
1

An Adaptive Pole-Matching Method for
Interpolating Reduced-Order Models

Yao Yue, Lihong Feng, and Peter Benner,

Abstract—An adaptive parametric reduced-order modeling
method based on interpolating poles of reduced-order models
is proposed in this paper. To guarantee correct interpolation, a
pole-matching process is conducted to determine which poles of
two reduced-order models correspond to the same parametric
pole. First, the pole-matching in the scenario of parameter
perturbation is discussed. It is formulated as a combinatorial
optimization problem and solved by a branch and bound al-
gorithm. Then, an adaptive framework is proposed to build
repository ROMs at adaptively chosen parameter values, which
well represent the parameter domain of interest. To achieve this,
we propose techniques including a predictor-corrector strategy
and an adaptive refinement strategy, which enable us to use
larger steps to explore the parameter domain of interest with
good accuracy. The framework also consists of regression as
an optional post-processing phase to further reduce the data
storage. The advantages over other parametric reduced-order
modeling approaches are, e.g., compatibility with any model
order reduction method, constant size of the parametric reduced-
order model with respect to the number of parameters, and
capability to deal with complicated parameter dependency.

Index Terms—numerical acceleration techniques, reduced or-
der modeling, model-order reduction, frequency domain tech-
niques, spectrum analysis

I. INTRODUCTION

PARAMETRIC model order reduction (PMOR) [1] has
become a popular tool in the last decades to drastically

reduce the computational cost of model-based parametric stud-
ies in many fields in engineering, e.g., circuit simulations [2],
structural mechanics [3], [4] and chromatography [5].

Among the many methods proposed, projection-based
PMOR methods have received the most research attention [6],
[7], [1]. Most of these methods first build a global basis
by collecting data/derivative information at different param-
eter values, e.g., snapshots for time-domain systems [6] and
(cross-)moments in frequency-domain systems [7]. Then, these
methods project the parametric full-order model (FOM) onto
the subspace spanned by the basis to compute a parametric
reduced-order model (pROM). However, these methods have
several disadvantages. First, they assume that a parametric

Y. Yue, L. Feng and P. Benner are with Max Planck Institute for Dynamics
of Complex Technical Systems, Magdeburg

Manuscript submitted on July 30, 2019.
This paper is an expanded version from the IEEE MTT-S International

Conference on Numerical Electromagnetic and Multiphysics Modeling and
Optimization, Boston, MA, USA, May 29-31, 2019.

c©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

FOM is available in the state-space form, which is not al-
ways possible in industrial applications. For example, many
engineering programs can only compute a FOM from the
original partial differential equations at a given parameter
value and they may use different meshes for discretization
at different parameter values. In addition, they tend to lose
efficiency when the number of parameters increases because
the dimension of the subspace often increases fast with the
number of parameters.

Recently, there are some research efforts that build pROMs
by interpolating local matrices or bases. In [8], it was proposed
to interpolate the basis matrices on the geodesic of the Stiefel
manifold. However, the costs of both data storage and com-
putation are high and according to our experience in [9], it is
difficult to achieve high accuracy with this approach. Another
line of research is to conduct PMOR via the interpolation
of local matrices. As is shown in [10], directly interpolating
the local reduced-order state-space matrices does not work in
general since the ROMs are usually in different state-space
coordinate systems. Therefore, it was proposed in [10] to
compute a global basis from the local bases and to transform
all ROMs to a consistent state-space coordinate system defined
by the global basis. Another approach was proposed in [11] to
apply a congruence transformation to obtain “consistent bases”
in a heuristic sense, which is done by solving a Procrustes
optimization problem. It has also been proposed to interpolate
the local frequency response functions (FRFs) [12], [13].
However, as we showed in [9], these methods do not work
in general. For a comprehensive review of these methods, we
refer to [9].

In [14], [9], we proposed a pole-matching based paramet-
ric reduced-order modeling method, which builds a pROM
by interpolating given nonparametric reduced-order models
(ROMs). It interpolates the positions and residues of all poles
of the local ROMs, which has a clear physical meaning
and removes all additional degrees of freedom introduced
by realization. This method only requires these ROMs to be
accurate enough, no matter by what methods they are built.
We showed that this method can even interpolate a ROM
built by a projection-based method and a ROM built by a
data-driven method. To match the poles between different
ROMs, we proposed to solve a combinatorial optimization
problem. However, we did not provide an efficient algorithm to
solve this optimization problem: using a brutal-force method
quickly becomes too expensive computationally. Furthermore,
misleading matching results may occur if the pole distributions
of the two ROMs are very different.

In this paper, we improve the efficiency and robustness of

ar
X

iv
:1

90
8.

00
82

0v
1 

 [
m

at
h.

N
A

] 
 2

 A
ug

 2
01

9



2

the pole-matching based parametric reduced-order modeling
method using the following techniques:

1) The branch and bound method for pole-matching. To
guarantee correct pole-matching, we propose to use the
optimization approach only in the case of pole perturba-
tion, i.e., the corresponding poles of the two ROMs only
differ slightly. The proposed branch and bound method is
very efficient for this scenario because most enumeration
cases are normally branched out thanks to the good initial
guess.

2) An adaptive framework for parametric reduced-order
modeling. This framework serves as an efficient and
accurate way to select the parameter values adaptively,
at which we build repository ROMs in order to represent
the parameter range of interest well. A predictor-corrector
technique and an adaptive refinement strategy are pro-
posed to explore the parameter domain of interest using
larger-steps with good accuracy. A regression technique
is also proposed as a post-processing phase to further
reduce the data storage.

This paper is extended from our conference paper [15].
Compared to [15], we propose a new adaptive parametric
reduced-order modeling framework, which consists of new
techniques like adaptive refinement and regression. The new
framework is more accurate and more robust. Our numerical
results show that the new method not only improves the
relative error from a magnitude of 10−2 to a magnitude of
10−4, but also saves the storage of the pROM. Last but not
least, we discuss the branch and bound method in more detail.

This paper is constructed as follows. In Section II, we briefly
review the results in [14]. Then in Section III, we discuss
matching of perturbed poles and propose the branch and bound
method. Based on this, a framework to adaptively build a
pROM is proposed in IV. We end the paper with the numerical
results in Section V and conclusions in Section VII.

II. BACKGROUND: THE POLE-MATCHING PMOR METHOD

Assume that we have a series of ROMs and denote the
ROM built for the parameter value pi (i = 1, 2, . . . , np) by
(A(i), B(i), C(i)):(

sI −A(i)
)
x(i)(s) = B(i)u(s),

y(s) = C(i)x(i)(s), (1)

where A(i) ∈ Rk×k, B(i) ∈ Rk×1, and C(i) ∈ R1×k. Assume
further that for each i, all eigenvalues of A(i) are simple.

A. The Pole-Residue Realization

Since a ROM has infinitely many equivalent realizations,
the simple idea of interpolating A(i), B(i) and C(i) to obtain
a pROM normally does not work [10]. In [14], we proposed
to convert all ROMs to a unified pole-residue realization(

sI − Λ(i)
)
x(i)(s) = B

(i)
u(s),

y(s) = C
(i)
x(i)(s), (2)

where using the notation Mα,T
β for (Mα

β )T , we define

Λ(i) = diag
[
Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ(i)

m

]
, (3)

B
(i)

=
[
B

(i),T

1 , B
(i),T

2 , . . . , B
(i),T

m

]T
, (4)

C
(i)

=
[
C

(i)

1 , C
(i)

2 , . . . , C
(i)

m

]
. (5)

The pole-residue realization is closely related to the rational
form of the transfer function H(i)(s) = y(s)

u(s) of (1):

H(i)(s) =

ns∑
j=1

C
(i)

j

s− λ(i)j
+

nd∑
j=1

C
(i)

j,1(s− a(i)j )− C(i)

j,2b
(i)
j

(s− a(i)j )2 + (b
(i)
j )2

, (6)

where for a real eigenvalue λ(i)j , we have Λ
(i)
j = λ

(i)
j , B

(i)

j = 1

and C
(i)

j ∈ R, which corresponds to the term

C
(i)

j

s− λ(i)j
= C

(i)

j (s− λ(i)j )−1B
(i)

j , (7)

and for a pair of conjugate complex eigenvalues aj ± ıbj ,
we have Λ

(i)
j ∈ R2×2, B

(i)

j ∈ R2×1, C
(i)

j ∈ R1×2, which
corresponds to the term

C
(i)

j,1(s− a(i)j )− C(i)

j,2b
(i)
j

(s− a(i)j )2 + (b
(i)
j )2

=
[
C

(i)

j,1, C
(i)

j,2

](
sI −

[
a
(i)
j b

(i)
j

−b(i)j a
(i)
j

])−1 [
1
0

]

4
=C

(i)

j (s− Λ
(i)
j )−1B

(i)

j .

Therefore, the positions of the poles are stored in Λ(i) and
the residues of poles are stored in C

(i)
. The matrix B

(i)

contains no useful information: B
(i)

j ≡ 1 for a real pole and

B
(i)

j ≡ [1, 0]T for a pair of conjugate complex poles.
For more details, we refer to [14], [9].

B. Efficient Storage

Assuming that A(i) has ns real eigenvalues and nd pairs of
conjugate complex eigenvalues, we can store the ROM in the
pole-residue realization with two matrices [14]:

Di ∈ Cnd×4 and Si ∈ Cns×2. (8)

The j-th row of Si is (λ
(i)
j , C

(i)

j ), which corresponds to the real

pole
C

(i)
j

s−λ(i)
j

, while the j-th row of Di is (a
(i)
j , b

(i)
j , C

(i)

j,1, C
(i)

j,2),

which corresponds to a pair of conjugate complex poles
C

(i)
j,1(s−a

(i)
j )−C(i)

j,2b
(i)
j

(s−a(i)j )2+(b
(i)
j )2

. The order of the rows in Di and Si

depends on their order in Λ(i): the order of rows in Si (Di)
is the order of real (complex conjugate) poles in Λ(i).



3

III. MATCHING OF PERTURBED POLES:
A BRANCH AND BOUND METHOD

To interpolate two sufficiently accurate ROMs, say (D1, S1)
and (D2, S2), to obtain a pROM, we first determine which
poles in (D1, S1) and (D2, S2) correspond to the same
parametric pole. This is what we call pole-matching. The
order of the poles are influenced by: 1) the MOR algorithm;
2) the eigenvalue decomposition algorithm [16] that we use to
compute the pole-residue realization (2). In this section, we
discuss matching of perturbed poles under Assumption III.1.
The matching of distant poles will be the topic of Section IV.

Assumption III.1. The assumptions for the branch and bound
method.

1) The sizes of D1 and S1 equal those of D2 and S2,
respectively;

2) All poles of the ROM (D2, S2, ) are perturbations of poles
of ROM (D1, S1), but for a pair of perturbed poles, their
order in the D/S vectors may be different. More precisely,
r(ROM1,ROM2) is small, with r defined later in (26).

Under Assumption III.1, pole-matching can be done by
solving an optimization problem, i.e., find an optimal way
to rearrange the rows of (D2, S2) so that it is the closest to
(D1, S1) in some sense.

A. Matching of Perturbed Poles via Optimization

We first define two mapping vectors: vd = [vd,1,
vd,2, . . . , vd,nd

] for conjugate complex poles and vs =
[vs,1, vs,2, . . . , vs,ns

] for real poles, which satisfy

{vd,1} ∪ {vd,2} ∪ · · · ∪ {vd,nd
} = {1, 2, . . . , nd}, (9)

and

{vs,1} ∪ {vs,2} ∪ · · · ∪ {vs,ns
} = {1, 2, . . . , ns}. (10)

Then we define the mapping M, which rearranges the rows
of D (or S) according to the index vector vd (or vs):

M(vd;D) = [dTvd,1 , d
T
vd,2

, . . . , dTvd,nd
]T , (11)

M(vs;S) = [sTvs,1 , s
T
vs,2 , . . . , s

T
vs,ns

]T , (12)

where D = [dT1 , d
T
2 , . . . , d

T
nd

]T and S = [sT1 , s
T
2 , . . . , s

T
ns

]T .
In the case of pole perturbation, we achieve pole-matching

by solving the following optimization problem

min
vd,vs

f(vd, vs) = ‖D1Wd −M(vd, D2)Wd‖2F +

‖S1Ws −M(vs, S2)Ws‖2F , (13)

where Wd = diag{wp, wp, wr, wr} and Ws = diag{wp, wr}
are weighting matrices. The scalars wp and wr are the weights
for the positions and residues of the poles, respectively. Now
we give the motivation of the optimization problem. Assume
that all poles are simple and the perturbation is sufficiently
small. If all poles are correctly matched, the objective function
is very small; otherwise, the objective function must be much
larger.

B. A Branch and Bound Algorithm

To solve the combinatorial optimization problem (13), the
exhaustive search method requires nd! × ns! enumerations,
which is computationally feasible only for very small ROMs.
In this section, we discuss efficient solution of (13).

First, we observe that the optimization problem (13) can be
decoupled into two independent optimization problems:

min
vd

fd(vd) = ‖D1Wd −M(vd, D2)Wd‖2F (14)

and

min
vs

fs(vs) = ‖S1Ws −M(vs, S2)Ws‖2F . (15)

Their solutions v∗d and v∗s solve the original optimization
problem (13):

min
vd,vs

f(vd, vs) = min
vd

fd(vd) + min
vs

fs(vs), (16)

arg min
vd,vs

f(vd, vs) =
(

arg min
vd

fd(vd), arg min
vs

fs(vs)
)
. (17)

Using this method alone, we reduce the computational cost
of (13) from nd!×ns! enumerations to nd!+ns! enumerations.
In the following discussions, we focus on the solution of (14).
The optimization problem (15) can be solved similarly.

The second technique that we use to further reduce the com-
putational cost of the combinatorial optimization problem (13)
is the branch and bound method [17]. It can drastically reduce
this computational cost in the scenarios that are the most
useful in pole-matching, i.e., Scenario 1 and Scenario 2 on
page 5. The efficiency of the branch and bound method for
pole matching relies on the following theorem.

Theorem III.1. Assume that 1 ≤ i, j ≤ nd are two given
indices (i 6= j). If there exist two mapping vectors v(1)d and
v
(2)
d satisfying (9) and

v
(1)
d,i = v

(2)
d,j , v

(1)
d,j = v

(2)
d,i , (18)

v
(1)
d,k = v

(2)
d,k, (∀1 ≤ k ≤ nd, k 6= i and k 6= j) (19)

fd

(
v
(2)
d

)
− fd

(
v
(1)
d

)
= c > 0, (20)

then any mapping vector vd satisfying (9) and

vd,i = v
(2)
d,i and vd,j = v

(2)
d,j (21)

cannot be the optimal solution of (14).

Proof. Assume v+d is the optimal solution of (14) satisfy-
ing (21). We construct v−d as

v−d,i = v+d,j = v
(1)
d,i , v−d,j = v+d,i = v

(1)
d,j ,

v−d,k = v+d,k, (∀1 ≤ k ≤ nd, k 6= i and k 6= j).

Then,

fd(v
+
d )− fd(v−d ) =

∥∥D1Wd −M(v+d , D2)Wd

∥∥2
F
−∥∥D1Wd −M(v−d , D2)Wd

∥∥2
F

=

∥∥∥∥∥
[
D1,i

D1,j

]
Wd −

[
D2,v+d,i

D2,v+d,j

]
Wd

∥∥∥∥∥
F

−



4

∥∥∥∥∥
[
D1,i

D1,j

]
Wd −

[
D2,v−d,i

D2,v−dj

]
Wd

∥∥∥∥∥
F

=

∥∥∥∥∥
[
D1,i

D1,j

]
Wd −

[
D

2,v
(2)
d,i

D
2,v

(2)
d,j

]
Wd

∥∥∥∥∥
F

−∥∥∥∥∥
[
D1,i

D1,j

]
Wd −

[
D

2,v
(1)
d,i

D
2,v

(1)
dj

]
Wd

∥∥∥∥∥
F

=
∥∥∥D1Wd −M(v

(2)
d , D2)Wd

∥∥∥2
F
−∥∥∥D1Wd −M(v

(1)
d , D2)Wd

∥∥∥2
F

=fd

(
v
(2)
d

)
− fd

(
v
(1)
d

)
= c > 0.

Therefore,

fd(v
−
d ) = fd(v

+
d )− c < fd(v

+
d ),

which contradicts the assumption that v+d is the optimal
solution of min

vd
fd(vd) defined in (14).

Based on Theorem III.1, a branch and bound algorithm is
proposed with two motivations to save the computational cost:

1) Start at a hopefully good initial guess v
(0)
d =

(1, 2, . . . , nd), which is computationally free.
2) Try to decrease fd by swapping any two entries of the

current vd and use the result from Theorem III.1 to branch
out the swaps that we are certain to be unable to further
decrease fd.

Remark III.1. Remarks on the two motivations.

On Motivation 1. Although v(0)d = (1, 2, . . . , nd) is sim-
ple, it is actually often a quite good initial guess under
the following assumption:

Assumption III.2. Conditions in favor of a good initial
guess v(0)d = (1, 2, . . . , nd).

a) We use the same MOR method to compute the ROMs;
b) The MOR algorithm normally preserves the order of

parametric eigenvalues when ‖p1 − p2‖ is small;
c) Both ROMs are accurate enough and ‖p1−p2‖ is small

enough.

Under this assumption, it is reasonable to presume that
when the parameter is perturbed, 1) The order of the
parametric eigenvalues is normally preserved. 2) Even
when the order changes, normally only a small number
of indices change at the same time.

On Motivation 2. Since we start from a “hopefully
good” initial guess, it is quite likely that we fail to
decrease fd by swapping entries of vd. This case is
actually ideal for us because the failed swap can be
branched out and we never need to try it again according
to Theorem III.1. If the initial guess happens to be the
optimal solution, we actually just need to branch out all
possibilities, which only needs nd(nd − 1) enumerations
instead of nd! enumerations.

To keep track of the branched out swaps, we use the matrix
F defined as follows:

F (i, j) =


0, when any vd with vd,i = v

(0)
d,j and

vd,j = v
(0)
d,i has been branched out;

1, otherwise.
(22)

More specifically, we initially set

F = Jnd
− Ind

, (23)

where Jnd
, Ind

∈ Rnd×nd are the matrix of ones and the
identity matrix, respectively. This means that initially, no swap
has been branched out: only swapping an index with itself is
forbidden. Note that when we swap the i-th and j-th entries
of vd, we actually swap the vd,i-th and vd,j-th rows of D2, or
equivalently, swap the vd,i-th and vd,j-th entries of v(0)d .

Algorithm III.1. A Branch and Bound Method to Solve the
Pole-Matching Optimization Problem (14)

1: Initialize vd = (1, 2, . . . , nd), the current lowest objective
value bl = fd(vd), and F = Jnd

− Ind
.

2: while ‖F‖F 6= 0 do
3: for i = 1 to nd do
4: for j = 1 to nd do
5: if F (vd,i, vd,j) = 0 then
6: continue (go to line 4)
7: else
8: Set v∗d = vd.
9: Swap the i-th and the j-th entry of v∗d .

10: if f(v∗d, v
(0)
s ) ≥ bl then

11: Update F (vd,i, vd,j) = 0.
12: else
13: Set vd = v∗d and bl = fd(v

∗
d), and break both

for loops (go to line 2).
14: end if
15: end if
16: end for
17: end for
18: end while

Now we discuss the definition (22). Assume that we are at
vCd and we have failed to increase fd by swapping its i-th entry
with its j-th entry. Denote the swapped vector by vSd . Then vCd
and vSd satisfy the conditions (18), (19) and (20). Therefore,
according to Theorem III.1, any vd with vd,i = vSd,i = vCd,j and
vd,j = vSd,j = vCd,i cannot be the solution of the optimization
problem (14). Therefore, we set F (vCd,i, v

C
d,j) = 0 to forbid

this swap, i.e., if the k-th and the l-th entries of any vd satisfy

vd,k = vCd,i, vd,l = vCd,j , (24)

we do not need to try the swap of the k-th and l-th entries of vd
since it cannot decrease the objective fd. Note that the matrix
F is normally non-symmetric because if F (vd,j , vd,i) = 0, we
forbid swapping the k-th and the l-th entries if vd,k = vCd,j and
vd,l = vCd,i, which is actually a different swap.



5

As for implementation, we can also use the more compact
“potentially feasible tables1” F1, . . . ,Fvd as we did in [14]
instead of using the matrix F , especially when nd is large.
The potentially feasible table is defined as

Fi = {j|F (i, j) = 1}. (25)

So when a swap is branched out, it is simply removed from
the potentially feasible table.

Now we discuss several scenarios in pole matching.
Scenario 1. All poles naturally match: the most optimistic

scenario. This case occurs quite often under Assump-
tion III.2 as we have discussed there. Using the branch
and bound algorithm, we just need to verify that the initial
v
(0)
d is optimal and we only need to enumerate the vd

vector nd(nd − 1) times instead of nd! times.
Scenario 2. All poles do not naturally match, but only a

few swapping operations, say, m times, are required to
obtain the optimal solution. In general, this scenario is
unavoidable. e.g., when the dominances2 of two poles
cross. The computational cost in this scenario is bounded
by mnd(nd−1) enumerations. The actual computational
cost is normally much lower because many swaps have
been branched out at an early stage.

Scenario 3. Almost all poles between (D1, S1) and
(D2, S2) do not naturally match. In this scenario, the
computational cost of optimization is high. Actually, if
both ROMs are generated by the same MOR method
with some “algorithmic continuity”, it is not so mean-
ingful to conduct optimization, whose solution can be
misleading. In such cases, it is highly possible that the
“perturbation” is too large, except for some rare cases,
e.g., the dominances of many pair of poles do cross at
the same parameter value. Therefore, we avoid solving
the optimization problem in this case, which is not only
computationally expensive, but also useless. This is a
motivation of the predictor-corrector method that will be
presented in Section IV-A.

IV. THE ADAPTIVE FRAMEWORK TO BUILD THE
PARAMETRIC ROM

The goal of this section is to adaptively build a series
of repository ROMs, which will be used as interpolates for
constructing the pROM. In this section, we confine our dis-
cussion to parametric systems with a single parameter p ∈ R.
We denote these repository ROMs, whose poles have already
been matched to those of all other repository ROMs, by
ROM1, ROM2, . . . , ROMN built for the parameter values
p1 < p2 < . . . < pN , respectively. In this paper, the overline
symbol · indicates the name or variables of a repository ROM,
e.g., ROMi with its pole-residue realization (Di, Si).

1We use the term “potentially feasible” because the swaps recorded in this
table might not be feasible, but we have not validated their feasibility yet.

2In this paper, we use the term “pole dominance” to denote the importance
of a pole on the system output. We use it as a general term for all kinds
of MOR methods. This term is borrowed from a specific case: the dominant
pole algorithm [18], [4], which defines the dominance of a pole of the form
C

(i)
j

s− λ(i)j

by

∣∣C(i)
j

∣∣∣∣<{λ(i)j

}∣∣ for this specific case.

For ease of notation, we introduce a mapping for pole-
matching PD1(D2) (PS1(S2)). When we match D2 to D1, we
denote the matching result of Algorithm III.1 by PD1(D2).
Using this notation, we define the distance between ROM1

(D1, S1) and ROM2 (D2, S2) as

r(ROM1,ROM2) =
∥∥D1Wd − PD1

(D2)Wd

∥∥
F

+∥∥S1Ws − PS1
(S2)Ws

∥∥
F

(26)

and the relative error by

e(ROM1,ROM2) =

∥∥D1Wd − PD1(D2)Wd‖F
‖D1‖F

+∥∥S1Ws − PS1
(S2)Ws

∥∥
F

‖S1‖F
. (27)

For convenience, we denote the pole-matched ROM
(PD1

(D2),PS1
(S2)) by PROM1

(ROM2).

A. The Predictor-Corrector Strategy

The two motivations of the predictor-corrector strategy are:
Objective 1. We want to design a framework, in which
Scenario 1 occurs most often, Scenario 2 occurs some-
times, and Scenario 3 occurs rarely.

Objective 2. However, we do not want to achieve Ob-
jective 1 simply by using small steps in p, which is
inefficient.

In order to explore the parameter space adaptively, we make
the following assumptions on the ROMs.

Assumption IV.1. At any feasible parameter value p, a ROM
of high accuracy can be built at request.

Assumption IV.2. The changes in positions and residues of
all poles are small when the change of p is sufficiently small.

Suppose that we have already computed the repository
ROMs: ROM1, ROM2, . . . , ROMi and we want to expand the
series by adding new repository ROMs. At a new parameter
value pi+1 (pi+1 > pi), we first compute a candidate ROMcand

i+1

and try to match its poles to the repository ROMs. Instead of
applying Algorithm III.1 directly to ROMi and ROMcand

i+1 , we
propose to use a predictor-corrector strategy.

We first use the positions and residues of poles of ROM1,
ROM2, . . . , ROMi to calculate a “predicted ROM” ROMpred

i+1

for pi+1. For prediction, we can use extrapolation, e.g., linear,
polynomial, spline, etc., on the positions and residues of the
poles. If the calculated poles exhibit some noise, we can also
use regression. Normally, the poles of ROMpred

i+1 are closer to
the poles of ROMcand

i+1 than those of ROMi. To be safe, we
check whether r(ROMi,ROMcand

i+1) > r(ROMpred
i+1,ROMcand

i+1)

holds. If it holds, we set ROMi+1 = PROMpred
i+1

(ROMcand
i+1);

otherwise, we set ROMi+1 = PROMi
(ROMcand

i+1).
Note that although we have “accepted” the current ROMi+1

as a repository ROM, it is not guaranteed yet that the inter-
polation will give accurate pMOR on the interval (pi, pi+1).
Actually, the pole-matching is not necessarily correct because
Assumption III.1 may not be satisfied. However, even if the
poles are wrongly matched, we store it for further use because



6

we do not want to waste the computational effort with which
we built ROMi+1. Therefore, we introduce an index ih to
denote the last index that we are sure to have “high fidelity”,
i.e., it is correctly matched and close enough to ROMih−1 to
produce good interpolation results. Here we assign ih = i,
which means that the fidelity of ROMi+1 still needs to be
checked. More details will be discussed in the next section.

B. An Adaptive Refinement Strategy

In the previous section, we have discussed the efficient
generation and pole-matching of ROMs. However, this alone
does not guarantee good accuracy of the pROM: it is possible
that the poles are matched correctly, but the interpolation result
does not capture the parametric evolution of the poles well.
For example, for a system that has only one pole, although
the pole is naturally “matched”, we still need a fine grid of p
to capture the dynamics of the system when the dynamics is
complex.

After we have computed ROMi+1 using the predictor-
corrector strategy, we need to assess whether good accuracy
can be achieved in the interval (pi, pi+1) using interpolation.
To achieve this, we choose the test point pt = pi+pi+1

2 and
build two ROMs at pt:

1) ROMI,t computed by interpolating the repository ROMs.
2) ROMT,t computed by a MOR algorithm.

Since under Assumption IV.1, ROMT,t is highly accurate, we
regards ROMI,t as accurate only when

e(ROMI,t,ROMT,t) < τe, (28)

where τe is a small real number, e.g., 0.001. The value of τe
should take the error of the MOR algorithm into consideration:
τe should be sufficiently larger than an estimated error of the
MOR algorithm. Otherwise, the relationship (28) may never
be satisfied despite of refinement of the grid. In practical
computations, we can actually change τe adaptively according
to an error bound of ROMT,t rather than using the same τe
for all iterations.

If (28) is met, we trust the fidelity of ROMi+1 and use the
predictor-corrector for the next step. Otherwise, we need more
ROMs to represent the interval (pi, pi+1). A natural choice is
ROMT,t since it has already been built. Therefore, we assign

ROMi+2 ← ROMi+1, ROMi+1 ← PROMi
(ROMT,t). (29)

Then, we check the fidelity of the new ROMi+1 using the
procedure described above:
• If (28) is violated, we do a further refinement for the

interval (pi, pi+1).
• Otherwise, we accept that ROMi+1 has high fidelity,

update ih = i+ 1 and

ROMi+2 ← PROMi+1
(ROMi+2) (30)

because pi+1 (the former pt) is closer to pi+2 (the former
pi+1) and the pole-matching result is more trustworthy.
Next, we check whether ROMi+2 has high fidelity:
– If it has high fidelity, we set ih = i + 2 and end this

local refinement.

– Otherwise, we do a further refinement for the interval
(pi+1, pi+2) using the procedure above.

For the whole procedure, we refer to Algorithm IV.1.

C. Compact Parametric ROM by Regression

After we have finished the construction of ROM1, ROM2,
. . . , ROMN for the whole interval of interest, we can further
save data storage by using regression. In this paper, we do
regression for each entry of Di(j, k) (the (j, k)-th entry of
Di built at pi) and Si(j, k) to obtain the parametric forms
D(p; j, k) and S(p; j, k). Using a polynomial of degree q for
each entry, we reduce the storage cost from N(4nd + 2ns) to
(q+1)(4nd+2ns) since we only need to store the coefficients
of the polynomials. This reduction is usually drastic since a
low-order polynomial is normally enough when the system
dynamics is not too complex.

We summarize all the techniques discussed in Algo-
rithm IV.1 with more details.

Algorithm IV.1. An Adaptive Pole-Matching PMOR method

1: Input: the parameter range of interest [pL, pU ].
2: Initialization: initialize step length u0, error tolerance τe,

order of regression polynomials q, i = 2, p1 = pL, and
compute ROM1.

3: repeat
4: Phase 1: Predictor-Corrector
5: Set pi = pi−1 + u0. If pi > pU , set pi = pU .
6: Build ROMcand

i with a MOR algorithm.
7: if i=2 then
8: ROMi = PROMi−1

(ROMcand
i ).

9: else
10: Compute ROMpred

i using extrapolation or regression
of ROMj (j = 1, 2, . . . , i− 1).

11: if r(ROMi−1,ROMcand
i ) > r(ROMpred

i ,ROMcand
i )

then
12: ROMi = PROMpred

i
(ROMcand

i ).
13: else
14: ROMi = PROMi−1

(ROMcand
i ).

15: end if
16: end if
17: Phase 2: Adaptive Refinement
18: Set ih = i− 1.
19: repeat
20: At pt =

pih+pih+1

2 , build an interpolated ROM,
namely ROMI,t, and a true ROM, namely ROMT,t.

21: if e(ROMI,t,ROMT,t) < τe then
22: ih = ih + 1.
23: else
24: i = i+ 1.
25: for j = i− 1 to ih + 1 do
26: ROMj+1 ← ROMj , pj+1 ← pj .
27: end for
28: ROMih+1 = PROMih

(ROMT,t).
29: for j = i− 1 to ih + 1 do
30: ROMj+1 ← PROMih+1

(ROMj+1).
31: end for
32: end if



7

33: until ih = i.
34: until pi = pU .
35: Optional Post-Processing: Regression
36: for u = 1 to nd, v = 1 to 4 do
37: Apply the regression algorithm to D1(u, v), D2(u, v),

. . . , Di(u, v) to compute the coefficients of the polyno-
mial dr0(u, v), dr1(u, v), . . . , drq(u, v).

38: end for
39: for u = 1 to ns, v = 1 to 2 do
40: Apply the regression algorithm to S1(u, v), S2(u, v),

. . . , Si(u, v) to compute the coefficients of the polyno-
mial sr0(u, v), sr1(u, v), . . . , srq(u, v).

41: end for

Note that when pole-matching becomes difficult, i.e., too
many swaps take place, we can simply give it up, save
the ROM (with pole unmatched) for the moment and insert
another ROM for refinement.The pole-matching will be done
automatically at a later stage. A further remark is that in
line 29, we can also conduct fewer pole-matchings, e.g., only
for ih + 1.

D. The Offline-Online Strategy

The proposed PMOR method can be implemented in an
offline-online manner.
• In the offline phase, we use Algorithm IV.1 to explore

the parameter range of interest. It is relatively expensive:
we need to adaptively choose the parameter values, at
which we build ROMs, compute the ROMs, conduct pole
matching, and optionally, perform regression.

• In the online phase, we simply interpolate the repository
ROMs or evaluate the polynomials computed from regres-
sion. The online phase is computationally very cheap.

V. NUMERICAL RESULTS

In this section, we use two numerical examples to test the
adaptive pole-matching PMOR method.

A. The Nonlinear Parametric “FOM” Model

This academic example is adapted from the parametric
“FOM” model in [19] to introduce more complex system
dynamics such as nonlinear parametric dependency and pole
crossing, since in the original model, the parameter depen-
dency is linear3. The model is of the form

(sI − A(p))X(s, U) = BU,
Y = CX(s, U),

where C = [100, 100, 100, 100, 100, 100, 100, 100, 1, . . . , 1] ∈
R1×1008, B = CT , and A = diag{A1,A2,A3,A4, 1, 2, 3,
. . . , 1000} ∈ R1008×1008 with

A1 =

[
4p− 42 8p+ 200
−8p− 200 4p− 42

]
,

A2 =

[
2p− 50 p2 + 4p+ 210

−p2 − 4p− 210 2p− 50

]
,

3 The parametric “FOM” model in [19] is adapted from the nonparametric
“FOM” model in [20]

A3 =

[
−25 + p 100 + p2

−100− p2 −25 + p

]
,

A4 =

[
−25 + 2p 150− p2
−150 + p2 −25 + 2p

]
.

In this model of order 1008, the parameter range of interest
is [−10, 10]. In Algorithm IV.1, we set the initial conditions
u0 = π

3 , τe = 0.001 and q = 5. For all figures, the relative

error is computed as |
∫ 1000
1

H(ω,p)−H(ω,p) dω|
|∫ 1000

1
H(ω,p)dω| .

(a) The Poles of Repository ROMs (b) The Relative Error

Fig. 1. Interpolation Results

(a) The Relative Error (b) The Regressive Polynomials

Fig. 2. Regression Results

(a) Interpolation Error (b) Regression Error

(c) The Regressive Polynomials

Fig. 3. Results without Adaptive Refinement

In Fig. 1, we show the results of interpolation, i.e., when we
skip the post-processing for regression and use the repository



8

ROMs directly for interpolation. In total, 24 repository ROMs
are built. In Fig. 2, we show the numerical results when the
post-processing for regression is also performed. We observe
that using order-5 polynomials for regression results in pretty
accurate results. The data storage is reduced by a factor of
24
5 . In Fig. 3, we plot the results when we skip the adaptive

refinement. In this case, 21 repository ROMs are built and
we observe that some poles are wrongly matched and the
regression follows wrong branches. This shows the importance
of the adaptive refinement in guaranteeing accuracy, especially
when the step length is large. The much better numerical
result using adaptive refinement is only at the cost of 3 more
repository ROMs.

B. The Branchline Coupler: a Microwave Device

In this section, we apply our method to a branchline coupler
model, which is a discretization of a time-harmonic Maxwell’s
equation. The full-order model is of the form

(K(µ)− sM)X = B,

Y = CX, (31)

where K(µ) = 1
µK0, K0,M ∈ R33051×33051, B ∈ R33051×1,

C ∈ R1×33051 and s = ω2. For detailed description of the
model, we refer to [21], [22]. The repository ROMs of order
10 are built by a Krylov method [23], in which we use the
interpolating expansion points s = 1, 25, 50, 75, 100 and order
2 for each of these interpolating expansion points. Since the
reduced matrix of K(µi) is nonsingular, the repository ROMs
can be easily written into the form (1). To build a pROM for
the parameter range µ ∈ [0.5, 0.9], Algorithm IV.1 built 18
repository ROMs under the tolerance τe = 0.00001. Figure 4
shows that both the interpolated pROM and the regressed
pROM capture the dynamics of the system well.

VI. FURTHER DISCUSSIONS

Here are some further discussions.
• The regression is successful only when all matchings are

correct for dominant poles. The influence of mismatched
poles on the interpolated pROM is only local, which
is normally not too bad because the wrongly matched
poles normally have similar positions and residues. For
regression, however, the influence will be global because
wrong branches are chosen. In this case, we actually try to
regress a non-smooth function with polynomials, which
is difficult. This phenomenon is shown in Fig. 3.

• We would also like to emphasize that the interpolation
approach is more general than the regression approach.
The interpolation approach works well as long as the pa-
rameter dependence can be locally captured by the basis
functions, e.g., using polynomials for exponential func-
tions or trigonometric functions. The regression method,
on the other hand, works well only for the cases that
the parameter dependence can be globally captured by
the basis functions. The interpolation approach even has
potential to deal with eigenvalue bifurcation: even without
any further considerations, the interpolation-based pROM

(a) The Response of the FOM

(b) The Relative Error of the Interpolated pROM

(c) The Relative Error of the Regressed pROM (order
7 polynomials are used for regression)

Fig. 4. Numerical Results for the Branchline Example. Here, Y and y stand
for the outputs of the FOM and the pROM, respectively.

is accurate as long as the parameter value is not too
close to the bifurcation point. More detailed treatments of
eigenvalue bifurcation will be future work. Therefore, we
use regression as an optional post-processing technique.
When the error between the interpolation-based pROM
and the regression-based pROM is not sufficiently small,
we discard the regression-based pROM and just use the
interpolation-based pROM.

• The proposed method only works when Assumption IV.2
holds. When A(i) in (1) is non-normal, its poles can
be highly sensitive to perturbations of the parameters.
We observed this phenomenon when we build order-22
Krylov-type ROMs for the branchline coupler model.

• The proposed method can be easily extended to multiple-
input multiple-output systems using the results in [9].



9

• Stability can easily be preserved since our method deals
directly with the poles. It is apparent that using linear
interpolation, the stability will automatically be preserved
since the linear interpolation of two poles in the left
half-plane still lies in the left half-plane. Using other
interpolation methods, although the stability is generally
not automatically preserved, we can check whether the
maximal real part of the interpolated (regressed) pole
location is negative. If it is not, we can simply try another
interpolation (regression) method and check it again. In
the worst case, we can resort to linear interpolation for
the parameter interval on which stability is difficult to be
preserved with other interpolation/regression methods.

VII. CONCLUSIONS

An adaptive parametric reduced-order modeling method
based on interpolation/regression of adaptively built ROMs
is proposed. For correct interpolation/regression, we convert
all ROMs to the pole-residue realization and propose to
use a branch and bound method to conduct pole-matching
efficiently. To explore the parameter range efficiently and
accurately, we propose to use a predictor-corrector technique
and an adaptive refinement strategy. A regression method
is proposed to further reduce data storage. The numerical
results verify the high accuracy and robustness of the proposed
method.

REFERENCES

[1] P. Benner, S. Gugercin, and K. Willcox, “A survey of model reduction
methods for parametric systems,” SIAM Review, vol. 57, no. 4, pp. 483–
531, 2015.

[2] L. Feng, Y. Yue, N. Banagaaya, P. Meuris, W. Schoenmaker, and
P. Benner, “Parametric modeling and model order reduction for
(electro-)thermal analysis of nanoelectronic structures,” J. Math. Ind.,
vol. 6, no. 1, pp. 1–10, 2016.

[3] Y. Yue and K. Meerbergen, “Using Krylov-Padé model order reduction
for accelerating design optimization of structures and vibrations in the
frequency domain,” International Journal for Numerical Methods in
Engineering, vol. 90, no. 10, pp. 1207–1232, 2012.

[4] M. Saadvandi, K. Meerbergen, and W. Desmet, “Parametric dominant
pole algorithm for parametric model order reduction,” Journal of Com-
putational and Applied Mathematics, vol. 259, pp. 259–280, 2014.

[5] Y. Zhang, L. Feng, S. Li, and P. Benner, “Accelerating PDE constrained
optimization by the reduced basis method: application to batch chro-
matography,” Internat. J. Numer. Methods Engrg., vol. 104, no. 11, pp.
983–1007, 2015.

[6] G. Rozza, D. B. P. Huynh, and A. T. Patera, “Reduced basis approxima-
tion and a posteriori error estimation for affinely parametrized elliptic
coercive partial differential equations,” Archives of Computational Meth-
ods in Engineering, vol. 15, no. 3, pp. 229–275, 2008.

[7] U. Baur, C. A. Beattie, P. Benner, and S. Gugercin, “Interpolatory
projection methods for parameterized model reduction,” SIAM J. Sci.
Comput., vol. 33, no. 5, pp. 2489–2518, 2011.

[8] D. Amsallem and C. Farhat, “Interpolation method for the adaptation
of reduced-order models to parameter changes and its application to
aeroelasticity,” AIAA J., vol. 46, pp. 1803–1813, 2008.

[9] Y. Yue, L. Feng, and P. Benner, “Reduced-order modelling of paramet-
ric systems via interpolation of heterogeneous surrogates,” Advanced
Modeling and Simulation in Engineering Sciences, pp. 1–28, 2019, to
appear.

[10] H. Panzer, J. Mohring, R. Eid, and B. Lohmann, “Parametric model order
reduction by matrix interpolation,” at-Automatisierungstechnik, vol. 58,
no. 8, pp. 475–484, 2010.

[11] D. Amsallem and C. Farhat, “An online method for interpolating linear
parametric reduced-order models,” SIAM J. Sci. Comput., vol. 33, no. 5,
pp. 2169–2198, 2011.

[12] U. Baur and P. Benner, “Modellreduktion für parametrisierte Systeme
durch balanciertes Abschneiden und Interpolation (Model Reduction for
Parametric Systems Using Balanced Truncation and Interpolation),” at-
Automatisierungstechnik, vol. 57, no. 8, pp. 411–420, 2009.

[13] U. Baur, P. Benner, A. Greiner, J. G. Korvink, J. Lienemann, and
C. Moosmann, “Parameter preserving model reduction for MEMS
applications,” Math. Comput. Model. Dyn. Syst., vol. 17, no. 4, pp. 297–
317, 2011.

[14] Y. Yue, L. Feng, and P. Benner, “Interpolation of reduced-order models
based on modal analysis,” in 2018 IEEE MTT-S International Conference
on Numerical Electromagnetic and Metaphysics Modeling and Opti-
mization (NEMO), 2018.

[15] ——, “An adaptive method for interpolating reduced-order models based
on matching and continuation of poles,” in 2019 IEEE MTT-S Inter-
national Conference on Numerical Electromagnetic and Metaphysics
Modeling and Optimization (NEMO), 2019.

[16] G. H. Golub and C. F. van Van Loan, Matrix Computations, 3rd ed.
Baltimore and London: The Johns Hopkins University Press, 1996.

[17] J. Clausen, “Branch and bound algorithms — principles and examples,”
University of Copenhagen, Tech. Rep., 1999.

[18] N. Martins, L. T. G. Lima, and H. J. C. P. Pinto, “Computing dominant
poles of power system transfer functions,” IEEE Trans. Power Syst.,
vol. 11, no. 1, pp. 162–170, 1996.

[19] A. C. Ionita and A. C. Antoulas, “Data-driven parametrized model
reduction in the Loewner framework,” SIAM J. Sci. Comput., vol. 36,
no. 3, pp. A984–A1007, 2014.

[20] Y. Chahlaoui and P. Van Dooren, “A collection of benchmark exam-
ples for model reduction of linear time invariant dynamical systems,”
SLICOT Working Note, Tech. Rep. 2002–2, 2002, available from
www.slicot.org.

[21] The MORwiki Community, “Branchline coupler,” MORwiki –
Model Order Reduction Wiki, 2013. [Online]. Available: http:
//modelreduction.org/index.php/Branchline Coupler

[22] M. W. Hess and P. Benner, “Fast evaluation of time-harmonic Maxwell’s
equations using the reduced basis method,” IEEE Trans. Microw. Theory
Techn., vol. 61, no. 6, pp. 2265–2274, 2013.

[23] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, ser.
Advances in Design and Control. Philadelphia, PA: SIAM Publications,
2005, vol. 6.

www.slicot.org
http://modelreduction.org/index.php/Branchline_Coupler
http://modelreduction.org/index.php/Branchline_Coupler

	I Introduction
	II Background: the Pole-Matching PMOR Method
	II-A The Pole-Residue Realization
	II-B Efficient Storage

	III Matching of Perturbed Poles:a Branch and Bound Method
	III-A Matching of Perturbed Poles via Optimization
	III-B A Branch and Bound Algorithm

	IV The Adaptive Framework to Build the Parametric ROM
	IV-A The Predictor-Corrector Strategy
	IV-B An Adaptive Refinement Strategy
	IV-C Compact Parametric ROM by Regression
	IV-D The Offline-Online Strategy

	V Numerical Results
	V-A The Nonlinear Parametric ``FOM'' Model
	V-B The Branchline Coupler: a Microwave Device

	VI Further Discussions
	VII Conclusions
	References

