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ABSTRACT

In this dissertation, I explore the large differences in Arctic sea-ice evolution
between climate models and observations, and among individual climate models.

First, I investigate the drivers of the long-term Arctic Ocean warming in a
multi-model ensemble. I find that there is no consensus between the models about
whether the excess energy is gained by the ocean through the net atmospheric
surface flux or through the meridional oceanic heat flux. However, all models agree
on the magnitude of the projected warming. The warming is small compared to the
anomalies in the energy fluxes. This is because most of the energy gained through
one energy flux is lost through the other energy flux due to a relationship between
the magnitude of the increase in oceanic heat inflow and the increase in turbulent
heat loss to the atmosphere.

Second, I explore the feasibility of an observation operator for the Arctic Ocean.
An observation operator translates the Arctic Ocean climate simulated by a climate
model into a brightness temperature. The brightness temperature is the quantity
directly measured by satellites from space. Hence, an observation operator enables
us to circumvent the observational uncertainty currently inhibiting reliable climate
model evaluation. Sea-ice brightness temperatures at 6.9 GHz are driven by the
liquid water fraction profile inside the ice and snow, which is not resolved in most
climate models. I show that in winter this profile can be described reasonably well
by a linear temperature profile and a salinity profile prescribed as a self-similar
function of depth. In summer, the melt-pond fraction is more important for the
simulation of the brightness temperature than the internal structure of the ice.

Third, I develop an Arctic Ocean Observation Operator for 6.9 GHz based on
these findings. I compare brightness temperatures simulated from the output of an
Earth System Model to brightness temperatures measured by satellites. The
differences between simulated and measured brightness temperatures can mainly
be explained by the uncertainty in the simulated state of the sea-ice concentration,
the assimilation process, and the melt-pond parametrization. Differences
attributable to biases in the observation operator itself are small. The operator is
therefore a suitable method for climate model evaluation.

In summary, I show different perspectives on the large differences in Arctic
sea-ice evolution. On the one hand, I point out that the multi-model ensemble
mean is not always representative for the simulated Arctic climate and should be
interpreted with care. On the other hand, I introduce and develop an
unconventional tool providing new opportunities for future climate model
evaluation.
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ZUSAMMENFASSUNG

In dieser Dissertation untersuche ich die großen Unterschiede in der zeitlichen
Entwicklung des arktischen Meereises, zum einen zwischen verschiedenen
Klimamodellen und Beobachtungen und zum anderen zwischen einzelnen
Klimamodellen.

Im ersten Teil der Dissertation untersuche ich die Faktoren, die innerhalb der
verschiedenen Klimamodellen die langfristige Erwärmung des Arktischen Ozeans
vorantreiben. Ich finde heraus, dass es zwischen den Modellen keinen Konsens
darüber gibt, ob die überschüssige Energie vom Ozean durch den atmosphärischen
Oberflächenfluss oder durch den meridionalen ozeanischen Wärmefluss
gewonnen wird. Einig sind sich die Modelle jedoch alle in der Größenordnung der
Erwärmung. Im Vergleich zu den Anomalien in den Energieflüssen ist diese
Erwärmung gering, da die meiste Energie, die durch einen der Energieflüsse
gewonnen wird, durch den anderen Energiefluss wieder verloren geht. Das liegt am
Zusammenhang zwischen dem Ausmaß der Zunahme im ozeanischen
Wärmeeinfluss und der Zunahme im turbulenten Energieverlust an die
Atmosphäre.

Im zweiten Teil der Dissertation untersuche ich die Realisierbarkeit eines
Beobachtungsoperatoren für den Arktischen Ozean. Ein Beobachtungsoperator
übersetzt das von einem Klimamodell simulierte Klima des Arktischen Ozeans in
eine Helligkeitstemperatur. Die Helligkeitstemperatur ist die Größe, die direkt von
Satelliten vom All aus gemessen wird. Deshalb kann mit einem solchen
Beobachtungsoperator die Beobachtungsunsicherheit umgangen werden, die
derzeit einer zuverlässigen Klimamodellevaluierung im Weg steht.
Meereishelligkeitstemperaturen bei 6.9 GHz werden von dem Profil des
Flüssigwasseranteils im Eis und Schnee getrieben. Dieses Profil ist in den meisten
Klimamodellen nicht aufgelöst. Ich zeige auf, dass der Flüssigwasseranteil im
Winter durch ein lineares Temperaturprofil und ein Salzgehaltsprofil, das als
selbstähnliche Funktion der Tiefe vorgeschrieben ist, vernünftig beschrieben
werden kann. Im Sommer ist der Schmelztümpelanteil an der Eisoberfläche
wichtiger für die Simulation von Helligkeitstemperaturen als die Struktur des
Eisinneren.

Im dritten Teil der Dissertation baue ich auf diesen Ergebnissen auf und
entwickle den "Arctic Ocean Observation Operator", einen
Beobachtungsoperatoren für den Arktischen Ozean bei 6.9 GHz. Ich vergleiche
Helligkeitstemperaturen, die basierend auf Erdsystemmodellergebnissen simuliert
werden, mit Helligkeitstemperaturen, die von Satelliten gemessen wurden. Die
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Unterschiede zwischen simulierten und gemessenen Helligkeitstemperaturen
können hauptsächlich durch die Unsicherheit in der simulierten
Meereiskonzentration, dem Assimilierungsprozess und der
Schmelztümpelparametrisierung erklärt werden. Unterschiede, die auf Fehler des
Beobachtungsoperators selbst zurückzuführen sind, sind gering.

Insgesamt blicke ich aus verschiedenen Perspektiven auf die großen
Unterschiede in der zeitlichen Entwicklung des arktischen Meereises. Einerseits
finde ich heraus, dass der Mittelwert über verschiedene Klimamodelle nicht immer
repräsentativ für das simulierte arktische Klima ist, und deshalb mit Vorsicht
interpretiert werden sollte. Andererseits führe ich ein unkonventionelles
Instrument ein, das neue Möglichkeiten für die zukünftige Evaluierung von
Klimamodellen bietet.
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THE BIASED SIMULATION OF THE ARCTIC

SEA-ICE RETREAT IN CLIMATE MODELS:
A COLD CASE

"In a dark place we find ourselves...
a little more knowledge might light our way."

Yoda

1 INTRODUCTION

As already suggested by the term "scientific research", science is about searching.
Searching for the explanation of processes governing the universe around us on
various scales. But also searching for new methods to get these explanations if they
cannot be accessed with current ones. In other words, scientists can be compared
to detectives. Different sources of information are available to solve a crime: hard
evidence from the crime scene, testimonies from witnesses, and common
knowledge about human psychology. Combining these informations, the detective
tries to find the culprit, the motive, and the progression of events that have led to
the current state. If these sources of information are not enough, the detective has
to extend their methods to more unconventional ones.

In this dissertation, the case I investigate is the biased simulation of the historical
and projected retreat of the Arctic sea-ice cover. The simulated melting of the Arctic
sea-ice cover is slower than the observed melting and the spread between climate
model simulations is large (Stroeve et al., 2007, 2012). Some studies suggested that
natural variability is a possible culprit for the differences between the simulated
and observed sea-ice melting rate (e.g. IPCC, 2013; Notz, 2014; Swart et al., 2015).
Other studies suggested that possible culprits for these differences are a too low
sensitivity of simulated sea ice to global warming (Rosenblum and Eisenman, 2017)
or the treatment of atmospheric and oceanic properties and dynamics in climate
models (Overland and Wang, 2013). I follow the latter line of thought, implying that
there are biases in the simulation of the sea-ice retreat by the climate models. To
uncover the main culprit driving the simulated melting and the progression of
events possibly leading to the bias, my sources of information are in-situ
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The biased simulation of the Arctic sea-ice retreat in climate models: A cold case

observations, observational estimates retrieved from satellite measurements from
space, and climate models.

Before I dive into the case, let me give you some information about its setting. The
Arctic Ocean represents a unique climate system, especially because of its
extensive sea-ice cover, which affects both regional and global climate. Sea ice is at
the interface of atmosphere and ocean. While the ice forms an insulating layer
which strongly dampens the exchange of energy, moisture and momentum
between the two spheres, it also interacts with them. On the one hand, due to its
high albedo, the sea-ice cover reflects a large part of the incoming solar radiation
from spring to fall, keeping the energy gain of the surface low (Nakamura and Oort,
1988). On the other hand, the release of brine during the freezing process leads to a
densification of the oceanic water underneath the ice and therefore enhances
vertical mixing, contributing to the global thermohaline circulation (Aagaard et al.,
1985). Finally, sea ice is also the basis of a unique ecosystem, providing habitat for
the biosphere above it, inside it, and underneath it.

The sea-ice cover is also the main reason why human activity has remained low in
the Arctic Ocean until recently. The Central Arctic, but also the Northern Sea Route
north of Russia and the Northwest passage north of Canada, are covered by ice most
of the year, inhibiting commercial and touristic shipping in the region. Additionally,
sea ice hinders drilling activities carried out to exploit the large amounts of oil and
gas expected under the Arctic Ocean floor.

This unique Arctic Ocean landscape has changed at a rapid pace in past decades
due to climate change. Rising anthropogenic CO2 emissions since the end of the
19th century have led to an increase in the global mean temperature by nearly 1 ◦C
(Hawkins et al., 2017; IPCC, 2013). This global warming is currently drastically
changing global climate and has not spared the Arctic Ocean. On the contrary, the
increase in surface air temperature is even enhanced in the Arctic through Arctic
Amplification, a synergy between several feedbacks involving sea-ice loss, energy
exchange, and moisture and clouds. As a consequence, the rate of warming is on
average 1.9 times higher in the Arctic than in the global mean (Serreze and Barry,
2011). The most prominent indicator of this warming in both atmosphere and
ocean is the dramatic retreat of the Arctic sea-ice cover (Stroeve et al., 2012; Stroeve
and Notz, 2015; Notz and Stroeve, 2016). And that is where my case begins: the
sea-ice is retreating at different paces depending on the source of information.

As mentioned before, I have three sources of information available to solve the
case: in-situ observations, observational estimates retrieved from satellite
measurements from space, and climate models. From the detective’s view, in-situ
observations are the equivalent of the hard evidence found on the crime scene.
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1 Introduction

In-situ observations were the main source of knowledge in early Arctic Ocean
research and are still the representation closest to reality that we currently can
have. The Arctic Ocean long remained untouched and unexplored due to its sea-ice
cover, its remoteness, and its harsh climatic conditions. It was not until the late
19th century that the Arctic Ocean and its ice cover became of serious interest to
explorers, the military, and the scientific community (e.g., Nansen, 1911; Weeks,
2010). In-situ observations therefore only date back to the first half of the 20th
century. Since then, the number and size of observational campaigns has
increased. This increase in sample size is for example reflected in the evolution of
coordinated international interdisciplinary observational campaigns organised
approximately every twenty years (Untersteiner, 1980; Uttal et al., 2002; Barber
et al., 2016). Although a precious source of information, the spatial and temporal
coverage of in-situ observations are not sufficient for a comprehensive
investigation of the Arctic Ocean climate on large time and spatial scales, especially
for large-scale metrics such as the sea-ice area.

The launch of various Earth-observing satellites starting in the second half of the
20th century has been a game-changer for the observation of the remote polar
regions. Especially the use of passive microwave sensors since 1972 has been very
beneficial for the monitoring of the Arctic Ocean surface as microwave radiation is
emitted during both polar day and polar night and is not stopped by clouds (e.g.
Swift and Cavalieri, 1985). While some of these Earth-orbiting satellites do not
cover the high latitudes, the ones that reach the high latitudes fly over the Arctic at
each revolution, so that their temporal and spatial coverage of the Arctic is
particularly large. The microwave radiation is measured in the form of brightness
temperatures. Observational estimates of geophysical variables of interest,
e.g. sea-ice concentration, are then retrieved by applying an algorithm to these
brightness temperature. From the detective’s view, observational estimates
retrieved from satellite measurements are the equivalent of testimonies from
witnesses. They are a comprehensive source of information but do not necessarily
describe the sequence of events objectively and might be biased due to an
incomplete knowledge of the situation. For microwave measurements of the Arctic
Ocean surface, an unambiguous interpretation of the measured brightness
temperature is not possible due to the variety of physical drivers which cannot be
quantified individually. This uncertainty results in a variety of retrieved sea-ice
concentration estimates depending on the algorithm used (Fig. 1, red and orange
line) (see e.g., Ivanova et al., 2014), which makes observational estimates a source
of information to be handled with care.

Finally, the steady development of global climate models, starting in the middle of
the 20th century (Edwards, 2011), has provided a third representation of the Arctic

3
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CMIP5 Ensemble mean
± standard deviation
Bootstrap sea-ice
concentration product
NASA Team sea-ice
concentration product

Figure 1: September sea-ice area as simulated by CMIP5 models, the latest generation of
climate models, (Ensemble mean, blue) for the historical period [1861-2005] and the 21st
century under the RCP8.5 forcing scenario [2006-2099] and as retrieved by the Bootstrap
(red) and NASA Team algorithms (orange) [1979-2017]. The shading represents the CMIP5
ensemble standard deviation.

Ocean climate, which complements in-situ and observational estimates from
satellites. From the detective’s view, climate models are the equivalent of the
common knowledge of human psychology. They simulate the climate system in a
comprehensive and consistent manner in time and space following the basic
physical principles. Hence, climate models allow us to deepen the understanding
of physical processes and relationships at work in the coupled Arctic Ocean
climate. Additionally, they provide the possibility of projecting future climate
evolution. However, climate models are only approximations of the real physical
processes at work as we do not know all processes playing a role in climate and
cannot necessarily represent all processes we know. For example, many of the
processes are active on subgrid scales and therefore need to be parametrized in the
model. Like the common knowledge about human psychology, they might lead the
investigation in an uncertain direction by giving generalized solutions possibly not
fit for this case. Due to different prioritizations of processes to include and to
different parametrizations, different climate models differ in their representation of
the climate, e.g. for the sea-ice evolution (Fig. 1, blue shading). Climate models
therefore need to be seen as a complementary tool to in-situ observations and
observational estimates and cannot replace them.
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1 Introduction

The lack of in-situ observations on large spatial and temporal scales leaves my
investigation with two main sources of information: the observational estimates of
sea-ice concentration derived from satellites and sea ice simulated by climate
models. The disagreement within and between these two sources are a sign that we
still lack a proper understanding of the mechanisms governing the sea-ice
evolution. The goal of this dissertation is to gain new insights into the main drivers
of the retreat of the Arctic sea-ice cover despite these disagreements. To do so, I use
conventional and less conventional methods, which shed light on the Arctic Ocean
climate system from different perspectives:

• The melting of the sea-ice cover is a consequence of excess energy gained by
the Arctic Ocean through energy exchange with the polar atmosphere and
with oceans from lower latitudes. In a first step, my goal is to find the main
mechanism driving the melting by examining the Arctic Ocean warming
through an energy budget analysis. In Appendix A, I investigate the different
representations of the Arctic Ocean energy budget in an ensemble of climate
models. In this multi-model framework, I identify mechanisms explaining
agreement and disagreement between climate models on the Arctic Ocean
warming and its drivers but I do not find a robust progression of events
resolving the case of the biased simulation of the sea-ice melting. Ultimately,
the disagreement between climate models shows that we still need to learn
about the current Arctic Ocean climate from observations.

• Reliably evaluating simulated sea ice is however a challenge due to the spread
in sea-ice observational estimates induced by the use of different retrieval
algorithms. In a second step, I explore a less conventional approach for
climate model evaluation by developing a new tool: the ARCtic Ocean
Observation Operator (ARC3O). My goal is to introduce a new perspective on
the case, situated between the too little amount of hard evidence and the
large spread in witness testimonies, and therefore to gain a new source of
information to our investigation. An observation operator translates the
simulated climate state into an observable quantity, in this case a brightness
temperature. This simulated brightness temperature can be compared
directly to the brightness temperature measured by satellites, so that we
circumvent the uncertainty introduced by retrieval algorithms in the climate
model evaluation. In Appendix B, I explore the feasibility of simulating
brightness temperatures from a simple sea-ice representation as simulated in
most climate models. In Appendix C, I develop the observation operator,
simulate brightness temperatures from a climate model, and present the
potential of ARC3O for both the evaluation of climate models and the
evaluation of observational estimates against satellite measurements.
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2 DRIVERS OF THE ARCTIC OCEAN WARMING IN A

MULTI-MODEL ENSEMBLE

The retreat of the sea-ice cover is a symptom of the increase in Arctic Ocean heat
content, which has been taking place in past decades, both in sensible and latent
heat content (Polyakov et al., 2010; Zhang, 2005; Steele et al., 2008; Serreze et al.,
2007b). This increase in heat content is projected to continue throughout the
century if no drastic measures are taken to reduce the CO2 concentration present in
the atmosphere (Vavrus et al., 2011; Koenigk and Brodeau, 2013; Stroeve et al., 2007,
2012). Excess heat can be gained by the Arctic Ocean either through vertical
exchange with the atmosphere in the form of the net atmospheric surface flux or
through lateral exchange with oceans from lower latitudes in the form of the
meridional oceanic heat flux. It remains however unclear which of these two fluxes
drive the long-term Arctic Ocean warming. This is the question I address in the
following.

For the historical period, the Arctic Ocean energy budget was investigated based on
reanalyses, as we lack the necessary in-situ observations. The annual mean state
from 1979 to 2001 shows that nearly as much energy was gained by the ocean
through the meridional oceanic heat flux as was lost to the atmosphere through the
net atmospheric surface flux (Serreze et al., 2007a). Only a small amount of the
energy inflow was taken up by the ocean in the form of latent heat to melt sea ice,
while the sensible heat uptake was near to zero. In contrast, from 2000 to 2015,
both latent and sensible heat uptake by the ocean were observed. These changes
were mainly driven by the meridional oceanic heat flux up to 2007 and by the
atmospheric radiative fluxes from 2007 onwards (Mayer et al., 2016).

For longer time scales and for a more comprehensive overview of the processes at
work, climate models are needed to understand changes in the Arctic Ocean
climate system. As different climate models are based on slightly different
assumptions and parametrizations, one single climate model does not give a robust
representation of the climate evolution (see Sec. 1). To counteract this limitation,
the Coupled Model Intercomparison Project (CMIP) was launched in the 1990s.
The CMIP allows a structured comparison framework of different climate models
following a common simulation protocol. Hence, the robustness of the simulated
climate evolution can be assessed across a variety of models. It is also assumed that
the mean over all models represents the consensus between models on the climate
evolution as it averages out individual model biases. Most research institutions
developing a climate model participate in this exercise, which takes place once
every five years (Meehl et al., 2007; Taylor et al., 2012; Eyring et al., 2016).
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2 Drivers of the Arctic Ocean warming in a multi-model ensemble

In the climate models of the CMIP Phase 3 (CMIP3), the net atmospheric surface
flux was found to increase until the end of the 21st century (Sorteberg et al., 2007).
In an individual climate model, the meridional oceanic heat flux was also found to
increase over that period (Koenigk and Brodeau, 2013). However, these long-term
changes in the different fluxes have not been compared to each other and to the
increase in ocean heat content. In Appendix A, I consider the long-term evolution of
the full Arctic Ocean energy budget during the late 20th and the 21st century to find
out if the simulated Arctic Ocean warming is mainly driven by the net atmospheric
surface flux or by the meridional oceanic heat flux.

To this purpose, I use 26 GCMs from the CMIP Phase 5 (CMIP5) framework and
investigate the Arctic Ocean energy budget as a whole over the time period
between 1961 and 2099. I choose 26 GCMs following the availability of the variables
needed for the computation of the net atmospheric surface flux and of the Arctic
Ocean sensible and latent heat content (Sec. A.2). The meridional oceanic heat flux
is computed as a residual from the net atmospheric surface flux and the Arctic
Ocean total heat content. The positive direction for the fluxes is defined towards
the Arctic Ocean interior. We consider the period from 1861 to 2099, which is
represented by historical simulations from 1861 to 2005 and by Representative
Concentration Pathway (RCP) 4.5 simulations from 2006 to 2099. In the following,
we discuss the anomalies in the Arctic Ocean energy budget from 1961 to 2099 with
respect to 1861 to 1960.

Comparing cumulative changes in the energy exchange through the fluxes and in
the heat content of the ocean, I show that the CMIP5 models disagree on the main
driver of the Arctic Ocean warming (Sec. A.3). While the multi-model ensemble
mean suggests that the long-term warming is driven by positive anomalies in both
the meridional oceanic heat flux and the net atmospheric surface flux, the
individual models disagree on the main driver. The models can be divided into
three categories. In 11 of the models, positive anomalies in the meridional oceanic
heat flux dominate, while they are slightly counteracted by negative anomalies in
the net atmospheric surface flux. In 11 other models, the opposite is true. Finally,
the four remaining models depict a similar picture as the multi-model ensemble
mean, where the ocean warming is driven by positive anomalies in both the net
atmospheric surface flux and the meridional oceanic heat flux. In a next step, I
investigate the drivers of these different behaviours.

I investigate the relationship between changes in the net atmospheric surface flux,
changes in the meridional oceanic heat flux and changes in radiative fluxes,
turbulent fluxes, oceanic heat inflow, oceanic heat outflow, sea-ice properties and
ocean surface properties (Sec. A.4). Doing so, I show that the different behaviours
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Color of the arrow: Three categories of models. 
The Arctic Ocean warming is driven by:
- The meridional oceanic heat flux (11 models)
- Both the meridional oceanic heat flux and the
net atmospheric surface flux (4 models)
- The net atmospheric surface flux (11 models)

Changes in the Arctic Ocean energy budget between 1961 and 2099
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Figure 2: Summary of changes in the Arctic Ocean energy budget between 1961 and 2099 as
simulated by CMIP5 models. The different colors represent the different model categories.
The direction of the arrow shows if the cumulated energy anomaly leads to an energy gain
or loss by the Arctic Ocean. The size of the arrow is the magnitude in the cumulated energy
gain or loss.

are linked through a mechanism in which the magnitude of the increase in oceanic
heat inflow through the mass transport through the Barents Sea Opening
modulates the magnitude of the increase in sea-ice area loss and in sea surface
temperature, which in turn modulates the magnitude of the increase in turbulent
heat loss through upward turbulent fluxes (Fig. 2).
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2 Drivers of the Arctic Ocean warming in a multi-model ensemble

This mechanism works as follows. A large increase in oceanic heat inflow ultimately
leads to a large increase in turbulent heat loss (green arrows in Fig. 2). The increase
in oceanic heat inflow counteracts the increase in the oceanic heat outflow, while
the increase in turbulent heat loss counteracts the increase in the net radiative
fluxes. This leads to positive anomalies in the meridional oceanic heat flux and to
negative anomalies in the net atmospheric surface flux. In models showing
negative anomalies in the meridional oceanic heat flux and positive anomalies in
the net atmospheric surface flux, the increase in oceanic heat inflow and turbulent
heat loss is not large enough to fully counteract the increase in heat outflow on the
one hand, and the increase in radiative fluxes on the other hand (orange arrows in
Fig. 2). Finally, in the last model category, the moderate increase in oceanic heat
inflow is large enough to counteract the increase in oceanic heat outflow but its
effect on the turbulent heat loss is not large enough to counteract the increase in
radiative fluxes (grey arrows in Fig. 2). These models therefore show positive
anomalies in both meridional oceanic heat flux and net atmospheric surface flux.

Despite the disagreement about the drivers of the warming, the models agree well
on the amount of energy gained by the Arctic Ocean in the period between 1961
and 2099 (Sec. A.4.3). In an equilibrium climate, changes in the meridional oceanic
heat flux and changes in the net atmospheric surface flux are strongly correlated
due to the Bjerknes compensation, a process in which changes in the oceanic
meridional heat flux are compensated by changes in the atmospheric meridional
heat flux. The mechanism described in Fig. 2 and the agreement on the magnitude
of the ocean warming suggest that Bjerknes compensation is at work in the
simulated transient climate as well and confirm that differences in the Arctic Ocean
energy budget evolution are ultimately driven by changes in the oceanic
meridional heat flux.

The investigation of the Arctic Ocean energy budget did not clearly solve the case of
the bias in the simulation of the sea-ice retreat. The results of the investigation
show that the sea-ice area loss is slightly higher in models where the increase in
oceanic inflow through the Barents Sea Opening will be large until the end of the
21st century than in models where it will be small. However, the magnitude of the
projected increase in oceanic inflow through the Barents Sea Opening could not be
linked to current climate conditions and is therefore rather a diagnostic, which can
be discussed at the end of the 21st century, than a prognostic, which can be
estimated from the current state.

Another investigation approach to gain insight into the spread or disagreement
between climate models is to focus on the time period covered by observations.
Better understanding of processes which are currently at work can be reached by
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combining or comparing simulations with observations. This is however not
straightforward in our case. While there is a spread between climate models on the
current sea-ice evolution, there is also a large spread in observational estimates,
inhibiting reliable climate model evaluation over the historical period. In the
following, I develop an Arctic Ocean observation operator as an alternative tool to
evaluate the simulated and estimated Arctic Ocean climate directly against satellite
measurements, a source of information largely omitted up to now.

3 DEVELOPMENT OF AN ARCTIC OCEAN OBSERVATION

OPERATOR AT 6.9 GHZ

Currently, the sea-ice concentration estimates used for long-term monitoring of
the Arctic sea-ice evolution rely on measurements from passive microwave sensors
on satellites (see Sec. 1). The sensors measure the thermal microwave radiation
emitted by the Earth’s surface and atmosphere in the form of brightness
temperatures at different frequency bands. Retrieving sea-ice concentration from
these brightness temperatures comes with uncertainty as it is not trivial to
disentangle the effect of sea-ice concentration, other sea-ice properties, snow
properties, atmospheric properties, and ocean surface properties, on the
brightness temperatures. To circumvent this ambiguous interpretation process, I
suggest the use of an observational operator, which translates the simulated
climate state from a climate model into brightness temperatures. In the following, I
motivate this approach, explore the feasibility of an Arctic Ocean observation
operator, construct one, and evaluate it.

Sea-ice concentration estimates from brightness temperature measurements are
currently retrieved by a range of algorithms differing slightly in four points: the
frequency and polarization they use, the tie-points they use, their sensitivities to
the physical surface temperature, and their weather filters (Ivanova et al., 2014).
The resulting sea-ice concentration estimates therefore also differ and this
difference can result in an uncertainty in the total sea-ice area of up to 25% in
summer and up to 10% in winter (Ivanova et al., 2014). The uncertainty is largest in
summer, where melt ponds cannot be distinguished from open water in the
microwave brightness temperatures. The different algorithms attempt to
counteract this effect by diverse correction approaches (Stroeve and Notz, 2015;
Ivanova et al., 2014, 2015), resulting in a large spread in the retrieved sea-ice
concentration estimates.
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3 Development of an Arctic Ocean Observation Operator at 6.9 GHz

The disagreement between the sea-ice concentration estimates and not knowing
how they relate to the real sea-ice concentration are a serious challenge for climate
model evaluation, initialization, and the use of observations to constrain future
projections. If observational estimates do not agree on the real state, the choice of
observation estimate used for model evaluation and initialization strongly affects
the results of the procedure (Notz et al., 2013; Bunzel et al., 2016). Finally,
relationships about the future evolution of the sea-ice cover can be inferred from
observations, based on the relationship e.g. between sea-ice area and CO2

emissions (Notz and Stroeve, 2016) or between sea-ice area and global-mean
surface air temperature (Niederdrenk and Notz, 2018). However, projections about
future states of the sea-ice cover inferred from these relationships are strongly
dependent on the observational dataset used to infer these projections
(Niederdrenk and Notz, 2018).

The use of an observation operator provides an opportunity to circumvent the
observational uncertainty. An observation operator simulates the observable
quantity, here the microwave brightness temperature, from the sea ice, ocean and
atmosphere simulated by a climate model. This simulated brightness temperature
can be compared to the brightness temperature measured from space, which is the
closest measure we have to the real climate state on a large temporal and spatial
scale. This approach has been introduced for several climate variables, such as
clouds and atmospheric moisture (an overview can be found in Flato et al., 2013),
and is a promising perspective for climate model evaluation (Eyring et al., 2019),
also for the Arctic Ocean climate system. First results of an Arctic Ocean
observation operator at 1.4 GHz based on an ocean reanalysis showed good
potential for this approach (Richter et al., 2018). However, the feasibility and
limitations of an Arctic Ocean observation operator applied to coupled climate
model output have not been investigated yet.

An ideal Arctic Ocean observation operator would simulate brightness
temperatures at all operational microwave frequency bands used for the retrieval of
sea-ice concentration estimates, i.e. between 1.4 and 91 GHz (Ivanova et al., 2014;
Gabarro et al., 2017). The brightness temperature is a result of emission,
absorption, and scattering inside the sea ice, the snow cover, and the atmosphere,
and the relative influence of the individual media on the brightness temperature
measured from space depends on the frequency. At rather low frequencies, the
radiation is little disturbed by scattering in the snow and atmosphere, and therefore
the brightness temperature is mainly a result of emission, absorption and
scattering inside the ice. With increasing frequency, the snow and atmosphere have
a larger impact and the importance of the ice properties decreases. My study is a
first step towards a more general development of sea-ice observation operators
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applied to climate model output. For this first step, I choose to concentrate on the
simulation of brightness temperatures mainly driven by the ice properties and
focus therefore on the frequency of 6.9 GHz, vertical polarization.

At 6.9 GHz, the main difficulty of an observation operator is the translation of the
simulated sea ice into a sea-ice surface brightness temperature. Sea-ice brightness
temperatures mainly depend on the liquid water fraction inside the ice and snow,
which is driven by temperature and salinity profiles. However, in most climate
models, such as the Max Planck Institute Earth System Model (MPI-ESM), the
vertical profiles of the ice properties are not computed explicitly. I therefore first
investigate, in a one-dimensional idealized setup, the feasibility of the sea-ice
brightness temperature simulation based on the limited output provided by a
climate model (Appendix B).

Second, I develop the Arctic Ocean Observation Operator for 6.9 GHz (ARC3O),
using the results from Appendix B. Then, I investigate the brightness temperatures
simulated from the output of three different assimilation experiments and compare
them to brightness temperatures observed by satellites to evaluate the
performance of ARC3O (Appendix C).

3.1 SIMULATING SEA-ICE BRIGHTNESS TEMPERATURES IN AN

IDEALIZED 1D SETUP

In a first step, I investigate the simulation of sea-ice surface brightness
temperatures at 6.9 GHz, vertical polarization, in an idealized one-dimensional
setup (Sec. B.3). I force the one-dimensional thermodynamic Semi-Adaptive
Multi-phase Sea-Ice Model (SAMSIM, Griewank and Notz, 2013, 2015) with
atmospheric reanalysis data over a period of 4.5 years. The resulting temperature
and salinity profiles for ice and snow are then used as input for a slightly modified
version of the one-dimensional Microwave Emission Model for Layered Snowpacks
(MEMLS) extended to sea ice (Tonboe et al., 2006). MEMLS computes the
brightness temperature emitted at the surface resulting from these sea-ice
properties.

I find that the effect of vertical sea-ice temperature and salinity profiles on
simulated brightness temperatures depends on the surface liquid water fraction of
the ice (Sec. B.4.1). For surface liquid water fractions above 0.2, mainly occurring in
summer, the brightness temperature is closely tied to the surface liquid water
fraction, decreasing from ≈260 K, a typical sea-ice brightness temperature, at a
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surface liquid water fraction of 0.2 to ≈160 K, a typical open water brightness
temperature, at a surface liquid water fraction of 1. These high surface liquid water
fractions above 0.2 occur when the temperature is near 0◦C but the salinity is above
zero, i.e. mainly in summer. In these conditions, information about the inner
properties of the ice are not necessary as the simulated brightness temperature
only depends on the surface. However, such high surface liquid water fractions are
not realistic. I therefore suggest to interpret the surface liquid water fractions above
0.2 as a measure for the fraction of melt ponds covering the ice in summer.

At surface liquid water fractions below 0.2, the brightness temperature does not
depend on the surface only but also on the liquid water fraction distribution inside
the ice. Unfortunately, I cannot constrain a given layer or a given liquid water
fraction driving it specifically. I therefore investigate if very simple assumptions
about the temperature and salinity profile can be made to simulate reasonable
sea-ice surface brightness temperatures. I investigate different simplifications for
the temperature and salinity profiles and find that reasonable winter sea-ice
brightness temperatures can be simulated based on a linear temperature profile
and a salinity profile defined as a function of depth (Fig. 3, Sec. B.4.3). These
profiles can have as little layers as seven without increasing the uncertainty in the
brightness temperature simulation substantially (Sec. B.5).
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Figure 3: Simulated brightness temperature based on a linear temperature profile and a
salinity profile as a function of depth against the reference brightness temperature, for
first-year and multiyear ice in winter (October to March). The mean absolute difference
and standard deviation of the difference between the two is shown.

Based on these results, I suggest that an observation operator at 6.9 GHz, vertical
polarization, for the Arctic Ocean should follow the guidelines below:
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For periods of cold conditions:

1. Use the temperature profile provided by the climate model if existing.
Otherwise, use the simulated ice surface temperature to interpolate a linear
temperature profile.

2. Use the salinity profile provided by the climate model if existing. Otherwise,
interpolate the salinity profile as a function of depth, for example following
the functions given by Griewank and Notz (2015).

3. Apply an emission model, e.g. MEMLS, to these profiles, combined with
information about scatterer size, sea-ice type, etc.

4. Apply a simple atmospheric radiative transfer model, e.g. Wentz and Meissner
(2000), to account for the effect of open water when the sea-ice concentration
is below 100% and for the effect of the atmosphere.

For periods of bare ice near 0 ◦C:

1. Use a constant brightness temperature for the ice surface.

2. Weight this constant brightness temperature with the melt pond fraction.

3. Apply a simple atmospheric radiative transfer model, e.g. Wentz and Meissner
(2000), to account for the effect of open water when the sea-ice concentration
is below 100% and for the effect of the atmosphere.

For periods of melting snow:

Ignore these points in the analysis. The climate model output does not provide
enough information about the snow properties and wet snow strongly affects
the brightness temperature.

3.2 SIMULATING ARCTIC OCEAN BRIGHTNESS TEMPERATURES FROM 2D

CLIMATE MODEL OUTPUT

In a next step, I construct the ARCtic Ocean Observation Operator for 6.9 GHz
(ARC3O) following the guidelines presented in Appendix B to be applied on simple
output of a climate model. I apply it to output from the Max Planck Institute Earth
System Model (MPI-ESM). In this more realistic setup, I investigate the simulated
brightness temperatures and compare them to brightness temperatures observed
by satellites.
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3 Development of an Arctic Ocean Observation Operator at 6.9 GHz

The structure of ARC3O is based on five steps (Sec. C.3). First, the dataset is divided
into different seasons and different ice types. Second, the profiles describing
sea-ice properties are prepared for the cold season based on sea-ice thickness,
snow thickness and surface temperature output from the climate model. Third, the
sea-ice surface brightness temperature is computed for cold conditions by using
the sea-ice profiles as input for MEMLS. Fourth, the sea-ice surface brightness
temperature is computed for all seasons. Fifth, the effect of open water and
atmosphere is added through the use of a simple radiative transfer model by Wentz
and Meissner (2000).

The simulated Arctic Ocean brightness temperatures I compare to satellite
observations are based on assimilation runs conducted with MPI-ESM (Sec. C.4).
These assimilation runs are close to the observed climate state as the model is
regularly nudged towards observations. In this setup, I compare simulated and
observed brightness temperatures which should be close to each other. I use three
model runs assimilated with three different sea-ice concentration estimates to
account for the spread in the retrieved sea-ice concentration product. For all three
assimilation experiments, the simulated brightness temperatures compare well in
autumn to spring, the differences locally ranging from 0 K to 10 K, with most
differences being in the range of 0 K to 5 K.

I show that, from autumn to spring, most of the differences between simulated and
observed brightness temperatures are small compared to the spread between the
observational estimates used in the assimilation (Sec. C.4.3). If the uncertainty
introduced by the choice of observational estimate and the uncertainty introduced
by the data assimilation are removed, the minimal uncertainty attributable to
biases in ARC3O is below 5 K over most of the region (Fig. 4).

In summer, the discrepancies between simulated and observed brightness
temperatures locally reach between 15 and 20 K and simulated brightness
temperatures differ substantially between the different assimilation runs
(Sec. C.4.4). This is because the melt ponds covering the sea ice in summer cannot
be distinguished from open water at microwave frequencies. They are therefore a
challenge for retrieval algorithms. To account for this difficulty, retrieval algorithms
apply differently correction methods. As MPI-ESM provides a melt pond fraction,
we assess the uncertainty introduced in the retrieved sea-ice concentration by
these correction methods.

In summary, ARC3O allows us to simulate realistic brightness temperature from
climate model output. Using assimilation runs, I show that biases introduced by
ARC3O itself remain small. ARC3O can therefore be used as a new tool for climate
model evaluation, comparing the full simulated climate state represented in the
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Figure 4: Mean minimal estimate of bias introduced by ARC3O. JFM stands for
January/February/March, AMJ for April/May/June, JAS for July/August/September and
for OND for October/November/December. See Sec. C.4.3 for more information on the
estimation of the bias.

brightness temperature to the observed brightness temperature, allowing us to
circumvent observational uncertainty. Additionally, due to its simple structure,
ARC3O can be applied to a variety of climate models.

4 CONCLUSIONS

In my dissertation, I set out to resolve the case of the biased simulation of the Arctic
sea-ice retreat. While I cannot resolve it, I advance it and pave the way for the further
continuation of this investigation by providing a new source of information.

Using a multi-model ensemble to investigate the Arctic Ocean energy budget, I show
the following:

• The use of the multi-model ensemble mean does not only average out
individual model biases but can be a serious misrepresentation of the model
ensemble. In my example, the multi-model ensemble mean represents a
consensus representation on the magnitude of the Arctic Ocean warming.
However, taking a step back and looking at the individual models, it appears
that the multi-model ensemble mean does not represent a consensus
between the models on the driver of this warming. In 11 of 26 models the
Arctic Ocean warming is driven by the meridional oceanic heat flux, and, in
11 other models it is driven by the net atmospheric surface flux. Only four of
the 26 models show a warming driven by both fluxes, as suggested by the
multi-model ensemble mean.
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4 Conclusions

• Model disagreement is not necessarily inhibiting our understanding of the
climate system. The spread between climate models can be turned to our
advantage as it provides an opportunity to identify processes and
relationships that hold across all models. I show that the different behaviours
between disagreeing models can be explained by a mechanism involving the
heat inflow through the Barents Sea Opening, the sea-ice area loss and the
the ocean surface warming, and the atmospheric turbulent fluxes.

A multi-model ensemble mean is therefore a useful tool to identify differences
between climate models and consistent relationships across models.

Further understanding of model biases can come through reliable model
evaluation, which is however inhibited by observational uncertainty in the case of
sea ice. To tackle this issue, I develop the Arctic Ocean Observation Operator
ARC3O for the frequency of 6.9 GHz, which provides the possibility to evaluate both
climate models and observational estimates, if assimilated into the climate model,
against direct satellite measurements. In this context, I show the following:

• Realistic brightness temperatures at 6.9 GHz can be simulated based on
low-complexity output of a climate model, using simple assumptions. The
simulation of winter sea-ice brightness temperatures relies on sea-ice
temperature and salinity within the ice. Summer sea-ice brightness
temperatures are mainly driven by the surface and reliable information about
melt ponds is more important than properties inside the ice.

• Differences in the simulated sea-ice concentration account for most of the
differences between simulated and observed brightness temperatures.
Discrepancies between simulated and observed brightness temperatures
possibly attributable to ARC3O itself remain smaller than discrepancies
attributable to the spread in sea-ice concentration estimates used in the
simulation. This means that the observation operator reduces the
uncertainty in the model evaluation process.

ARC3O has proven to be a useful tool to identify variables driving the brightness
temperature and therefore driving the uncertainty in the conventional model
evaluation procedure. Also, as it circumvents observational uncertainty, the
observation operator provides a new possibility to explain model biases in sea ice
by possible biases in the surrounding climate conditions.
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5 OUTLOOK

Generally, biases in sea-ice simulations have been investigated on the
climate-model level, based on the disagreement between simulated and so-called
"observed" sea ice, i.e. sea-ice estimates retrieved from satellites. In this
dissertation, I investigate different approaches, looking at the sea-ice melting
problem from different perspectives, in a multi-model framework on the one hand,
and in an observation operator framework on the other hand. In the following, I
discuss the implications of my results for a possible continuation of the case
investigation about the bias in the simulation of the Arctic sea-ice retreat.

Differences in sea-ice representations, both in observational estimates and climate
model simulations are a strong indicator that we do not yet grasp the finer
mechanisms at work in the Arctic climate system. This is not surprising, as the
Arctic Ocean climate is very heterogeneous and in-situ observations remain sparse.
In-situ observations are needed to interpret satellite measurements, and the
observational estimates retrieved from these satellite measurements are used to
evaluate climate models. While the coverage of in-situ observations has increased
in many areas of the world reaching even remote oceanic regions through
large-scale networks such as the Argo floats (Gould et al., 2004), the sea-ice cover
has strongly inhibited such progress in the Arctic. Observational campaigns to the
Arctic Ocean are costly due to the remoteness and the harsh climatic conditions
and sea-ice buoys are often lost during the melting season. There is therefore a
limit to the amount of in-situ observations that can be collected.

Satellite measurements are difficult to interpret due to the ambiguous origin of the
radiation signal, which is influenced by sea-ice properties, snow properties,
atmospheric properties, and ocean surface properties. The effect of these variables
on the brightness temperature is not straightforward to disentangle. The small
number of in-situ observations makes the evaluation of observational estimates
retrieved from satellite measurements difficult. Here, I concentrate on the example
of sea-ice concentration as this is the longest large-scale record available of a
sea-ice property but large uncertainties can also be found in the retrieval of sea-ice
thickness from altimeter data (e.g. Bunzel et al., 2018) for example.

Due to the sparsity of in-situ observations and the ambiguous interpretation of
satellite measurements, Arctic climate scientists have gotten used to rely on
models, be it in the form of reanalyses, regional climate models, or global climate
models. These gridded products are easy to use and available over long time
periods. In particular, reanalyses are often used as the true "observational" data
although, especially in the Arctic, they rely only on a small number of observational
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5 Outlook

information and are therefore not necessarily close to reality (Lindsay et al., 2014;
Boisvert et al., 2018). While I show that the intercomparison of climate models can
bring new insights into relationships and processes holding across models, new
methods are needed to come closer to the real climate.

An observation operator is a promising alternative to reduce the gap between
models and reality. Translating the model simulation results into observation
space, i.e. into a quantity that can be measured by satellites directly, opens up new
possibilities for Arctic climate research. With this approach the climate model
evaluation circumvents most of the observational uncertainty and the simulated
climate can be compared to a quantity closer to reality than observational
estimates. Additionally, in combination with the assimilation of observational
estimates into the model, the simulated brightness temperature can help to
identify shortcomings in observational estimates and, eventually, support the
improvement of retrieval algorithms.

Besides the evaluation of models and observational estimates, the observation
operator offers an opportunity for more reliable data assimilation to initialize
climate model hindcasts and forecasts. Especially data assimilation techniques
relying on a first guess, such as variational data assimilation (Talagrand and
Courtier, 1987; Andersson et al., 1994) and ensemble Kalman filters (Evensen, 1994;
Hunt et al., 2007), benefit from having the simulated state in the form of a
brightness temperature. These brightness temperatures are directly comparable to
the satellite measurements and therefore minimize the observational
uncertainty.

The full potential of an observation operator can ultimately be unfolded by
including a large range of frequency bands. If only one frequency band is used,
differences between simulated and observed brightness temperature cannot be
clearly attributed to biases in the brightness temperature simulation or to biases in
single climate variables. This can be seen in my example, where the differences
between simulated and observed brightness temperatures can potentially be
attributed to a biased simulated state of the sea-ice concentration or the surface
temperature, or a biased brightness temperature simulation. Different climate
properties, such as the sea-ice thickness, snow properties, atmospheric properties,
or ocean surface properties, affect the brightness temperature differently at
different frequency bands. Using the combination of frequency bands gives the
possibility to disentangle the effects and attribute more clearly differences between
simulated and observed brightness temperatures to given individual variables or to
biases in the operator.
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Further development of the Arctic observation operator for higher frequency bands
faces the challenge of understanding and parametrizing the snow properties
realistically, which are not well represented in climate models and relatively
unexplored in in-situ observations. This calls for expertise between different fields,
underlining the importance of collaboration in Arctic science as the components of
the Arctic Ocean climate system are highly interactive.

Although climate change does not leave us much time to unravel the secrets of an
Arctic Ocean covered by ice throughout the year, the sea-ice cover is projected to
endure in winter on a much longer time horizon. There is therefore still high
potential for "scientific detectives" to continue the investigation, applying
unconventional methods for climate model evaluation, and to improve our
understanding of the Arctic Ocean climate. As human activity in the region is
projected to increase, the prediction of sea ice is becoming increasingly important
and therefore a better understanding of biases in both climate models and
observational estimates is crucial. While observational uncertainty and model
spread inhibit reliable model evaluation, the observational operator I developed
here is a promising first step into a novel perspective on the evaluation of simulated
Arctic climate against observations.

20



APPENDICES

Appendix A
Burgard, C. and D. Notz (2017): "Drivers of Arctic Ocean warming in CMIP5 models".
Geophysical Research Letters, 44, 4263-4271, doi: 10.1002/2016GL072342.

C.B. carried out all analyses of this manuscript, including harmonising, processing
and synthesizing the data, interpreting the results, and preparing the manuscript
including all text and figures. D.N. provided the original idea and provided guidance
at all stages.

Appendix B
Burgard, C., D. Notz, L.T. Pedersen and R.T. Tonboe. "How to obtain sea-ice
brightness temperatures at 6.9 GHz from climate model output". To be submitted to
The Cryosphere.

C.B. carried out all analyses of this manuscript, including the setup of all
simulations, re-writing the MEMLS model for the requirements of this study,
processing and synthesizing the model output, interpreting the results, and
preparing the manuscript including all text and figures. D.N. and L.T.P. developed
the original idea. D.N., L.T.P. and R.T.T. provided guidance at all stages.

Appendix C
Burgard, C., D. Notz, L.T. Pedersen and R.T. Tonboe. "ARC3O: The Arctic Ocean
Observation Operator for 6.9 GHz". To be submitted to The Cryosphere.

C.B. carried out all analyses of this manuscript, including the development of the
Arctic Ocean Observation Operator framework, setup of all simulations, processing
and synthesizing the model output, interpreting the results, and preparing the
manuscript including all text and figures. C.B., D.N. and L.T.P. developed the
original idea. D.N., L.T.P. and R.T.T. provided guidance at all stages.

21





A

DRIVERS OF ARCTIC OCEAN WARMING IN

CMIP5 MODELS

CLARA BURGARD AND DIRK NOTZ

Abstract

We investigate changes in the Arctic Ocean energy budget simulated by 26 general

circulation models in the CMIP5 framework. Our goal is to understand whether

the Arctic Ocean warming between 1961 and 2099 is primarily driven by changes in

the net atmospheric surface flux or by changes in the meridional oceanic heat flux.

We find that the simulated Arctic Ocean warming is driven by positive anomalies

in the net atmospheric surface flux in 11 models, by positive anomalies in the

meridional oceanic heat flux in 11 models and by positive anomalies in both energy

fluxes in four models. The different behaviors are mainly characterized by the

different changes in meridional oceanic heat flux that lead to different changes

in the turbulent heat loss to the atmosphere. The multi-model ensemble mean

is hence not representative of a consensus across the models in Arctic climate

projections.

A.1 INTRODUCTION

The heat content of the Arctic Ocean is regulated by its lateral energy exchange
through the meridional oceanic heat flux and its vertical energy exchange through
the net atmospheric surface flux. It remains, however, unclear which of these two
energy fluxes is primarily driving the observed (Polyakov et al., 2010; Zhang, 2005;
Steele et al., 2008; Serreze et al., 2007b) and projected (Vavrus et al., 2011; Koenigk
and Brodeau, 2013; Stroeve et al., 2007, 2012) long-term Arctic Ocean warming.
This is the question we address here.
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For the historical period, the topic has been investigated using reanalyses. During
the period from 1979 to 2001, in the annual mean state, nearly as much energy was
gained by the ocean through the meridional oceanic heat flux as was lost to the
atmosphere through the net atmospheric surface flux (Serreze et al., 2007a). Only a
small amount of the energy inflow was taken up by the ocean in form of latent heat
to melt sea ice, the sensible heat uptake being near to zero. From 2000 to 2015,
however, both latent and sensible heat uptake by the ocean were observed and
were found to be mainly driven by the meridional oceanic heat flux up to 2007 and
mainly driven by the radiative fluxes from 2007 onwards (Mayer et al., 2016).

For a more extensive analysis on longer timescales, including future projections,
general circulation models (GCMs) are needed. Up to now, the future evolution of
the different components of the Arctic Ocean energy budget have only been
investigated separately. On the one hand, the net atmospheric surface flux was
found to increase over the whole Arctic domain (land and ocean) until the end of
the 21st century, using the CMIP3 model ensemble (Sorteberg et al., 2007). On the
other hand, the northward oceanic heat transport was found to increase as well
until the end of the 21st century, using the EC-EARTH model (Koenigk and
Brodeau, 2013). These results suggest that both the net atmospheric surface flux
and the meridional oceanic heat flux could in principal provide the necessary
energy for Arctic Ocean warming. However, as the energy fluxes were investigated
separately without direct comparison to each other and to changes in the ocean
heat storage, the main driver of the long-term warming cannot clearly be inferred
from these studies.

We investigate the Arctic Ocean energy budget as a whole to understand if the
simulated long-term Arctic Ocean warming during the late 20th and the 21st
century is mainly driven by changes in the net atmospheric surface flux or by
changes in the meridional oceanic heat flux. To this purpose, we examine the
evolution of the different components of the Arctic Ocean energy budget in data
from 26 GCMs from the fifth phase of the Coupled Model Intercomparison Project
(CMIP5). By studying the energy budget in a closed framework, we can directly
attribute changes in the energy storage of the Arctic Ocean to changes in the two
energy fluxes.
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A.2 METHODS AND DATA

A.2.1 ARCTIC OCEAN ENERGY BUDGET

The total Arctic Ocean heat content Htot, defined here for the ocean north of 66◦N,
can be decomposed as follows :

Htot =Hsens+Hlat (A.1)

where Hsens is the sensible heat content of the ocean water and Hlat the latent heat
content of the sea ice and snow on sea ice. As shown in both observational studies
from Serreze et al. (2007a) and Mayer et al. (2016), the change in latent heat content
of snow can be neglected, and we will do so in this study as well.

The change in total ocean heat content in a given period, called hereafter total
ocean heat storage ∆Htot, is regulated by the energy fluxes at its boundaries
integrated over the given time period and domain. These fluxes are the net
atmospheric surface flux Fsfc and the meridional oceanic heat flux Fmer :

∆Htot =∆Hsens+∆Hlat =∆Hsfc+∆Hmer (A.2)

∆Hsfc =

∫ ∫

Fsfc dA dt=

∫

1 year

∫ 90◦N

66◦N

(FSW↓− FSW↑+ FLW↓− FLW↑+ FS+ FL)dA dt (A.3)

where FSW↓ and FSW↑ are the incoming and outgoing shortwave radiation, FLW↓ and
FLW↑ are the incoming and outgoing longwave radiation and FS and FL are the sensible
and latent heat flux. All fluxes are defined as positive into the Arctic Ocean domain,
except FSW↑ and FLW↑.

Due to energy conservation, the energy exchanged through the meridional oceanic
heat flux can be computed as a residual from the two other components :

∆Hmer =

∫ ∫

Fmer dA dt=∆Htot−∆Hsfc (A.4)

We investigate changes in the three components of the energy budget presented in
Eq. (A.2), (A.3) and (A.4) compared to a reference period defined here from 1861 to
1960. To this purpose, we compute anomalies of each of the components by
subtracting their mean state during this reference period. Cumulated over 1961 to
2099, the resulting anomalies yield the total anomalous energy gained or lost by or
through the different components over the late 20th and 21st century.
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A.2.2 DATA

We use data from 26 GCMs run in the CMIP5 framework (see Tab. S1). The models
used in this study were chosen following the availability of the following variables:
incoming/outgoing longwave radiation, incoming/outgoing shortwave radiation,
sensible/latent heat flux, sea-ice concentration, sea-ice thickness, and ocean
potential temperature. Note that the more terms we include in our analysis, the
fewer models can be used as not all institutes provide all the variables of interest to
the CMIP5 archive. For example, we further use the water mass transport across the
Barents Sea Opening, the Fram Strait, the Canadian Archipelago and the Bering
Strait from those seven models where these values appear reasonable (see Fig. S1).
The sea-ice export across Fram Strait is available for 10 models and can easily be
computed for 2 additional models. The mass transport and sea-ice export across
the Fram Strait are used as proxies for the mass transport and sea-ice export across
the Denmark Strait, as changes in these variables are comparable in those two
regions.

We conduct our analysis on data covering the period 1861 to 2099, using historical
simulations for the period between 1861 and 2005 and RCP4.5 simulations for the
period between 2006 and 2099. If several realizations or ensemble members are
available for a model, the ensemble mean is used.

A.2.3 METHOD EVALUATION

We use one of the GCMs that provides all the components of the Arctic Ocean
energy budget (MPI-ESM-LR), including snow on sea ice and the oceanic heat flux,
to evaluate our method. We use Eq. (A.4) to compute the annual mean meridional
oceanic heat flux Fmer and compare it to direct model output from the model for
Fmer. This yields reasonable results (see Fig. A.1), with an average difference
between the two values of Fmer of 0.192±0.429 W/m2, i.e. around 1% of the flux
value. If the latent energy of snow is included in the computation of ∆Htot, the
difference changes by 0.001 W/m2, confirming that the changes in snow cover can
be neglected from an energetic point of view.
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Figure A.1: Annual mean meridional oceanic heat flux given by the model against annual
mean meridional oceanic heat flux computed as a residual (in W/m2) with Eq. (A.4) for
MPI-ESM-LR.

A.3 DRIVERS OF THE ARCTIC OCEAN WARMING

As a first step, we examine the relative roles of changes in the net atmospheric
surface flux and meridional oceanic heat flux on the Arctic Ocean warming. The
multi-model ensemble mean suggests that the ocean warming is mainly driven by
positive anomalies in the meridional oceanic heat flux (see Fig. A.2, first panel).
However, this does not represent a consensus across the individual models.

Although the total cumulated energy resulting from anomalies in the total ocean
heat storage is positive in all models, the models disagree on the evolution of the
net atmospheric surface flux and the meridional oceanic heat flux. In 11 models
(model names in red in Fig. A.2, called Matm hereafter), energy is gained by the
ocean due to positive anomalies in the net atmospheric surface flux, while this gain
is compensated partly by negative anomalies in the meridional oceanic heat flux.
In 11 other models (model names in light blue in Fig. A.2, called Moc hereafter), the
opposite is true. In the four remaining models (model names in grey in Fig. A.2,
called Mboth hereafter), energy is gained by positive anomalies in both the net
atmospheric surface flux and the meridional oceanic heat flux.
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Figure A.2: Cumulated anomalies relative to the reference period (1861-1960) for∆Htot (dark
blue line), ∆Hsfc (red line) and ∆Hmer (light blue line) (in 1023 J). The models are divided
into three categories: Matm (red font), Moc (light blue font) and Mboth (grey font).

As a consequence, although we have used several models with the goal of inferring
a robust conclusion, there is no consensus across the models about whether the
ocean warming is mainly driven by changes in the vertical energy exchange with
the atmosphere or in the lateral energy exchange with the ocean from lower
latitudes. We therefore turn to the changes in the drivers of the net atmospheric
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surface flux and meridional oceanic heat flux to understand the processes steering
the different evolution of the energy fluxes in the models.

A.4 DRIVERS OF CHANGES IN THE ENERGY FLUXES

We examine differences between the end of the 21st century (2079-2099) and the
reference period (1861-1960) in variables influencing the net atmospheric surface
flux and the meridional oceanic heat flux (see Fig. A.3). Our goal is to understand
the different behaviours between the three model categories defined in section A.3.
We compute the correlation coefficient between the change in the variables and the
change in both the net atmospheric surface flux (upper values in Fig. A.3) and the
meridional oceanic heat flux (lower values in Fig. A.3). The net atmospheric surface
flux and meridional oceanic heat flux are strongly negatively correlated (r=-0.97).
In addition, we find significant correlations (p<0.05, bold in Fig. A.3) with the net
atmospheric surface flux for seven variables and with the meridional oceanic heat
flux for 12 variables. Note that the values of the correlation coefficients might be
biased slightly high because of model interdependence (Knutti et al., 2013). In the
following, we present changes influencing the net atmospheric surface flux and the
meridional oceanic heat flux, then we suggest processes linking changes in the two
energy fluxes.

A.4.1 CHANGES IN THE NET ATMOSPHERIC SURFACE FLUX

Changes in the net atmospheric surface flux are driven by changes in the shortwave
radiation, longwave radiation and turbulent (sensible and latent) heat fluxes. All
models show an increase in net shortwave radiation linked to the decrease in
outgoing shortwave radiation. Also, they all show an increase in both incoming and
outgoing longwave radiation but disagree on which of the two longwave fluxes
increases more. Hence, the models disagree on the sign of the change in the net
longwave radiation. Still, all models agree on an increase in the sum of the net
radiative fluxes, i.e. an increase in radiative heat gain by the ocean. However,
changes in shortwave radiation, longwave radiation, and the sum of the two are not
significantly correlated with the changes in the net atmospheric surface flux.

In contrast, the changes in turbulent heat fluxes are significantly correlated with
the change in the net atmospheric surface flux (r=0.68). The net atmospheric
surface flux decreases with increasing turbulent heat loss to the atmosphere.
The changes in the different atmospheric surface fluxes suggest that the negative
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Figure A.3: Change in variables having an influence on the Arctic Ocean net atmospheric
surface flux and meridional oceanic heat flux between end of the 21st century (2079 to
2099) and the reference period (1861 to 1960) for each model. Colors stand for the model
categories (red: Matm, light blue: Moc, grey: Mboth, black: multi-model ensemble mean).
Coefficients and variables in bold show a significant correlation between the change in
the given variable and the change in the net atmospheric surface flux and/or the change
in meridional oceanic heat flux. Numbers in brackets represent which units describe the
given variable(s). The positive direction for the mass transports is into the domain.

anomalies in net atmospheric surface flux in Moc models are primarily driven by an
increase in turbulent heat loss from the ocean to the atmosphere which is larger
than the increase in radiative heat gain by the ocean. The positive anomalies in net
atmospheric surface flux in Matm and Mboth models are primarily driven by an
increase in radiative heat gain by the ocean which is larger than the increase in
turbulent heat loss from the ocean to the atmosphere.
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A.4.2 CHANGES IN THE MERIDIONAL OCEANIC HEAT FLUX

The available variables do not allow us to accurately compute the heat transports at
the different Arctic Ocean lateral boundaries. This is because the meridional mass
transport in different depths is not provided. We therefore use changes in mass
transport, temperature and sea-ice export averaged at the different boundary
regions as proxies to understand changes in oceanic heat inflow and outflow.

For the inflow, we examine the inflow regions of our domain (Bering Strait,
Iceland-Faroe Channel and Faroe-Scotland Channel) and, additionally, the Barents
Sea Opening inside the domain. We find the strongest correlation between the
meridional oceanic heat flux and the mass transport at the Barents Sea Opening
(r=0.89). Additionally, the water temperature increases in all inflow regions,
significantly correlated with the change in meridional oceanic heat flux in the
Iceland-Faroe Channel (r=0.60) and at the Barents Sea Opening (r=0.41). Changes
in the meridional oceanic heat inflow are therefore strongly linked to changes in
mass transport and water temperature on the Atlantic side.

For the outflow, we examine the outflow regions of our domain (Denmark Strait
and Canadian Archipelago) and, additionally, the Fram Strait inside the domain.
We find that the water temperature increases and the sea-ice export decreases in all
models in these regions, which both lead to an increase in the energy outflow. We
also find a strong negative correlation between the meridional oceanic heat flux
and the mass transport at the Fram Strait (r=-0.73). We suggest that this is a
consequence of the increased mass transport through the Barents Sea Opening
owing to mass conservation.

The Fram Strait is both inflow (Eastern part) and outflow region (Western part)
concurrently. We attempt to examine the two parts separately by dividing the
Atlantic Water layer (upper 1000 m) within the Fram Strait meridionally. Doing so,
we do not find any significant correlation between temperature changes in either of
the two regions and changes in the meridional oceanic heat flux or changes in the
net atmospheric surface flux. As the mass transport is only given across a
horizontal line through the whole width of the Fram Strait and cannot be divided
similarly, we cannot draw any conclusion in regard to differences in the mass
transport changes.

We infer from the changes in temperature and mass transport in the inflow and
outflow regions that positive anomalies in the net meridional oceanic heat flux in
Moc and Mboth models are primarily driven by an increase in both the water mass
transport and the water temperature at the inflow, especially the Barents Sea
Opening. Negative anomalies in the net meridional oceanic heat flux in Matm
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models seem to be primarily driven by an increase in the water temperature at the
outflow and decrease in sea-ice export which both lead to an increase in energy
outflow that compensates the small increase in energy inflow in these models.

A.4.3 PROCESSES LINKING CHANGES IN THE ENERGY FLUXES

We now turn to analyzing the interrelationship between the net atmospheric
surface flux and the meridional oceanic heat flux to identify the main driver for the
differences between the model categories. In doing so, it is instructive to first
briefly consider the linkages between the oceanic and atmospheric meridional heat
fluxes. In a steady climate, these two fluxes are linked because of Bjerknes
compensation, a process in which changes in the oceanic meridional heat flux are
compensated by changes in the atmospheric meridional heat flux (Bjerknes, 1964;
Van der Swaluw et al., 2007; Jungclaus and Koenigk, 2010).

In the model simulations considered here, the climate is not in steady state.
Nevertheless, we find a strong negative correlation between the two different
meridional heat fluxes (r=-0.77). Hence, we conjecture that Bjerknes
compensation is at work also in the simulated transient climate, which implies that
differences in the Arctic Ocean energy budget evolution are ultimately driven by
changes in the oceanic meridional heat flux.

This also applies to the explanation for the different model categories that we
identified. In all models, increasing net radiative fluxes provide a surplus of energy
to the ocean, leading to an increase in sea surface temperature and sea-ice area
loss. These effects in turn lead in all models to an increase in turbulent heat loss to
the atmosphere, counteracting the increase in radiative heat gain. In Moc models,
the sea surface warming, sea-ice loss and consequent increase in turbulent heat
loss are amplified by the additional heat gain through the increased meridional
oceanic heat flux, leading to a negative change in the net atmospheric surface flux.
The ocean loses additional heat to the atmosphere. In contrast, in Matm models, the
additional turbulent heat loss is decreased because of the decrease in the
meridional oceanic heat flux. Hence, in these models, the change in net
atmospheric surface flux is positive, the ocean gains additional heat from the
atmosphere.

Although the models disagree on the source of energy for the ocean warming, they
agree that changes in the meridional oceanic heat flux are largely compensated by
respective changes in the net atmospheric surface flux (Fig. A.4). The resulting
change in ocean heat storage is comparably small (∆Ht o t=+4.6±2.6x1022 J between
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1961 and 2099) but very similar across the models, with a regression fit being close
to a one-to-one fit (Fig. A.4, r=-0.95).

Hence, under the same forcing, the models agree on the order of magnitude of the
surplus energy stored by the Arctic Ocean. However, because of differences in
meridional oceanic heat flux, they disagree on the dominating mode of transport
for the surplus energy from low to high latitudes.
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Figure A.4: Sum of the anomalies to the reference period in ∆Hsfc as a function of the sum
of the anomalies to the reference period in ∆Hmer (in 1023 J) from 1961 to 2099 for each
model. The plain line is a linear regression fit. The dashed line represents the one-to-one
fit. Colors represent the model categories, see Fig. A.3. The blue arrow shows the intercept
of the linear regression, which represents the total ocean heat gain, if all models would lie
on the regression line.

A.4.4 ADDITIONAL REMARKS

Additionally to relationships between the three main components of the Arctic
Ocean energy budget, the evolution of the other variables (see Fig. A.3) allows us to
briefly investigate further relationships discussed in previous literature. First, the
chain of effects between meridional oceanic heat flux, sea surface temperature,
sea-ice area and turbulent heat fluxes has been observed in the Barents Sea (Ikeda,

33



A Drivers of Arctic Ocean warming in CMIP5 models

1990; Ådlandsvik and Loeng, 1991; Årthun et al., 2012; Smedsrud et al., 2013).
However, in addition, the formation of a low pressure system in the Barents Sea as a
consequence of the increased turbulent heat loss to the atmosphere was observed
in these studies. In CMIP5 atmospheric pressure data, there is no indication of a
significant correlation between the surface pressure in the Barents Sea and the
change in meridional oceanic heat flux (see Fig. A.3).

Second, the change in meridional oceanic heat flux is significantly correlated with
sea-ice area loss rather than sea-ice volume loss. In regions with seasonal ice cover
(e.g. Barents Sea), the warming of the ocean water leads to a reduction in the mean
annual sea-ice cover due to delayed freezing, as discussed by Bathiany et al. (2016).
This results in a pronounced loss of sea-ice area instead of a pronounced loss of sea-
ice volume.

Third, we cannot find a significant correlation between the magnitude of simulated
Arctic Amplification and the change in meridional oceanic heat flux in the models.
This is in contrast with previous studies. An increase in the meridional oceanic heat
transport was found to lead to a higher surface warming through the resulting
increase in turbulent heat loss to the atmosphere (Holland and Bitz, 2003;
Mahlstein and Knutti, 2011; Marshall et al., 2014, 2015; Nummelin et al., 2017). Still,
the lack of significant correlation is not necessary at odds with these studies
because they examined correlations between Arctic Amplification and meridional
oceanic heat flux at latitudes different than 66◦N. On the opposite, it would be
plausible that Arctic Amplification reduces the water temperature gradient
between lower and higher latitudes which would lead, in isolation, to a decrease in
the meridional oceanic heat flux. However, although all models agree on a decrease
in the atmospheric meridional temperature gradient, we find that only nine models
show a decrease in the oceanic meridional temperature gradient. In the remaining
17 models, the oceanic meridional temperature gradient increases (see Fig. A.3).

Finally, an increase in the temperature of the meridional oceanic inflow, as seen in
our results, could be explained by weaker heat loss from the ocean to the
atmosphere in subpolar latitudes due to a faster atmospheric warming than
oceanic warming (Nummelin et al., 2017). A similar mechanism was shown to drive
the delayed ocean warming in the Southern Ocean as well (Armour et al., 2016).
Additionally, our results also show an increase in mass transport at the inflow. One
explanation for this increase would be that a thinner ice cover would lead to an
increase in the sea-ice production (Bitz et al., 2006). This would lead to a
strengthening in the oceanic ventilation, leading to a higher ocean heat content.
However, we do not find any correlation between the change in ice production and
the change in meridional oceanic heat flux. This might be a consequence of our
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method, as we only look at changes in ice production on a large scale while the
explanation by Bitz et al. (2006) relies on regional changes in ice production.

A.5 SUMMARY AND CONCLUSIONS

We show that the CMIP5 models agree on a positive trend in ocean sensible heat
content and a negative trend in sea-ice area and volume in the Arctic Ocean from
1961 to 2099. They disagree, however, on the main driver for this overall warming.
Ocean warming and decrease in sea-ice cover are driven by positive anomalies in the
net atmospheric surface flux in 11 models, by positive anomalies in the meridional
oceanic heat flux in 11 models and by positive anomalies in both energy fluxes in
four models.

The net atmospheric surface flux exhibits positive anomalies when the increase in
radiative heat gain by the ocean is larger than the increase in turbulent heat loss to
the atmosphere. When the increase in turbulent heat loss to the atmosphere is larger
than the increase in radiative heat gain by the ocean, the net atmospheric surface flux
exhibits negative anomalies. The disagreement in the sign of the change in the net
atmospheric surface flux stands in opposition to Sorteberg et al. (2007), who found a
robust positive twentieth century trend in the net atmospheric surface flux in CMIP3
models. As they considered land surfaces as well, this points to the difference in the
evolution of the surface energy budget between land and ocean surfaces (Laîné et al.,
2016).

Positive anomalies in the meridional oceanic heat flux are driven by an increase in
the water mass transport and water temperature of the oceanic inflow, mainly
through the Barents Sea Opening. Negative anomalies are driven by an increase in
the water temperature of the oceanic outflow, that overcompensates the small
increase in energy inflow. This is in agreement with studies based on observations
(Schauer et al., 2004; Spielhagen et al., 2011) and model simulations (Koenigk and
Brodeau, 2013), which point towards an increase in both mass transport and
temperature as a driver for an increase in the meridional oceanic heat flux.

We also find that changes in net atmospheric surface flux and meridional oceanic
heat flux are strongly linked. The magnitude of the increase in turbulent heat loss,
driven by the change in meridional oceanic heat flux, is responsible for the sign of
the change in the net atmospheric surface flux. Our results therefore underline the
importance of the meridional oceanic heat flux for the evolution of the Arctic Ocean
energy budget as a whole. This result is in agreement with Mahlstein and Knutti
(2011), who found that the meridional oceanic heat flux is responsible for the large
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spread in the future warming of the Arctic atmosphere in CMIP3 models, although
it contributes only a small amount to the total energy budget.

However, the influence of the meridional atmospheric heat flux is not negligible.
Changes in the ocean-atmosphere exchange in the subpolar ocean were shown to
be a source for differences in the meridional oceanic heat flux between models
(Nummelin et al., 2017). Both components of the meridional heat flux and their
interactions before reaching the Arctic region are therefore important to explain
the different behaviors of the models.

Unfortunately, the observational record of ocean heat transport is only about
15 years long (Onarheim et al., 2015; Mayer et al., 2016). Hence, we cannot infer
robustly which of the models are evolving closest to the "real" world behavior.
More observations on longer timescales are needed to better understand the
meridional oceanic heat flux and to improve its representation in climate models.
Finally, the disagreement of the simulated changes in the components of the Arctic
Ocean energy budget highlights a high uncertainty in future projections for the
Arctic. The multi-model ensemble mean is not a good proxy for the future
evolution of the Arctic climate system.
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A.6 SUPPORTING INFORMATION TO APPENDIX A

A.6.1 CMIP5 MODELS USED.

Table A.1: CMIP5 climate models used and their ensemble size. Models with a (*/+/x)
provide a (reasonable) sea water transport across lines/sea-ice transport across Fram
Strait/easily computable sea-ice transport across Fram Strait.

Modeling Center/Group Model Name Ensemble size
Commonwealth Scientific and Industrial Research ACCESS1.0*+ 1
Organization (CSIRO) and Bureau of Meteorology ACCESS1.3*+ 1
(BOM) Australia
Canadian Centre for Climate Modelling CanESM2* 5
and Analysis Canada
National Center for Atmospheric Research USA CCSM4 6
Community Earth System Model Contributors USA CESM1-BGC 1

CESM1-CAM5 3
Centro Euro-Mediterraneo per I CMCC-CM 1
Cambiamenti Climatici Italy CMCC-CMS 1
Centre National de Recherches Météorologiques / CNRM-CM5+ 1
Centre Européen de Recherche et
Formation Avancée en Calcul Scientifique France
Commonwealth Scientific and Industrial Research CSIRO-Mk3.6.0 10
Organization in collaboration with Queensland
Climate Change Centre of Excellence Australia
LASG, Institute of Atmospheric Physics, FGOALS-g2x 1
Chinese Academy of Sciences and CESS,
Tsinghua University China
NOAA Geophysical Fluid GFDL-CM3 1
Dynamics Laboratory USA GFDL-ESM2G+ 1

GFDL-ESM2M+ 1
NASA Goddard Institute for GISS-E2-Rx 6
Space Studies USA
Met Office Hadley Centre (additional HadGEM2-ES HadGEM2-CC* 1
realizations contributed by Instituto Nacional HadGEM2-ES 4
de Pesquisas Espaciais) UK
Institut Pierre-Simon Laplace France IPSL-CM5A-LR 4

IPSL-CM5A-MR 1
IPSL-CM5B-LR 1

Japan Agency for Marine-Earth Science and MIROC5 3
Technology, Atmosphere and Ocean
Research Institute (The University of Tokyo) and
National Institute for Environmental Studies Japan
Max Planck Institute for Meteorology Germany MPI-ESM-LR+ 3

MPI-ESM-MR*+ 3
Meteorological Research Institute Japan MRI-CGCM3+ 1
Norwegian Climate Centre Norway NorESM1-M*+ 1

NorESM1-ME*+ 1

37



A Drivers of Arctic Ocean warming in CMIP5 models

A.6.2 DEFINITION OF THE REGIONS

The regions for the temperature calculations in Sec. A.4 are defined as follows:

• Barents Sea Opening: 16.5 to 19◦E, 70 to 76.5◦N

• Bering Strait: 171 to 166◦W, 65 to 66◦N

• Fram Strait: 11.5◦W to 10.5◦E, 79.5 to 81.5◦N

• Canadian Archipelago: 128.5 to 59.5◦W, 70.5 to 82◦N

• Denmark Strait: 37 to 22.5◦W, 65.5 to 66.5◦N

• Iceland-Faroe Channel: 13.6 to 7.4◦W, 62.2 to 64.9◦N

• Faroe-Scotland Channel: 6.9 to 5◦W, 58.7 to 62◦N

• Fram Strait East: 0 to 15◦E, 77 to 80◦N

• Fram Strait West: 30 to 0◦W, 77 to 80◦N

• Barents Sea: 17.5 to 60◦E, 66 to 80◦N

A.6.3 CALCULATION OF THE OCEANIC HEAT CONTENT

For the calculation of the oceanic heat content, the following formulas were used:

Htot =Hsens+Hlat (A.5)

Hsens =ρw cp w

∫ 90◦N

66◦N

∫ 0

zmax

T dz dA (A.6)

with ρw the density of the water (taken as constant ρw = 1025 kg/m3), cp w the heat
capacity of the water (3902 ≤ cp w ≤ 4186 J kg−1 K−1, depending on the model - see
https://search.es-doc.org/), T the potential water temperature in K, zmax the depth
of the water column in m and d A the area of the Arctic Ocean domain in the
individual models.
Using a constant density between 1015 and 1035 kg/m3 yields an error of up to ±1%
compared to using 1025 kg/m3. We therefore assume that the error induced by
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assuming a constant density of 1025 kg/m3 is negligible.

Hlat =−ρi L i

∫ 90◦N

66◦N

S I V dA (A.7)

with ρi the density of the ice (ρi = 910 kg/m3), L i the latent heat of fusion of fresh
ice (L i=334774 J/kg) and S I V the sea-ice volume in each grid cell.

A.6.4 MASS TRANSPORT IN AND OUT OF THE ARCTIC OCEAN

The sum of the mass transport at the Arctic Ocean boundaries is shown in Fig. A.5.
This is the sum of the mass transport through the Fram Strait, the Barents Sea
Opening, the Canadian Archipelago and the Bering Strait. We set the threshold for a
’reasonable value’ to a net mass gain or loss of below 0.25x109 kg/s. We do not
consider GFDL-ESM2M, MRI-CGCM3 and MPI-ESM-LR further in our study, as
their mass budget is not closed properly.

A.6.5 CALCULATION OF THE MERIDIONAL TEMPERATURE GRADIENTS

The meridional temperature gradients were calculated as the difference of the
mean temperature between the Arctic (66◦N to 90◦N) and the region south of the
Arctic (50◦N to 66◦N). For the atmospheric gradient, the surface air temperature
was used. For the oceanic gradient, the sea surface temperature was used.

A.6.6 CALCULATION OF THE ARCTIC AMPLIFICATION

The Arctic Amplification was computed as the ratio between the surface air
temperature increase in the Arctic (66◦N to 90◦N) and the surface air temperature
increase in the tropics (30◦S to 30◦N) between 1961 and 2099.
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transport across lines. The thick black lines represent our chosen threshold for the
variability of the mass budget.
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HOW TO OBTAIN SEA-ICE BRIGHTNESS

TEMPERATURES AT 6.9 GHZ FROM

CLIMATE MODEL OUTPUT

CLARA BURGARD, DIRK NOTZ, LEIF T. PEDERSEN

AND RASMUS T. TONBOE

Abstract

The observational uncertainty in sea-ice concentration products is a challenge for

climate model evaluation, initialization and climate analysis. One approach to

circumvent observational uncertainty relies on the use of observation operators

applied to climate model output. Observation operators translate the simulated

climate state into the quantity measured by satellites, e.g. the brightness

temperature. We explore the feasibility of an observation operator to obtain passive

microwave brightness temperatures for sea ice at a frequency of 6.9 GHz. We

investigate the influence of simplifying assumptions for the representation of sea-

ice vertical properties on the simulation of microwave brightness temperatures.

We do so in a one-dimensional setup, using a complex 1D thermodynamic sea-

ice model and a 1D microwave emission model. We find that realistic brightness

temperatures can be simulated in winter from a simplified linear temperature profile

and a self-similar salinity profile in the ice. These realistic brightness temperatures

can be obtained based on profiles interpolated to as few as seven layers. Most of

the uncertainty resulting from the simplifications is introduced by the simplification

of the salinity profiles. In summer, the simplified salinity profile leads to too high

liquid water fractions at the surface. To overcome this limitation, we suggest to use a

constant brightness temperature for the ice during summer and to treat melt ponds

as water surfaces. Finally, during periods of melting snow, microwave brightness

temperatures can currently not realistically be estimated as wet snow properties

cannot be simplified yet. As periods of melting snow typically last for less than a

month, our approach allows one to estimate realistic brightness temperatures at

6.9 GHz from climate model output for about 11 months throughout the year.
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B.1 INTRODUCTION

Sea-ice concentration products are retrieved from passive microwave brightness
temperatures measured by satellites and come with a non-negligible uncertainty
(Ivanova et al., 2015; Tonboe et al., 2016; Lavergne et al., 2019). This observational
uncertainty hinders reliable climate model initialization (Bunzel et al., 2016) and
model evaluation (Notz et al., 2013). Additionally, it hinders a robust extrapolation
of the future sea-ice evolution based on current observations. For example, sea-ice
area is strongly coupled to changes in the global-mean air temperature (Gregory
et al., 2002; Winton, 2011; Mahlstein and Knutti, 2012; Ridley et al., 2012; Li et al.,
2013) and thus to CO2 emissions (Notz and Stroeve, 2016). The relationship
between CO2 emissions, global-mean air temperature and sea ice provides the
possibility to project the future Arctic sea-ice evolution under different forcing
scenarios. However, Niederdrenk and Notz (2018) showed that the observational
uncertainty in sea-ice concentration translates into uncertainty in the sensitivity of
sea ice to changes in global-mean air temperature and therefore leads to
uncertainty in the temperature at which an ice-free Arctic in summer can be
expected.

Observation operators are a current approach in climate science to circumvent
observational uncertainty and the spread introduced by the use of retrieval
algorithms on satellite measurements (Flato et al., 2013; Eyring et al., 2019). They
simulate directly the observable quantity, in our case the brightness temperature,
from the climate model output instead of retrieving the simulated quantity, in our
case the sea-ice concentration, from the satellite observations. A sea-ice
observation operator reduces the uncertainty introduced by assumptions used in
retrieval algorithms about the state of other climatic variables besides the sea-ice
concentration. It takes advantage of knowing the consistent climate state in time
and space simulated by the climate model alongside the sea ice. The feasibility and
limitations of an observation operator applied to sea ice simulated by a climate
model have not been investigated yet. This is the question we address here.

We investigate how important the complexity of the representation of sea-ice
properties is for the simulation of sea-ice surface brightness temperatures emitted
by different ice types. Experiments using a model accounting for part of the
processes at work inside the sea ice combined with an emission model have shown
that knowing the vertical sea-ice properties are sufficient to generate realistic
microwave brightness temperatures (Tonboe, 2010; Tonboe et al., 2011). We mainly
concentrate on the vertical representation of temperature and salinity inside the
ice and snow, as they are the main drivers of the liquid brine fraction in the ice and
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liquid water fraction in the snow and thus of sea-ice brightness temperatures,
especially at low microwave frequencies (Ulaby et al., 1986). As most general
circulation models (GCMs) do not explicitly represent the time evolution of vertical
profiles of temperature and salinity in the ice and snow, we investigate the effect of
simplified temperature and salinity profiles on the simulation of brightness
temperatures. We do so by comparing reference profiles representing an estimate
of reality on the one hand and simplified profiles, representing GCM output on the
other hand in an idealized one-dimensional setup, using a complex
thermodynamic sea-ice model and a microwave emission model.

We focus on the simulation of sea-ice brightness temperatures at 6.9 GHz at vertical
polarization as a first step. At this frequency, the main driver of brightness
temperatures are the sea-ice properties, and the contribution of the snow emission
and scattering and of the atmospheric absorption and scattering due to water
vapor, cloud liquid water and temperature are small compared to the surface
contribution. The framework can, however, be extended to other frequencies and
polarizations in the future, if the increasing importance of the snow and
atmospheric contribution with increasing frequency is taken into account.

In Sec. B.2, we provide the theoretical background about drivers of sea-ice
brightness temperatures and in Sec. B.3 we present our method and the sea-ice and
emission models used. In Sec. B.4, we explore the influence of simplifications in
the temperature and salinity profiles on the simulation of sea-ice brightness
temperatures to then explore the effect of a reduced number of layers in Sec. B.5.
To complete the study, we quantify the uncertainty introduced by a snow cover and
the atmosphere in Sec. B.6. Finally, we discuss our findings in Sec. B.7 and conclude
with suggestions for a functional observation operator for sea ice in Sec. B.8.

B.2 THEORETICAL BACKGROUND

The brightness temperature TB is a measure for the microwave radiation emitted at
the surface of a given medium and represents the temperature of a blackbody
emitting the observed radiation. It is defined as:

TB= εeff ·Teff (B.1)

where εeff is the emissivity of the emitting part of the medium, i.e. the layers
influencing the resulting radiation emitted at the surface and Teff the integrated
temperature over this same emitting part (Hallikainen and Winebrenner, 1992;
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Shokr and Sinha, 2015a). The thickness of the emitting part and its emissivity
depend on the permittivity and scattering properties of the medium, which in turn
depend on the medium and on the frequency of the radiation.

In the case of sea ice, the permittivity is mainly a function of the fraction and
distribution of liquid water in the form of brine inside the ice as the permittivity of
water is an order of magnitude higher than the permittivity of pure ice (Ulaby et al.,
1986; Shokr and Sinha, 2015b). This means that water is a stronger absorber than
pure ice in the microwave range. The liquid water fraction is a function of
temperature and bulk salinity. Liquid water can be present within the ice
throughout the year in the form of brine. If the ice becomes multiyear ice, most of
its brine will have drained and the liquid water fraction decreases substantially
compared to first-year ice. In snow, liquid water is mainly present during melting
periods. Also, the lowest layer of the snow can be saline, especially above first-year
ice (Barber et al., 1998; Shokr and Sinha, 2015a), enabling the presence of liquid
water at the base of the snow. We do not investigate saline snow in this study.

The scattering of the microwave radiation in sea ice is a function of the permittivity
and the size of scatterers inside the ice, snow, and atmosphere. In first-year ice, the
main scatterers are brine pockets, while in multiyear ice the main scatterers are air
bubbles, as most of the brine will have drained out (Winebrenner et al., 1992;
Nghiem et al., 1995; Tonboe et al., 2006). While a dry atmosphere and dry snow
cover have a low permittivity, they can still influence scattering for frequencies
higher than 10 GHz (Barber et al., 1998). In ice, snow, and atmosphere, the
scattering becomes increasingly important with increasing frequency (Tonboe
et al., 2006) as the wavelength successively approaches the size of brine pockets,
snow grains and atmospheric aerosols and droplets.

Sea-ice concentration retrievals are based on satellite measurements at frequencies
ranging from 1.4 GHz to 91 GHz (Ivanova et al., 2014; Gabarro et al., 2017). In the
following, we concentrate on radiation at 6.9 GHz and vertical polarization. This
frequency is advantageous as, with a wavelength of approx. 4.3 cm, it is only slightly
affected by scattering inside the ice, the snow, and the atmosphere. The brightness
temperature at 6.9 GHz therefore mainly depends on the emission and absorption
properties inside the ice rather than on the scattering properties. This is why our
focus lies on the properties of the sea-ice column, rather than on the snow structure
or the state of the atmosphere. The emitting part of the ice can be around 20 cm thick
for first-year ice and around 50 cm thick for multiyear ice (Tonboe et al., 2006).

44



B.3 Method and Data

B.3 METHOD AND DATA

B.3.1 METHOD

Although a few GCMs use detailed sea-ice modules (Vancoppenolle et al., 2009;
Bailey et al., 2018), most GCMs use very simple sea-ice models that do not resolve
the properties driving absorption and scattering inside the ice and snow. The Max
Planck Institute Earth System Model (MPI-ESM, Wetzel et al., 2012) is such a GCM.
To describe the evolution of its sea-ice properties, MPI-ESM provides a sea-ice
(bare ice) or snow (snow-covered ice) surface temperature, a constant sea-ice
bottom temperature at -1.8 ◦C, and a constant salinity of 5 g/kg regardless of sea-ice
type or age (Notz et al., 2013). It is not clear yet how these simple assumptions
affect a brightness temperature simulated based on these properties.

To explore the importance of the vertical distribution of sea-ice properties on the
simulation of brightness temperatures, we use an idealized one-dimensional setup.
This one-dimensional setup works as follows. On the one hand, we use a
one-dimensional thermodynamic sea-ice model to simulate our reference (see
Sec. B.3.2). It computes highly resolved vertical sea-ice profiles under a given
atmospheric forcing. On the other hand, we simplify these reference profiles to
emulate profiles that could be inferred from information given by MPI-ESM for the
same conditions. These two sets of profiles can be used to simulate two sets of
brightness temperatures with a microwave emission model (see Sec. B.3.3). The
two sets of resulting brightness temperatures can then be used to quantify the
effect of the GCM simplification on the brightness temperature simulation,
compared to our reference (Fig. B.1).

In this setup, we can quantify the influence of each parameter separately on the
simulated brightness temperature. We could have compared brightness
temperatures simulated on the basis of MPI-ESM output directly to brightness
temperatures measured by satellites. However, we would then have not been able
to infer the contribution to the difference in brightness temperatures of
fundamental differences between model and observations on the one hand, and
the contribution of the differences in the resolution of the ice properties on the
other hand.
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Figure B.1: Schematic of the steps of our simulation and comparison method.

B.3.2 SAMSIM

Our reference profiles are simulated by the 1D Semi-Adaptive Multi-phase Sea-Ice
Model (SAMSIM, Griewank and Notz, 2013, 2015). This is a complex
thermodynamical model simulating the evolution of a 1D sea-ice column under
given surface forcing. It computes sea-ice temperature, salinity, and liquid water
fraction profiles on a semi-adaptive grid, with a number of layers varying between 0
and 100. It includes most of the processes governing sea-ice growth and melt, and
interactions between the ice and, if existent, its snow cover. It was developed to
investigate the brine dynamics inside the ice. A detailed description of underlying
equations and represented processes can be found in Griewank and Notz (2013)
and Griewank and Notz (2015).

We force SAMSIM with 2 m air temperature, surface downward longwave radiation,
surface downward shortwave radiation, and precipitation from the ERA-Interim
reanalysis (Dee et al., 2011) in the time period from July 2005 to December 2009.
This gives us insight into 4.5 annual cycles, so that we can assess the interannual
variability of the growth and melt of sea ice and the evolution of its properties. The
ocean salinity is kept at 34 g/kg and the oceanic heat flux at the bottom of the ice is
derived from SHEBA measurements, varying between 0 W/m2 in spring and
14 W/m2 in autumn (Huwald et al., 2005; Griewank and Notz, 2015).
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To gain insight into differences in microwave emission between first-year ice and
multiyear ice, we focus on two points in the Arctic Ocean (Fig. B.2). The first point
represents first-year ice at 75◦N00◦W, where the ice always melts completely in
summer. The second point is at 90◦N, where the ice survives the melt season and
becomes multiyear ice from the second simulation year onwards. Note that in our
setup the simulated sea-ice evolution is not necessarily representative for the real
sea-ice evolution at that location. For example, sea ice seldom exists at 75◦N00◦W
in reality. The presence of ice in this idealized simulation is likely linked to the
oceanic heat flux used. This oceanic flux was measured in the SHEBA site north of
Alaska and is very different than in the North Atlantic. However, this does not affect
our study because we work in an idealized setup.
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Figure B.2: Evolution of sea-ice (black line) and snow (grey line) thickness as simulated by
SAMSIM under ERA-Interim forcing between July 2005 and December 2009.

B.3.3 MEMLS

The simulation of sea-ice brightness temperatures is conducted with a slightly
modified version of the Microwave Emission Model for Layered Snowpacks
(MEMLS) extended to sea ice (Tonboe et al., 2006). MEMLS was first developed by
Wiesmann and Mätzler (1998) to simulate brightness temperatures emitted by a
snowpack composed of several layers and was later extended to sea ice (Tonboe
et al., 2006). MEMLS uses the information of the properties of the ice and snow
layers to simulate the path of microwave radiation from the bottom to the surface
of the ice and, if present, snow. It uses the thickness, the temperature, the salinity,
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the density, the correlation length (measure for the scatterer size), the wetness, and
information about the type of medium (snow, first-year/multiyear ice) of the
different sea-ice and snow layers to compute absorption and scattering along the
path. This then results in a brightness temperature emitted at the surface of the ice
or snow.

Unless otherwise mentioned, we do not take into account the atmosphere in our
analysis as its effect is relatively small at 6.9 GHz. The use of the term "brightness
temperatures" in the following is therefore equivalent to the use of "brightness
temperatures emitted at the surface of the ice and snow column".

B.3.4 GENERAL SIMULATION SETUP

The temperature and salinity profiles produced by SAMSIM are used as input for
MEMLS for the simulation of brightness temperatures. Additionally, density
profiles are derived from these properties using relationships given by Notz (2005)
(see Sec. B.9.1 in Supp. Info.). Next to the temperature, salinity and density profiles,
other variables, which are not computed by SAMSIM, have to be provided to
MEMLS. These are the correlation length, the incidence angle, the ocean
temperature, the incoming brightness temperature from the atmosphere and the
ice-ocean reflectivity for vertical polarization. They are set to constants, listed in
Tab. B.1.

Additionally, except for snow thickness and temperature, snow properties are
neither resolved in SAMSIM nor in MPI-ESM. The main effect of snow on the
radiation is its thermal insulation of the ice column and its refractive effect on the
radiation induced by the difference in density between ice and snow and snow and
atmosphere. The former is taken into account through the use of the SAMSIM
snow thickness and snow temperature evolution, and the latter is taken into
account through the snow thickness and by using a low density of snow compared
to ice. We therefore set all snow properties, except the snow temperature and snow
thickness, to constants, also listed in Tab. B.1. In theory, the brightness temperature
simulation is affected by the snow wetness if it is above zero. Neither SAMSIM or
MPI-ESM resolve the liquid water fraction in the snow. In this study, we set the
snow wetness to zero. However, in a possible observation operator resulting from
this study, we strongly recommend to not consider periods of melting snow as we
do not have the necessary information to simulate plausible brightness
temperatures.
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Table B.1: MEMLS constant input details and properties of the snow layer.

Incidence angle 55◦

Ocean temperature -1.8 ◦C
Incoming brightness temperature 0 K
Ice-ocean reflectivity for V-polarization 0.25
Correlation length first-year ice 0.35 mm for depth < 20 cm,

0.25 mm for depth > 20 cm
Correlation length multiyear ice 1.5 mm

Snow thickness as computed by SAMSIM
Snow density 300 kg/m3

Snow correlation length 0.15 mm
Snow salinity 0 g/kg
Snow temperature mean between 2m air temperature

from ERA-Interim and temperature at
ice-snow interface given by SAMSIM

Our input for the emission model, e.g. salinity, correlation length, brine pocket
form, comes with uncertainties. These are mainly caused by a partial or complete
lack of in-situ observations and the resulting low understanding of their evolution.
We therefore recommend more observations of the ice properties combined with
concurrent microwave radiation measurements. A few of such observations exist
already, from both laboratory setting and in-situ, but they mainly focus on
frequencies higher than 6.9 GHz (e.g. Grenfell et al., 1998; Jezek et al., 1998;
Perovich et al., 1998; Hwang et al., 2007). With more combined observations at
lower frequencies, we expect that the uncertainty in the brightness temperature
simulation can be reduced in the future through further research and better
understanding of the components introducing the uncertainty.

For example, a better understanding of sea-ice salinity evolution would be of
advantage. The salinity parametrization used in Sec. B.4.3 is based on an "L-shape"
of the salinity profile, while it is argued that the sea-ice salinity profile often
resembles a "C-shape" (Nakawo and Sinha, 1981; Shokr and Sinha, 2015b). Another
parameter of uncertainty is the correlation length. Although it is a variable quite
well understood and quantifiable for snow (Mätzler, 2002; Proksch et al., 2015;
Lemmetyinen et al., 2018), its quantification in sea ice is not clear and its values not
well known. On a similar note, MEMLS makes assumptions about the form of the
brine pockets. In our study we assumed spherical brine pockets. However, it is
known that the shape depends highly on the ice age and formation. An extensive
summary of the brine pocket form can be found in Tonboe et al. (2006).
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Finally, the use of MEMLS as a sea-ice emission model is a source of uncertainty as
well. Here again, the lack of measurements of the parameters needed for the
brightness temperature simulation and of microwave radiation itself has inhibited
a comprehensive evaluation of the sea-ice version of MEMLS simulations against
reality. Still, it is accepted as one of the main tools for sea-ice brightness
temperature simulations and has shown its strength in several previous studies
(Tonboe, 2010; Tonboe et al., 2011; Willmes et al., 2014; Lee et al., 2017).

These uncertainties, however, only have a limited impact on the present study. We
concentrate on a relative comparison, where we change temperature and salinity in
the ice to understand their impact on the brightness temperature, but assumptions
about correlation length and the form of brine pockets are the same in our
reference and our simplified brightness temperature simulations. The
uncertainties will therefore not impact the difference between the two sets of
brightness temperatures. Additionally, in regard to the absolute values, Burgard
et al. (2019a) show that realistic brightness temperature can be simulated by
MEMLS using the above mentioned uncertain assumptions with slight tuning. The
effect of the uncertainties therefore remains small when considering large scales.

B.4 THE INFLUENCE OF VERTICAL SEA-ICE PROPERTIES

B.4.1 LIQUID WATER FRACTION

Sea-ice brightness temperatures at 6.9 GHz are mainly driven by the distribution of
liquid water in the form of brine inside the ice, as absorption plays a larger role
than scattering at this frequency. This relationship is clearly visible in the
brightness temperatures simulated based on the vertical profiles from SAMSIM
output. The brightness temperatures show a strong dependence on the surface
liquid water fraction, i.e. the fraction of liquid water contained in the top ice layer
of the profiles (Fig. B.3a). If we concentrate the brightness temperature simulation
on the ice layers, i.e. using only the ice layers of the snow and ice column as input
to MEMLS, the relationship is even clearer (Fig. B.3b).

Especially above a surface liquid water fraction of 0.2, the brightness temperature
of bare ice is linearly related to the surface liquid water fraction. This means that no
radiation signal from below the surface influences the brightness temperature but
only the surface liquid water fraction matters. The brightness temperature
transitions roughly linearly between brightness temperatures typical for ice
(≈ 260 K) at a surface liquid water fraction of 0.2 and brightness temperatures
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typical for open water (≈160 K) at a liquid water fraction of 1. The properties inside
the ice do therefore not influence the brightness temperature when the ice surface
has a liquid water fraction higher than 0.2. In our SAMSIM profiles, these high
surface liquid water fractions occur predominantly in summer, i.e. from April to
September. We therefore suggest that a liquid water fraction above 0.2 can be
interpreted as a measure for the melt-pond fraction.

a) reference brightness temperatures emitted by the
ice and snow column

b) reference brightness temperatures emitted by the
ice column only
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Figure B.3: Reference brightness temperatures at 6.9 GHz, vertical polarization, simulated
based on the (a) ice and snow column and on the (b) ice column only as a function of
the reference surface liquid water fraction. Circles represent first-year ice (FYI), crosses
represent multiyear ice (MYI). Blue is winter (October to March), red is summer (April to
September).

For surface liquid water fractions below 0.2, occurring in both winter and summer,
the spread between brightness temperatures is 10 to 15 K for similar surface liquid
water fractions. In some summer multiyear ice cases, the brightness temperature
even drops to ≈180 K. For these surface liquid water fractions, the brightness
temperatures are driven by the distribution of liquid water fraction further inside
the ice, which is a function of the temperature and salinity distribution.
Unfortunately, we could not infer a direct relationship between the brightness
temperature and a given layer or a given liquid water fraction inside the ice from
our data. We therefore proceed with sensitivity experiments to investigate the
effect of simplifications in temperature and salinity profiles, and therefore in liquid
water fraction profiles, on the simulated brightness temperature.
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These sensitivity experiments demonstrate the effect of the lack of information
about the vertical sea-ice profile, as in the sea-ice representation by MPI-ESM. To
this end, we compare brightness temperatures simulated based on SAMSIM
profiles (in the following our reference) and brightness temperatures simulated
based on simplified profiles (in the following our simplification). Our focus lies on
the influence of the ice properties on the brightness temperature. We therefore
only use the ice layers of the ice and snow column as input for MEMLS. This way,
the thermal insulation effect of the snow on the temperature profiles is conserved
but the refraction at the snow interface is neglected for the moment. The refraction
effect of the snow is discussed in Sec. B.6.

The purpose of the sensitivity experiments is to identify the influence of the different
profiles rather than the effect of differences in the vertical resolution, i.e. the number
of ice layers. The simplified input profiles are therefore interpolated to the same
number of layers as the reference profiles (ranging from 1 to 100 layers, depending
on the ice thickness).

B.4.2 LINEAR TEMPERATURE AND CONSTANT SALINITY

In a first experiment, we investigate the brightness temperature simulated based on
information as would be given by MPI-ESM. For the simplified temperature profile,
we use the temperature at the interface between ice and snow as simulated by
SAMSIM and interpolate linearly to the ice bottom layer, which has a temperature
of -1.8 ◦C. For the salinity profile, MPI-ESM assumes a constant salinity of 5 g/kg.
As this is clearly too high for multiyear ice (Ulaby et al., 1986), we assume a
constant salinity of 5 g/kg for first-year ice and a constant salinity of 1 g/kg for
multiyear ice in our simplified salinity profiles (see dashed lines in Fig. B.4).

The influence of the simplifications is clearly different depending on the season.
We therefore divide our results into winter (October to March, see Fig. B.5) and
summer (April to September, see Fig. B.6). In winter, the simplified profiles
produce brightness temperatures close to reference brightness temperatures for
first-year ice, with a mean absolute difference of 2.47±6.37 K (Fig. B.5, first row).
For multiyear ice, the spread is higher and there is a tendency of simplified
brightness temperatures to underestimate the reference brightness temperatures,
with a mean absolute difference of 7.03±4.85 K.

In summer, the mean absolute differences are one order of magnitude higher, with
42.91±44.45 K for first-year ice and 40.65±45.3 K for multiyear ice (Fig. B.6, first row).
Simplified and reference brightness temperatures are clearly different most of the
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Figure B.4: Salinity profiles used for the simplified profiles. FYI: First-year ice, MYI: Multiyear
ice. The dashed lines represent the constant salinity profiles used in Sec. B.4.2 and the full
lines represent the salinity profiles as a function of depth used in Sec. B.4.3

time. Especially, the simplified brightness temperature is close or equal to 160 K, i.e.
open water brightness temperatures, at most of the time steps. This is because in
summer, the physical temperature of the ice surface approaches 0 ◦C and, the closer
it gets to 0 ◦C, the lower the salinity must be in order for ice to exist. This leads to
high surface liquid water fractions at salinities of 5 g/kg and thus to low brightness
temperatures. For multiyear ice, the effect of a salinity of 1 g/kg is not visible in the
surface liquid water fraction (Fig. B.3) but the low brightness temperatures reaching
180 K suggest that there is an effect deeper inside the ice.

To confirm our findings for summer and understand further our findings for
winter, we conduct two additional sensitivity experiments. In the first experiment,
the simplified brightness temperature is simulated based on the linear temperature
profiles and the reference salinity profiles. In the second experiment, on the
contrary, the simplified brightness temperature is simulated based on the reference
temperature profiles and the constant salinity profiles. This enables us to separate
the effect of the two simplifications. In both seasons, the effect of the constant
salinity assumption is the main driver of the spread between the different
brightness temperatures (Fig. B.5 and Fig. B.6, third row), while the linear
temperature assumption has nearly no effect on the spread in winter brightness
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Figure B.5: Brightness temperatures at 6.9 GHz, vertical polarization, simulated based on
different simplified profiles as a function of reference brightness temperatures for winter.
Left column: first-year ice, right column: multiyear ice. Note that the axes are limited to
the range between 240 to 270 K for clarity. The remaining brightness temperatures are
scattered between 165 and 240 K and represent around 20% of the simplified data and 8%
of the reference data.
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Figure B.6: Brightness temperatures at 6.9 GHz, vertical polarization, simulated based
on different simplified profiles as a function of reference brightness temperatures for
summer. Left column: first-year ice, right column: multiyear ice.
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temperatures and small effects on the spread in summer brightness temperatures
(Fig. B.5 and Fig. B.6, second row).

We therefore conclude that the assumption of a linear temperature profile in ice
does not introduce large uncertainties in the brightness temperature simulation.
The assumption of constant salinity, however, introduces very large uncertainties
in summer and smaller but still non-negligible uncertainties for multiyear ice in
winter. We therefore explore another simplification approach for salinity profiles in
a next step.

B.4.3 LINEAR TEMPERATURE AND SALINITY AS A FUNCTION OF DEPTH

An alternative approach to simplify salinity profiles is a parametrization
representing salinity as a function of depth (Griewank and Notz, 2015). This
parametrization assumes an L-shaped profile, with low salinity near the surface
and a rapidly increasing salinity in the lower ice layers (see Fig. B.4, full lines, and
Tab. B.3).

We now simulate the brightness temperature based on the linear temperature
profiles and on the salinity profiles as a function of depth (Fig. B.5 and Fig. B.6,
fourth row). With a mean absolute difference of 2.28±5.78 K in winter for first-year
ice, the uncertainty is comparable to the constant salinity assumption. However,
for multiyear ice, the uncertainty is reduced by around two thirds compared to the
constant salinity, with a mean absolute difference of 2.31±2.68 K. In summer, the
uncertainty is slightly reduced to 31.88±37.30 K for multiyear ice and stays
comparable for first-year ice with 42.69±44.31 K. This represents a small
improvement but the uncertainty remains too large in summer.

Again, if the brightness temperature is simulated based on reference temperature
profiles and on the salinity profiles as a function of depth (Fig. B.5 and Fig. B.6, fifth
row), it becomes clear that the assumption in the salinity profiles is the main driver
for uncertainties in the brightness temperature simulations. However, using salinity
profiles as a function of depth introduces less error than assuming the salinity to be
constant throughout depth. We therefore recommend using a linear temperature
profile and salinity as a function of depth when simulating brightness temperatures
based on GCM output.

The effect of temperature and salinity distribution being clearer now, we turn to
another characteristic of GCMs, the limited vertical resolution owing to
computational efficiency. Indeed, computing vertical temperature and salinity
profiles based on the surface temperature and sea-ice thickness given by a GCM
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adds a vertical dimension to a two-dimensional output. This means that the
computation time and power needed by an operator applied to a GCM will be
much higher than a one-dimensional setup. We therefore investigate the
importance of the vertical resolution in a next step.

B.5 THE INFLUENCE OF VERTICAL SPATIAL RESOLUTION

Applying an emission model to a GCM consumes high computation power, as the
input profiles must be prepared and the emission model must be applied to many
grid cells. In the case of the Arctic Ocean at the MPI-ESM low atmospheric
resolution of 1.9◦, this would mean for example ≈ 4000 data points per timestep. As
ocean components in GCMs often have higher horizontal resolution than the
atmosphere, this would mean even more computation power needed when using
oceanic variables. Reducing the number of layers for the brightness temperature
simulation is a possible aspect to reduce the computation time. This is the issue we
explore in the following.

The simplified profiles used for sensitivity experiments in Sec. B.4 are interpolated
to the same number of layers as the reference profiles, i.e. a variable number of
layers depending on the ice thickness between one and 100 layers. We now run the
brightness temperature simulation with the simplified profiles (linear temperature,
salinity as a function of depth) interpolated on ten, seven, and three equidistant
layers and compare the results to the reference brightness temperatures. We also
include the experiment of Sec. B.4 as an indicator for the minimal simplified
uncertainty in the comparison. We concentrate on winter months, as we showed
that the uncertainty in summer is already very large at high vertical resolution and
mainly depends directly on the surface rather than on properties further inside the
ice.

Table B.2: Absolute mean difference and standard deviation [K] between simplified
brightness temperatures simulated based on profiles interpolated on different number
of layers and reference brightness temperatures simulated based on profiles covering 1
to 100 layers, depending on the thickness of the ice. These values only represent winter
(October to March).

3 layers 7 layers 10 layers 1 to 100 layers

First-year ice 2.61±5.82 2.28±5.79 2.26±5.79 2.28±5.78
Multiyear ice 3.04±2.70 2.25±2.69 2.30±2.69 2.31±2.68
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We find that there is no substantial difference in uncertainty between the reference
simplification between 1 and 100 layers and the interpolation on ten or seven layers,
the mean uncertainty varying between 2.26 and 2.28 K for first-year ice and between
2.25 and 2.31 K for multiyear ice (see Tab. B.2). Using three layers, the uncertainty
increases slightly by 0.4 K for the former and by 0.7 K for the latter but still remains
small. We therefore argue that using as few as seven is as reasonable as 100 layers for
the simulation of simplified brightness temperatures.

B.6 THE INFLUENCE OF SNOW AND ATMOSPHERE

Until now, we concentrated on the influence of sea-ice properties on the
simulation of brightness temperatures emitted at the surface of the ice. These
simulations included the thermal insulation effect of the snow but did not take into
account the refraction effect of the snow cover on the radiation and the path of the
radiation through the atmosphere. These are assumed to be small at 6.9 GHz.
Nevertheless, it is of interest to quickly investigate the radiative effect of snow cover
and atmosphere on the brightness temperature for uncertainty quantification and
attribution.

We include the radiative effect of the snow cover in the brightness temperature
simulation by using both snow and ice layers of the reference input profiles as
input for MEMLS. Except thickness and temperature, all other variables are set to
constants (Tab. B.1), as neither SAMSIM nor MPI-ESM compute more details about
the snow properties. Especially, we only consider dry snow in this study.

The main driver for the radiative effect of the dry snow cover is its density
difference to the ice and atmosphere and its thickness. The density difference
between snow and ice on the one hand and between snow and atmosphere on the
other hand leads to refraction of the radiation at its boundaries. The snow
thickness also has an influence. A linear regression between snow thickness and
differences between the simulated brightness temperatures with and without snow
layer in winter gives a decrease by 0.13 K for each cm of snow and an intercept of
around -1.0 K. This relationship only depends on the snow thickness and the
density difference between snow and ice and between snow and atmosphere. It is
independent of the snow temperature in our setup. In winter, using both ice and
snow layers of the profile leads to a mean effect of -3.15±1.53 K for first-year ice and
-4.45±1.28 K for multiyear ice on the brightness temperature compared to only
using the ice layers of the profile. Although scattering is limited, the radiative effect
of the snow cover hence remains important.
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We consider only dry snow here as we do not know anything about the vertical
profiles inside the snow from neither MPI-ESM nor SAMSIM. As liquid water and
its distribution within the snow strongly affects the brightness temperature, we do
not yet have a reliable solution to simulate the sea-ice brightness temperature
when covered by wet snow.

We investigate the influence of the atmosphere with a similar approach as the
influence of the snow cover. A simple atmospheric radiative transfer model
developed by Wentz and Meissner (2000) is applied using the brightness
temperatures simulated based on the reference ice and snow input profiles as the
lower boundary conditions. The atmospheric effect mainly depends on the
columnar liquid and water vapor content, which we again take from the
ERA-Interim reanalysis, and on oxygen absorption, included in the radiative
transfer model. Assuming a sea-ice concentration of 100%, the absolute mean
impact of the atmosphere on the total brightness temperature is between 0.05 and
0.1 K between January and April, around 1 K between May and September and
between 0.1 and 0.2 K between October and December.

B.7 SUMMARY AND DISCUSSION

B.7.1 WINTER BRIGHTNESS TEMPERATURES

We showed that in winter, we can reproduce realistic sea-ice surface brightness
temperatures using a linear temperature profile and a salinity as a function of
depth as input for an emission model. The remaining uncertainty is mainly driven
by the assumption made for the salinity distribution inside the ice. These realistic
brightness temperatures can be reproduced with similar uncertainty using as few
as seven layers. A very high vertical resolution of the ice properties is therefore not
needed. The refraction induced by the snow cover affects the brightness
temperature, depending on its thickness, by 3 to 5 K. The atmosphere above the ice
and snow column is negligible with an effect reaching at most 0.2 K at 100% sea-ice
concentration.

This study was motivated by the fact that observational uncertainty could be
reduced by the approach of an observational operator. It is however not trivial to
evaluate this proposition based on our results. To compare the uncertainty [K]
introduced by the brightness temperature simulation to uncertainties [%]
introduced by a sea-ice concentration retrieval algorithm, we translate the
uncertainty in brightness temperature into uncertainty in sea-ice concentration.
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A simple retrieval algorithm to retrieve sea-ice concentration S I C is given by

SIC=
TB−TBw

TBi −TBw
, (B.2)

with TB the total brightness temperature (ice and open water combined), TBw a
typical open water brightness temperature, and TBi a typical sea-ice brightness
temperature. If we introduce uncertainties ∆SIC and ∆TB in the previous
equation, this leads to

SIC+∆SIC=
TB+∆TB−TBw

TBi −TBw
, (B.3)

resulting in

∆SIC=
∆TB

TBi −TBw
. (B.4)

In our simulated brightness temperatures, TBi varies around 260 K and TBw varies
around 160 K. An uncertainty of 1 K in brightness temperature therefore
approximately translates into 1% of absolute uncertainty in sea-ice concentration.
The observational uncertainty of sea-ice concentration in winter is up to 2.5% in
consolidated ice and up to 12% for marginal ice zones (Ivanova et al., 2015). The
uncertainty of the simulated brightness temperatures translates to a similar range.
This might, at first glance, not appear as a solution to drastically reduce the
observational uncertainty. However, an observational operator is consistent in time
and space and therefore allows a process-understanding of the uncertainties in
brightness temperature simulations and, in a possible next step, in retrieval
algorithms.

B.7.2 SPRING AND SUMMER BRIGHTNESS TEMPERATURES

In summer, we cannot reproduce realistic sea-ice surface brightness temperatures
due to the very high sensitivity of the liquid water fraction to small changes in
salinity near 0 ◦C. We therefore recommend using another approach to simulate
summer brightness temperatures. We suggest assuming that the brightness
temperature of summer bare ice is similar all over the Arctic, as temperatures are
near 0 ◦C. The surface brightness temperature is a linear combination of the bare
ice brightness temperature and the brightness temperature of the melt ponds
covering the ice. Therefore, this constant brightness temperature can be combined
with open water brightness temperature, weighted by the fraction of melt ponds
forming throughout the summer. This approach is simple. We have however not
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found any other approach that could come closer to reality as the sensitivities are
very high near 0 ◦C.

Another problematic component when surface temperatures increase in spring and
summer is the snow. While the detailed profile of dry snow is not needed as long
as its presence is taken into account for the thermal insulation of the ice and for
the refraction of the radiation, wet snow has a much higher influence on microwave
emission. As in the case of melting snow, very precise information about the snow
structure, e.g. wetness distribution, correlation length, and form of snow grains, are
needed, we cannot come close to simulate realistic brightness temperatures from
GCM output. In our experiments we have ignored this effect by setting the snow
wetness to zero at all times. However, for an all-year-round realistic simulation of
brightness temperatures, we suggest to exclude data containing melting snow from
the brightness temperature simulation.

B.7.3 OUTLOOK

The evaluation framework in this study can be used to explore simulated
brightness temperatures at higher frequencies, nearer to the most used operational
frequencies. However, snow is a limiting factor in this case. While the radiative
effect of the snow cover is small at 6.9 GHz, its impact increases with increasing
frequency. It becomes therefore more important to know the snow structure, e.g.
snow density, snow temperature, and snow scatterer structure. This information is
lacking in GCMs. As the snow structure is more dynamic and changes faster than
the ice structure, parametrization for the snow structure do not exist yet to our
knowledge. It would be of high interest to explore the evolution of snow on sea ice
in more details and perform sensitivity studies to identify possible simplifications.
These could eventually lead to realistic brightness temperatures simulated based
on GCM output at higher frequencies than 6.9 GHz.

Finally, our analysis focuses on the simulation of brightness temperatures based on
output from a GCM which simulates sea ice with a very simple sea-ice model. The
use of output from GCMs that simulate sea ice with more complex sea-ice models
might yield lower uncertainty in the brightness temperature simulation. However,
although these models compute many physical properties inside the ice, they do
not necessarily store them for each time step. Using the more complex properties
of these models would therefore require one to build the emission model into the
model code, instead of applying an "external" operator to already produced model
output.
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B How to obtain sea-ice brightness temperatures at 6.9 GHz from climate model
output

B.8 CONCLUSIONS

With the help of a one-dimensional thermodynamic sea-ice model and a
one-dimensional emission model, we investigated if realistic sea-ice brightness
temperatures can be simulated based on GCM output at a frequency of 6.9 GHz
with vertical polarization. We conclude that it is possible to simulate realistic
sea-ice brightness temperatures depending on the time of year and the boundary
conditions.

We propose the following structure for an observational operator for sea ice at
6.9 GHz, vertical polarization:

• Periods of cold conditions: Use the temperature profile provided by the GCM
if existing. Otherwise, use the simulated ice surface temperature to
interpolate a linear temperature profile. Use the salinity profile provided by
the GCM if existing. Otherwise, interpolate the salinity profile as a function of
depth, following the functions given by Griewank and Notz (2015). Apply an
emission model, e.g. MEMLS, to these profiles, combined with information
about correlation length, sea-ice type, etc. Apply a simple atmospheric
radiative transfer model, e.g. Wentz and Meissner (2000), to account for the
effect of open water when the sea-ice concentration is below 100% and for
the effect of the atmosphere.

• Periods of bare ice near 0 ◦C: Use a constant brightness temperature for the
ice surfaces. Burgard et al. (2019a) derive a summer sea-ice surface
brightness temperature of 266.78 from observational estimates. This
represents a brightness temperature at the top of the atmosphere of 262.29 K
corrected by the mean atmospheric effect of 4.49 K in their simulations.
Weight this constant brightness temperature with the melt pond fraction.
Apply a simple atmospheric radiative transfer model, e.g. Wentz and
Meissner (2000), to account for the effect of open water when the sea-ice
concentration is below 100% and for the effect of the atmosphere.

• Periods of melting snow: Ignore these points in the analysis. The GCM output
does not provide enough information about the snow properties and wet snow
strongly affects the brightness temperature.

The observational operator structure we present here allows us to simulate
brightness temperatures from two-dimensional output by a GCM that can be
compared with brightness temperatures measured by satellites. This opens new
possibilities and perspectives for model-to-observation comparison in the Arctic
Ocean.
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B.9 Supporting Information to Appendix B

B.9 SUPPORTING INFORMATION TO APPENDIX B

B.9.1 RETRIEVING SEA-ICE PROPERTIES FROM TEMPERATURE AND

SALINITY

The following formulas were used to compute density and liquid water fraction from
temperature and salinity (Notz, 2005)

ρ0 = 916.18−0.1403T (B.5)

Sb =−17.6T −0.389T 2−0.00362T 3 (B.6)

ρw = 1000.3+0.78237Sb +2.8008 ·10−4S 2
b (B.7)

Φl = S/Sb (B.8)

ρi =Φl ·ρw + (1−Φl ) ·ρ0 (B.9)

B.9.2 SALINITY PARAMETRIZATION AS A FUNCTION OF DEPTH

Table B.3: Formulas describing salinity as a function of depth as shown in the full lines in
Fig. B.4.

Ice type Salinity parametrization Constants needed
as a function of depth z

First-year ice Sfy
z

a+b z + c a = 1.0964, b = -1.0552,
c = 4.41272

Multiyear ice Smy
z
a + (

z
b )

1/c a = 0.17083, b = 0.92762,
c = 0.024516

Transition (1− t ) ∗Smy(z ) + t ∗Sfy(z ) t=0 at start of melt season and
first-year to t=1 at start of freezing season
multiyear ice
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OBSERVATION OPERATOR FOR 6.9 GHZ
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AND RASMUS T. TONBOE

Abstract

The observational uncertainty in sea-ice-concentration estimates from remotely-

sensed passive-microwave brightness temperatures is a challenge for reliable

climate model evaluation and initialization. To address this challenge, we

introduce a new tool: the Arctic Ocean Observation Operator (ARC3O). ARC3O

allows us to simulate brightness temperatures at 6.9 GHz at vertical polarisation

from standard output of an Earth System Model. For the evaluation of ARC3O,

we simulate brightness temperatures based on three assimilation runs of the

MPI Earth System Model (MPI-ESM) assimilated with three different sea-ice

concentration products. We then compare these three sets of simulated brightness

temperatures to brightness temperatures measured by the Advanced Microwave

Scanning Radiometer Earth Observing System (AMSR-E) from space. We find that

they differ up to 10 K in the period between October and June, depending on

the region and the assimilation run. However, we show that these discrepancies

between simulated and observed brightness temperature can be mainly attributed

to the underlying observational uncertainty in sea-ice concentration and, to a

lesser extent, to the data assimilation process, rather than to biases in ARC3O

itself. In summer, the discrepancies between simulated and observed brightness

temperatures are larger than in winter and locally reach up to 20 K. This is caused

by the very large observational uncertainty in summer sea-ice concentration but

also by the melt-pond parametrization in MPI-ESM, which is not necessarily

realistic. ARC3O is therefore capable to realistically translate the simulated Arctic

Ocean climate state into one observable quantity, which can be used for a more

comprehensive climate model evaluation and initialization.

65



C ARC3O: The Arctic Ocean Observation Operator for 6.9 GHz

C.1 INTRODUCTION

Observational uncertainty in sea-ice concentration affects our understanding of
past and future sea-ice evolution as it inhibits reliable climate model evaluation
(Notz et al., 2013) and initialization (Bunzel et al., 2016). It also limits our ability to
fully exploit relationships between the evolution of sea ice and other climate
variables, such as global-mean surface temperature (Niederdrenk and Notz, 2018)
and CO2 emissions (Notz and Stroeve, 2016). To address these issues, we construct
an observation operator for the Arctic Ocean at the frequency of 6.9 GHz. This
operator opens the possibility for climate model evaluation and initialization
directly related to satellite measurements, avoiding the observational
uncertainty.

In the case of sea-ice concentration, the observational uncertainty is caused by
irreducible physical uncertainty. The brightness temperature measured by passive
microwave sensors from satellites is driven by several climate variables. The
contribution of the individual drivers cannot be disentangled unambiguously. This
leads to uncertainty in the interpretation of the brightness temperature
measurements. Nevertheless, a variety of algorithms have been developed to
retrieve an estimate of sea-ice concentration from these brightness temperatures,
resulting in a range of different sea-ice concentration products, which differ,
sometimes substantially (Ivanova et al., 2014). The evaluation of simulated sea-ice
concentration in GCMs therefore strongly depends on the choice of the sea-ice
concentration product against which a simulation is evaluated (Notz et al., 2013).

Observation operators applied to general circulation model (GCM) output have
been suggested as a solution to circumvent observational uncertainty for other
climate variables (Flato et al., 2013; Eyring et al., 2019). An observation operator
enables us to simulate brightness temperatures based on output from a GCM. This
simulated brightness temperature can then be evaluated against the observed
brightness temperatures. Uncertainty in the evaluation can therefore only be
induced by uncertainties in the observation operator. We argue that the simulated
brightness temperature based on a GCM is a more consistent method less prone to
uncertainty than the use of retrieval algorithms because the GCM provides an
internally consistent climate state over time and space. Additionally, the climate
system as a whole can be evaluated with this approach and not only individual
variables.

However, the simulation of sea-ice brightness temperatures relies on sea-ice
properties not explicitly resolved in MPI-ESM. In particular, brightness
temperatures are driven by the vertical liquid water (or brine) distribution inside
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C.2 The Max Planck Institute Earth System Model

the ice and snow, which is driven by temperature and salinity profiles. However,
Burgard et al. (2019b) showed in a one-dimensional idealized setup that, using a
few simple assumptions, the low complexity of GCM output is sufficient to
simulate reasonable sea-ice brightness temperatures at 6.9 GHz at vertical
polarization. While we focus on the frequency of 6.9 GHz in this study, the
framework proposed here, together with the framework presented in Burgard et al.
(2019b), can be extended to investigate the simulation of brightness temperatures
at other frequencies in the future as well.

In this study, we first present an Arctic Ocean observation operator that we
construct based on the suggestions from Burgard et al. (2019b). We then evaluate
the brightness temperatures simulated based on assimilation runs against
brightness temperatures observed by satellites and investigate potential
uncertainty sources in the brightness temperature simulation.

C.2 THE MAX PLANCK INSTITUTE EARTH SYSTEM MODEL

As a baseline for the development of an Arctic Ocean observation operator, we use
the Max Planck Institute Earth System Model (MPI-ESM). It is a state-of-the-art Earth
System Model that contributed to the Coupled Model Intercomparison Project in its
fifth phase (Taylor et al., 2012) and will contribute to its sixth phase (Eyring et al.,
2016). We use its low resolution configuration (MPI-ESM-LR).

The atmosphere component, ECHAM6 (Stevens et al., 2013), has a horizontal
resolution of T63 (~1.9◦ x 1.9◦) and a vertical division into 47 levels between surface
and 0.01 hPa. The ocean component, MPIOM (Jungclaus et al., 2013), is based on a
curvilinear grid with two poles located in South Greenland and Antarctica. The
horizontal resolution ranges from 15 km near Greenland to 185 km in the tropical
Pacific. Vertically, the ocean is divided into 40 levels between surface and bottom.
The sea ice is simulated within MPIOM by a dynamic/thermodynamic sea-ice
model based on Hibler (1979). In this simple setup, the sea-ice salinity is kept
constant at 5 g/kg, and the ice bottom temperature is kept constant at -1.8 ◦C.
There is no explicit simulation of the ice thickness distribution. Still, the simulation
of the mean state and variability of Arctic sea ice is realistic (Notz et al., 2013).

For our observation operator, we use output from the atmosphere component
ECHAM6. The sea-ice properties, like sea-ice concentration, sea-ice thickness and
snow thickness, are computed within the ocean component and communicated to
the atmosphere component through coupling on a daily frequency (Jungclaus
et al., 2013). Based on these properties, ECHAM6 computes the snow cover fraction
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and the melt pond coverage (Giorgetta et al., 2013), which are needed for a
comprehensive assessment of the radiative properties of the surface. Additionally,
ECHAM6 provides the atmospheric water and ice content, which are needed for
the calculation of the radiation path through the atmosphere (see Sec. C.3.2).
ECHAM6 therefore provides all variables needed for the simulation of Arctic Ocean
brightness temperatures.

C.3 THE ARCTIC OCEAN OBSERVATION OPERATOR ARC3O

The purpose of the ARCtic Ocean Observation Operator for 6.9 GHz (ARC3O) is to
simulate Arctic Ocean brightness temperatures as could be seen at the top of the
atmosphere by a theoretical satellite flying around the model. This brightness
temperature is a result of radiation emitted by the surface, upwelling atmospheric
radiation, reflected downwelling atmospheric radiation, atmospheric transmission,
and reflected space radiation (Swift and Cavalieri, 1985).

As a consequence, ARC3O is based on two parts. In the first part, an emission
model computes the sea-ice surface brightness temperature (see Sec. C.3.1). In the
second part, an atmospheric radiative transfer model combines the sea-ice surface
emission with ocean emission and atmospheric emission and transmission (see
Sec. C.3.2). The workflow of ARC3O follows five steps (see Fig. C.1), which we
explain in the following.

C.3.1 THE CONTRIBUTION OF THE SEA-ICE SURFACE TO THE

BRIGHTNESS TEMPERATURE

The brightness temperature emitted at the sea-ice surface at 6.9 GHz, vertical
polarization, is mainly driven by the vertical distribution of the brine volume
fraction inside the ice, which principally depends on the temperature and salinity
profile. However, MPI-ESM does not provide temperature and salinity profiles. To
circumvent this lack of information, we follow the suggestion of Burgard et al.
(2019b) to simplify the sea-ice properties, based on the climatic boundary
conditions.
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C.3 The Arctic Ocean Observation Operator ARC3O

ARC3O workflow

1 Prepare masks for season and ice types

GCM
Sea-ice thickness
Snow thickness
Surface temperature

Processing for
each point

Mask for seasons
Melting snow, bare summer ice, cold
conditions

Mask for ice types
First-year ice, multiyear ice

2 Prepare sea-ice profiles for cold conditions

GCM
Sea-ice thickness
Snow thickness
Surface temperature

Processing for
cold conditions

points

Snow-covered ice profiles
Layer temperature, salinity, thickness, 
wetness, density, correlation length, 
snow/first-year/multiyear ice

Bare ice profiles
Layer temperature, salinity, thickness, 
wetness, density, correlation length, 
snow/first-year/multiyear ice

3 Compute sea-ice surface brightness temperature for cold conditions

Snow-covered ice
profiles

Bare ice profiles

MEMLS

MEMLS

Snow-covered
ice brightness
temperature

Bare ice
brightness
temperature

Cold
conditions ice
brightness
temperature

x Snow-cover 
fraction

x bare fraction

4 Compute sea-ice surface brightness temperature for all conditions

Cold conditions ice
brightness temperature Processing 

for each point

Masks (ice types and
seasons)

Masks (seasons)

Ice brightness temperature
Cold conditions: Cold conditions ice
brightness temperatures
Melting snow: NaN
Summer bare ice: constant inferred from
observations (262 K)

5 Add sea-ice concentration and atmospheric effect

GCM
Sea-ice concentration
Columnar liquid water and
water vapor
Sea surface temperature
Snow/ice surface
temperature
Melt pond fraction

Wentz and
Meissner 

simple radiative
transfer model

Brightness temperature at 
top of atmosphere

Ice brightness temperature

Figure C.1: Workflow of the Arctic Ocean Observation Operator ARC3O.
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C.3.1.1 IDENTIFYING DIFFERENT PERIODS AND ICE TYPES

Burgard et al. (2019b) showed that the simulation of sea-ice surface brightness
temperatures relies on different assumptions, depending on the conditions of the
ice. A year can be divided into three type of periods: periods of cold conditions,
periods of melting snow, and periods of bare ice near 0 ◦C. Additionally, sea-ice
brightness temperatures depend on the ice type, i.e whether the ice is first-year or
multiyear ice.

We therefore flag the different type of periods and different ice types based on the
sea-ice properties given by the MPI-ESM output (Step 1 in Fig C.1) . Grid cells
containing melting snow are flagged as "melting snow periods", grid cells
containing bare ice in July, August and September are flagged as "bare ice near
0◦C", and the remaining grid cells are flagged as "cold conditions". To flag the
different grid cells as "first-year ice", "multiyear ice" and "open water only", we
consider the ice thickness evolution. If the ice thickness is zero, the ice type is set to
"open water only", if the ice thickness is larger than zero but there has been at least
one "open water only" timestep in the year preceding the timestep evaluated, the
ice type is set to "first-year ice". If none of the two before apply, the ice type is set to
"multiyear ice".

C.3.1.2 COLD CONDITIONS

In periods of cold conditions, Burgard et al. (2019b) showed that the sea-ice surface
brightness temperature can be simulated with low uncertainty using a linear vertical
temperature profile and a function of depth for the salinity interpolated to less than
ten layers. We therefore construct profiles (Step 2 in Fig C.1), divided into eleven
layers, namely ten layers of ice and one layer of snow. The ice layers are equidistant,
based on the ice thickness given by MPI-ESM, and the snow layer thickness is equal
to the snow thickness given by MPI-ESM.

We construct temperature profiles based on the ice surface temperature given by
MPI-ESM, which represents the temperature at the top of the snow and ice column.
For each grid cell, we construct two sets of profiles. One set of profiles interprets the
surface temperature as the snow surface temperature. This profile is a combination
of two linear profiles, one in the snow, defined by the snow thermal conductivity, and
one in the ice, defined by the ice thermal conductivity (see formula in Sec. C.6.1 of
the Supp. Info.). The other set of profiles interprets the surface temperature as the ice
surface temperature and is a linear profile between surface and bottom temperature.
The ice bottom temperature is taken as constant at -1.8 ◦C in both cases.
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C.3 The Arctic Ocean Observation Operator ARC3O

The salinity is taken as a function of depth, as formulated by Griewank and Notz
(2015). The salinity is defined as follows for first-year ice:

Sf y (z ) =
z

a + b z
+ c (C.1)

with a = 1.0964, b = -1.0552 and c = 4.41272
and as follows for multiyear ice:

Sm y (z ) =
z

a
+ (

z

b
)1/c (C.2)

with a = 0.17083, b = 0.92762 and c = 0.024516.
We set the snow salinity to zero. Note, however, that the validity of this assumption
is slightly uncertain as the lowest layer of the snow can be saline, especially above
first-year ice (Barber et al., 1998; Shokr and Sinha, 2015a), enabling the presence of
liquid water at the base of the snow.

The vertical profile of the ice density ρi is computed based on the temperature and
salinity profiles, with the following formula (Notz, 2005):

ρi =Φl ·ρw + (1−Φl ) ·ρ0 (C.3)

with the pure ice density ρ0 = 916.18 − 0.1403T , the brine salinity
Sb = −17.6T − 0.389T 2 − 0.00362T 3, the density of seawater
ρw = 1000.3+ 0.78237Sb + 2.8008 · 10−4S 2

b , and the liquid water fraction Φl = S/Sb .
The snow density is set to 300 kg/m3 (Giorgetta et al., 2013).

The vertical profile of the correlation length, a measure for the scatterer size (snow
particles, brine inclusions, air bubbles), depends on the ice type. The correlation
length is set to 0.35 mm in the upper 20 cm of first-year ice and to 0.25 mm in the
lower layers (Tonboe, 2010). For multi-year ice, it is set to 1.5 mm (Burgard et al.,
2019b). The correlation length of snow is set to 0.15 mm (Tonboe, 2010).

The sea-ice surface brightness temperature is simulated based on the temperature,
salinity, density, thickness, and correlation length profiles described above. A
slightly modified version of the Microwave Emission Model for Layered Snowpacks
(MEMLS, Wiesmann and Mätzler, 1998) extended for sea ice (Tonboe et al., 2006) is
used for the brightness temperature simulation. It relates the snow and ice
properties to emission, absorption and scattering of the microwave radiation in
each layer. Hence, MEMLS simulates the path of the radiation through the ice and
snow from bottom to top, resulting in a brightness temperature emitted at the
surface.
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To take the snow cover fraction at the surface into account, two sea-ice surface
brightness temperatures are simulated for each grid cell. One set of brightness
temperatures is simulated using the temperature profiles divided between snow
and ice, and the other set using the temperature profiles linear between surface
and bottom temperature (Step 3 in Fig C.1). These surface brightness temperatures
are then weighted by the snow cover fraction given by MPI-ESM, to result in a mean
sea-ice surface brightness temperature.

C.3.1.3 MELTING SNOW

In spring, temperatures increase across the Arctic Ocean, leading to the melting of
the snow covering the sea ice. Wet snow strongly affects the emitted microwave
radiation. This effect mainly depends on the water content of the snow, on the
density and on the size and form of the snow particles (Chang and Gloersen, 1975;
Ulaby et al., 1986; Shokr and Sinha, 2015a). Due to the high wetness, the melting
snow brightness temperature can decrease towards the brightness temperature of
open water. However, it also leads to a warming of the layer emitting the radiation,
hence leading to an increase in brightness temperature. The net effect of the snow
wetness on the microwave brightness temperature is therefore not necessarily clear
(Shokr and Sinha, 2015a) and needs precise information to be simulated accurately.
As we do not have the necessary information about the snow properties in
MPI-ESM, we cannot simulate the sea-ice surface brightness temperature reliably
in this period and mask out these grid cells.

C.3.1.4 SUMMER BARE ICE NEAR 0 ◦C

In summer, after the snow has fully melted away, the salinity profile inside the ice
cannot necessarily be represented by a simple function of depth. As surface
temperatures are close to 0◦C, the liquid water fraction at the ice surface increases
and melt ponds form. Above a surface liquid water fraction of 0.2 on, the brightness
temperature is proportional to the surface liquid water fraction (Burgard et al.,
2019b). We suggest that liquid water fractions above 0.2 can be interpreted as a
measure for the melt-pond fraction. For these warm conditions, Burgard et al.
(2019b) showed that we do not currently have a valid simplification for temperature
and salinity profiles. They therefore suggest a very simple approach: at these
temperatures, the ice surface which is not covered by melt ponds is assumed to
have a similar surface temperature and composition over the whole Arctic,
resulting in a similar surface brightness temperature.
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Figure C.2: Brightness temperatures measured from AMSR2 against melt pond fraction for
different points represented in the Round Robin Data Package from May to mid-August
2011.

To find a surface brightness temperature representing the sea-ice surface in
summer, we use the observational dataset Round Robin Data Package (RRDP,
Pedersen et al., 2018) developed as part of the European Space Agency (ESA)
sea-ice Climate Change Initiative (SICCI). These data cover the period from May to
mid-August 2011. The RRDP contains sea-ice data measured in-situ by plane and
ice-mass buoys. These in-situ measurements are collocated with microwave
brightness temperatures between 6 and 89 GHz measured by the Advanced
Microwave Scanning Radiometer 2 (AMSR2) and with the melt-pond fraction
product by Istomina et al. (2015b). Using the combination of the melt-pond
fraction and the observed brightness temperatures, we can infer the summer
brightness temperature of melt-pond-free sea ice (Fig. C.2). We do so by taking the
mean brightness temperature for melt-pond fractions between zero and 0.2, as
Burgard et al. (2019b) showed that below a liquid water fraction of 0.2, the
brightness temperature is not driven only by the surface properties of the ice. This
method results in a summer brightness temperature of 262.29±3.56 K.

As this is the brightness temperature measured at the top of the atmosphere, we
add an atmospheric correction of 4.49 K. We run ARC3O once on the MPI-ESM
output presented in Sec. C.4.2 to infer this correction, which is the mean
atmospheric effect in regions covered by 99% of ice or more in summer. Adding the
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atmospheric correction, we therefore use a constant brightness temperature of
266.78 K as a constant brightness temperature representing the radiation emitted
at the summer bare ice surface. This bare ice surface is then combined with open
water brightness temperatures, weighted by the melt-pond fraction, to obtain the
comprehensive summer sea-ice brightness temperature (see Sec. C.3.2).

C.3.2 THE CONTRIBUTION OF OCEAN AND ATMOSPHERE TO THE

BRIGHTNESS TEMPERATURE

The sea-ice surface brightness temperature is set for each grid cell depending on
the three periods presented above (Step 4 in Fig. C.1). As the Arctic Ocean is not
covered by 100% of sea ice, the brightness temperature of the surface also depends
on the open water surface brightness temperature. Additionally, to simulate the
radiation reaching the top of the atmosphere, the atmospheric contribution has to
be added to the surface brightness temperature. We use a geophysical model
developed by Wentz and Meissner (2000) to take into account the oceanic and
atmospheric contributions (Step 5 in Fig. C.1).

The total brightness temperature of an Arctic Ocean grid cell is computed with this
model as a combination of the upwelling atmosphere emission, the upwelling
surface emission by ocean, sea ice, and melt ponds, the atmospheric
transmittance, the atmospheric emission reflected by the different types of surface,
and the reflected background radiation from space. The ocean surface brightness
temperature is computed as a function of surface temperature, surface salinity, and
wind speed. The melt-pond brightness temperature is computed similarly to the
ocean brightness temperature, but setting salinity and wind speed to zero. Finally,
as the atmosphere is mostly transparent to radiation in the low microwave range,
the radiative transfer through the atmosphere is computed based only on the
columnar water vapor and columnar cloud liquid water.

C.4 EVALUATION OF ARC3O

The approach we use to construct ARC3O was proposed by Burgard et al. (2019b),
based on an idealized one-dimensional setup that did not involve actual
observations. In the following, we evaluate our simulated Arctic Ocean brightness
temperatures against brightness temperatures measured by satellites.
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We do so by comparing brightness temperatures simulated by ARC3O based on
MPI-ESM output from assimilation experiments, i.e. experiments where the model
is regularly nudged towards observations. Hence, we expect the simulated climate
system to be close to reality and the simulated brightness temperature to be close
to the observed brightness temperature.

However, the observations used in the data assimilation are reanalysis data for the
atmosphere and ocean and retrieved sea-ice concentration products for the sea ice.
They are therefore not direct observations but already-processed products prone to
differences to reality. Additionally, in the assimilation process, MPI-ESM is nudged
towards observations but some characteristic features inherent to the mean model
state might remain. The uncertainty of the observed brightness temperature itself
is considered to be small and thus neglected here. Hence, differences between
observed and simulated brightness temperature can arise from three sources: (1)
the difference between real and retrieved climate state due to the difference
between retrieval algorithms or reanalysis and the real climate state, (2) the
difference between the assimilated climate state and the retrieved or reanalysis
product, and (3) biases in ARC3O (Fig. C.3). In the following, we try to quantify how
the first two uncertainty sources contribute to differences between the simulated
and observed brightness temperatures. Any remaining biases can then be
attributed to biases of ARC3O itself.

Brightness temperature

Climate state

Observed

Real Retrieved Assimilated

Simulated

Irr
ed

uc
ib

le
un

ce
rt

ai
nt

y Uncertainty
source

1

Retrieval algorithm

Uncertainty source 2
Assimilation process

U
nc

er
ta

in
ty

so
ur

ce
3

O
bs

er
va

tio
n 

op
er

at
or

Uncertainty sources 1+2+3

Figure C.3: Uncertainty sources possibly introducing differences between simulated and
observed brightness temperature.
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C.4.1 OBSERVATION DATA

As observed brightness temperatures, we use Calibrated Passive Microwave Daily
EASE-Grid 2.0 (CETB) brightness temperatures processed as part of the NASA
Making Earth System Data Records for Use in Research Environments (MEaSUREs)
program (Brodzik et al., 2016, Updated 2018). They are an improved,
enhanced-resolution, gridded passive microwave Earth System Data Record
(ESDR) for monitoring cryospheric and hydrologic time series from the
measurement devices Scanning Multi-channel Microwave Radiometer (SMMR),
Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS) and Advanced
Microwave Scanning Radiometer - Earth Observing System (AMSR-E). These data
cover the period between 1978 and 2017 and are provided on a 25 km x 25 km grid.
For the comparison with MPI-ESM data, we focus on the period from 2002 to 2008
and interpolate the observations bilinearly to the model grid. Again, we
concentrate on the frequency of 6.9 GHz, vertical polarization. At this frequency
and this time period, the observations stem from AMSR-E.

C.4.2 MODEL DATA

We use model data from assimilation runs, as they are nudged towards the
observed climate state and are therefore expected to be a reasonable estimate of
the real climate state in the model. Differences between simulated and observed
brightness temperatures should therefore be small and can be attributed to the
three uncertainty sources presented before. To examine the impact of the choice in
retrieval product, we use three assimilation runs based on three different sea-ice
concentration products. The atmosphere and the ocean component are
assimilated in the same way in all three cases.

The assimilation experiments cover the period from 2002 to 2008 and were
conducted by Bunzel et al. (2016). The assimilation technique used was Newtonian
relaxation, also called nudging. Atmospheric, oceanic and sea-ice properties were
nudged into the model using full-field data assimilation in all atmospheric and
oceanic levels. In the atmosphere, vorticity, divergence, temperature, and surface
pressure were nudged into the model with a relaxation time of one day, while
salinity and temperature in the ocean were nudged with a relaxation time of ten
days. For the assimilation of atmospheric quantities, the ERA-Interim dataset (Dee
et al., 2011) was used, while the ocean was nudged toward Ocean Reanalysis
System 4 data (Balmaseda et al., 2013).
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For sea ice, only sea-ice concentration was assimilated. The three different sea-ice
concentration products are the ESA SICCI Version 2 (SICCI2) dataset (Lavergne
et al., 2019) as a 50-km-gridded product, the NASA Team dataset (Cavalieri et al.,
1996) and the Bootstrap dataset (Comiso, 2000), both as 25-km-gridded products.
We choose these datasets because SICCI2 is a new algorithm combining several
existing algorithms with the goal of improving the retrieved sea-ice concentration
product, Bootstrap sea-ice concentrations are in the upper range of retrieved
sea-ice concentrations, and NASA Team sea-ice concentrations are in the lower
range (Ivanova et al., 2014). The data were interpolated bilinearly to the model grid
before assimilation. In grid boxes containing missing values, e.g. the polar
observation hole, no assimilation was applied. The sea ice was then exclusively
calculated by the model. The relaxation time was 20 days. Relaxation times differ
among the model components to account for the different response times of the
components. In order to allow for a realistic relation between ice concentration
and thickness, sea-ice thickness was updated in the model proportionally to ice
concentration nudging (Tietsche et al., 2013).

C.4.3 COLD SEASONS (JFM, AMJ, OND)

C.4.3.1 COMPARISON BETWEEN SIMULATED AND OBSERVED BRIGHTNESS

TEMPERATURES

The first comparison between simulated and brightness temperatures clearly
showed a positive bias over the whole Arctic Ocean in the simulated brightness
temperatures (Fig. C.10, left, in Supp. Info.). The brightness temperature is defined
as the product of the emissivity and the physical temperature of the emitting part
of the ice (Ulaby et al., 1986). A comparison of the simulated emissivities with
emissivities derived from observational data from the RRDP showed that ARC3O
systematically overestimates the emissivity. It is however not straightforward to
find where the bias is produced in the emission model. We therefore chose to
correct the bias by multiplying the inherent sea-ice emissivity by a tuning
coefficient at the end of step 3 of the ARC3O workflow (see Fig. C.1). The coefficient
which yields the best agreement with observations is 0.968 (Fig. C.10, right, in
Supp. Info.). More information about the tuning process is found in Supp.
Info. C.6.2. In the following, we discuss brightness temperatures simulated with
this tuning procedure.

The three different sets of simulated brightness temperatures show largely similar
behaviours in the cold seasons winter (January/February/March, JFM), spring
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Figure C.4: Observed brightness temperatures by AMSR-E (1st row). Brightness
temperatures simulated with ARC3O from MPI-ESM output assimilated with SICCI2 (2nd
row), Bootstrap (4th row) and NASA Team (6th row) sea-ice concentration and difference
to observations (3rd, 5th and 7th row respectively). The columns stand for the three cold
seasons: JFM, AMJ, OND. Summer (JAS) is discussed in Sec. C.4.4.
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(April/May/June, AMJ), and autumn (October/November/December, OND)
(Fig. C.4). Overall, differences between simulated and observed brightness
temperatures are very small and are generally lower than 10 K. The pattern of
differences appears to be similar across seasons. The simulated brightness
temperatures are slightly higher than the observed ones in regions of high sea-ice
concentration and thickness, e.g. north of the Canadian Archipelago and the
Central Arctic in winter. In contrast, they are lower than the observed ones in
regions of low sea-ice concentration and thickness, e.g. in the marginal zones such
as the Barents Sea, the Pacific sector, and the Hudson Bay.

The overestimation on the order of 2 to 4 K in the Central Arctic in winter has a
similar pattern in all three sets of simulated brightness temperatures. Otherwise,
brightness temperatures based on the Bootstrap assimilation run are very close to
the observed ones, with differences to the observations of usually less than 3 K.
Only a few individual points in the Atlantic sector show larger biases. Brightness
temperatures based on the NASA Team and SICCI2 assimilation run show stronger
differences to observations. The simulated brightness temperatures are up to 10 K
lower than the observations in the North Pacific in winter and up to 15 K lower than
the observations in the Hudson Bay in spring. In the Central Arctic and the Atlantic
Sector, the NASA Team brightness temperatures are 2 to 5 K lower than
observations in spring and 5 to 10 K lower than observations in autumn. The
pattern of differences between SICCI2 brightness temperatures and observations is
similar to the pattern of differences between NASA Team brightness temperatures
and observations but the SICCI2 brightness temperatures are about 2 K higher than
the NASA Team brightness temperatures.

C.4.3.2 INVESTIGATING UNCERTAINTY SOURCES

The total difference ∆tot between simulated and observed brightness temperatures
is a consequence of the difference between real and retrieved climate state∆retriev, of
the difference between retrieved and simulated climate state∆assim, and of biases in
the brightness temperature simulation by ARC3O∆ARC3O (Fig. C.3):

∆tot =∆retriev+∆assim+∆ARC3O (C.4)

We set out to investigate∆assim and∆retriev to gain an estimate of∆ARC3O.

In a first step, we investigate the influence to which drivers the brightness
temperature is particularly sensitive. In the cold seasons, the most important
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drivers are the sea-ice concentration, sea-ice thickness, snow thickness, and
surface temperature.

We examine the sensitivity for the month of October, representing the beginning of
the freezing period, and for the month of March, representing the end of the
freezing period. We use only one of the assimilation runs, the SICCI2 run, as we
assume that the physical relationships linking the different variables are the same
in all three assimilation runs. For both October and March, we compute, for each
grid cell and each variable, the anomaly to the time mean. By taking the standard
deviation of these anomalies, we have a representation of the variability of the
given variable in the grid cell (Fig. C.11 in Supp. Info.).

Table C.1: Sensitivity of the simulated brightness temperature to different input variables.
We show the 5th and 95th percentile of the difference between modulated and reference
brightness temperature and the 5th and 95th percentile of the modulating variable. The
latter range is computed as the standard deviation of the anomaly to the time mean in
each grid cell. Straight font represents the sensitivity to the increase in the variable, italic
font represents the sensitivity to the decrease.

Range of difference in Range of variability
brightness temperature

March
Snow thickness 0.02 to 0.98 K ±0.7 to 11 cm

-1.39 to -0.04 K
Sea-ice thickness -0.88 to -0.09 K ±7 to 43 cm

-0.13±1.02 K
Sea-ice concentration 0.33 to 17.84 K ±0.05 to 26 %

-18.65 to -0.56 K
Surface temperature 0.14 to 3.24 K ±3.31 to 7.97 K

-3.38±-0.16 K

October
Snow thickness 0.06 to 0.43 K ±0.1 to 7 cm

-0.66 to 0.10 K
Sea-ice thickness -0.49 to -0.12 K ±8 to 52 cm

-0.12±0.54 K
Sea-ice concentration 1.14 to 16.51 K ±1 to 36 %

-25.98 to -1.34 K
Surface temperature 0.80 to 2.00 K ±2.84 to 6.38 K

-2.03±-0.87 K

With these variability fields, we conduct sensitivity studies for each variable of
interest. For both October and March, we conduct two sets of experiments per
variable of interest, one in which we add the variability field and one in which we
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subtract the variability field. The main message emerging from the results is that
the sea-ice concentration variability is the main driver for variations in the
brightness temperature (Tab. C.1) changing it by up to ≈ 25 K, while the variability
in other variables affects the brightness temperature only up to ≈ 3 K. Spatially, the
sea-ice concentration is the main driver for variability in regions not completely
covered by ice (Fig. C.5). In regions covered by near to 100% of ice, the surface
temperature has the highest effect on the brightness temperature. Sea-ice
thickness and snow thickness do not play an important role for uncertainties in the
total brightness temperature of a grid cell as their mean absolute contribution to
the brightness temperature variability is on the order of 1 K. To understand the total
uncertainty ∆tot, we therefore need to focus on two variables: the sea-ice
concentration and the surface temperature.

In a next step, we investigate the influence of ∆assim on ∆tot. The goal of a data
assimilation is to reach a simulated climate state close to reality. During the data
assimilation process, the model is nudged towards three distinct observational
datasets: an ocean reanalysis, an atmosphere reanalysis, and a sea-ice
concentration product, which are not necessarily consistent with each other.
Hence, discrepancies can arise between the variables before and after the
assimilation. This is the case for example when a non-zero sea-ice concentration is
assimilated at one point but the ocean temperature is too warm to sustain the ice at
that point and the ice directly melts away.

As the sea-ice concentration is the main driver for uncertainties in the brightness
temperature simulation, we here focus on the effect of the data assimilation on the
sea-ice concentration in the three different assimilation runs. This effect is mostly
visible in the marginal regions (Fig. C.6) and is of similar magnitude for all three sea-
ice concentration datasets. At the ice edge, the differences are highest, on the order
of 5 %. As a rule of thumb, differences of 1% in sea-ice concentration are equivalent
to differences of 1 K in brightness temperatures (see Burgard et al., 2019b), so the
differences in sea-ice concentration are roughly equivalent to resulting differences
in brightness temperature of around 5 K.∆assim can therefore account for a large part
of the total difference between simulated and observed brightness temperature∆tot

in the ice edge region (see Fig. C.4).

Unfortunately, the difference between real and retrieved sea-ice concentration
∆retriev cannot be as robustly quantified as ∆assim. In-situ observations for a robust
evaluation of the retrieved sea-ice concentration products are largely lacking. This
inhibits the evaluation of the products against reality. The effect of ∆retriev and
∆ARC3O can therefore not clearly be disentangled.
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March – Increase in variable March – Decrease in variable

October – Increase in variable October – Decrease in variable
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Figure C.5: Variable which has the highest absolute mean effect on the brightness
temperature in March (top) and October (bottom) when their variability field is added
to (left) and subtracted from (right) the input variable. Inspired from Fig. 5 in Richter et al.
(2018)

Still, we can give an estimated range for ∆ARC3O by assuming that the real sea-ice
concentration lies between the Bootstrap dataset, which is in the higher range of
sea-ice area estimates and NASA Team, which is in the lower range (Fig. C.7 and
Ivanova et al., 2014)). To estimate ∆ARC3O based on this assumption, we first
subtract ∆assim from the simulated brightness temperature. ∆tot is now only a sum
of ∆retriev and ∆ARC3O. Second, for each grid cell and each time step, we evaluate if
the observed brightness temperature is located within the range of the brightness
temperatures simulated based on the three different sea-ice concentration
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Figure C.6: Difference between retrieved and simulated sea-ice concentration for the three
assimilation runs.

products. If yes, differences are not necessarily a bias induced by ARC3O. If not, it is
likely that ARC3O induces a bias. In this case, the simulated brightness
temperature with the lowest absolute distance from the observed brightness
temperature represents the smallest plausible estimate of ∆ARC3O (Fig. C.8, 2nd
row). The largest absolute difference between simulated and observed brightness
temperatures in contrast gives an estimate of the largest plausible value of ∆ARC3O

(Fig. C.8, 3rd row). If the observed brightness temperature is within the range
obtained for the different retrieved sea-ice concentration estimates, the estimate of
∆ARC3O is set to zero.

The resulting mean estimates of ∆ARC3O are both very small, as the minimal
estimates are well below 5 K and the maximal estimates are 5 K or below, except in
the Hudson Bay. Additionally, the comparison of the∆ARC3O estimates to the spread
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Figure C.7: March (top) and September (bottom) sea-ice area for the three observational
datasets used in the three assimilation runs used.

in sea-ice concentration between Bootstrap and NASA Team (Fig. C.8, 4th row)
shows that biases in ARC3O, i.e. ∆ARC3O, are small compared to the uncertainty in
retrievals, i.e. ∆retriev.

The remaining uncertainty contained in ∆ARC3O can have several sources: ARC3O
itself, further biases in the simulated climate state, or wrong assumptions. Biases
in ARC3O itself can arise from wrong assumptions in the emission model MEMLS,
but also from the definition of first-year and multiyear ice. The definition we use
does not take into account the dynamics of the ice. As a consequence, if a grid cell is
located in a region where sea-ice circulates horizontally and this grid cell therefore
contains ice for more than a year, the ice in this grid cell will be defined as multiyear
ice. This is the case even if the ice transported through the grid cell is not the same
physical ice floe throughout this time period but a different first-year ice floe every
day for example.

We currently cannot explore the additional impact of model biases in simulated
surface temperature, sea-ice thickness, and snow thickness, as sufficiently robust
in-situ observation data sets of these variables are lacking. Notwithstanding this
fact, we expect small biases for the simulated surface temperature, because the
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Figure C.8: Observed brightness temperatures (1st row), mean minimal (2nd row) and mean
maximal (3rd row) estimates of∆ARC3O and differences in sea-ice concentration (4th row)
between the NASA Team and Bootstrap assimilation runs, i.e. maximal estimates of
∆retriev.

ERA-Interim reanalysis compares well to the few available in-situ observations
(Lindsay et al., 2014). Observational estimates for sea-ice and snow thickness are
mainly based on retrieval algorithms, similar to sea-ice concentration estimates.
Possible biases may therefore remain in these variables compared to reality. For
example, the sea-ice thickness in our assimilation runs is on the order of 2 m at its
thickest north of the Canadian Archipelago (not shown). Observational estimates
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show thicknesses of rather 4 m or more. This is much more than we varied in our
sensitivity study and points to a possible stronger influence of sea-ice thickness on
the difference between simulated and observed brightness temperature than
estimated from the sensitivity study.

Finally, we assumed that the real sea-ice concentration lies in the range between the
Bootstrap and the NASA Team estimates. As only limited evaluation against reality
is possible, the uncertainty between real and retrieved sea-ice concentration might
be different to our assumption.

As a conclusion, we showed in the consistent model setup that the sea-ice
concentration is the main driver for large variations in the brightness temperature
in regions that are not fully ice-covered. In regions where the sea-ice concentration
is very high and does not vary much, such as the Central Arctic in winter, the
surface temperature is the main driver of variations in the brightness temperature.
Simulated and observed brightness temperatures are generally in good agreement.
Most differences are likely driven by the uncertainty brought by the sea-ice
concentration products compared to reality. Remaining differences attributable to
biases in ARC3O remain below 5 K.

The lack of evaluation possibilities for the observation operator is an indicator for
how little is actually known about the real Arctic climate state, in particular the real
sea-ice concentration and the surface temperature. Extending this observation
operator to lower and higher frequencies would be of advantage to fill this gap.
Brightness temperatures at different frequencies and polarizations are sensitive to
different particular parameters. The combination of different brightness
temperatures could enable a comprehensive assessment of the Arctic Ocean
surface and atmosphere, and a comprehensive evaluation of the individual
observation operators. For example, using an observation operator applied to
reanalysis data, Richter et al. (2018) simulated brightness temperatures at the
frequency of 1.4 GHz. They found that sea-ice concentration and surface
temperature are the main drivers for variations in the brightness temperature in
the Central Arctic but that, in regions of thin ice, the ice thickness is the dominating
driver at this frequency. Combining frequencies in this case would then enable a
climate model evaluation encompassing different perspectives.

C.4.4 MELTING SEASON (JAS)

Like in winter, the simulation of summer brightness temperatures heavily relies on
the underlying sea-ice concentration. Melt ponds are then the main challenge for
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sea-ice retrieval algorithms, as their passive microwave signature is
undistinguishable from open water. This leads to large uncertainties and potential
underestimation of the sea-ice concentration in summer (Meier and Notz, 2010;
Cavalieri et al., 1990; Comiso and Kwok, 1996; Fetterer and Untersteiner, 1998;
Rösel et al., 2012b; Kern et al., 2016). The difference between observed and
simulated brightness temperature (Fig. C.9, left) and the difference between
observational sea-ice concentration products is therefore much larger in summer
than in winter (Ivanova et al., 2015; Kern et al., 2016).

In summer, the simulation of brightness temperatures in ARC3O is only based on
the combination of a constant bare ice brightness temperature and melt-pond
brightness temperature, weighted by the melt-pond fraction. We derived the
constant brightness temperature from direct observations and it is representative
for summer bare ice on the order of ±3.56 K (see Sec. C.3.1.4). We therefore assume
that the uncertainty between simulated and observed brightness temperatures in
summer is mainly driven by two parameters: the difference between real and
retrieved sea-ice concentration and the difference between real and simulated
melt-pond fraction.

In the following, we can therefore evaluate the sea-ice concentration products in
summer and their relationship to the melt pond fraction. To do so, we distinguish
between two types of sea-ice concentration: the total sea-ice concentration and the
pond-free sea-ice concentration. The pond-free sea-ice concentration is the
concentration of sea ice visible by the satellite, assuming that melt ponds are open
water. In MPI-ESM, we know both the total sea-ice concentration and the
pond-free sea-ice concentration as melt ponds are represented through a
melt-pond parametrization, which is a function of the surface energy budget and
water drainage to the ocean (Roeckner et al., 2012). In the SICCI2 algorithm, melt
ponds are not explicitly accounted for. However, the dynamic tie-points are based
on observed brightness temperatures in areas of high sea-ice concentration, which
are covered by melt ponds in summer. The retrieved sea-ice concentration will
therefore implicitly be influenced by the melt-pond fraction of the tie-points (Kern
et al., 2016; Lavergne et al., 2019). In the Bootstrap algorithm, a correction is
applied to sea-ice concentration to account for the effect of melt ponds by
synthetically increasing the sea-ice concentration, while in the NASA Team
algorithm, no correction is applied (Bunzel et al., 2016). By switching on and off the
melt-pond parametrization in MPI-ESM, we can evaluate the ability of
observational products to produce a reasonable pond-free and total sea-ice
concentration.

87



C ARC3O: The Arctic Ocean Observation Operator for 6.9 GHz

AMSR-E (Observations)

Using melt pond parametrization in MPI-ESM Not using melt pond parametrization in MPI-ESM

ARC3O SICCI2
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ARC3O SICCI2 – AMSR-E
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ARC3O NASA Team – AMSR-E
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Figure C.9: Experiment to compare brightness temperatures in summer
(July/August/September) simulated based on assimilation runs assimilated with
different sea-ice concentration products (SICCI2, Bootstrap, NASA Team) to brightness
temperatures measured by AMSR-E. In the left column, the assimilated sea-ice
concentration is used in combination with a melt-pond parametrization in MPI-ESM. In
the right column, the melt-pond fraction is set to zero at all times.

In this experiment, we run ARC3O on the three MPI-ESM assimilation runs setting
the melt-pond fraction to zero everywhere. We then compare this set of simulated
brightness temperatures to observed brightness temperatures (Fig. C.9, right panel)
and to the set of brightness temperatures simulated taking into account the
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melt-pond distribution simulated by MPI-ESM (Fig. C.9, left panel). The results
give different insights depending on the sea-ice concentration product used for the
assimilation.

For the SICCI2 product, the simulated brightness temperature of the pond-free sea
ice is higher than the observed brightness temperature in the Central Arctic. Melt
ponds cover the whole ice-covered Arctic Ocean (Rösel et al., 2012a; Istomina et al.,
2015a). Adding their effect in the brightness temperature simulation could
therefore reduce the difference between simulated and observed brightness
temperature. However, while the melt-pond parametrization in MPI-ESM reduces
the overall brightness temperature, the reduction is very heterogeneous so that the
brightness temperature is now largely underestimated in the Pacific sector but still
overestimated in most of the Central Arctic. This means that the dynamic tie-point
approach of the SICCI2 algorithm seems to take into account the effect of melt
ponds in a reasonable way, therefore yielding a too high pond-free sea-ice
concentration. The brightness temperatures simulated using the melt-pond
parametrization suggest that SICCI2 does not represent well the total sea-ice
concentration. However, the melt-pond distribution in MPI-ESM seems to be too
heterogeneous and therefore unrealistic in some regions, as most simulated melt
ponds concentrate in the Pacific sector and not many can be found over the Central
Arctic (Roeckner et al., 2012). If, on the contrary, melt ponds were distributed
homogeneously across the sea-ice cover as suggested by previous studies (Rösel
et al., 2012a; Istomina et al., 2015a), the brightness temperature would be reduced
more homogeneously over the whole basin and therefore approach the observed
one. As a consequence, it seems that the total sea-ice concentration might be well
represented in the SICCI2 dataset but we cannot robustly confirm this assumption
with our setup due to the apparently somewhat unrealistic melt-pond
parametrization provided by MPI-ESM.

For the Bootstrap product, if the ice is assumed to be pond-free the simulated
brightness temperature is more than 10 K higher than the observed brightness
temperature over the whole Central Arctic. Due to this large difference, adding melt
ponds on top of the ice is not sufficient to counteract this overestimation of the
brightness temperature, which remains on the order of 10 K. This means that
Bootstrap tends to overestimate both the pond-free and total sea-ice concentration
in summer.

For the NASA Team product, the simulated brightness temperature of the
pond-free ice is very close to the observed brightness temperature. As a
consequence, the addition of melt ponds leads mainly to a negative bias compared
to observations. This means that the NASA Team dataset represents well the
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pond-free sea-ice concentration, in agreement with previous results by Ivanova
et al. (2015) but that it tends to underestimate the total sea-ice concentration in
summer.

The main conclusions show that the main driver for differences between simulated
and observed summer brightness temperatures are again the differences between
retrieved and real sea-ice concentration. However, the melt-pond parametrization
used in MPI-ESM is too heterogeneous and unrealistic and therefore contributes to
the difference between simulated and observed brightness temperatures as well.
For further analysis, the melt-pond parametrization could however be replaced by
a climatology using observational melt-pond estimates, such as Rösel et al. (2012a)
or Istomina et al. (2015a). This could reduce the uncertainty induced by the
melt-pond parametrization.

C.5 CONCLUSIONS

In this study, we present the first observational operator for the Arctic Ocean that is
applied to GCM output, following suggestions from Burgard et al. (2019b). It allows
us to simulate brightness temperatures at a frequency of 6.9 GHz, vertical
polarization, for the whole Arctic Ocean.

Simulated and observed brightness temperatures compare well. In winter,
differences between observed and simulated brightness temperatures attributable
to biases in ARC3O are well below 5 K. In comparison, the total difference between
observed and simulated brightness temperatures ranges from well below 5 K up to
10 K. The large differences can be attributed to possible differences between real
and retrieved climate state, especially in sea-ice concentration, and, to a lower
extent, to the process of data assimilation into the model. In summer, the
difference between simulated and observed brightness temperatures locally reach
more than 15 K. This difference can be attributed to high uncertainties in the
underlying sea-ice concentration products and potential biases arising from the
melt-pond parametrization in the climate model.

The low difference between simulated and observed brightness temperatures
showed that it is possible to simulate realistic brightness temperatures based on
simple output of a GCM. This is a necessary step to open the way for similar
observation operators for different frequencies and polarizations and, as a
consequence, for new climate model evaluation and model initialization
techniques in a hindcast or unconstrained model run. Additionally, ARC3O can be
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used to evaluate observation products against satellite measurements by using
assimilation runs.

An observation operator translates a consistent climate state into one observable
quantity. In climate model evaluation, the full simulated Arctic climate state can
therefore be evaluated against one observed quantity instead of several different
retrieved quantities, which all carry uncertainties with them, especially in the
Arctic region (Jakobson et al., 2012; Lindsay et al., 2014; Ivanova et al., 2015;
Boisvert et al., 2018). With one observation operator at one single frequency, not all
effects can be disentangled clearly, e.g. in this case the influence of sea-ice
concentration and surface temperature in the Central Arctic are comparable.
Further development of observational operators for different frequencies is
essential to use this approach to its fullest. A multi-frequency framework would
allow us to investigate this consistent climate state from different perspectives, as
different variables affect different frequencies differently.

The possibility of comparing the climate state of a climate model in only one
observable quantity is also very beneficial to model initialization through data
assimilation. The first-guess procedure used in data assimilation methods, such as
variational data assimilation (Talagrand and Courtier, 1987; Andersson et al., 1994)
or ensemble Kalman filters (Evensen, 1994; Hunt et al., 2007), would then be based
on a consistent climate state and be conducted in observation space, independent
of retrieval algorithms (Richter et al., 2018). This is already done and has led to
improvements in weather prediction systems for other regions than the Arctic (e.g.
Terasaki and Miyoshi, 2017).

The observational uncertainty of the sea-ice concentration is very large in summer.
We showed here that, if we are able to reduce the uncertainty in the melt-pond
representation of the model, we can relate differences between observed and
simulated brightness temperatures directly to differences between retrieved and
real total sea-ice concentration. This is a promising perspective as melt ponds are a
strong challenge for the retrieval of summer sea-ice concentrations.

Finally, ARC3O is a simple observation operator as it is based on variables simulated
by all GCMs, can be applied to output from any kind of GCM simulation, and does
not require extensive computational power. It is therefore a powerful tool which has
the potential to uncover model biases and improve model initialization by providing
a new perspective on the Arctic climate system.
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C.6 SUPPORTING INFORMATION TO APPENDIX C

C.6.1 TEMPERATURE PROFILE IN SNOW AND ICE

The temperature at the interface between ice and snow is computed as follows:

Tice,surf =
Tsnow,surf ·

ks
hs
+Tbottom ·

ki
hi

ks
hs
+ ki

hi

(C.5)

with ks the thermal conductivity of snow (= 0.31 W/Km), ki the thermal
conductivity of ice (= 2.17 W/Km), hs the snow thickness, hi the ice thickness,
Tsnow,surf the temperature at the surface of the snow, Tbottom the temperature at the
bottom of the ice, set to -1.8 ◦C.

C.6.2 TUNING OF THE TEMPERATURE PROFILES

The brightness temperatures initially produced by ARC3O were clearly to bright
(Fig. C.10, left). A comparison of the simulated emissivities with emissivities
derived from observational data from the RRDP showed that ARC3O systematically
overestimates the emissivity. The brightness temperature is defined as the product
of the emissivity and the physical temperature of the emitting part of the ice (Ulaby
et al., 1986). As it is not straightforward to find where the bias is produced in the
emission model, we chose to multiply the inherent sea-ice emissivity with a tuning
coefficient to counteract the systematic bias. To do so, we selected all points with a
sea-ice concentration of 99.7% or more to avoid influence from open water, in the
year 2004. We then multiplied the sea-ice surface brightness temperature by a
range of coefficients between 0.96 and 0.975. We found the best agreement
between simulated and observed brightness temperatures for a coefficient of 0.963
in the months January, February, and March and for a coefficient of 0.973 in the
months October, November, December. As a consensus, we therefore chose a
coefficient of 0.968 to apply to the sea-ice brightness temperatures, which yields a
more reasonable distribution of brightness temperatures (Fig. C.10, right).
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Before tuning After tuning

Figure C.10: Density distribution of the brightness temperatures in the three simulated cases
and in observations in the untuned (left) and tuned (right) version for the years 2005 to
2008.
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C.6.3 VARIABILITY IN CLIMATE PARAMETERS
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Figure C.11: Standard deviation of the anomaly with regard to the time mean for each grid
cell. This is the parameter used to modulate the input variables in the sensitivity studies
of Sec. C.4.3.2
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"Science is not finished until it’s communicated."
Sir Mark Walport

While this PhD thesis summarizes well the time I spent on scientific research, it
would not be complete without a small contribution about science
communication. In my slightly more than three years of being a doctoral
researcher, I have enjoyed sitting in my office face to face with my computer some
of the time but I cannot imagine what this thesis would have become without
communication. Communication is important on all levels: within the office, in
group meetings, in scientific workshops and conferences, and in interactions with
non-scientific audiences. Having had the chance to get a glimpse in several of these
levels, I found all of these enriching and motivating, but unfortunately rated
differently by my scientific peers. In the following, I briefly discuss why I think that
scientific communication to the non-scientific audience is essential and should be
valued as a solid part of a scientific career instead of being dismissed as a nice soft
skill.

The currently most-valued type of communication in the scientific environment is
the communication of our research results to peers through presentations and
scientific papers. The current method for climbing the ladder of a scientific career
is to publish many papers, preferentially in high-impact journals. As the number of
early-career scientists rapidly increases, the pressure to get as many publications as
possible increases as well, sometimes at the cost of clarity and quality. Remaining
time for other engagements is not necessarily available because the first priority is
to secure funding.

Much less pressure is exerted from within the scientific community to
communicate our results to a larger audience than our direct peers. Most scientists
are reluctant, some even afraid, to engage with a non-scientific audience. I do not
want to believe that arrogance is the main reason for this attitude and I rather think
that our training as a scientist makes us over-cautious, so that we do not want to
communicate anything which is not sure to 100% to the "outside world". The
problem is: very often, there is no way to get this high level of certainty about the
overall validity of our results.

While we scientists hide in our bubble, other people fill the void space of scientific
communication and information. These people do not necessarily follow the same
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ethics. They propagate fake news, exaggerate scientific and non-scientific findings
arbitrarily, and are sometimes following personal interest. These are the facts that
reach a large audience, especially nowadays, where social media supports the rapid
propagation of information, verified or not.

I argue that the time has come for scientists to reclaim their position in the public
space by engaging more in scientific communication to a non-scientific audience.
To do so, the individual scientists need support from their institutions, from their
peers, and from communication experts outside the field. Translating scientific
findings into non-scientific language is not straightforward and is
time-demanding. If scientists spend time and effort on science communication, it
should be valued and not be seen as a "nice" extra on the side.

The benefits of supporting scientists to engage with the non-scientific community
are numerous. It provides alternative paths for a scientific career and enlarges the
definition of what is a "good" scientist. Communicating science effectively outside
the institute promotes the image of the institution. Working on communicating our
science to larger audiences is a good training for communication with peers.
Finally, the non-scientific community would be better informed and would have a
more realistic image of what it means to do science and relate to the scientists on a
more personal level. This could motivate people to engage into science on a
day-to-day basis and to think more critically.

Personally, I am passionate about science communication as I like the variety of
channels it can go through, e.g. social media, blogging, board games, art. Also, I
like that it makes me think about climate research from a different perspective. It is
always refreshing to change the point of view on our priorities and has helped me
overcome some large motivation gaps and moments of frustration. From
experience, I know I am not the only (climate) scientist with this opinion. Science
deniers are currently reaching an increasing number of people. I strongly hope that
the academic system is ready to counteract this trend and to back the scientists
who are willing to spend some of their working time to keep the scientific voice
present in the public space.
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