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C L I M A T O L O G Y

South Asian summer monsoon projections constrained 
by the interdecadal Pacific oscillation
Xin Huang1,2, Tianjun Zhou1,2,3*, Aiguo Dai4, Hongmei Li5, Chao Li5, Xiaolong Chen1, 
Jingwen Lu1,2, Jin-Song Von storch5, Bo Wu1,3

A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 
100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member 
ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can 
overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. 
We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. 
Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM 
rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate 
that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of 
near-future IPO and other internal modes of climate variability.

INTRODUCTION
The South Asian summer monsoon (SASM), the strongest compo-
nent of the global monsoon system, contributes about 80% of the 
annual rainfall in South Asia (1). It provides the principal water 
supply for more than a billion people (2). Hence, being able to 
predict SASM variations on different time scales is vital for agriculture, 
ecosystems, and the hydrological cycle in the region (3).

An increase in SASM rainfall and a weakening of the SASM 
circulation with increasing anthropogenic carbon emissions have 
been projected by the ensemble mean of the Coupled Model Inter-
comparison Project Phase 3 (CMIP3) or CMIP5 models (4–6). Model 
projections also show changes in the intensity and location of the 
large-scale systems related to SASM, including the monsoon trough 
over India, the Mascarene High, the western North Pacific (NP) 
subtropical high, and the upper tropospheric South Asian high (7). 
However, large uncertainties among individual model projections 
lead to challenges for adaptation and mitigation planning in this 
densely populated and ecologically vulnerable region (2, 8). Uncer-
tainties in future emissions scenarios, model’s response to a given 
radiative forcing, and internal climate variations are the three main 
sources of uncertainty in climate projections (9). The uncertainty in 
future scenarios can be narrowed by a world agreement on climate 
policy. The model uncertainty is reducible with improved models. 
While our knowledge on the uncertainties due to the first two 
sources is improving (8, 10–12), the uncertainty in SASM rainfall 
projections arising from internal climate variability remains unclear, 
especially for the next few decades (13).

Internal variability greatly influences the projected changes in 
regional rainfall over a period of several decades (14, 15). As a dom-
inant internal mode of the climate system, the Pacific Decadal 
Oscillation (PDO) or the Interdecadal Pacific Oscillation (IPO) af-
fects the decadal-to-multidecadal rainfall variations over many 

places around the globe (16), including South Asia (17–19). During 
the past century, a positive phase of PDO/IPO often leads to de-
creased SASM rainfall through weakened Walker and monsoon 
Hadley circulations induced by anomalous sea surface temperatures 
(SSTs) over the Pacific and vice versa (18). The anomalous Pacific 
SSTs are also substantially related to the frequency and intensity of 
the droughts over India in observations (20). In addition to anthro-
pogenic external forcings (21–23), the negative-to-positive phase 
transition of the PDO/IPO explains the total drying trend with sim-
ilar magnitude to the anthropogenic aerosols over India from 1950 
to 1999 (23). This suggests that future projections of the SASM rainfall 
will also depend on the IPO phase evolution. However, how and 
how much a PDO/IPO phase transition would affect the projected 
SASM rainfall during the next few decades remain unclear.

Extracting the signals of internal variability requires accurate 
exclusion of the externally forced changes. Previous climate projec-
tions rely heavily on the data of CMIP models. Different CMIP 
models may include different implementation of the forcings, and 
the models also differ in dynamical cores and physical package. All 
of these complicate the interpretation of the differences among the 
individual model runs (24). Instead, a large ensemble by a single 
model enables us to better quantify the internal variability by using 
the intermember spread (14, 25, 26). Recently, a 100-member large 
ensemble of simulations using the Max Planck Institute Earth System 
Model (MPI-ESM) version 1.1 has been completed (27) and used to 
understand changes in internal climate variability and their impacts 
on future climate projections (28–30). As the largest ensemble cur-
rently available using a comprehensive climate model under different 
forcing scenarios, it allows us to consider the ensemble mean as the 
externally forced signal, while the differences among the individual 
members are considered to arise mainly from internal variability 
(see Materials and Methods). We further use another 50-member 
large ensemble from the Canadian Earth System Model version 2 
(CanESM2) (31, 32) to verify our results from the MPI-ESM.

RESULTS
The externally forced summer (June-July-August or JJA mean) 
rainfall changes seen in the ensemble mean of the MPI-ESM simulations 
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show an increasing trend of 0.31 mm day−1 (30 years)−1 (P < 0.01) 
from 2016 to 2045 over the SASM region (5°N to 30°N, 65° to 90°E; 
Fig. 1A) under the representative concentration pathway 8.5 (RCP8.5) 
high emissions scenario. However, there is a large uncertainty in 
this rainfall trend as shown by its large standard deviation (SD) 
across the ensemble members (Fig. 1B). With the same external 
forcing, the 100 ensemble members predict diverse SASM rainfall 
changes, which are illustrated by the different composites of the 
10 members with the lowest SASM rainfall trend (hereinafter referred 
to as Dry10; Fig. 1C) and the 10 members with the highest trends 
(hereinafter referred to as Wet10; Fig. 1D). The SASM rainfall trend 
during 2016–2045 ranges from −0.78 to 1.17 mm day−1 (30 years)−1 
with a 5th to 95th percentile range of 1.33 mm day−1 (30 years)−1, 
and 75 of the 100 realizations show positive trends (Fig. 1E). The 
average trend in the Dry10 and Wet10 is −0.35 and 1.02 mm day−1 
(30 years)−1, respectively. Thus, internal variability eclipses the 
externally forced change in SASM rainfall, leading to very different 
trends during 2016–2045 among the individual realizations.

To identify the internal climate mode responsible for the spread 
in the projected SASM rainfall, we calculated the rainfall and SST 
trend differences between the Dry10 and the Wet10 members 
(hereinafter referred to as Dry10-Wet10; Fig. 2). The SST trend dif-
ference features a warming tropical central-eastern Pacific (TCEP) 
and a cooling NP (Fig. 2B), which resembles the observed IPO pat-
tern (16) and also the IPO-related SST anomalies in the MPI-ESM 
(fig. S2). The leading empirical orthogonal function 1 (EOF1) mode 
of the 100 maps of the JJA land rainfall trend over the SASM do-
main (see Materials and Methods), which explains 34% of the total 
variance, reveals the dominant spatial pattern of the uncertainty in 
the projected rainfall trend. This EOF1 pattern is also significantly 
correlated with the IPO-like SST trend pattern (fig. S3). These 
results indicate a potential link between different realizations of the 
IPO phase and the spread in the SASM rainfall projection among 
the 100 simulations.

The 100 realizations indeed have diverse IPO phase evolutions 
during the period of 2016 to 2045, as reflected by the different 
trends in the IPO index (see Materials and Methods; fig. S4). Among 
the 100 realizations, the projected SASM rainfall trends are nega-
tively correlated (r = −0.42, P < 0.01) with the IPO index trends 
(Fig. 2C). This suggests that the SASM rainfall trends are related to 
the IPO phase transitions. Previous studies have shown that the 
observed variability of the SASM rainfall was influenced by the 
IPO-related SST anomalies through large-scale atmospheric circu-
lation changes (16–18). Accompanying different IPO evolutions in 
the Dry10 and Wet10 members, warm SST anomalies over the 
TCEP in the Dry10-Wet10 (Fig. 2B) weaken the Walker circula-
tion over the tropical Pacific Ocean (Fig. 2D). The Dry10-Wet10 
differences of the 200-hPa velocity potential and the sea level pres-
sure both show an increase trend over the tropical Indian Ocean, 
indicating anomalous descending motions there, which further leads 
to weakened southwest monsoon winds (Fig. 2D). The negative cor-
relation between the SASM rainfall and the IPO index and the asso-
ciated physical processes shown here for the near-term projections 
are consistent with previous studies on the historical changes (17, 18). 
Thus, the IPO is one of the key internal modes influencing the near-
term projection of SASM rainfall.

To examine whether the projection uncertainty in SASM rainfall 
would be reduced with improved prediction of the IPO, we chose 
one of the 100 ensemble members as the target for projection (see 

Materials and Methods; fig. S5). In each case, the remaining 
99 members are categorized on the basis their IPO index trends. 
The selected members of groups A to C have increasing errors in 
the standardized IPO index trends during 2016–2045, and they are 
within the range of −0.5 to 0.5, −1.0 to 1.0, and −2.0 to 2.0 SD 
(30 years)−1 of the reference member, respectively. Compared with 
the SASM rainfall trend SD of the full ensemble, the average trend 
SDs of groups A to C are reduced by about 10, 7, and 4%, respectively. 
Meanwhile, the 5th to 95th percentile range of the rainfall trends is 
also reduced from 1.33 to 0.97 (a 27% reduction), 1.10 (a 17% 
reduction), and 1.13 (a 15% reduction) mm day−1 (30 years)−1, 
respectively. While the reduction is only modest, it is non-negligible 
and increases with improved IPO prediction. It suggests that im-
proved prediction of future IPO can lead to a meaningful reduction 
in the uncertainty of the projected near-term SASM rainfall.

To further quantify how much the projection uncertainty in 
SASM rainfall could be explained by the IPO phase evolution from 
2016 to 2045, we excluded all of the IPO’s influence by removing the 
SASM rainfall variations that are linearly related to the IPO index in 
each realization (see Materials and Methods). The histograms and 
the fitted distribution showing the frequency of occurrence of the 
area-averaged SASM rainfall trends narrow after removing IPO’s 
influence, with the 5th to 95th percentile range reduced by about 
15% from 1.33 to 1.13 mm day−1 (30 years)−1 (Fig. 3A). The SD of 
the rainfall trends is also reduced by about 13% from 0.40 to 0.35 
(P = 0.20). While these reductions are still only modest, they are 
non-negligible and suggest that we can reduce the projection uncer-
tainty by improving our knowledge about the key modes of internal 
variability related to the SASM rainfall, such as the IPO.

If the near-future IPO’s phase and amplitude could be predicted, 
we could use an “IPO constraint” to adjust the future SASM rainfall 
trend in each model run (see Materials and Methods). To illustrate 
this constraint and show the potential impact of IPO phase changes, 
here, we used the trend of the standardized IPO during a shift from 
+1 SD to −1 SD or vice versa from 2016 to 2045 for a significant 
negative-to-positive (IPO+) or a positive-to-negative (IPO−) IPO 
phase transition, respectively (fig. S4). An IPO phase change of 
2 SDs over a 30-year period is a plausible scenario that occurred in 
the past (16). After removing the IPO’s influence in each ensemble 
member through linear regression as mentioned above, we then 
added back the fixed IPO’s influence corresponding to the −2 or +2 SD 
(30 years)−1 IPO trend so that the adjusted SASM rainfall trends 
include the decadal variation induced by the same IPO phase tran-
sition and external forcing among all the model runs, along with 
other stochastic internal variability (Fig. 3B). If an IPO+ with an 
amplitude of +2 SD (30 years)−1 was predicted to be superimposed 
onto the external forcing from 2016 to 2045 under the RCP8.5 emission, 
then the 100 MPI-ESM members would show an average rate of 
0.01 mm day−1 (30 years)−1, which is 0.30 mm day−1 (30 years)−1 
drier than the externally forced trend. The chance of a positive 
(COP) SASM rainfall trend (see Materials and Methods) would drop 
from the original 75 to 54%. In the meantime, the chance of an 
extreme drying (COED) trend (see Materials and Method) would 
increase from the original 10 to 32%, while the chance of an extreme 
wetting (COEW) trend (see Materials and Method) would decrease 
from the original 10 to 1%. In contrast, if an IPO− with an ampli-
tude of −2 SD (30 years)−1 was predicted, then the ensemble mean 
trend would increase from 0.31 to 0.61 mm day−1 (30 years)−1, with 
a COP of 96%, a COED of 1%, and a COEW of 24% (Fig. 3B); this 
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Fig. 1. SASM rainfall changes under the RCP8.5 scenario. June-July-August (JJA) mean rainfall trends under RCP8.5 scenario during 2016–2045 for (A) MPI-ESM 
100-member ensemble mean, (B) intermember SD, (C) the mean trend of the 10 members with the driest trends, and (D) the mean trend of the 10 members with the 
wettest trends. Slant hatching denotes trends significant at the 95% confidence level. Units: mm day−1 (30 years)−1. The box in (A) to (D) highlights the SASM region (5°N 
to 30°N, 65°E to 90°E). (E) Time series of 9-year running mean of SASM rainfall anomalies (relative to the 1950–2005 mean). Historical (gray) and RCP8.5 (red) simulations 
are shown for the 5th and 95th percentiles (shading), the ensemble mean (thick solid lines), and the maximum and minimum (dashed lines) of the 100 members (units: 
mm day−1). The black line denotes the observational time series of the 9-year running mean of the SASM rainfall anomalies derived from the Global Precipitation Climatology 
Centre version v7 dataset. The 10 members with the wettest (blue) and driest (brown) trends during 2016–2045 are also shown together with its 5th and 95th percentile 
(shading). The inset figure in (E) shows the histogram of the SASM rainfall trends during 2016–2045 for the 100 MPI-ESM members under the RCP8.5 scenario [units: mm 
day−1 (30 years)−1]. The red, blue, and brown triangles denote the ensemble mean of the 100 members, the 10 wettest members, and the 10 driest members, respectively.
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Fig. 2. Trends in SSTs and large-scale circulation associated with SASM rainfall trend spread under the RCP8.5 scenario. (A) Mean SASM rainfall trends differences 
between the 10 members with the driest and the wettest trends during 2016–2045 [units: mm day−1 (30 years)−1]. (B) SST trend differences [units: K (30 years)−1] and 
(D) trend differences of the sea level pressure [shading; units: hPa (30 years)−1], 200-hPa velocity potential [contours, units: m2 s−1 (30 years)−1], and 850-hPa winds [vectors; 
units: m s−1 (30 years)−1] during 2016–2045 between the 10 driest and the 10 wettest members of MPI-ESM simulation under the RCP8.5 scenario. Slant hatching denotes 
regions significant at the 95% confidence level. (C) Scatterplot between the standardized IPO index trends [x axis; units: (30 years)−1] and the SASM rainfall trends [y axis; 
units: mm day−1 (30 years)−1] among the MPI-ESM 100 members. Blue and brown dots denote the 10 wettest and 10 driest members, respectively.

 on A
pril 2, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Huang et al., Sci. Adv. 2020; 6 : eaay6546     13 March 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 10

implies an extremely likely wetting future with more chance of 
floods but less chance of droughts in the monsoon region. These 
calculations reveal the large impacts from a plausible IPO phase 
change on the SASM rainfall and demonstrate that the near-future 
IPO phase transition has a notable impact on the projected SASM 
rainfall trend, especially on the occurrence of an extreme wetting or 
drying trend.

We investigate the robustness of the above results by (i) compar-
ing the results derived from the RCP4.5 scenario with the above 
findings based on the RCP8.5 scenario using the model (figs. S3, S4, 
and S6), (ii) comparing the rainfall trend uncertainty based on the 
next 15 years (2016 to 2030) with the above findings based on the 
next 30 years (fig. S7), and (iii) comparing the results derived from 
the MPI-ESM ensemble with another 50-member large ensemble of 
CanESM2 (Fig. 4 and fig. S8). As expected, the most obvious differ-
ence is the external forced rainfall trends in the ensemble mean 
derived from different emissions scenarios, over different time periods 
and between different models. Another notable difference is that 
the estimated IPO’s contribution to the projection uncertainty in 
SASM rainfall is model dependent (Figs. 3 and 4). After removing 
the IPO-induced rainfall variation via linear regression, the uncer-
tainty in the projected trends measured by the SD among the 50 
CanESM2 members is significantly reduced by about 26% from 
0.61 to 0.45 (P < 0.05; Fig. 4B). The 5th to 95th percentile range of 
the projected rainfall trends is also reduced by about 30% from 2.31 to 
1.61 mm day−1 (30 years)−1. Despite these quantitative differences, 
the SASM rainfall trend uncertainty can be, in part, attributed to the 
internal IPO mode for both emissions scenarios, both the 15- and 
30-year time periods (figs. S3, S6, and S7), and are also confirmed 
by the CanESM2 ensemble (fig. S8). In all the cases, different IPO 
phase transitions can modulate the magnitude or even reverse the 
sign of the SASM rainfall trends and affect the occurrence of ex-
treme rainfall changes in the next 15 to 30 years (Figs. 3 and 4 and 
figs. S6 and S7).

DISCUSSION
By analyzing the large ensemble projections based on the MPI-ESM 
and CanESM2, we investigated the influence of the IPO-related 
internal variability on the uncertainty in future SASM rainfall 
changes. We have shown that internal climate variability can eclipse 
the externally forced rainfall trend in South Asia during the next 15 to 
30 years, leading to large projection uncertainty. We found that the 
uncertainty in near-future SASM rainfall trends is due, in part, to 
IPO’s future phase evolution by about 13 to 15% in the MPI-ESM 
ensemble and 26 to 30% in the CanESM2 ensemble.

While the IPO-related uncertainty in near-future SASM projec-
tions is non-negligible, the remaining large projection uncertainties 
indicate the importance of other internal variability. Previous studies 
suggest that the decadal-scale SASM rainfall variability is also influ-
enced by the Atlantic Multidecadal Oscillation (AMO) (33–35). 
Physically, the SST anomalies in the North Atlantic can modulate 
the meridional tropospheric temperature gradients over South Asia and 
shift the intertropical convergence zone, which results in anomalous 
moisture convergence over India. The observed positive correlation 
between the AMO and the SASM rainfall is reasonably reproduced 
in the MPI-ESM (fig. S9). After excluding the AMO’s influence on the 
SASM rainfall via linear regression in each realization similar to the 
analysis done for IPO (see Materials and Methods), the SD and the 5th 
to 95th percentile range of the rainfall trends during 2016–2045 are 
reduced by about 3 and 8% in the MPI-ESM ensemble, respectively 
(fig. S10A). It indicates that the AMO also, in part, helps reduce the 
projection uncertainty in SASM rainfall, but to a less extent than the 
IPO. The role of AMO is also confirmed by the CanESM2 ensemble, 
in which the AMO reduces both the SD and the 5th to 95th percen-
tile range of the SASM rainfall trends by about 10% (fig. S10B).

A

B

Fig. 3. SASM rainfall trend histograms under the RCP8.5 scenario with and 
without IPO’s influences. (A) Histograms (bars) and 100-bins fitted distribution 
(lines) of the area-averaged rainfall trends over the SASM region (5°N to 30°N, 65°E 
to 90°E) derived from the 100 MPI-ESM ensemble members. The gray bars and the 
black fitted curves show the frequency of occurrence of the rainfall trends (with an 
SD of 0.40). The pink bars and the red fitted curves show the frequency of occur-
rence of the rainfall trends with the IPO’s influence being removed through linear 
regression against the IPO index in the individual runs (with a SD of 0.35). The black 
and red dots denote the ensemble mean of the distribution represented by the 
corresponding color. The black and red horizontal lines denote the 5th to 95th 
percentile range of 1.33 and 1.13 for the distribution represented by the correspond-
ing color. (B) The gray bars and black curves are the same as (A), while the brown 
and blue bars and curves show the frequency of occurrence of the area-averaged 
rainfall trends with the same amplitude of a positive [+2 (30 years)−1] or a negative 
[−2 (30 years)−1] IPO phase transition, respectively, from 2016 to 2045. The black, 
brown, and blue dots denote the ensemble mean of the distribution with the cor-
responding color. The purple (brown) dashed line denotes the threshold of a chance 
of an extreme wetting (drying) trend.
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For developing effective adaptation and mitigation strategies, 
decision-makers can hardly be satisfied with an ensemble mean 
projection without considering internal climate variability. Our 
study found that the IPO is one of the leading internal modes that 
partly contribute to the projection uncertainty in near-term SASM 
rainfall. Accounting for future IPO phase evolution helps reduce 
the projection uncertainty of near-term SASM rainfall, albeit only 

by a modest amount; in particular, it improves the projection of an 
extremely wet or dry condition in South Asia. The Decadal Climate 
Prediction Project for the CMIP6, which devotes coordinated 
efforts to improve the predictive skill for IPO (36), will likely improve 
IPO phase predictions for the upcoming decades, which in turn will 
help improve the near-term SASM projection. Moreover, better 
understanding and prediction of other decadal-multidecadal modes, 
such as the AMO, can also improve the near-term SASM projec-
tion. Thus, our study calls for further understanding and prediction 
of the near-term evolutions of the IPO, AMO, and other decadal 
modes of internal variability to improve the SASM projection.

MATERIALS AND METHODS
Observational data
We used the monthly gridded precipitation data from the Global 
Precipitation Climatology Centre version 7 (GPCC v7), covering 
the periods 1901 to 2013 with a horizontal resolution of 0.5° × 0.5° 
(37). Previous study found that the GPCC v6 and new version pre-
cipitation datasets are more reliable than other products for esti-
mating global land precipitation changes due to data coverage after 
the 1990s (38).

Observed monthly SST data are taken from the National Oceanic 
and Atmospheric Administration/National Climatic Data Center 
Extended Reconstructed SST version 4 (ERSST v4), covering the 
periods 1901 to 2017 with a horizontal resolution of 2.0° × 2.0° (39). 
Considering about the reliability, we use the SST data after the 1920.

To capture the interdecadal variability in the Pacific, two pub-
lished indices are used in this study for comparison. One is the PDO 
index from Mantua and Hare (40), and the other is the Tripole 
index from Henley et al. (41).

Statistical analysis
A 9-year running mean was applied to rainfall and SST data to isolate 
the interdecadal signal. The Mann-Kendall nonparametric method 
(42) was applied in this study to test the significance of trends. The 
Monte Carlo nonparametric method was used to test the signifi-
cance of regression coefficients onto the filtered time series. To test 
the significance of the trend differences between the 10 driest and 
wettest members, the Student’s t test was used. To test the signifi-
cance of changes in variance (or SD) of trend spread, the F test was 
used. Eighty of 100 members agreement in signs are used as a 
threshold to test the member consistency.

Model simulations
MPI-ESM
We used the output from a 100-member Grand Ensemble generated 
by the MPI-ESM (27, 29). It is an update of the coupled ocean- 
atmosphere general circulation model submitted to CMIP5 in its 
low-resolution configuration (MPI-ESM-LR), which has a spectral 
horizontal resolution of T63/1.9° and 47 vertical layers up to 0.01 hPa 
in the atmosphere along with 1.5° horizontal resolution and 40 ver-
tical levels in the ocean. Individual ensemble members only differ in 
their initial conditions, generated by starting the historical simula-
tions in year 1850 from different years, with a random time interval, 
of the preindustrial control (piControl) simulation. The piControl 
run has a total length of 2000 years with the forcing constant in time 
at 1850 values. In this study, the middle 1000-year data from piControl 
run were used. The historical simulations of the MPI-ESM ensemble 

A

B

C

Fig. 4. Uncertainty in the SASM rainfall changes under the RCP8.5 scenario in 
CanESM2. (A) Time series of 9-year running mean of the SASM rainfall anomalies 
relative to 1950–2005 mean similar to Fig. 1E but derived from the 50 CanESM2 
members. (B and C) Histograms and 100-bins fitted distribution of the area-averaged 
SASM rainfall trends similar to Fig. 3 but for the 50 CanESM2 members.
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are integrated from 1850 to 2005 driven by observed historical 
changes in radiative forcing agents including well-mixed green-
house gases, anthropogenic sulfate aerosols, man-made land-use 
change, monthly zonal mean ozone concentrations, and major vol-
canic eruptions following CMIP5 protocol (43). The RCP8.5 and 
RCP4.5 simulations, where the radiative forcing increases and reaches 
around 8.5 or 4.5 W/m2 near 2100 relative to 1750, are performed 
from 2006 to 2099 (44).

The reliability of future changes predicted from climate models 
can be measured by the model’s creditability in simulating present- 
day climate. The MPI-ESM shows reasonable performance in 
reproducing the climatology of the SASM (fig. S1). The climatolog-
ical monsoon rainfall centers located near the Western Ghats, over 
the foothills of the Himalayas, core monsoon regions over the 
northern-central India and along the Burmese coast are well simulated. 
Compared to its contemporaries, the parent model, MPI-ESM-LR, 
is one of the best at simulating the spatial patterns and the onset of 
SASM rainfall and circulation (45).

With respect to the historical variability, the time series of the 
observational SASM rainfall anomalies is overall within the 5th to 
95th percentile envelope of 100 ensemble members (Fig. 1E). The 
significant decreasing trend of SASM rainfall during the past 30 years 
(1976–2005) can be reproduced by some of the ensemble members 
(fig. S1). The performances of the MPI-ESM in reproducing the cli-
matology and historical changes of SASM rainfall aid confidence in 
our further analysis based on the model.
CanESM2
To help confirm the results derived from the MPI-ESM ensemble, 
we used the output from another large ensemble of coupled simula-
tions performed with the CanESM2 (31, 32). The CanESM2 is run 
by the Canadian Center for Climate Modelling and Analysis, which 
submits five ensemble members to the CMIP5. The CanESM2 large 
ensemble expanded this initial ensemble by branching each of the 
original 5 members into 10 members to form a 50-member large 
ensemble started with slightly different initial conditions at a hori-
zontal resolution of T42/2.8° and 22 vertical layers up to 1 hPa in 
the atmosphere. The historical simulations of the CanESM2 are in-
tegrated from 1950 to 2005 run with both natural (including solar 
and volcanic) and anthropogenic (including greenhouse gases, 
aerosol emission, and land use) forcings. The RCP8.5 simulations 
are performed from 2006 to 2100.

Separating externally forced and internally unforced signal
The 100 members of MPI-ESM ensemble (or the 50 members of 
CanESM2 ensemble) are driven by the same external forcing. The 
spread of climate changes obtained from various ensemble mem-
bers is caused by internal variability arising from random climate 
variations. The ensemble mean can be taken as the response to 
external forcing due to the unprecedented ensemble size. Deviations 
in each ensemble member from the ensemble mean represent internal 
variability separated from the forced component.

For clarity, the separation of a certain variable (A) of member 
i in MPI-ESM is calculated as

  A(i ) =  A  forced   +  A  internal  (i ), i = 1, 2, 3...100  (1)

where Aforced is the ensemble mean of the 100 members, denoting 
the response to external forcings. Ainternal (i) is the residual of the 
original A(i) minus the forced response. Ainternal (i) varies among 

different members and shows the variability associated with internal 
variability.

Identify the internal mode responsible for the uncertainty
We identify the internal mode responsible for the spread in the pro-
jection in two ways. First, we compare the 10 extreme members of 
the ensemble with the driest (Dry10) and wettest (Wet10) SASM 
rainfall trends, respectively. The Dry10-Wet10 SST difference indi-
cates the leading internal mode in the ocean related to the rainfall 
trend uncertainty.

Second, similar to Deser et al. (46), we compute the leading 
EOF of the SASM rainfall trends, i.e., land rainfall trends within 
(5°N to 30°N, 65°E to 90°E) domain, during 2016–2045 across the 
100 MPI-ESM members. Here, the member index serves as the time 
index in a conventional EOF analysis. The 100 values of the corre-
sponding principal component 1 (PC1) are for 100 ensemble mem-
bers. Then, 100 rainfall and SST trend patterns derived from 100 
ensemble members are regressed onto the standardized PC1 at each 
grid through the member index. This intermember EOF method 
helps identify the major uncertainty among ensemble members. 
The regression of SST trend spread on the member index with 
respect to the PC1 helps find the related internal variability in the 
ocean.

IPO definition and its contribution to the SASM rainfall  
trend projection
IPO definition
Previous studies show many different ways to calculate the index 
representing the IPO/PDO, for example, the EOF method (40) and 
the difference of SST anomalies between the Pacific regions (23, 41), 
showing an overall similarity in featuring the decadal-to-multidecadal 
variability of the Pacific SST in the observation after 1920 (23, 47). 
Thus, for easier calculation and for direct comparison between 
observation and model simulations and comparison among each 
ensemble members, we use the latter way to define the IPO index 
similar to Salzmann and Cherian (23) without applying EOF. We 
define the IPO index as the JJA north-south gradients of unforced 
SST. In the observation, we remove the linear trend and calculate 
the SST anomalies averaged within the TCEP (80°E to 90°W, 10°S 
to 15°N) and the NP (150°E to 160°W, 30°N to 45°N), respectively. 
The IPO index is defined as the 9-year running mean of the differ-
ence in detrended SST between the TCEP and the NP. The 9-year 
running mean is used to remove interannual variations. We briefly 
assess this index derived from the ERSST v4 (fig. S2) datasets with 
two further published PDO/IPO indices. It is highly consistent with 
the PDO index based on EOF (40) and the TPI index based on 
the SST anomalies (SSTA) difference method (41) in both the time 
evolution and spatial patterns, implying the reasonable tracking of 
the low-frequency fluctuations in the Pacific Ocean. In this study, we 
used the term of IPO as we focus on wider Pacific basin phenomenon.

To calculate the IPO index for each MPI-ESM ensemble mem-
ber in the historical and RCP experiments, we first separate out the 
internal part of SST, SSTinternal(i), based on Eq. 1. Then, IPO(i, t), 
the time series of the IPO index for member i, is calculated as the 
9-year running mean of the area-averaged difference of JJA SSTinternal(i) 
between the TCEP and the NP. We assessed the historical IPO- 
related SST anomalies by regressing the SST(i) with respect to the 
IPO(i, t) during 1920–2005. With a high intermember consistency, 
the IPO-related SST anomalies derived from the historical run show 
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similar spatial characteristics as in the observations and as in the 
1000-year piControl run without external forcing (fig. S2), indicating 
a reasonable performance of the MPI-ESM in simulating the IPO.
The contribution of IPO to the SASM rainfall future projection
We evaluate how much IPO helps to constrain the uncertainty in 
SASM rainfall projections in two ways. First, we choose one of the 
100 ensemble member, member i, as the reference simulation with 
a standardized IPO index trend of   ∂ IPO (i, t) _ ∂ t    (30 years)−1.   ∂ IPO (i, t) _ ∂ t    rep-
resents the phase transition of IPO in this period, which ranges 
from −3.0 to 3.5 (30 years)−1 among the 100 members during 2016–
2045 (fig. S4). The reference member is the target for projection, 
while the remaining 99 members are compared with the reference 
and categorized on the basis of their IPO index trends (fig. S5). The 
selected member a in the group A has a standardized IPO index trend 
within the range of    (    ∂ IPO (i, t) _ ∂ t   − 0.5 )   <  ∂ IPO (a, t) _ ∂ t   <  (    ∂ IPO (i, t) _ ∂ t   + 0.5 )     
(30 years)−1, representing a “successful” prediction of the future 
IPO evolution in member i [i.e., within the ±0.5 SD (30 years)−1 
range of the IPO index trend of the target simulation]. The selected 
member b in the group B has a standardized IPO index trend within 
the range of    (    ∂ IPO (i, t) _ ∂ t   − 1.0 )   <  ∂ IPO (b, t) _ ∂ t   <  (    ∂ IPO (i, t) _ ∂ t   + 1.0 )     (30 years)−1, 
representing an “improved” [i.e., ±1 SD (30 years)−1] prediction of 
IPO evolution in member i. The selected member c in the group C has a 
standardized IPO index trend within the range of    (    ∂ IPO (i, t) _ ∂ t   − 2.0 )   <  ∂ IPO (c, t) _ ∂ t   <  (    ∂ IPO (i, t) _ ∂ t   + 2.0 )     (30 years)−1, representing a “poor” [i.e., ±2 
SD (30 years)−1] prediction of future IPO evolution in member i. As 
shown in fig. S5, the reference member i is chosen among the 100 
MPI-ESM members in sequence; thus, the members a, b, and c 
meeting the criteria of the three groups are different for each case. 
In each case i, we calculate the SD and the 5th to 95th percentile 
ranges of rainfall trends of members in the groups A to C. Then, we 
compare the mean value of the 100 cases with the rainfall trend SD 
or 5th to 95th percentile range of the full ensemble. In this way, we 
quantify how much projection uncertainty in SASM rainfall has 
been reduced with improved prediction of the future IPO.

Second, if the future IPO evolution could be perfectly predicted, 
then we cannot quantify its influence by finding the analogs because 
the 100 ensemble members have different IPO index trends (fig. S4). 
Thus, to roughly remove all of the IPO’s influence, we derive the 
standardized IPO index for each ensemble member as mentioned 
above and then remove the SASM rainfall variations that are linearly 
related to the standardized IPO index through a linear regression. 
Following previous studies (48), the 9-year running mean time 
series of the SASM rainfall of member i, pr(i, t), from 1950 to 2099 
is partitioned as

  pr(i, t ) = r  (i)  pr,IPO   ⋅ IPO(i, t ) +  pr  non‐IPO  (i, t ) , i = 1, 2, 3...100  (2)

where  r  (i)  pr,IPO   =   ∂ pr(i, t) _ ∂ IPO(i, t)   is the regression coefficient of the 9-year 
running mean internal rainfall with respect to the standardized IPO 
time series within member i during 1950–2099. The product of the 
regression coefficient and the IPO index, r(i)pr, IPO ⋅ IPO(i, t), rep-
resents the IPO-related component of the rainfall anomalies in 
member i. The residual part, prnon ‐ IPO(i, t), is the IPO-independent 
rainfall component without the IPO-induced variations for individual 
run. We then compare the trend spread of pr(i, t) and prnon ‐ IPO(i, t), 
i.e.,   ∂ pr(i, t) _ ∂ t    and   ∂  pr  non‐IPO  (i, t) _ ∂ t   , to quantify the contribution of IPO to the 
rainfall trend projection (Fig. 3A).

If a certain IPO phase transition is predicted in the future time 
period  (i.e.,  = 2016 to 2045 or  = 2016 to 2030), then we could 

adjust the rainfall trends in future projections of 100 ensemble 
members. We first use the above linear regression method between 
the IPO and the SASM rainfall to remove the IPO’s influence in 
each ensemble member and then add back a fixed IPO’s influence 
so that all the members are considered to be influenced by a same 
IPO evolution during . Compared to the former method of finding 
analogs, the sample size of 100 remains unchanged in this way, pro-
viding sufficient estimation of the uncertainty in projected rainfall 
trends. On the basis of Eq. 2, we used the “IPO constraint” to adjust the 
rainfall trend of member i,   ∂  pr  adj  (i, t) _ ∂ t   , as

     
∂  pr  adj  (i, t)

 ─ ∂ t   = r  (i)  pr,IPO   ⋅   ∂ IPO(i, t) ─ ∂ t   +   
∂  pr  non‐IPO  (i, t)

  ─ ∂ t  ,     
                 i = 1, 2, 3...100

   (3)

where   ∂  pr  non‐IPO  (i, t) _ 
∂ t

    is the rainfall trend caused by external forcing 
and other internal variability except IPO.   ∂ IPO(i, t) _ 

∂ t
    is the trend of the 

standardized IPO index during time period . Here, we use the con-
stant   ∂ IPO(i, t) _ 

∂ t
   = ± 2  (30 years)−1 [or ±2 (15 years)−1], representing 

the standardized (SD = 1) IPO index shifting from +1 SD to −1 SD or 
reversely, as a significant positive/negative IPO phase transition during 
the analyzing period (fig. S4). Then, we add this fixed   ∂ IPO(i, t) _ ∂ t    back to 
adjust the projected rainfall trends.  r  (i)  pr,IPO   ⋅  ∂ IPO(i, t) _ ∂ t    represents the 
rainfall trend caused by a same IPO phase transition. After the ad-
justment, the   ∂  pr  adj  (i, t) _ ∂ t    shows the likely rainfall trend influenced by a 
certain IPO phase transition (i.e., either positive or negative) at the 
same magnitude together with the forced changes and other non-
IPO internal variability (Fig. 3B).

COP and COEW/COED trend
We used the COP to denote the probability of an increasing SASM 
rainfall trend in the following 15 to 30 years (Figs. 3 and 4) (46). 
COP is obtained by dividing the number of the MPI-ESM (or 
CanESM2) members that show positive trends by the total ensemble 
member (i.e., either 100 for MPI-ESM or 50 for CanESM2). The COP is 
calculated for both the original rainfall trends    (    ∂ pr(i, t) _ ∂ t   )     and the ad-
justed rainfall trends with a certain IPO phase transition    (    ∂  pr  adj  (i, t) _ ∂ t   )    .

We used the COEW to denote the probability of an SASM 
rainfall trend exceeding the 90th percentile of the original rainfall 
trends (  ∂ pr(i, t) _ ∂ t   ; Figs. 3 and 4 and figs. S6 and S7). The COED denotes 
the probability of an SASM rainfall trend outside the 10th percentile 
of the original rainfall trends. Thus, COED (COEW) is obtained by 
dividing the number of the MPI-ESM (or CanESM2) members that 
show rainfall trends less (greater) than or equal to the 10th (90th) 
percentile of   ∂ pr(i, t) _ ∂ t    by the total ensemble member (i.e., either 100 for 
MPI-ESM or 50 for CanESM2). Thus, the COED and COEW are 
both 10% for the original rainfall trends. The COED and COEW are 
also calculated for adjusted rainfall trends with a certain IPO phase 
transition    (    ∂  pr  adj  (i, t) _ ∂ t   )     in Figs. 3 and 4 and figs. S6 and S7.

Contribution of AMO to the SASM rainfall trend projection
The AMO index is defined as the detrended 9-year running mean 
area-averaged SST anomalies over the North Atlantic Ocean (80°W 
to 0°E, 0°N to 65°N). As recommended in previous study (49), the 
detrending here is done by subtracting the global mean (180°W to 
180°E, 80°S to 80°N) SST anomaly time series. We assessed the 
AMO-related SST and SASM rainfall anomalies in the 1000-year 
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piControl run of the MPI-ESM. The regressed patterns indicate a 
reasonable performance of the MPI-ESM in simulating the AMO 
and its positive correlation with the SASM rainfall in the observa-
tion (fig. S9).

To evaluate how much the AMO helps constrain the uncertainty 
in SASM rainfall projections, we derive the standardized AMO 
index for each ensemble member, i.e., AMO(i, t). We then remove 
the SASM rainfall variations that are linearly related to the standard-
ized AMO index through a linear regression. Similar as the Eq. 2, 
the 9-year running mean time series of the SASM rainfall of mem-
ber i, pr(i, t), from 1950 to 2099 is partitioned as

  pr(i, t ) = r  (i)  pr,AMO   ⋅ AMO(i, t ) +  pr  non‐AMO  (i, t ), i = 1, 2, 3...100  
(4)

where  r  (i)  pr,AMO   =   ∂ pr(i, t) _ ∂ AMO(i, t)   is the regression coefficient of the 9-year 
running mean internal rainfall with respect to the standardized AMO 
time series within member i during 1950–2099. The product of the 
regression coefficient and the AMO index, r(i)pr, AMO ⋅ AMO(i, t), 
represents the AMO-related component of the rainfall anomalies in 
member i. The residual part, prnon ‐ AMO(i, t), is the AMO-independent 
rainfall component without the AMO-induced variations for indi-
vidual run. The trend spread of prnon ‐ AMO(i, t), i.e.,    ∂ pr  non‐AMO  (i, t) _ ∂ t   , is 
compared with the above   ∂ pr(i, t) _ ∂ t    to quantify the contribution of AMO 
to the rainfall trend projection (fig. S10).
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