(x, y, z),
and interchange parity modes, with opposite parity.

Out of the shaded region of Fig. 1, an overall stability
of the modes is found: the temperature gradients are
moderate, and the density profile is practically flat, with
1/Lne < 0.1 everywhere for s < 0.8, for both case A and
B. With such profiles, density gradient driven TEMs are
stable. As reported in [9], these modes become important
for large 1/Lne, but in RFX-mod the density gradients
are steep only in the very edge of the plasma, which is a
region out of the scope of this work.

Let us consider the shaded area of Fig. 1. Here, for
the α = 0 flux tube, a large set of modes is destabi-
lized by the temperature gradient, as shown in Fig. 3.
Let us investigate the case with kx = 0 first. We have
two branches, both characterized by modes propagat-

ing in the electron diamagnetic direction, ω < 0. At
low wavenumber, kyρi < 1 − 2, the modes are identi-
fied as MTMs. They have tearing parity, as shown in
Fig. 4, with elongated structure of the electrostatic po-
tential, and much more localized in A‖. Furthermore,
the growth rate increases with 1/LTe and β (the latter
dependency will be discussed in Sec. III B). The real fre-
quency is of the order of electron diamagnetic frequency
ω∗e. For higher wavenumbers, ETGmodes are dominant,
with opposite parity (even in φ, odd in A‖). In the lower
wavenumber range of this branch, kyρi ∼ 2, the structure
is still very elongated, mainly due to the low value of the
global magnetic shear. Around the peak wavenumber,
the structure is on the contrary more localized. Compar-
ing the two experimental cases, in A the two branches are
well separated, whereas in B, in particular at the radius
with the largest ∇Te, the MTM and ETG branches are
mixed: MTMs exist until large wavenumbers, and the
parity of the modes switches without a large change in
the real frequency.

Still focusing on the case kx = 0, the entire set of modes
is stable for the α = π/7 flux tube. Thus the partial
conclusion is that the modes are strongly unstable for the
tube centered around the region with higher flux surface
proximity (α = 0) and stable where the magnetic surfaces
are less densely packed (α = π/7). However, dealing only
with vanishing kx’s may lead to wrong conclusions. In
fact, expressing the radial wavenumber as kx = −ky ŝθ0,
if we look at the stability of the modes as a function of
the ballooning angle θ0, growth rates comparable to the
previous ones are found for non-vanishing θ0 in the case
α = π/7, see Fig. 5. For α = 0, a localization of positive
growth rates occurs for −2π . θ0 . +2π with a peak
at θ0 = 0, both for MTMs and ETG modes. On the
other hand, for α = π/7, the structure turns out to be
shifted to 5π . θ0 . 9π, peaking between 7π and 8π. A
similar localization is found for the neighboring surfaces,
depending on the value of q.

Without repeating the whole study in [12], mode struc-
ture and stability are strictly linked to the behaviour
of k⊥ = (gyy − 2ŝθ0g

xy + ŝ2θ20g
xx)1/2ky along the flux-

tube, in particular to its minima and the possible jumps
along the flux-tube, which are able to introduce hard
boundaries for the eigenfunctions via finite Larmor ra-
dius (FLR) suppression. To this aim, we recall that FLR
suppression of the modes occurs through the Bessel terms
J0(k⊥v⊥/Ω) in the linear gyrokinetic equation.

For α = 0, the minimum of k⊥ occurs at θ0 = 0, where
min(k⊥/ky) = (gyy|z=0)

1/2 (≃ 0.65 for the case in Fig. 5,
left side). For α = π/7, the minimum occurs for a finite
θ0, off-center in z (the minimum is ≃ 0.71 at θ0 ≃ 7.57 π,
see right side of Fig. 5). As is evident in the figure, the
growth rates and the real frequencies corresponding to
the peak values are comparable for the two flux-tubes,
being slightly larger (2 − 10%) in the α = 0 case, ul-
timately due to the toroidicity of the system. We will
compare these results with the corresponding ones in ax-
isymmetry in Sec. III D.
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We remark here that the localization in wavenumber
naturally brings to a localization in the real space. The
combination of the gij components in the expression of
k⊥ allows to identify the local maxima of gxx as a key
responsible for the local destabilization of the modes.
Even in the case θ0 = 0 (which prevents gxx from en-
tering directly the linear gyrokinetic equation), the min-
imum of gyy is strictly related to a maximum of gxx, as
gyy = (B2 + (gxy)1/2)/gxx in any field-aligned Clebsch
system. In the real space, the maxima of gxx = |∇x|2
correspond to the regions with highest magnetic surface
proximity. This proximity is higher along the helical
ridge of the magnetic surface, and lower on the opposite
side, where the surfaces are rarefied. Heuristically, in the
real space, densely packed surfaces cause the gradients
(measured in m−1) to increase, hence the instabilities to
grow. Finally, we point out that, in a helical RFP, the
tensor component gxx(z) is mainly affected by the helical
deformation and much less by toroidicity, which explains
the minor difference in growth rate and real frequency
between the two flux tubes in Fig. 5, as mentioned above.

B. Dependence on β

Microtearing modes are electromagnetic in nature,
therefore they are expected to be strongly dependent on
β. This dependence has been investigated in several pa-
pers, with increasing β found, in general, to be desta-
bilizing until a peak value, and stabilizing afterwards.
This has been discussed, e.g., in [18] for a slab geome-
try, and [19] for a spherical tokamak. Here, in Fig. 6, we
limit the analysis to experiment-like values, first keeping
the nominal β, then halving its value, and finally set-
ting β = 0. If β = βexp/2, the growth rate of the MTM
branch is approximately halved with respect to the case
with experimental β (solid lines). In the electrostatic
limit β = 0, as expected, MTMs are suppressed; here,
an ITG branch emerges, driven by the non-vanishing ion
temperature gradient (dotted line).

ETG modes (dashed lines) are destabilized by a finite
β especially in the low wavenumber range, 2 . kyρi . 10,
while they are scarcely destabilized at peak wavenumbers
and beyond: max(γ)β=βexp

and max(γ)β=βexp/2 differ by
0.73%, and the difference becomes 1.45% when compar-
ing the maximum γ at βexp and β = 0. We remark that
a similar slight destabilization of ETG modes has been
found in previous gyrokinetic simulations in the toka-
mak core [20] (isolating the effect of magnetic fluctua-
tions from that on the equilibrium), while older analytic
works have shown a stronger finite-β destabilization of
the toroidal ETG branch [21], in contrast to the stabiliz-
ing electromagnetic effect in slab geometry.

C. Dependence on collisionality

Now we artificially (and inconsistently) change the col-
lisionality while keeping the other parameters fixed, to
further characterize the instabilities. The result is shown
in Fig. 7 for two wavenumbers, one corresponding to the
MTM branch, the other to the ETG one. MTMs present
the usual trend versus νei, with a peak at large collision-
ality and stabilization afterwards [18]. In the collisionless
limit, stabilization is expected for the slab MTM. Con-
versely, γ > 0 is found here, in agreement with other
works dealing with realistic geometries, e.g., [7, 22–25].
ETG modes are destabilized by increasing collisional-

ities, again in general agreement with [20]. We remark
that in the region νei ∼ νei, exp, the dependence on the
collisionality itself is weak, and that a more important
destabilization is obtained for much more collisional plas-
mas.

D. Role of the geometry

In the paper [12], we compared helical and axisym-
metric RFP equilibria in detail, focusing on the role of
the geometric coefficients for the evaluation of ITG in-
stabilities and turbulence. Here, we partly repeat that
study with the same methodology, but focusing only on
instabilities driven by the electron temperature gradient.
Starting from the helical configurations A and B, we

build two axisymmetric VMEC equilibria using the q(s)
profiles obtained from the toroidal equilibrium model de-
scribed in [26]. The axisymmetric reconstructions pro-
vide monotonically decreasing q profiles with an associ-
ated negative magnetic shear everywhere across the ra-
dius. We call these cases Aa and Ba, respectively, where
the subscript “a” stands for axisymmetric. For such new
configurations, we impose the same plasma profiles as in
the helical configurations, i.e., the same functions ne(s)
and Te/i(s) (and related macroscopic quantities, like the
gradients 1/LTe/i

(s) and 1/Lne(s), and the plasma β(s)),
where s is now the normalized axisymmetric toroidal flux.
The idea here is to disentangle pure geometric effects
from profile effects, allowing to identify the different ge-
ometric mechanisms playing a role in the stability of the
modes, and eventually in controlling the turbulence lev-
els. The distinctive global parameters with respect to
the helical cases, i.e., q and the magnetic shear ŝ, are
summarized in Table II for case Aa.
The comparison between helical and axisymmetric

GENE results is shown in Fig. 8, where also the com-
parison of the gxx and gyy metric tensor components is
illustrated. Here, for simplicity, we focus on a single ra-
dial position. As is clear, the whole range of modes is
stabilized by moving to axisymmetry: for both cases,
MTMs and ETG modes are largely damped; indeed, in
case A we have a complete stabilization of small scale
ETG modes. Thus, as for the ITG counterpart, the ef-
fect of a change of geometry turns out to be very signif-
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icant for the evaluation of mode stability, and could be
even more meaningful in a nonlinear context. There are
global (flux-surface) and local (flux-tube) features asso-
ciated with the two configurations, which we are going to
discuss briefly together with their implications on mode
stability.

The most important global (flux-surface) feature is the
role of the magnetic shear ŝ. For the same surface s,
the magnetic shear differs in the two geometries. Espe-
cially in the region of the electron temperature barrier,
the helical |ŝ| is lower – vanishing somewhere, as shown
in [27] – than the axisymmetric shear. In the RFP, a large
|ŝ|, i.e., a small magnetic shear length Ls, provides both
MTM and ETG mode stabilization. As for the other
microinstabilities, the magnetic shear in general affects
the MTM stability, this dependence being largely deter-
mined by the background geometry under consideration:
in a slab plasma the instability grows with the shear until
a certain ŝmax > 0, with a stabilization afterwards [18]; a
similar trend is found in the RFP [23] and in the pedestal
top of MAST [22], while for the core of NSTX the most
unstable MTM is at ŝ ∼ 0 [28]. Concerning the ETG
instability, the effect of an increasing ŝ > 0 is to stabilize
the mode in the tokamak [20]; in the RFP, ETG modes
are generally stabilized for increasing |ŝ| (i.e., regardless
of the sign of ŝ), as has been checked also with GS2 ap-
plied to the simplified equilibrium model of [5].

The local (flux-tube) features associated with the two
classes of equilibria – helical and axisymmetric – com-
prise the dependence of the metric coefficients gij and
curvature ωk on the longitudinal coordinate z. As we
have seen in Sec. III A, in the helical geometry the higher
growth rates are strictly linked to the larger magnetic
surface proximity; the modes are more unstable than in
axisymmetry, but localized in the radial wavenumber kx.
Conversely, the axisymmetric results do not depend on a
specific flux-tube (i.e., on α), and weakly depend on θ0,
with γ(θ0) and ω(θ0) oscillating between a maximum at
θ0 = 0 and a minimum at θ0 = ±π, both for MTM and
ETG modes. The evaluation of the ratio k⊥/ky yields,

for θ0 = 0, min(k⊥/ky) = (gyy|z=0)
1/2 ≃ 1.76 in the ax-

isymmetric caseAa shown in Fig. 8 (left), to be compared
with the value (gyy|z=0)

1/2 ≃ 0.65 of the corresponding
helical configuration A at the same radius s, as seen in
Sec. III A. This, together with the shape of amplifica-
tion factor |k⊥(z)|/|k⊥(0)| implies a more effective FLR
suppression of the modes in axisymmetry.

Summarizing this section, axisymmetric RFPs are
characterized by lower growth rates and weak depen-
dence on the radial wavenumber. In the real space, this
corresponds to a weak toroidal ballooning structure cen-
tered around the outboard midplane. The distinctive
footprint of the helical RFP is, on the other hand, a sharp
helical ballooning structure. In order to understand the
consequences on the net heat fluxes and transport coef-
ficients, a nonlinear analysis is needed, which represents
a very challenging computational problem due to the in-
terplay between ion and electron Larmor radius scales,

to be addressed in a fully 3D context.

IV. CONCLUSIONS

In the region of the electron transport barrier, the heli-
cal states of RFX-mod reversed-field pinch plasmas turn
out to be characterized by the simultaneous presence of
MTMs and ETG modes. Based on the cases investigated
in the paper, the modes have separated scales if the elec-
tron temperature gradients have moderate values, and
become coupled when the gradients are large enough.
Therefore, although the helical states are certainly ap-
pealing in terms of reduced MHD turbulence and overall
better plasma performance, the large electron tempera-
ture gradients result in a drive for instabilities and turbu-
lence extending from ρe to ρi scales, especially effective
in the electron heat channel. The ion heat diffusivity is
negligible for both MTM and ETG turbulence indeed,
as well as the resulting particle diffusion, χi/χe ≪ 1,
D/χe ≪ 1.
The linear analysis made in this work focuses on some

global/local properties of the modes, on the dependence
on some crucial parameters like the plasma β and the
collisionality, and on the role played by the geometry.
Summarizing, the low magnetic shear across the barrier
destabilizes both MTMs and ETG modes, and the modes
themselves turn out to have a helical ballooning structure
along the flux tubes, being more unstable where the flux
surface proximity is higher. This is somewhat expected,
as a high surface proximity reflects on higher temperature
gradients in the real space, which is the basic drive for
the instabilities we are considering.
Compared to an axisymmetric configuration with the

same density and temperature profiles (i.e., changing
only the safety factor and the geometric coefficients), the
helical states are more prone to MTM and ETG insta-
bilites. However, this analysis does not allow to draw
conclusions on the transport levels in the two geome-
tries: to shed light on the question “are helical configu-
rations better or worse than axisymmetric ones, in terms
of micro-turbulence driven transport?” we should per-
form nonlinear simulations at least in the two stellarator-
symmetric tubes and compare the resulting coefficients
to an axisymmetric case. As we saw in the ITG turbu-
lence case [12], the geometry plays an important role also
in the nonlinear processes (zonal flows, streamers, etc.),
and in the overall structure of the fluctuating field along
the flux tubes. A similar multiscale problem, with co-
existing MTM and ETG turbulence, has been recently
tackled in [29] for a tokamak plasma: there, due to the
breaking of the MTM current sheet structures caused
by electron-scale E ×B flows, the MTM flutter electron
heat transport turns out to be largely suppressed by the
ETG component. In our case, the plasma parameters
are different and the influence of the geometry could be
important, so a conclusive answer would come from ad
hoc 3D multi-scale simulations, but we are still far form
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that objective.

[1] J. S. Sarff, et al., Nucl. Fusion 55 (2015) 104006.
[2] R. Lorenzini, et al., Nat. Phys. 5, 570 (2009).
[3] S. C. Guo, Phys. Plasmas 15, 122510 (2008).
[4] F. Sattin, X. Garbet and S. C. Guo, Plasma Phys. Con-

trol. Fusion 52, 105002 (2010).
[5] I. Predebon, C. Angioni, and S. C. Guo, Phys. Plasmas

17, 012304 (2010).
[6] V. Tangri, P. W. Terry and R. E. Waltz, Phys. Plasmas

18, 052310 (2011).
[7] D. Carmody, M. J. Pueschel and P. W. Terry, Phys. Plas-

mas 20, 052110 (2013).
[8] I. Predebon, L. Carraro and C. Angioni, Plasma Phys.

Control. Fusion 53, 125009 (2011).
[9] J. R. Duff, Z. R. Williams, D. L. Brower, B. E. Chapman,

W. X. Ding, M. J. Pueschel, J. S. Sarff, and P. W. Terry,
Phys. Plasmas 25, 010701 (2018).

[10] I. Predebon, F. Sattin, M. Veranda, D. Bonfiglio, and S.
Cappello, Phys. Rev. Lett. 105, 195001 (2010).

[11] M. Zuin, S. Spagnolo, I. Predebon, F. Sattin, F. Au-
riemma, R. Cavazzana, A. Fassina, E. Martines, R.
Paccagnella, M. Spolaore, and N. Vianello, Phys. Rev.
Lett. 110, 055002 (2013).

[12] I. Predebon and P. Xanthopoulos, Phys. Plasmas 22,
052308 (2015).

[13] S. P. Hirshman and J. C. Whitson Phys. Fluids 26, 3553
(1983).

[14] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N.
Rogers, Phys. Plasmas 7, 1904 (2000).

[15] P. Xanthopoulos, W. A. Cooper, F. Jenko, Y. Turkin, A.
Runov, J. Geiger, Phys. Plasmas 16, 082303 (2009).

[16] F. Auriemma, R. Lorenzini, M. Agostini, L. Carraro, G.
De Masi, A. Fassina, M. Gobbin, E. Martines, P. Inno-

cente, P. Scarin, W. Schneider, M. Zuin, Nucl Fusion 55,
043010 (2015).

[17] R. L. Dewar and S. R. Hudson, Physica D112, 275-280
(1998).

[18] N. T. Gladd, J. F. Drake, C. L. Chang, and C. S. Liu,
Phys. Fluids 23, 1182 (1980).

[19] D. J. Applegate et al., Plasma Phys. Control. Fusion 49,
1113 (2007).

[20] F. Jenko, W. Dorland, and G. W. Hammett, Phys. Plas-
mas 8, 4096 (2001).

[21] J. Y. Kim and W. Horton, Phys. Fluids B 3, 3194 (1991).
[22] D. Dickinson, C. M. Roach, S. Saarelma, R. Scannell, A.

Kirk and H. R Wilson, Plasma Phys. Control. Fusion 55

074006 (2013).
[23] I. Predebon and F. Sattin, Phys. Plasmas 20, 040701

(2013).
[24] J. Chowdhury, Yang Chen, Weigang Wan, Scott E.

Parker, W. Guttenfelder, and J. M. Canik, Phys. Plas-
mas 23, 012513 (2016).

[25] A. K. Swamy, R. Ganesh, J. Chowdhury, S. Brunner,
J. Vaclavik, and L. Villard, Phys. Plasmas 21, 082513
(2014).

[26] P. Zanca and D. Terranova, Plasma Phys. Control. Fu-
sion 46, 1115 (2004).

[27] M. Gobbin, D. Bonfiglio, D. F. Escande, A. Fassina, L.
Marrelli, A. Alfier, E. Martines, B. Momo, D. Terranova,
Phys. Rev. Lett. 106, 025001 (2011).

[28] W. Guttenfelder, J. Candy, S. M. Kaye, W. M. Nevins,
R. E. Bell, G. W. Hammett, B. P. LeBlanc, and H. Yuh,
Phys. Plasmas 19, 022506 (2012).

[29] S. Maeyama, T.-H. Watanabe, and A. Ishizawa, Phys.
Rev. Lett. 119, 195002 (2017).


