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Abstract
We show that the discrete operator stemming from time-space discretization of evolutionary
partial differential equations can be represented in terms of a single Sylvestermatrix equation.
A novel solution strategy that combines projection techniques with the full exploitation of the
entry-wise structure of the involved coefficient matrices is proposed. The resulting scheme
is able to efficiently solve problems with a tremendous number of degrees of freedom while
maintaining a low storage demand as illustrated in several numerical examples.
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1 Introduction

The numerical treatment of time-dependent partial differential equations (PDEs) often
involves a first discretization phase which yields a discrete operator that needs to be inverted.
In general, the discrete problem is written in terms of a sequence of large linear systems

Ai ui = fi , Ai ∈ R
�n×�n, i = 1, . . . , �, (1.1)

where�n is the number of spatial degrees of freedom and � is the number of time steps. Well-
established procedures, either direct or iterative, can be employed in the solution of (1.1).
However, in many cases, the coefficient matrices in (1.1) are very structured and a different
formulation of the algebraic problem in terms of a matrix equation can be employed. The
matrix oriented formulation of the algebraic problems arising from the discretization of
certain deterministic and stochastic PDEs is not new. See, e.g., [39,50,52,53]. Nevertheless,
many of the contributions available in the literature deal with elliptic PDEs. Moreover, only
in the last decades the development of efficient solvers for large-scale matrix equations
allows for a full exploitation of such reformulation also during the solution phase. See,
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e.g., [9,10,25,36,40,51], and [48] for a thorough presentation about solvers for linear matrix
equations.

In this paper, we discuss time-dependent PDEs and we show that the aforementioned
reformulation in terms of a matrix equation can be performed also for this class of operators.
The model problem we have in mind is of the form

ut = L(u) + f , in Ω × (0, T ],
u = g, on ∂Ω,

u(x, 0) = u0(x),
(1.2)

where Ω ⊂ R
d , d = 1, 2, 3, and L is a linear differential operator involving only spatial

derivatives. For the sake of simplicity in the presentation, in (1.2) we consider Dirichlet
boundary conditions. However, the methodology presented in this paper can be used in case
of Neumann or Robin boundary conditions as well. Moreover, we specialize some of our
results in the case of tensorized spatial domains of the form Ω = ⊗d

i=1 Ωi and Laplace-like
operators1 L. However, the matrix equation formulation we propose in this paper still holds
for more general domains Ω and operators L.

We discretize the problem (1.2) in both space and time, and, for the sake of simplicity, we
assume that a finite difference method is employed in the space discretization whereas we
apply a backward differentiation formula (BDF) of order s, s = 1, . . . , 6, for the discretization
in time.

If an “all-at-once” approach is considered, the algebraic problem arising from the dis-
cretization of (1.2) amounts to a single linear system with A ∈ R

�n�×�n�. As shown in [32],
the�n� ×�n� coefficient matrix A possesses a Kronecker structure. While in [32] the authors
exploit this Kronecker form to design an effective preconditioner for (1.1), we take advantage
of the Kronecker structure to reformulate the algebraic problem in terms of a single matrix
equation and we show how appropriate projection techniques can be applied for its efficient
solution.

Notice that the strategy proposed in this paper significantly differs from other matrix-
equation-oriented schemes available in the literature. For instance, in [10], certain time-
stepping schemes are rewritten in matrix form. Therefore, a sequence of matrix equations
need to be solved. Here we efficiently solve only one matrix equation by combining state-
of-the-art projection methods with a novel approach which fully exploits the circulant-plus-
low-rank structure of the discrete time operator. The resulting scheme manages to efficiently
solve problems with a huge number of degrees of freedom while utilizing modest memory
resources.

The most common approximation spaces used in the solution of matrix equations by
projection are the extended Krylov subspace

EK�
m (A, B) : = Range([B, A−1B, AB, . . . , Am−1B, A−m B]), A ∈ R

n×n , B ∈ R
n×p, p � n, (1.3)

see, e.g., [24,46], and the more general rational Krylov subspace

K�
m (A, B, ξξξ) : = Range

([

B, (A − ξ2 I )
−1B, . . . ,

m∏

i=2

(A − ξi I )
−1B

])

, (1.4)

1 We sayL is Laplace-like if its discretized counterpart can be written in the form
∑d

i=1 In1 ⊗· · ·⊗ Ini−1 ⊗
Ai ⊗ Ini+1 ⊗ · · · ⊗ Ind for ni ∈ N, and Ai ∈ R

ni×ni for all i = 1, . . . , d.
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where ξξξ = [ξ2, . . . , ξm]T ∈ C
m−1. See, e.g., [14–16]. We thus consider only these spaces in

our analysis.
Here is a synopsis of the paper. In Sect. 2 we show how the all-at-once approach for the

solution of (1.2) leads to a Sylvester matrix equation. We discuss the incorporation of the
boundary conditions for the matrix equation formulation in Sect. 3. In particular, in Sect. 3.1
we illustrate an automatic procedure in case of tensorized spatial domains Ω and Laplace-
like operators L. In Sect. 4 we discuss left-projection methods for Sylvester equations and
a generic approximation space. Some computational details for the extended and rational
Krylov subspaces (1.3) and (1.4) are given in Sects. 4.1.1 and 4.1.2, respectively. Projection
methods can largely benefit from the possible Laplace-like structure of the obtained stiffness
matrix. This structure can be further exploited in the solution process as illustrated in Sect. 4.2.
The projection framework we consider to reduce the complexity of the spatial operator may
not be sufficient to obtain an efficient solution scheme, especially for large �. We address this
problem by fully exploiting the circulant-plus-low-rank structure of the time operator and
in Sect. 5 we illustrate a novel strategy to be combined with the aforementioned projection
technique. The resulting solution scheme turns out to be very successful also when dealing
with problems with a tremendous number of degrees of freedom in both space and time. As
already mentioned, the novel framework we present can be employed in the solution of many
different PDEs of the form (1.2). In Sect. 6 we briefly discuss the case of time-dependent
convection–diffusion equations as an example of non Laplace-like operators. Several results
illustrating the potential of our newmethodology are reported in Sect. 7while our conclusions
are given in Sect. 8.

Throughout the paper we adopt the following notation. Thematrix inner product is defined
as 〈X , Y 〉F : = trace(Y T X) so that the induced norm is ‖X‖2F = 〈X , X〉F . The Kronecker
product is denoted by ⊗ while the operator vec : Rn×n → R

n2 is such that vec(X) is the
vector obtained by stacking the columns of thematrix X one on top of each other. The identity
matrix of order n is denoted by In . The subscript is omitted whenever the dimension of I
is clear from the context. Moreover, ei is the i-th basis vector of the canonical basis of Rn .
The brackets [·] are used to concatenate matrices of conforming dimensions. In particular, a
Matlab-like notation is adopted and [M, N ] denotes the matrix obtained by putting M and
N one next to the other. If w ∈ R

n , diag(w) denotes the n × n diagonal matrix whose i-th
diagonal entry corresponds to the i-th component of w.

Given a suitable space Km ,2 we will always assume that a matrix Vm ∈ R
n×r ,

Range(Vm) = Km , has orthonormal columns and it is full rank so that dim(Km) = r .
Indeed, if this is not the case, deflation strategies to overcome the possible linear dependence
of the spanning vectors can be adopted as it is customary in block Krylov methods. See, e.g.,
[21, Section 8].

2 AMatrix Equation Formulation

Assuming a BDF of order s is employed for the time integration, if �Ωh = {�xid }, �xid ∈ R
d ,

id = (i1, . . . , id)T ∈ N
d , denotes a discretization of the closed domain �Ω , and the time

interval [0, T ] is discretized with � + 1 equidistant nodes {tk}k=0,...,�, then the discretization
of (1.2) leads to

2 Km as in (1.3) or (1.4).
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Table 1 Coefficients for the BDF of order s for s ≤ 6

s β α1 α2 α3 α4 α5 α6

1 1 1

2 2/3 4/3 −1/3

3 6/11 18/11 −9/11 2/11

4 12/25 48/25 −36/25 16/25 −3/25

5 60/137 300/137 −300/137 200/137 −75/137 12/137

6 60/147 360/147 −450/147 400/147 −225/147 72/147 −10/147

See, e.g., [2, Table 5.3]

uk − ∑s
j=1 α juk− j

τβ
+ Kduk = fk, (2.1)

where α j = α j (s), β = β(s) ∈ R are the coefficients defining the selected BDF. See
Table 1.3 It has been proved that for s > 6 the BDFs become unstable, see, e.g., [2, Section
5.2.3], and we thus restrict ourselves to the case of s ≤ 6.

In (2.1), Kd ∈ R
�n×�n , �n = card( �Ωh), denotes the stiffness matrix arising from the finite

difference discretization of −L on �Ωh , τ = T /� is the time-step size, fk ∈ R
�n collects all

the space nodal values of f at time tk , namely f (xid , tk) for all xid ∈ �Ωh , together with the
boundary conditions, while uk gathers the approximations to the space nodal values of the
solution u at time tk , i.e., u(xid , tk) for all xid ∈ �Ωh .4

A genericBDFof order s, s ≤ 6, requires the s−1 additional initial valuesu−1, . . . ,u−s+1

together with u0. If u−1, . . . ,u−s+1 are not given, they must be carefully approximated and
such a computation must be O(τ s) accurate to maintain the full convergence order of the
method. In standard implementation of BDFs, the k-th initial value uk , k = −1, . . . ,−s+1,
is computed by a BDF of order k with a time-step τk , τk ≤ τ . See, e.g., [2, Section 5.1.3].
Allowing for a variable time-stepping is crucial for preserving the convergence order of the
method.

We anticipate that the solution scheme presented in this paper is designed for a uniform
time grid and it is not able to automatically handle a variable time-stepping. Therefore, even
though the solution process is illustrated for a generic BDF of order s ≤ 6, in the experiments
reported in Sect. 7 we make use of the implicit Euler scheme for the time discretization when
the additional initial values u−1, . . . ,u−s+1 are not provided.

The generalization of the proposed algorithm to the case of variable, and more in general,
adaptive time-stepping will be the topic of future works.

Rearranging the terms in (2.1) and applying an all-at-once approach, we get the�n� ×�n�

linear system

3 Notice that we have changed sign to the α j ’s with respect to the values listed in [2, Table 5.3].
4 We assume the entries of both fk and uk to be sorted following a lexicographic order on the multi-index id
for all k = 1, . . . , �.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I + τβKd

−α1 I I + τβKd
...

. . .
. . .

−αs I
. . .

. . .

. . .
. . .

. . .

−αs I · · · −α1 I I + τβKd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=: A

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
u2
...

...

u�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑s
j=1 α ju1− j + τβf1∑s
j=2 α ju2− j + τβf2

...

αsu0 + τβfs
τβfs+1

...

τβf�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.2)

where u0 collects the space nodal values of the initial condition u0.
The coefficientmatrixA in (2.2) can bewritten asA = I�⊗(I�n+τβKd)−∑s

j=1 α jΣ j⊗I�n
whereΣ j denotes the �×� zeromatrix having ones only in the j-th subdiagonal. For instance,

Σ1 =

⎡

⎢
⎢
⎢
⎣

0
1 0

. . .
. . .

1 0

⎤

⎥
⎥
⎥
⎦

∈ R
�×�.

Therefore, if U = [u1, . . . ,u�] ∈ R
�n×�, the linear system (2.2) can be reformulated as

(I + τβKd)U − U

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠ =
⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0

⎤

⎦ [e1, . . . , es]T

+ τβ[f1, . . . , f�], (2.3)

Many numerical methods for the efficient solution of Sylvester matrix equations can
be found in the literature; see, e.g., [48]. However, state-of-the-art solvers are not able to
deal with the peculiar structure of the matrices Σ j in general and the solution of Eq. (2.3)
may be unfeasible, especially for large �. In this paper we propose a novel algorithm that
combines projection techniques for the spatial component of (2.3) with a full exploitation of
the circulant-plus-low-rank structure of the Σ j ’s.

Notice that the formulation (2.3) does not require any particular assumption on the spatial
domain Ω . In particular, we do not need any tensorized structure. The key factor here is
the natural separability between the space and time components of the overall differential
operator encoded in (1.2).

In what follows we always assume that the matrix [f1, . . . , f�] admits accurate low-rank
approximations, namely [f1, . . . , f�] ≈ F1FT

2 , F1 ∈ R
�n×p , F2 ∈ R

�×p , p � min{�n, �}.
Roughly speaking, this can be justified by assuming the functions f and g to be sufficiently
smooth in time so that fk does not differ too much from fk+1 if the time-step size τ is
sufficiently small. More precisely, if fk contains entries having an analytic extension in an
open elliptic disc with foci 0 and T for all k, then the results in [26, Lemma 2.2] and [26,
Corollary 2.3] can be adapted to demonstrate an exponential (superexponential in case of
entire function) decay in the singular values of [f1, . . . , f�]. This can be done by simply
transforming the interval [−1, 1] used in [26, Lemma 2.2] to the interval [0, T ].

If g = 0, a different way to obtain such low-rank representation may be to computing a
separable approximation to f at the continuous level, namely f (x, t) ≈ ∑p

i=1 hi (x)ϑi (t),
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e.g., by the Emprical Interpolation Method (EIM) [4]. Then

F1F
T
2 = [h1(xid ), . . . , h p(xid )]

⎡

⎢
⎣

ϑ1(t1) · · · · · · ϑ1(t�)
...

...

ϑp(t1) · · · · · · ϑp(t�)

⎤

⎥
⎦ .

With F1FT
2 at hand, Eq. (2.3) can be written as

(I + τβKd)U − U

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠ =
⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦

[e1, . . . , es, τβF2]T .

If a finite elements method is employed for the space discretization, also a mass matrix
M has to be taken into account and the matrix equation we have to deal with has the form

(M + τβKd)U − MU

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠ =
⎡

⎣M
s∑

j=1

α ju1− j , M
s∑

j=2

α ju2− j , . . . , αsMu0, F1

⎤

⎦

[e1, . . . , es, τβF2]T . (2.4)

See, e.g., [32]. The generalized Sylvester equation (2.4) can be easily treated as a standard
Sylvester equation. Indeed, if M = LLT denotes the Cholesky factorization of M , we can
consider the standard equation

(I + τβL−1Kd L
−T )Ũ − Ũ

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠ = LT

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, M−1F1

⎤

⎦

[e1, . . . , es , τβF2]T ,

where Ũ = LTU. Once an approximation Ũm to Ũ is computed, we can retrieve an approxi-
mate solution to the original problem (2.4) by performing Um = L−T Ũm ≈ U. Notice that
the matrix L−1Kd L−T does not need to be explicitly computed. See, e.g., [46, Example 5.4]
and Example 7.2.

3 Imposing the Boundary Conditions

It is not difficult to equip the algebraic problem (2.3) with the proper boundary and initial
conditions. Indeed, it is always possible to design the stiffness matrix Kd and the vectors
u0, u−1, . . . ,u−s+1, f1, . . . , f� by mimicking what one would do if the linear system (2.2)
was solved. Once these factors are computed, the solution step involves the formulation (2.3)
in place of (2.2). However, in the next section we show how to directly include Dirichlet
boundary conditions in the matrix formulation (2.3) in case of tensorized spatial domain
Ω = ⊗d

i=1 Ωi and Laplace-like operators L.

3.1 Tensorized Domains and Laplace-like Operators

In this section we consider the problem (1.2) in case of tensorized spatial domains Ω =⊗d
i=1 Ωi and Laplace-like operators L, namely the stiffness matrix Kd is such that Kd =
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∑d
i=1 In1 ⊗ · · · ⊗ Ini−1 ⊗ Kni ⊗ Ini+1 ⊗ · · · ⊗ Ind , and we show how to directly impose the

boundary conditions in the matrix formulation (2.3). For the sake of simplicity, we assume
Ω = (0, 1)d and that n nodes in each of the d spatial direction have been employed so that
�n = nd .

We first consider d = 1 in (1.2). The boundary nodes correspond to the entries of index i ,
i = 1, n, in each column of U. Denoting by P1 the operator which selects only the boundary
nodes, namely its entries are 1 for indexes corresponding to boundary nodes and 0 otherwise,
for 1-dimensional problems we have

P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
0

. . .

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= e1e
T
1 + ene

T
n .

The operator I + τβK1 should act as the identity operator on the space of boundary nodes
which means that

P1(I + τβK1) = P1. (3.1)

Therefore, if we define the matrix

�K1 : =
⎡

⎣
1/(τβ)

K̊1

1/(τβ)

⎤

⎦ ∈ R
n×n, (3.2)

we can consider In − P1 + τβ �K1 in place of In + τβK1 as left coefficient matrix in (2.3).
In (3.2), the matrix K̊1 ∈ R

(n−2)×n corresponds to the discrete operator stemming from the
selected finite difference scheme and acting only on the interior of �Ωh . Different choices
with respect to the one in (3.2) can be considered to meet the constraint (3.1). For instance,
we can select K̃1 : = [0T ; K̊1; 0T ], 0 the zero vector of length n, and consider In + τβ K̃1

as coefficient matrix. However, such a K̃1 is not suitable for the solution process we are
going to present in Sect. 4 due to its singularity and the matrix �K1 in (3.2) is thus pre-
ferred.

We now show how to select the right-hand side in (2.3) when the coefficient matrix is as
in (3.2). We have

P1(In − P1 + τβ �K1)U − P1U

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠

= P1

⎛

⎝

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0

⎤

⎦ [e1, . . . , es]T + τβ[f1, . . . , f�]
⎞

⎠ , (3.3)

so that

123



99 Page 8 of 36 Journal of Scientific Computing (2021) 87 :99

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1(1) u2(1) − α1u1(1) · · · us (1) − ∑s
j=1 α jus− j (1) · · · u�(1) − ∑s

j=1 α ju�− j (1)
0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0
u1(n) u2(n) − α1u1(n) · · · us (n) − ∑s

j=1 α jus− j (n) · · · u�(n) − ∑s
j=1 α ju�− j (n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑s
j=1 α ju1− j (1) + τβf1(1)

∑s
j=2 α ju2− j (1) + τβf2(1) · · · αsu0(1) + τβfs (1) τβfs+1(1) · · · τ f�(1)

0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0
∑s

j=1 α ju1− j (n) + τβf1(n)
∑s

j=2 α ju2− j (n) + τβf2(n) · · · αsu0(n) + τβfs (n) τβfs+1(n) · · · τβf�(n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since all the initial values satisfy the boundary conditions, namely u0(1) = · · · =
u−s+1(1) = g(x1) and u0(n) = · · · = u−s+1(n) = g(xn), and

∑s
j=1 α j = 1,

we can set f j (1) = f j (n) = 0 for j = 1, . . . , s whereas fk( j) = (g(x j , tk) −∑s
j=1 α j g(x j , tk− j ))/(τβ), k = s + 1, . . . , �, j = 1, n.
A similar approach can be pursued also for 2- and 3-dimensional problems. In this cases,

following the same ordering of the unknowns proposed in [36], it can be shown that the
operator selecting the boundary nodes in U has the form

P2 = P1 ⊗ In + (In − P1) ⊗ P1, P3 = P1 ⊗ In ⊗ In + (In − P1) ⊗ P1⊗
In + (In − P1) ⊗ (In − P1) ⊗ P1,

for d = 2, 3 respectively.
Since L is supposed to be a Laplace-like operator, we can write

K2 = K1 ⊗ In + In ⊗ K1, K3 = K1 ⊗ In ⊗ In + In ⊗ K1 ⊗ In + In ⊗ In ⊗ K1.

The most natural choice for imposing the boundary conditions is thus to select

�K2 = �K1 ⊗ In + In ⊗ �K1, �K3 = �K1 ⊗ In ⊗ In + In ⊗ �K1 ⊗ In + In ⊗ In ⊗ �K1,

and use In2 − P2 + τβ �K2 and In3 − P3 + τβ �K3 as coefficient matrices in (2.3). Notice that
Ind − Pd = ⊗d

i=1(In − P1).
A direct computation shows that

P2

(
2⊗

i=1

(In − P1) + τβ �K2

)

= P2 +P1 ⊗ (In − P1)�K1 + (In − P1)�K1 ⊗ P1︸ ︷︷ ︸
=:G2

= P2 + G2,

(3.4)
and

P3

(
3⊗

i=1

(In − P1) + τβ �K3

)

= P3 + G3, (3.5)

where

G3 := (P1 ⊗ In ⊗ In)
(
In ⊗ �K1 ⊗ In + In ⊗ In ⊗ �K1

)

+ ((In − P1) ⊗ P1 ⊗ In)
(�K1 ⊗ In ⊗ In + In ⊗ In ⊗ �K1

)

+ ((In − P1) ⊗ (In − P1) ⊗ P1)
(�K1 ⊗ In ⊗ In + In ⊗ �K1 ⊗ In

)
.
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Therefore the extra terms G2, G3 in (3.4)–(3.5) must be taken into account when con-

structing the right-hand side
[∑s

j=1 α ju1− j ,
∑s

j=2 α ju2− j , . . . , αsu0
]
[e1, . . . , es]T +

τβ[f1, . . . , f�], and the relation

Pd

(
d⊗

i=1

(In − P1) + τβ �Kd

)

U − PdUΣT
1 = Pd

⎛

⎝

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0

⎤

⎦

[e1, . . . , es]T + τβ[f1, . . . , f�]
)

,

i.e.,

PdU + GdU − PdUΣT
1 = Pd

⎛

⎝

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0

⎤

⎦ [e1, . . . , es]T

+τβ[f1, . . . , f�]) ,

for d = 2, 3 must hold. See, e.g., [36, Section 3] for a similar construction.
After imposing the boundary conditions and recalling the discussion at the end of Sect. 2,

the Sylvester equation we thus need to solve in case of d-dimensional tensorized domains
and Laplace-like operators can be written as

(
d⊗

i=1

(In − P1) + τβ �Kd

)

U − UΣT
1 =

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦

[e1, . . . , es, τβF2].

4 A Projection Framework for the Spatial Operator

In this section we show how to effectively tackle the spatial component of Eq. (2.3) and state-
of-the-art projection techniques for matrix equations are employed to this end. In particular,
Eq. (2.3) is projected only from the left onto a suitable subspaceKm . The schemewe are going
to present is very general and it is given for a generic approximation spaceKm . However, we
will discuss certain implementation details like, e.g., the residual norm computation, in case
of the extended and rational Krylov subspaces (1.3) and (1.4).

Notice that the projection scheme given in the following is able to reduce only the space
component of Eq. (2.3) since the peculiar structure of the time component, namely the
matricesΣ j ’s, does not allow for generic two-sided projection schemes as it is customary for
large-scale Sylvester equations. However, in Sect. 5 we show how to combine the projection
scheme with a novel procedure for dealing with the time component. The overall scheme
results in a numerical procedure which is able to efficiently solve problems with a large
number of degrees of freedom in both space and time.

4.1 Left Projection

Typically, projection methods for Sylvester equations of the form (2.3) construct an approx-
imation Um = VmYm ∈ R

�n×� where the columns of Vm represent an orthonormal basis
of a suitable subspace Km . The matrix Ym can be computed, e.g., by imposing a Galerkin

condition on the residual matrix Rm : = (I + τβKd)VmYm − VmYm
(∑s

j=1 α jΣ
T
j

)
−
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Algorithm 1: Projection method for (2.3) - left projection.

input : Kd ∈ R
�n×�n , u0 ∈ R

�n , F1 ∈ R
�n×p , F2 ∈ R

�×p , mmax, ε > 0, τ > 0, s ∈ {1, . . . , 6}.
output: Vm , Ym s.t. Um = VmYm ≈ U approximate solution to (2.3).

1 Compute δ =
∥
∥
∥
[∑s

j=1 α ju1− j ,
∑s

j=2 α ju2− j , . . . , αsu0, F1
]
[e1, . . . , es , τβF2]T

∥
∥
∥
F
, and select

the coefficients of the BDF of order s
2 Generate the first basis block V1 = V1
3 for m = 1, 2, . . . ,mmax do
4 Compute next basis block Vm+1 and set Vm+1 = [Vm ,Vm+1]
5 Update Tm = V T

m KdVm
6 Compute Ym as the solution to (4.1)
7 if ‖Rm‖F ≤ δ · ε then
8 return Vm and Ym

[∑s
j=1 α ju1− j ,

∑s
j=2 α ju2− j , . . . , αsu0, F1

]
[e1, . . . , es, τβF2]T . ThisGalerkin condition

can be written as

V T
m Rm = 0,

so that Ym is the solution of the reduced Sylvester equation

(I + τβTm)Ym − Ym

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠ = V T
m

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦

[e1, . . . , es, τβF2]T , (4.1)

where Tm = V T
m KdVm .

Thanks to the reduction in the space dimension we perform, equation (4.1) can be solved
by means of general-purposed dense solvers for Sylvester equations like the Bartels–Stewart
method [5] or the Hessenberg–Schur method presented in [19], which may be particularly
appealing in our context due to the lower Hessenberg pattern of the ΣT

j ’s, whenever � is

moderate, say � = O(103). See also [7, Section 3]. However, the computational cost of these
procedure grows cubically with the dimension of the coefficient matrices in (4.1). Therefore,
for sizable values of �, namely when fine time-grids need to be employed, such methods are
too demanding leading to excessive computational efforts. In Sect. 5 we illustrate a novel
procedure whose computational cost is polylogarithmic in �.

Once Ym is computed, the residual norm ‖Rm‖F is checked. If this is sufficiently small,
the current approximation is returned. Otherwise, the space is expanded.

In Algorithm 1 a generic projection scheme with only left projection for Eq. (2.3) is
summarized.

Notice that the initial residual norm δ in line 1 of Algorithm 1 can be computed at low
cost by exploiting the properties of the Frobenius norm and the trace operator.

In many cases the dimension of the final spaceKm , namely the number of columns of Vm ,
turns out to be much smaller than �. See Sect. 7. Therefore, to reduce the memory demand of
Algorithm 1, we suggest to store only Vm and Ym and not to explicitly assemble the solution
matrix Um = VmYm ∈ R

�n×�. If desired, one can access the computed approximation to the
solution u at time tk by simply performing Vm(Ymek).
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4.1.1 The Extended Krylov Subspace Method

A valid option for the approximation space Km is the extended Krylov subspace generated
by Kd and [∑s

j=1 α ju1− j ,
∑s

j=2 α ju2− j , . . . , αsu0, F1], namely

EK�
m

⎛

⎝Kd ,

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦

⎞

⎠ .

Notice that we use only Kd in the definition of the space instead of the whole coefficient
matrix I + τβKd . Indeed, all the spectral information about the spatial operator are collected
in Kd . See, e.g., [47] for a similar strategy in the context of extendedKrylov subspacemethods
for shifted linear systems.

The basis Vm = [V1, . . . ,Vm] ∈ R
�n×2m(p+s), of the extended Krylov subspace can be

constructed by the extended Arnoldi procedure presented in [46] and the following Arnoldi
relation

KdVm = VmTm + Vm+1E
T
m+1Tm, (4.2)

where Tm = V T
m+1KdVm , Em+1 = em+1 ⊗ I2(p+s), holds. By exploiting such relation, once

Ym is computed, it is easy to show that the Frobenius norm of the residual matrix Rm can be
cheaply evaluated as

‖Rm‖F = τβ‖ET
m+1TmYm‖F . (4.3)

See, e.g., [37, Section 5.2].

4.1.2 The Rational Krylov Subspace Method

In many contributions it has been shown that the rational Krylov subspace (1.4) is one of
the most effective approximation spaces for the numerical solution of large-scale matrix
equations. See, e.g., [14–16]. If Eq. (2.3) needs to be solved, we can construct the rational
Krylov subspace

K�
m

⎛

⎝Kd ,

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦ , ξξξ

⎞

⎠ = Range(Vm), (4.4)

Vm = [V1, . . . ,Vm] ∈ R
�n×m(p+s), ξξξ = (ξ2, . . . , ξm)T ∈ C

m−1, and perform a left projection
as illustrated in Sect. 4.1.

However, the employment of a rational Krylov subspace requires the careful implemen-
tation of certain technical aspects that we are going to discuss in the following.

The basis Vm can be computed by an Arnoldi-like procedure as illustrated in [15, Section
2] and it is well-known that the quality of the computed rational Krylov subspace deeply
depends on the choice of the shifts ξξξ employed in the basis construction. Effective shifts can
be computed at the beginning of the iterative method if, e.g., some additional informations
about the problem of interest are known. In practice, the shifts can be adaptively computed
on the fly and the strategy presented in [15] can be employed to calculate the (m + 1)-
th shift ξm+1. The adaptive procedure proposed by Druskin and Simoncini in [15] only
requires rough estimates of the smallest and largest eigenvalues of Kd together with the Ritz
values, i.e., the eigenvalues of the projected matrix Tm , that can be efficiently computed in
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O(m3(p + s)3) flops. In all the examples reported in Sect. 7 such a scheme is adopted for
the shifts computation.

For the rational Krylov subspace method, the residual norm cannot be computed by per-
forming (4.3) as an Arnoldi relation of the form (4.2) does not hold. An alternative but still
cheap residual norm computation is derived in the next proposition.

Proposition 4.1 At the m-th iteration of the rational Krylov subspace method, the residual

matrix Rm = (I + τβKd)Um −Um

(∑s
j=1 α jΣ

T
j

)
−
[∑s

j=1 α ju1− j ,
∑s

j=2 α ju2− j , . . . ,

αsu0, F1] [e1, . . . , es, τβF2]T , Um = VmYm, is such that

‖Rm‖F = τβ

∥
∥
∥
(
ξm+1 I − (I − VmV

T
m )Kd

)
Vm+1E

T
m+1HmH−1

m Ym
∥
∥
∥
F

,

where the matrix Hm ∈ R
(m+1)·(p+s)×m(p+s) collects the orthonormalization coefficients

stemming from the “rational” Arnoldi procedure and Hm ∈ R
m(p+s)×m(p+s) is its principal

square submatrix.

Proof If Vm = [V1, . . . ,Vm] spans the rational Krylov subspace (4.4) then the following
Arnoldi-like relation holds

KdVm = VmTm + Vm+1E
T
m+1Hm(diag(ξ2, . . . , ξm+1) ⊗ Ip+1)H

−1
m

− (I − VmV
T
m )KdVm+1E

T
m+1HmH−1

m .

See, e.g., [15,41]. Since the Arnoldi procedure is employed in the basis construction, Hm is
a block upper Hessenberg matrix with blocks of size p + s and we can write

ET
m+1Hm(diag(ξ2, . . . , ξm+1) ⊗ Ip+1) = ξm+1E

T
m+1Hm .

The residual matrix Rm is such that

Rm = (I + τβKd )Um −Um

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠ −
⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦ [e1, . . . , es , τβF2]T

=Vm

⎛

⎝(I + τTm ) Ym −Ym

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠− V T
m

⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦ [e1, . . . , es , τβF2]T
⎞

⎠

+ τβ
(
Vm+1E

T
m+1Hm (diag(ξ2, . . . , ξm+1) ⊗ Ip+1)H

−1
m − (I − VmV

T
m )KdVm+1E

T
m+1HmH−1

m

)
Ym

= τβ
(
ξm+1Vm+1E

T
m+1HmH−1

m − (I − VmV
T
m )KdVm+1E

T
m+1HmH−1

m

)
Ym ,

and collecting the matrix Vm+1ET
m+1HmH−1

m we get the result. 
�
Proposition 4.1 shows that the convergence check requires to compute the Frobenius norm

of a n×m(p+ s)matrix when the rational Krylov subspace is employed. This operation can
be carried out in O(nm(p + s)) flops by exploiting the cyclic property of the trace operator.

4.2 Structured Space Operators

In this section we show how the projection scheme presented above can largely benefit from
the possible Laplace-like structure of the stiffness matrix Kd and the tensorized nature of the
spatial domain Ω .

In principle, one can apply the strategy proposed in Sect. 4.1 and build the space with Kd ,
also when this is in Kronecker form. However, if u0, f and g in (1.2) are separable functions
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in the space variables, the Kronecker structure of K2 and K3 can be exploited in the basis
construction. More precisely, if, e.g., �n = nd , only d subspaces of Rn can be computed
instead of one subspace of Rnd leading to remarkable reductions in both the computational
cost and the storage demand of the overall solution process. See, e.g., [25]. The Laplace-like
structure we exploit in this section is at the basis of the tensorized Krylov approach presented
in [25] but it has been exploited also in [30] to derive an ADI iteration tailored to certain
high dimensional problems. We first assume d = 2 and then extend the approach to the
case of d = 3. Moreover, for the sake of simplicity, we assume that the backward Euler
scheme is employed for the time integration and the extended Krylov subspace is selected
as approximation space. The same machinery can be used for BDFs of larger order and the
rational Krylov subspace.

If �Ωh consists in n equidistant points in each direction (xi , y j ), i, j = 1, . . . , n, and
u0 = φu0(x)ψu0(y), then we can write

u0 = φφφu0 ⊗ ψψψu0 ,

where φφφu0 = [φu0(x1), . . . , φu0(xn)]T , andψψψu0 = [ψu0(y1), . . . , ψu0(yn)]T .
Similarly, if f = φ f (x, t)ψ f (y, t), g = φg(x, t)ψg(y, t), a generic column fk of the

right-hand side in (2.3) can be written as

fk = φφφ f ,k ⊗ ψψψ f ,k + φφφg,k ⊗ ψψψg,k,

with

φφφ f ,k = [φ f (x1, tk), . . . , φ f (xn, tk)]T , ψψψ f ,k = [ψ f (y1, tk), . . . , ψ f (yn, tk)]T ,

φφφg,k = [φg(x1, tk), . . . , φg(xn, tk)]T , ψψψg,k = [ψg(y1, tk), . . . , ψg(yn, tk)]T .

We further assume that the low-rank representation [f1, . . . , f�] ≈ F1FT
2 , F1 ∈ R

n2×p ,
F2 ∈ R

�×p , p � �, is such that the separability features of the functions f and g are
somehow preserved. In other words, we assume that we can write

[f1, . . . , f�] ≈ (Φ f ⊗ Ψ f )F
T
2 ,

where Φ f ∈ R
n×q , Ψ f ∈ R

n×r , qr = p. Notice that this construction is not hard to meet in
practice. See, e.g., Sect. 7.

With the assumptions above, it has been shown in [25] that the construction of a tensorized
Krylov subspace is very convenient. In particular, we can implicitly construct the space

EK�
m (K1, [φφφu0 , Φ f ]) ⊗ EK�

m (K1, [ψψψu0 , Ψ f ]),
in place of EK�

m (K2, [u0, F1]).
The construction of EK�

m (K1, [φφφu0 , Φ f ]), EK�
m (K1, [ψψψu0 , Ψ f ]) is very advantageous in

terms of both number of operations and memory requirements compared to the computation
of EK�

m (K2, [u0, F1]). For instance, only multiplications and solves with the n × n matrix
K1 are necessary while the orthogonalization procedures only involves vectors of length n.
Moreover, at iterationm, we need to store the twomatrices Qm ∈ R

n×2m(q+1), Range(Qm) =
EK�

m (K1, [φφφu0 , Φ f ]), andWm ∈ R
n×2m(r+1), Range(Wm) = EK�

m (K1, [ψψψu0 , Ψ f ]), so that
only 2m(q + r + 2) vectors of length n are allocated instead of the 2m(p + 1) vectors of
length n2 the storage of Vm requires. Moreover, the employment of the tensorized subspace
EK�

m (K1, [φφφu0 , Φ f ]) ⊗ EK�
m (K1, [ψψψu0 , Ψ f ]) may also prevent some delay in the conver-

gence of the adopted projection technique as shown in [38] for the case of the polynomial
block Krylov subspace method.
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Even if we construct the matrices Wm and Qm instead of Vm , the main framework
of the extended Krylov subspace method remains the same. We look for an approxi-
mate solution of the form Um = (Wm ⊗ Qm)Ym where the 4m2(q + 1)(r + 1) × �

matrix Ym is computed by imposing a Galerkin condition on the residual matrix Rm =
(I + τ(K1 ⊗ In + In ⊗ K1)) (Wm ⊗ Qm)Ym − (Wm ⊗ Qm)YmΣT

1 − [φφφu0 ⊗ ψψψu0 , Φ ⊗
Ψ ][e1, τ F2]T . Such Galerkin condition can be written as

(WT
m ⊗ QT

m)Rm = 0,

so that Ym is the solution of the reduced Sylvester equation

(
I4m2(q+1)(r+1) + τ(Tm ⊗ I2m(q+1) + I2m(p+1) ⊗ Hm)

)
Ym − YmΣT

1 = (E1ααα ⊗ E1βββ)[e1, τ F2]T ,

(4.5)

where Tm = WT
m K1Wm , Hm = QT

mK1Qm , [φφφu0 , Φ f ] = Q1ααα, ααα ∈ R
2(q+1)×(q+1), and

[ψψψu0 , Ψ f ] = W1βββ, βββ ∈ R
2(r+1)×(r+1).

The cheap residual norm computation (4.3) has not a straightforward counterpart of the
form ‖Rm‖F = τ‖ET

m+1(Tm ⊗ I2m(q+1) + I2m(r+1) ⊗ Hm)Ym‖F , Tm = WT
m+1K1Wm ,

Hm = QT
m+1K1Qm , in our current setting.Adifferent though cheap procedure for computing

the residual norm at low cost is derived in the next proposition.

Proposition 4.2 At the m-th iteration of the extended Krylov subspace method, the residual
matrix Rm = (I + τ(K1 ⊗ In + In ⊗ K1)) (Wm ⊗ Qm)Ym − (Wm ⊗ Qm)YmΣT

1 − [φφφu0 ⊗
ψψψu0 , Φ f ⊗ Ψ f ][e1, τ F2]T is such that

‖Rm‖2F = τ 2
(
‖
(
ET
m+1Tm ⊗ I2m(q+1)

)
Ym‖2F + ‖

(
I2m(r+1) ⊗ ET

m+1Hm

)
Ym‖2F

)
,(4.6)

where Tm : = WT
m+1K1Wm and Hm : = QT

m+1K1Qm.

Proof If Qm = [Q1, . . . ,Qm], Qi ∈ R
n×2(q+1), Wm = [W1, . . . ,Wm], Wi ∈ R

n×2(r+1),
for the extended Krylov subspaces EK�

m (K1, [φφφu0 , Φ f ]), EK�
m (K1, [ψψψu0 , Ψ f ]) the Arnoldi

relations

K1Qm = QmHm + Qm+1E
T
m+1Hm, and K1Wm = WmTm + Wm+1E

T
m+1Tm,

hold. Since Ym solves (4.5), we have

Rm = (I + τ(K1 ⊗ In + In ⊗ K1)) (Wm ⊗ Qm)Ym − (Wm ⊗ Qm)YmΣT
1

− [φφφu0 ⊗ ψψψu0 , Φ f ⊗ Ψ f ][e1, τ F2]T

= (Wm ⊗ Qm)
((

I4m2(q+1)(r+1) + τ(Tm ⊗ I2m(q+1) + I2m(p+1) ⊗ Hm)
)
Ym − YmΣT

1

− (E1ααα ⊗ E1βββ)[e1, τ F2]T
)

+ τ
(
Wm+1E

T
m+1Tm ⊗ Qm + Wm ⊗ Qm+1E

T
m+1Hm

)
Ym

= τ
(
Wm+1E

T
m+1Tm ⊗ Qm + Wm ⊗ Qm+1E

T
m+1Hm

)
Ym .

Therefore,

‖Rm‖2F = τ 2‖
(
Wm+1E

T
m+1Tm ⊗ Qm + Wm ⊗ Qm+1E

T
m+1Hm

)
Ym‖2F

= τ 2
(
‖(Wm+1E

T
m+1Tm ⊗ Qm)Ym‖2F + ‖(Wm ⊗ Qm+1E

T
m+1Hm)Ym‖2F

+ 〈(Wm+1E
T
m+1Tm ⊗ Qm)Ym, (Wm ⊗ Qm+1E

T
m+1Hm)Ym〉F

)
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= τ 2
(
‖(Wm+1 ⊗ Qm)(ET

m+1Tm ⊗ I2m(q+1))Ym‖2F
+ ‖(Wm ⊗ Qm+1)(I2m(r+1) ⊗ ET

m+1Hm)Ym‖2F
)

= τ 2
(
‖(ET

m+1Tm ⊗ I2m(q+1))Ym‖2F + ‖(I2m(r+1) ⊗ ET
m+1Hm)Ym‖2F

)
,

where we have exploited the orthogonality of the bases. 
�

By having Qm , Wm and Ym at hand, we can compute the approximation to the solution
u at time tk by performing vec(Qm�Ym,kWT

m ) where �Ym,k ∈ R
2m(q+1)×2m(r+1) is such that

vec(�Ym,k) = Ymek .
For 3-space-dimensional problems with separable data we can follow the same approach.

If,

u0 = φφφu0 ⊗ ψψψu0 ⊗ υυυu0 , and [f1, . . . , f�] ≈ (Φ f ⊗ Ψ f ⊗ ϒ f )F
T
2 ,

then we can compute the subspaces EK�
m (K1, [φφφu0 , Φ f ]), EK�

m (K1, [ψψψu0 , Ψ f ]) and
EK�

m (K1, [υυυu0 , ϒ f ]) instead of EK�
m (K3, [u0, F1]). The derivation of the method follows

the same exact steps as before along with straightforward technicalities and we thus omit it
here.

As already mentioned, the same machinery can be used in case of BDFs of larger order
and/or when the rational Krylov subspace is selected as approximation space.

5 Exploiting the Circulant-Plus-Low-Rank Structure of the Time
Operator

One of the computational bottlenecks of Algorithm 1 is the solution of the inner prob-
lems (4.1). For large �, this becomes the most expensive step of the overall solution process.
Therefore, especially for problems that require a fine time grid, a more computational appeal-
ing alternative than the naive application of decomposition-based method for Sylvester
equations must be sought.

In principle, one may think to generate a second approximation space in order to reduce
also the time component of the discrete operator in (2.3), in agreement with standard proce-
dures for Sylvester equations. See, e.g., [48, Section 4.4.1]. However, no extended Krylov
subspace can be generated by

∑s
j=1 α jΣ j due to its singularity. A different option may be

to generate the polynomial Krylov subspace with
∑s

j=1 α jΣ j . Nevertheless, this space is

not very informative as the action of
∑s

j=1 α jΣ j on a vector v = (v1, . . . , vl)
T ∈ R

� only
consists in a permutation - and scaling - of its components. Alternatively, one can try to apply
an ADI iteration tailored to Sylvester equations [8]. However, the shift selection for the right
coefficient matrix

∑s
j=1 α jΣ j may be tricky.

In the next section we propose a novel strategy that fully exploits the structure of∑s
j=1 α jΣ j . Such a procedure, combinedwith the projection framework presented in Sect. 4,

leads to a very successful solution scheme which is able to efficiently solve equation of very
large dimensions in both space and time. We start by illustrating our algorithm for the back-
ward Euler scheme and we then generalize the approach for BDFs of larger order.
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5.1 The Backward Euler Scheme

The matrix Σ1 possesses a circulant-plus-low-rank structure. Indeed, it can be written as

Σ1 = C1 − e1e
T
� , C1 =

⎡

⎢
⎢
⎢
⎣

0 1
1 0

. . .
. . .

1 0

⎤

⎥
⎥
⎥
⎦

∈ R
�×�. (5.1)

This relation has been exploited in [32] to design an effective preconditioner for (2.2) by
dropping the low-rank term e1eT� .

We can use (5.1) to transform equation (4.1) into a generalized Sylvester equation of the
form

(I + τTm)Ym − YmC
T
1 + Yme�e

T
1 = V T

m [u0, F1][e1, τ F2]T . (5.2)

If �m denotes the dimension of the current approximation spaceKm , by assuming �m to be small,
we can compute the eigendecomposition of the coefficientmatrix I+τTm , namely I+τTm =
SmΛmS−1

m , Λm = diag(λ1, . . . , λ�m) whereas, thanks to its circulant structure, C1 can be
diagonalized by the fast Fourier transform (FFT), i.e.,C1 = F−1Π1F ,Π1 = diag(F(C1e1)),
where F denotes the discrete Fourier transform matrix. See, e.g., [20, Equation (4.7.10)].

Pre and postmultiplying Eq. (5.2) by S−1
m and FT respectively, we get

ΛmỸm − ỸmΠ1 + Ỹm(F−T e�)(Fe1)
T = S−1

m V T
m [u0, F1](F [e1, τ F2])T , Ỹm : = S−1

m YmFT .

(5.3)

The Kronecker form of Eq. (5.3) is
(
I� ⊗ Λm − Π1 ⊗ I�m + (Fe1 ⊗ I�m )(F−T e� ⊗ I�m )T

)
vec(Ỹm ) = vec(S−1

m V T
m [u0, F1](F [e1, τ F2])T ).

Denoting by L : = I� ⊗Λm −Π1⊗ I�m ∈ R
�m�×�m�, M : = Fe1⊗ I�m, N : = F−T e� ⊗ I�m ∈

R
�m�×�m , and applying the Sherman–Morrison–Woodbury formula [20, Equation (2.1.4)] we

can write

vec(Ỹm) = L−1vec(S−1
m V T

m [u0, F1](F[e1, τ F2])T ) − L−1M(I�m + NT L−1M)−1NT L−1

vec(S−1
m V T

m [u0, F1](F[e1, τ F2])T ). (5.4)

With Ỹm at hand, we can recover Ym by simply performing Ym = SmỸmF−T .
We are thus left with deriving a strategy for the computation of Ỹm that should not require

the explicit construction of L , M , and N to be efficient. In what follows � denotes the
Hadamard (element-wise) product.

Denoting by H ∈ R
�m×� the matrix whose (i, j)-th element is given by 1/(λi −

eTj (F(C1e1))), i = 1, . . . , �m, j = 1, . . . , �, since L is diagonal, we can write

L−1vec(S−1
m V T

m [u0, F1](F[e1, τ F2])T ) = vec
(
H �

(
S−1
m V T

m [u0, F1](F[e1, τ F2])T
))

,

so that

NT L−1vec(S−1
m V T

m [u0, F1](F [e1, τ F2])T ) =
(
H �

(
S−1
m V T

m [u0, F1](F [e1, τ F2])T
))

F−T e�.
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We now have a closer look at the matrix NT L−1M in (5.4). The (i, j)-th entry of this
matrix can be written as

eTi NT L−1Me j = eTi (F−T e� ⊗ I�m)T L−1(Fe1 ⊗ I�m)e j = vec(ei e
T
� F−1)T L−1vec(e j e

T
1 FT )

= vec(ei e
T
� F−1)T vec

(
H �

(
e j e

T
1 FT

))
= 〈H �

(
e j e

T
1 FT

)
, ei e

T
� F−1〉F

= trace
(
F−T e�e

T
i

(
H �

(
e j e

T
1 FT

)))
= eTi

(
H �

(
e j e

T
1 FT

))
F−T e�.

(5.5)

Note the abuse of notation in the derivation above: ei , e j denote the canonical basis vectors
of R�m whereas e1, e� the ones of R�.

An important property of the Hadamard product says that for any real vectors
x, y and matrices A, B of conforming dimensions, we can write xT (A � B)y =
trace(diag(x)Adiag(y)BT ). By applying this result to (5.5), we get

eTi N
T L−1Mej = trace

(
diag(ei )Hdiag(F−T e�)Fe1e

T
j

)
= eTj diag(ei )H

(
F−T e� � Fe1

)

= eTj ei e
T
i H

(
F−T e� � Fe1

)
= δi, j e

T
i H

(
F−T e� � Fe1

)
, (5.6)

where δi, j denotes the Kronecker delta, i.e., δi,i = 1 and δi, j = 0 otherwise. Equation (5.6)
says that NT L−1M is a diagonal matrix such that NT L−1M = diag

(H (F−T e� � Fe1
))
.

The vector w : = M(I�m + NT L−1M)−1NT L−1vec(S−1
m V T

m [u0, F1](F[e1, τ F2])T ) in
(5.3) can thus be computed by performing

w = vec

(((
I�m + diag

(
H

(
F−T e� � Fe1

)))−1 (H �
(
S−1
m V T

m [u0, F1](F [e1, τ F2])T
))

F−T e�

)

eT1 FT
)

.

The linear solve L−1w can be still carried out by exploiting the Hadamard product and the
matrix H as

L−1w=vec
(

H�
(((

I�m + diag
(
H

(
F−T e��Fe1

)))−1 (H�
(
S−1
m V T

m [u0, F1](F [e1, τ F2])T
))

F−T e�

)

eT1 FT
))

.

To conclude, the matrix Ym can be computed by

Ym = Sm(Z − W )F−T , (5.7)

where

Z = H � (
S−1
m V T

m [u0, F1](F[e1, τ F2])T
)
,

W = H �
(((

I�m + diag
(H (F−T e� � Fe1

)))−1
ZF−T e�

)
eT1 FT

)
,

and no Kronecker products are involved in such a computation.
The computation of Ym by (5.7) is very advantageous. Indeed, its asymptotic cost amounts

toO (�m3 + (log � + �m2)�
)
floating point operations. Moreover, all the computations involv-

ing the FFT in the construction of Z andW can be performed once and for all at the beginning
of the iterative process.

The discrete Fourier transform matrix F is never explicitly assembled and in all the
experiments reported in Sect. 7 its action and the action of its inverse have been performed
by means of the Matlab function fft and ifft respectively.
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We would like to point out that the novel strategy presented in this section can be applied
as a direct solver to Eq. (2.3) whenever the eigendecomposition of I +τKd can be computed,
e.g., if (1.2) is discretized on a coarse spatial grid or if this matrix can be cheaply diagonalized
by, e.g., sine transforms as considered in [32].

5.2 s > 1

Similarly to what we did for s = 1, for a generic s we can write

s∑

j=1

α jΣ j = Cs − [e1, . . . , es]αααs[e�−s+1, . . . , e�]T ,

αααs =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

αs · · · · · · α1

αs · · · · · · α2
. . .

...

αs αs−1

αs

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
s×s, (5.8)

where Cs ∈ R
�×� is circulant and can be thus diagonalized by the FFT, namely

Cs = F−1ΠsF , Πs = diag(F(Cse1)). Following Sect. 5.1, by denoting Gm =
V T
m [∑s

j=1 α ju1− j ,
∑s

j=2 α ju2− j , . . . , αsu0, F1], we can write

vec(Ỹm) = L−1vec(S−1
m Gm(F[e1, . . . , es, τβF2])T ) − L−1M(Is�m + NT L−1M)−1NT L−1

vec(S−1
m Gm(F[e1, . . . , es, τβF2])T ),

where now L : = I� ⊗ Λm − Πs ⊗ I�m ∈ R
�m�×�m� and M : = F[e1, . . . , es] ⊗ I�m, N : =

F−T [e�−s+1, . . . , e�]αααT
s ⊗ I�m ∈ R

�m�×s�m . As before, the action of L−1 can be carried out by
exploiting the matrix H and the Hadamard product. In particular,

L−1vec(S−1
m Gm(F[e1, . . . , es, τβF2])T ) = vec

(
H �

(
S−1
m Gm(F[e1, . . . , es, τβF2])T

))
,

and

NT L−1vec(S−1
m Gm(F[e1, . . . , es , τβF2])T ) = vec

((
H �

(
S−1
m Gm(F[e1, . . . , es , τβF2])T

))
F−T

[e�−s+1, . . . , e�]αααT
s

)
.

The inspection of the entries of thematrix NT L−1M ∈ R
s�m×s�m is a bit more involved than

before.With abuse of notation, we start by recalling that the vector e j ∈ R
s�m , j = 1, . . . , s�m,

can be written as e j = vec(ekeTh ), ek ∈ R
�m , eh ∈ R

s , j = k + �m · (h − 1). Therefore,
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eTi N
T L−1Mej = vec(er e

T
q )T NT L−1Mvec(eke

T
h )

= vec(er e
T
q αααs[e�−s+1, . . . , e�]TF−1)T L−1vec(eke

T
h [e1, . . . , es]TFT )

= vec(er e
T
q αααs[e�−s+1, . . . , e�]TF−1)T vec

(
H �

(
eke

T
h FT

))

=
〈
H �

(
eke

T
h FT

)
, er e

T
q αααs[e�−s+1, . . . , e�]TF−1

〉

F

= trace
(
F−T [e�−s+1, . . . , e�]αααT

s eqe
T
r

(
H �

(
eke

T
h FT

)))

= eTr
(
H �

(
eke

T
h FT

))
F−T [e�−s+1, . . . , e�]αααT

s eq .

Notice that in the second step above we have eTh [e1, . . . , es]T = eTh and, differently from the
one in the left-hand side where eh ∈ R

s , the vector in the right-hand side denotes the h-th
canonical basis vector of R�, h = 1, . . . , s.

By exploiting the same property of the Hadamard product used in the derivation presented
in Sect. 5.1, we have

eTi N
T L−1Mej = trace

(
diag(er )Hdiag(F−T [e�−s+1, . . . , e�]αααT

s eq)Fehe
T
k

)

= eTk diag(er )H
(
F−T [e�−s+1, . . . , e�]αααT

s eq) � Feh
)

= δk,r e
T
r H

(
F−T [e�−s+1, . . . , e�]αααT

s eq) � Feh
)

. (5.9)

Recalling that the indices in the above expression are such that i = r + �m · (q − 1) and
j = k + �m · (h − 1), the relation in (5.9) means that NT L−1M is a s × s block matrix
with blocks of size �m which are all diagonal. The (q, h)-th block of NT L−1M is given by
diag

(H (F−T [e�−s+1, . . . , e�]αααT
s eq) � Feh

))
.

If S : = I + NT L−1M and Z : = H � (
S−1
m Gm(F[e1, . . . , es, τβF2])T

)
, then we

denote by P the �m × s matrix such that vec(P) = S−1vec
(
ZF−T [e�−s+1, . . . , e�]αααT

s

)
and,

to conclude, the solution Ym of the reduced problems (4.1) can be computed by

Ym = Sm(Z − W )F−T , where
Z = H � (

S−1
m Gm(F[e1, . . . , es, τβF2])T

)
,

W = H � (
P[e1, . . . , es]TFT

)
.

(5.10)

6 The Convection–Diffusion Equation

In this section we briefly discuss the case of time-dependent convection–diffusion equations
as an example of non Laplace-like operators. We consider

ut − εΔu + w · ∇u = f , in Ω × (0, T ],
u = g, on ∂Ω,

u(x, 0) = u0(x),
(6.1)

where ε > 0 is the viscosity parameter, and the convection vector w = w(x) is assumed to
be incompressible, i.e., div(w) = 0.

As alreadymentioned, if K cd
d ∈ R

�n×�n denotes thematrix stemming from the discretization
of the convection–diffusion operator L(u) = −εΔu + w · ∇u on �Ω , the discrete problem
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can be recast in terms of the following Sylvester matrix equation

(I + τβK cd
d )U − U

⎛

⎝
s∑

j=1

α jΣ
T
j

⎞

⎠ =
⎡

⎣
s∑

j=1

α ju1− j ,

s∑

j=2

α ju2− j , . . . , αsu0, F1

⎤

⎦

[e1, . . . , es, τβF2]T ,

when a BDF of order s is employed in the time integration.
If d = 1 and w = φ(x), the matrix K cd

1 can be written as K cd
1 = εK1 + ΦB1 where K1

denotes the discrete negative Laplacian whereas B1 represents the discrete first derivative
and the diagonal matrix Φ collects the nodal values φ(xi ) on its diagonal.

In [36], it has been shown that the 2- and 3D discrete convection–diffusion operators
possess a Kronecker structure if the components of w are separable functions in the space
variables and Ω = (0, 1)d .

If w = (φ1(x)ψ1(y), φ2(x)ψ2(y)) and Φi , Ψi are diagonal matrices collecting on the
diagonal the nodal values of the corresponding functions φi , ψi , i = 1, 2, then

K cd
2 = εK1 ⊗ I + ε I ⊗ K1 + Ψ1 ⊗ Φ1B1 + Ψ2B1 ⊗ Φ2. (6.2)

See [36, Proposition 1]. Similarly for d = 3; see [36, Proposition 2].
In this case, we can take advantage of the Kronecker structure of K cd

d to automatically
include the boundary conditions in the matrix equation formulation of the time-dependent
convection–diffusion equation. This can be done by combining the arguments of Sect. 3.1
with the strategy presented in [36, Section 3].

Even though K cd
d still has a Kronecker form, this is not a Laplace-like structure due to

the presence of the extra terms containing B1 in the definition (6.2) of K cd
d . Therefore, the

tensorized Krylov approach presented in [25] and adapted to our purposes in Sect. 4.2 cannot
be employed. This difficulty is strictly related to the fact that efficient projection methods for
generic generalized Sylvester equations of the form

p∑

j=1

Ai X Bi = C1C
T
2 , (6.3)

have not been developed so far. The available methods work well if the coefficient matrices
Ai and Bi fulfill certain assumptions which may be difficult to meet in case of the discrete
convection–diffusion operators. See, e.g, [6,23,40,44] for more details about solvers for gen-
eralized matrix equations. Further research in this direction is necessary and worth pursuing
since many different problems can be represented in terms of (6.3).

7 Numerical Results

In this sectionwe compare our newmatrix equation approachwith state-of-the-art procedures
for the solution of the algebraic problem arising from the discretization of time-dependent
PDEs. Different solvers can be applied to (2.2) depending on how one interprets the underly-
ing structure of the linear operatorA. We reformulate (2.2) as a matrix equation but clearlyA
can be seen as a large structured matrix and well-known iterative techniques as, e.g., GMRES
[43], can be employed in the solution of the linear system (2.2). The matrixA does not need
to be explicitly assembled and its Kronecker structure can be exploited to perform “matrix-
vector” products. Moreover, one should take advantage of the low rank of the right-hand side
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vec([∑s
j=1 α ju1− j ,

∑s
j=2 α ju2− j , . . . , αsu0, F1][e1, . . . , es, τβF2]T ) to reduce the mem-

ory consumption of the procedure. Indeed, if �n� is very large, we would like to avoid the
allocation of any long�n� dimensional vectors and this can be done by rewriting the Krylov
iteration in matrix form and equipping the Arnoldi procedure with a couple of low-rank trun-
cations. These variants of Krylov schemes are usually referred to as low-rankKrylovmethods
and in the following we will apply low-rank GMRES (LR-GMRES) to the solution of (2.2).
See, e.g., [6,9,22,51] for some low-rank Krylov procedures applied to the solution of linear
matrix equations while [28] for details about how to preserve the convergence properties of
the Krylov routines when low-rank truncations are performed.

Both the aforementioned variants of GMRES needs to be preconditioned to achieve a fast
convergence in terms of number of iterations. In [32], it has been shown that the operator

P : R�n� → R
�n�

x �→ (I� ⊗ (I�n + τβKd) − Cs ⊗ I�n)x,
is a good preconditioner for (2.2). If right preconditioning is adopted, at each iteration of the
selected Krylov procedure we have to solve an equation of the form Pv̂ = vm , where vm
denotes the last basis vector that has been computed. Again, many different procedures can
be employed for this task. In case of GMRES, we proceed as follows. We write

v̂ = P−1vm = (I� ⊗ (I�n + τβKd) − Cs ⊗ I�n)−1vm

= (F−1 ⊗ I�n)(I� ⊗ (I�n + τβKd) − Πs ⊗ I�n)−1(F ⊗ I�n)vm,

and we solve the block diagonal linear system with I� ⊗ (I�n + τβKd)−Πs ⊗ I�n by applying
block-wise the algebraic multigrid method AGMG developed by Notay and coauthors [33–
35].

In the low-rank Krylov technique framework, the allocation of the full basis vector vm ∈
R

�n� is not allowed as we would lose all the benefits coming from the low-rank truncations.
Since Pv̂ = vm can be recast in terms of a matrix equation, in case of LR-GMRES we can
inexactly invertP by applying few iterations of Algorithm 1. Notice that in this case, due to
the definition ofP, the solution of the inner equations in Algorithm 1 is easier. Indeed, with
the notation of Sect. 5, we have Ym = Sm ZF−T at each iterationm. However, since the extra
computational efforts of computing Ym by (5.7) turned out to be very moderate with respect
to the cost of performing Ym = Sm ZF−T , we decided to run few iterations5 of Algorithm 1
with the original operator instead of the preconditionerP. This procedure can be seen as an
inner-outer Krylov scheme [49].

The preconditioning techniques adopted within GMRES and LR-GMRES are all nonlin-
ear. We thus have to employ flexible variants of the outer Krylov routines, namely FGMRES
[42] and LR-FGMRES.

We would like to underline that the concept of preconditioning does not really exist in the
context of matrix equations. See, e.g., [48, Section 4.4]. The efficiency of our novel approach
mainly relies on the effectiveness of the selected approximation space.

In the following we will denote our matrix equation approach by either EKSM, when the
extended Krylov subspace is adopted, or RKSM, if the rational Krylov subspace is employed
as approximation space. The construction of both the extended and rational Krylov subspaces
requires the solution of linear systems with the coefficient matrix Kd (or a shifted version
of it). Except for Example 7.5, these linear solves are carried out by means of the Matlab
sparse direct solver backslash. In particular, for EKSM, the LU factors of Kd are computed
once and for all at the beginning of the iterative procedure so that only triangular systems are

5 In all the reported examples we performed 10 iterations of Algorithm 1 at each outer iteration.
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Table 2 Storage demand of the compared methods

EKSM RKSM FGMRES LR-FGMRES

2(m + 1)(p + s)(�n + �) (m + 1)(p + s)(�n + �) (2m + 1)�n� (�n + �)

⎛

⎝
m∑

i=1

(ri + zi ) + rm+1

⎞

⎠

solved during the basis construction. The time for such LU decomposition is always included
in the reported results.

To sum up, we are going to compare EKSM and RKSM with FGMRES precon-
ditioned by AGMG (FGMRES+AGMG) and LR-FGMRES preconditioned by EKSM
(LR-FGMRES+EKSM). The performances of the different algorithms are compared in terms
of both computational time andmemory requirements. In particular, since all the methods we
compare need to allocate the basis of a certain Krylov subspace, the storage demand of each
algorithm consists in the dimension of the computed subspace. The memory requirements of
the adopted schemes are summarized in Table 2 where m indicates the number of performed
iterations.

For LR-FGMRES, ri and zi denote the rank of the low-rank matrix representing the i-th
vector of the unpreconditioned and preconditioned basis respectively.

Notice that for separable problems where the strategy presented in Sect. 4.2 can be applied
and �n = nd , the memory requirements of EKSM and RKSM can be reduced to 2(m +
1)
∑d

i=1 pin+2d(m+1)d
∏d

i=1 pi� and (m+1)
∑d

i=1 pin+(m+1)d
∏d

i=1 pi� respectively,
where pi denotes the rank of the initial block used in the construction of the i-th Krylov
subspace, i = 1, . . . , d .

If not stated otherwise, the tolerance of the final relative residual norm is always set to
10−6.

All results were obtained by running MATLAB R2017b [31] on a standard node of the
Linux cluster Mechthild hosted at the Max Planck Institute for Dynamics of Complex Tech-
nical Systems in Magdeburg, Germany.6

We would like to mention that the operator A in (2.2) can be seen also as a tensor. In
this case, the algebraic problem stemming from the discretization scheme thus amounts to
a tensor equation for which different solvers have been proposed in the recent literature.
See, e.g., [1,3,12,13]. To the best of our knowledge, all the routines for tensor equations
available in the literature include a rank truncation step to reduce the storage demand of the
overall procedure. Most of the time, a user-specified, constant rank r is employed in such
truncations and determining the value of r which provides the best trade off between accuracy
and memory reduction is a very tricky task while the performance of the adopted scheme
deeply depends on this selection. See, e.g., [1, Section 4]. This drawback does not affect our
matrix equation schemes where no rank truncation is performed while moderate memory
requirements are still achieved as illustrated in the following examples. Moreover, tensor
techniques are specifically designed for solving high dimensional PDEs and we believe they
are one of the few multilinear algebra tools that are able to deal with the peculiar issues
of such problems. However, here we consider problems whose dimensionality is at most 4
(d = 3 in space and one dimension in time). Due to the aspects outlined above, we refrain
from comparing our matrix equation schemes with tensor approaches as a fair numerical
comparison is difficult to perform.

6 See https://www.mpi-magdeburg.mpg.de/cluster/mechthild for further details.
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Table 3 Example 7.1 Results for different values of �

� EKSM Backslash Rel. Err.

ε = 10−12 ε = 10−14

It. Time It. Time Time ε = 10−12 ε = 10−14

4096 2 2.92e−2 3 3.56e−2 2.50e0 1.01e−10 1.00e−10

16,384 2 5.22e−2 4 1.07e−1 9.91e0 9.93e−11 9.93e−11

65,536 2 1.46e−1 3 2.90e−1 3.96e1 1.07e−11 1.07e−11

n̄ = 4096, s = 1. The reported timings are in seconds

Example 7.1 Before comparing EKSM and RKSMwith other solvers we would like to show
first how our novel reformulation of the algebraic problem in terms of a Sylvester matrix
equation is able to maintain the convergence order of the adopted discretization schemes. In
particular, we present only the results obtained by EKSM as the ones achieved by applying
RKSM are very similar.

We consider the following 1D problem

ut = Δu, in (0, π) × (0, 1],
u(0) = u(π) = 0,

u(x, 0) = sin(x).
(7.1)

This is a toy problem as the exact solution is known in closed form and it is given by
u(x, t) = sin(x)e−t . With u at hand, we are able to calculate the discretization error provided
by our solution process.

Equation (7.1) is discretized by means of second order centered finite differences in space
and a BDF of order s, s ≤ 6, in time.

In the following we denote byUm ∈ R
�n×� the approximate solution computed by EKSM,

by Uexact the �n × � matrix whose i-th column represents the exact solution evaluated
on the space nodal values at time ti whereas Ubackslash ∈ R

�n×� collects the � vec-
tors computed by sequentially solving by backslash the � linear systems involved in the
standard implementation of BDFs.7 In particular, Ubackslashek = (I + τβK1)

−1(τβfk +∑s
j=1 α jUbackslashek− j ) where Ubackslashek− j = uk− j for k = 1 and j = 1, . . . , s.
We first solve the algebraic problem by EKSM with two different tolerances ε =

10−12, 10−14 and we compare the obtained Um with Ubackslash. In Table 3 we report
the results for�n = 4096, s = 1 and different values of �.

Looking at the timings reported in Table 3, since EKSMrequires a (almost) costant number
of iterations to converge for a given threshold and all the tested values of �, we can readily
appreciate how the computational cost of our novel approach mildly depends on � while the
time for the calculation of Ubackslash linearly grows with the number of time steps.

Moreover, we see how, for this example, we can obtain a very small algebraic relative
error ‖Um − Ubackslash‖F/‖Ubackslash‖F by setting a strict tolerance on the relative
residual norm computed by EKSM. This means that, when we compareUm withUexact, the
discretization error is the quantity that contributes themost to ‖Um−Uexact‖F/‖Uexact‖F .
In Fig. 1 we plot ‖Um − Uexact‖F/‖Uexact‖F for different values of�n, � and s. Here Um

is computed by setting ε = 10−12. In particular, in the picture on the left we plot the relative
error for � = 16384 and s = 1 while varying �n. On the right, we fix �n = 32,768 and we

7 Notice that the coefficient matrix I + τβK1 is factorized once and for all.
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Fig. 1 Example 7.1. ‖Um − Uexact‖F/‖Uexact‖F for different values of n̄, � and s. Left: � = 16,384,
s = 1 while n̄ varies (h denotes the space mesh size). Right: n̄ = 32,768, s = 1, 2, 3 while � varies

plot ‖Um − Uexact‖F/‖Uexact‖F for different values of � and s = 1, 2, 3. Notice that
by knowing the analytic expression of the solution u, for s > 1 we are able to provide
the s − 1 additional initial conditions u−1, . . . ,u−s+1 and the extended Krylov subspace
EK�

m (K1, [∑s
j=1 α ju1− j ,

∑s
j=2 α ju2− j , . . . , αsu0]) can be constructed.

From the plots in Fig. 1 we can recognize how the convergence order of the tested dis-
cretization schemes is always preserved. Similar results are obtained for larger values of s,
namely s = 4, 5, 6, provided either a larger�n or a space discretization scheme with a higher
convergence order is employed.

Example 7.2 The goal of the second example is to show that the framework we propose
in this paper is not restricted to problems posed on tensorized spatial domains Ω whose
discretization is carried out by a finite difference scheme. To this end, we consider the
following 2D problem

ut = Δu + 1, in Ω × (0, 1],
u = 0, on ∂Ω,

u(x, 0) = 0,
(7.2)

where Ω is an L-shaped domain obtained as the complement in [−1, 1]2 of the quadrant
(−1, 0] × (−1, 0]. The finite elements method with Q2 elements is employed in the space
discretizationof (7.2) and the stiffnessmatrix K2 ∈ R

�n×�n , themassmatrixM ∈ R
�n×�n , and the

source term F1 ∈ R
�n are obtained by running the Matlab function diff_testproblem,

problem 2, of the IFISS package [45].8 The backward Euler scheme is used for the time
integration.

The employment of the finite elements method in the discretization step leads to a discrete
problem that can be represented in terms of the following generalized Sylvester equation

(M + τK2)U − UΣT
1 = τ F11T� ,

where 1� ∈ R
� is the vector of all ones.

As already mentioned at the end of Sect. 2, if M = LLT is the Cholesky factorization of
the mass matrix M , we can solve the transformed equation

(I + τ L−1K2L
−T )Ũ − ŨΣT

1 = τ L−1F11T� , Ũ = LTU. (7.3)

8 With the IFISS notation, we have K2 = Agal, M = M, and F1 = fgal.
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Table 4 Example 7.2. Results for
different values of n̄, and �

�n � EKSM Rel. Err.
It. Time

12,545 1024 25 2.53e0 1.76e−11

4096 29 3.08e0 1.73e−11

16,384 31 4.59e0 1.29e−11

49,665 1024 30 2.16e1 1.22e−11

4096 36 2.59e1 9.04e−12

16,384 40 2.95e1 6.84e−12

197,633 1024 34 1.82e2 5.66e−12

4096 44 2.22e2 6.09e−12

16,384 50 2.42e2 5.93e−12

The reported timings are in seconds

We thus apply EKSM to (7.3) by building the subspace EK�
m (L−1K2L−T , L−1F1). Notice

that the coefficient matrix L−1K2L−T does not need to be explicitly constructed. See, e.g.,
[46, Example 5.4]. If Ũm denotes the approximation computed by EKSM, we retrieveUm =
L−T Ũm ≈ U.

The goal of this example is to check whether our matrix equation approach is able to com-
pute a meaningful solution also for the considered problem setting. To this end we compare
the EKSMsolutionUm with the sequential solution of the linear systems involved in the back-
ward Euler scheme. In particular,Ubackslashek = (M + τK2)

−1(τ F1 +Ubackslashek−1),
k = 1, . . . , �, where Ubackslashek−1 ≡ 0 for k = 1.

In Table 4 we collect the results for different values of �n, and �. In particular, Rel. Err.
refers to the relative error ‖Um −Ubackslash‖F/‖Ubackslash‖F .

We can notice that, for this example, EKSM needs a sizable number of iterations to attain
the desired accuracy. Nevertheless, it is still very competitive and a reasonable computational
time is needed to achieve the prescribed accuracy in terms of relative residual norm. More
remarkably, the relative error between the solution computed by EKSM and Ubackslash is
always very small. This confirms that our novel solution scheme is able to handle differential
problems of the form (1.2) where the spatial domain Ω has a complex geometry and more
sophisticated discretization schemes than finite differences are adopted.

Example 7.3 In this example we consider the same equation presented in [32, Section 6.1].
This consists in the following 2D heat equation

ut = Δu, in Ω × (0, 1], Ω : = (0, 1)2,
u = 0, on ∂Ω,

u0 = u(x, y, 0) = x(x − 1)y(y − 1).
(7.4)

Equation (7.4) is discretized by means of second order centered finite differences in space
with n nodes in each spatial direction, and the backward Euler scheme in time.

Since the initial condition is a separable function in the space variables, and both the source
term and the boundary conditions are zero, the strategy presented in Sect. 4.2 can be adopted.
In particular if u0 denotes the�n = n2 vector collecting the values of u0 for all the nodal values
(xi , y j ), then we can write u0 = φφφu0 ⊗ ψψψu0 where φφφu0 = [x1(x1 − 1), . . . , xn(xn − 1)]T ,
ψψψu0 = [y1(y1 − 1), . . . , yn(yn − 1)]T ∈ R

n . Therefore, the two extended Krylov subspaces
EK�

m (K1,φφφu0) and EK
�
m (K1,ψψψu0) can be constructed in place of EK

�
m (K2,u0). Similarly

for the rational Krylov subspace method.
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In Table 5 we report the results for different values of n and �.
As outlined in [32], the preconditioner P is very effective in reducing the total iteration

count in FGMRES+AGMG and one FGMRES iteration is sufficient for reaching the desired
accuracy for every value of n and � we tested. However, the preconditioning step is very
costly in terms of computational time; this almost linearly grows with �. FGMRES+AGMG
may benefit from the employment of a parallel implementation in the inversion of the block
diagonal matrix I� ⊗ (I + τK2) − Π1 ⊗ In2 . Moreover, for the largest problem dimension
we tested, the system returned an Out of Memory (OoM) message as we were not able to
allocate any n2� dimensional vectors.

LR-FGMRES+EKSM performs quite well in terms of computational time, especially for
small n, and the number of iterations needed to converge is rather independent of both n and
� confirming the quality of the inner–outer preconditioning technique.

Our new algorithms, EKSM and RKSM, are very fast. We would like to remind the reader
that, for this example, the number of degrees of freedom (DoF) is equal to n2�. This means
that, for the finest refinement of the space and time grids we tested, our routines are able to
solve a problem with O (

4 · 109) DoF in few seconds while reaching the desired accuracy.
The number of iterations performed by EKSM and RKSM turns out to be very robust with

respect to � and the (almost) constant iteration count we obtain for a fixed n lets us appreciate
once again how the computational cost of our procedures modestly grows with �.

The robustness of our routines with respect to � is not surprising. Roughly speaking, the
time component is solved exactly thanks to the strategy presented in Sect. 5, whereas the
projection procedure we perform only involves the spatial component of the overall operator,
namely I − τK2. Therefore, the effectiveness of the overall procedure in terms of number of
iterations strictly depends on the spectral properties of I − τK2 which are mainly fixed for
a given n although the mild dependence on � due to the presence of the scalar τ .

Thanks to the separability of Eq. (7.4) and the employment of the strategy presented
in Sect. 4.2, EKSM and RKSM are very competitive also in terms of storage demand as
illustrated in Table 5.

Example 7.4 We consider another example coming from [32]. In particular, the problem we
address is the following time-dependent convection–diffusion equation

ut − εΔu + w · ∇u = 0, in Ω × (0, 1], Ω : = (0, 1)2,
u = g(x, y), on ∂Ω,

u0 = u(x, y, 0) = g(x, y) if (x, y) ∈ ∂Ω,

u0 = u(x, y, 0) = 0 otherwise,

(7.5)

where w = (2y(1 − x2),−2x(1 − y2)) and g(1, y) = g(x, 0) = g(x, 1) = 0 while
g(0, y) = 1.

This is a simple model for studying how the temperature in a cavity with a (constant) “hot”
external wall ({0} × [0, 1]) distributes over time. The wind characterized by w determines a
recirculating flow.

Once again, Eq. (7.5) is discretized by means of second order centered finite differences
in space with n nodes in each spatial direction, and the backward Euler scheme in time.

Thanks to the separability ofw, the spatial discrete operator K cd
2 has a Kronecker structure

and it can be written as in (6.2). However, the presence of the extra terms containing the dis-
crete first order derivative operator does not allow for the memory-saving strategy described
in Sect. 4.2. Nevertheless, the structure of K cd

2 can be exploited to easily include the bound-
ary conditions in the matrix equation formulation. Moreover, since the initial condition is
equal to the boundary conditions on the boundary nodes and zero otherwise, the boundary
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conditions do not depend on time, and the source term is zero everywhere, the right-hand
side of Eq. (2.3) can be written as [u0, F1][e1, τ [0, 1�−1]T ]T where, with a notation similar
to the one used in Sect. 3, F1 ∈ R

n2 is such that P2(u0eT1 + τ F1[0, 1�−1]T ) = Gcd
2 U on the

boundary nodes and zero otherwise.
Therefore, EKSM and RKSM construct the spaces EK�

m (K cd
2 , [u0, F1]) and K�

m (K cd
2 ,

[u0, F1], ξξξ) respectively.
In Table 6 we report the results for different values of n, � and the viscosity parameter ε.
We can notice that the preconditioner P within the FGMRES+AGMG procedure is still

effective in reducing the outer iteration count. However, it seems its performance depends on
the viscosity parameter ε. Moreover, also for this example the preconditioning step leads to
an overall computational time of FGMRES+AGMG that is not competitive when compared
to the one achieved by the other solvers. As in Example 7.3, an OoM message is returned
whenever we try to allocate vectors of length n2� for n2 = � = 65,536. However, for this
example, also for n2 = 16,384, � = 65,536, and n2 = 65,536, � = 16,384, with the
viscosity parameter ε = 0.01, the same error message is returned. Indeed, while the system
is able to allocate only a moderate number of n2� dimensional vectors, FGMRES+AGMG
needs a sizable number of iterations to converge so that the computed basis cannot be stored.9

A restarted procedure may alleviate such a shortcoming.
LR-FGMRES+EKSM is very competitive in terms of running time as long as very few

outer iterations are needed to converge. Indeed, its computational cost per iteration is not
fixed but grows quite remarkably as the outer iterations proceed. This is mainly due to the
preconditioning step. At each LR-FGMRES iteration k, EKSM is applied to an equation
whose right-hand side is given by the low-rank matrix that represents the k-th basis vec-
tor of the computed space and the rank of such a matrix grows with k. This significantly
increases the computational efforts needed to perform the 10 EKSM iterations prescribed as
preconditioning step worsening the performance of the overall solution procedure.

Also for this example, the new routines we propose in this paper perform quite well and
the number of iterations mildly depends on �.

The performances of our solvers are also pretty robust with respect to ε and, especially for
RKSM, it turns out that the number of iterations needed to converge gets smaller as the value
of ε is reduced. In the steady-state setting this phenomenon is well-understood. See, e.g., [17,
Section 4.2.2]. In our framework, we can explain such a trend by adapting convergence results
for RKSM applied to Lyapunov equations. Indeed, in [14, Theorem 4.2] it is shown how the
convergence of RKSM for Lyapunov equations is guided by the maximum value of a certain
rational function over the field of values W (A) : = {z∗Az, z ∈ C

n, ‖z‖ = 1} of the matrix
A used to define the employed rational Krylov subspace. Roughly speaking, the smaller
W (A), the better. In our context, even though we use K cd

2 to buildK�
m (K cd

2 , [u0, F1], ξξξ), the
projection technique involves the whole coefficient matrix I − τK cd

2 and we thus believe it is
reasonable to think that the success of RKSM relies on the field of values of such a matrix. In
Fig. 2 we plot the field of values of I −τK cd

2 for n2 = 65,536, � = 1024, and different values
of ε and we can appreciate how these sets are nested and they get smaller when decreasing
ε. This may intuitively explains the relation between the RKSM iteration count and ε but
further studies in this direction are necessary.

Even though the approach presented in Sect. 4.2 cannot be adopted in this example, EKSM
and RKSM are still very competitive also in terms of storage demand as illustrated in Table 6.

9 In both cases, we are able to perform six FGMRES+AGMG iterations and the OoM message is returned
while performing the seventh iteration. At the sixth iteration, the relative residual norm is O(10−6).
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Fig. 2 Example 7.4. Field of values of I − τK cd
2 for n2 = 65,536, � = 1024 and different ε

Weconclude this example by showing that our routines are also able to identify the physical
properties of the continuous solution we want to approximate. In Fig. 3 we report the solution
computed by EKSM for the case n2 = 65,536 and � = 1024. In particular, we report the
solution at different time steps t1, t�/2, t� (left to right) and for different values of ε (top
to bottom). We remind the reader that our solution represents the temperature distribution
in a cavity with a constant, hot external wall. Looking at Fig. 3, we can appreciate how the
temperature distributes quite evenly in our domain for ε = 1. The smaller ε, the more viscous
the media our temperature spreads in. Therefore, the temperature is different from zero only
in a very restricted area of our domain, close to the hot wall, for ε = 0.1, 0.01. Notice that
for ε = 0.01 and t1, the part of the domain where the temperature is nonzero is so narrow
that is difficult to appreciate with the resolution of Fig. 3. For ε = 0.1, 0.01 we can also see
how the temperature stops being evenly distributed as for ε = 1 but follows the circulating
flow defined by the convection vector w.

Example 7.5 For the last example, we take inspiration from [36, Example 5] and consider the
following 3D time-dependent convection–diffusion equation

ut − Δu + w · ∇u = 0, in Ω × (0, 1], Ω : = (0, 1)3,
u = 0, on ∂Ω,

u0 = g,
(7.6)

where w = (x sin x, y cos y, ez
2−1) and g is such that

−Δg + w · ∇g = 1, in Ω,

g = 0, on ∂Ω.
(7.7)

Both (7.6) and (7.7) are discretized by centered finite differences in space with n nodes in
each spatial direction, and the backward Euler scheme is used for the time integration of
(7.6). Once (7.7) is discretized, we compute a numerical solution g ∈ R

n3 by applying the
strategy presented in, e.g., [36], and then set u0 = g.
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Fig. 3 Example 7.4. Computed solution at different time steps (left to right: t1, t�/2, t�) and related to different

values of ε (top to bottom: ε = 1, ε = 0.1, ε = 0.01). n2 = 65,536, � = 1024

Also in this example the convection vectorw is a separable function in the space variables
and the stiffness matrix K cd

3 ∈ R
n3×n3 can be written in terms of a Kronecker sum as

illustrated in Sect. 6. However, the initial value u0 is not separable in general and we have to
employ EK�

m (K cd
3 ,u0) and K�

m (K cd
3 ,u0, ξξξ) as approximation spaces.

It is well-known that sparse direct routines are not very well suited for solving linear
systems with a coefficient matrix that stems from the discretization of a 3D differential
operator, and iterative methods perform better most of the time. Therefore, the inner-outer
GMRES method is employed to solve the linear systems involved in the basis construction
of both EK�

m (K cd
3 ,u0) and K�

m (K cd
3 ,u0, ξξξ). We set the tolerance on the relative residual

norm for such linear systems equal to 10−8, i.e., two order of magnitude less than the outer
tolerance. However, the novel results about inexact procedures in the basis construction of
the rational and extendedKrylov subspace presented in [27] may be adopted to further reduce
the computational cost of our schemes.

Due to the very large number n3� of DoFs we employ, in Table 7 we report only the results
for EKSM and RKSM.

We can appreciate how our routines need a very reasonable time to meet the prescribed
accuracy while maintaining a moderate storage consumption. For instance, the finest space
and time grids we consider lead to a problem with O(1011) DoFs and RKSM manages to
converge in few minutes by constructing a very low dimensional subspace.

It is interesting to notice how the computational time of RKSM is always much smaller
than the one achieved by EKSM. This is due to the difference in the time devoted to the
solution of the linear systems during the basis construction. Indeed, in RKSM, shifted linear
systems of the form K cd

3 −ξ j I have to be solved and, in this example, it turns out that GMRES
is able to achieve the prescribed accuracy in terms of relative residual norm in much fewer
iterations than what it is able to do when solving linear systems with the only K cd

3 as it is
done in EKSM.
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Table 7 Example 7.5. Results for different values of n and �

n3 � EKSM RKSM
It. Time Mem. It. Time Mem.

32,768 1024 10 1.03e1 22(n3 + �) 12 5.16e0 13(n3 + �)

4096 10 1.03e1 22(n3 + �) 13 6.12e0 14(n3 + �)

16,384 10 1.70e1 22(n3 + �) 13 5.48e0 14(n3 + �)

65,536 10 2.37e1 22(n3 + �) 12 5.38e0 13(n3 + �)

262,144 1024 12 8.37e1 26(n3 + �) 15 4.38e1 16(n3 + �)

4096 13 9.29e1 28(n3 + �) 16 4.33e1 17(n3 + �)

16,384 13 9.11e1 28(n3 + �) 15 4.30e1 16(n3 + �)

65,536 12 1.59e2 28(n3 + �) 15 4.36e1 16(n3 + �)

2,097,152 1024 16 1.14e3 34(n3 + �) 18 4.63e2 19(n3 + �)

4096 18 1.29e3 38(n3 + �) 19 4.85e2 20(n3 + �)

16,384 18 1.30e3 38(n3 + �) 18 4.54e2 19(n3 + �)

65,536 17 1.24e3 36(n3 + �) 16 3.91e2 17(n3 + �)

The reported timings are in seconds

8 Conclusions

In this paper we have shown how the discrete operator stemming from the discretization of
time-dependent PDEs can be described in terms of a single matrix equation. Our strategy
can be applied to any PDE of the form ut +L(u) = f whenever L(u) is a linear differential
operator involving only spatial derivatives, provided certain assumptions on the source term
f and the boundary conditions are fulfilled. On the other hand, no particular hypotheses on
the structure of the spatial domain Ω are needed.

Thematrix equation formulation of the discrete problem naturally encodes the separability
of the spatial and time derivatives of the underlying differential operator. This lets us employ
different strategies to deal with the spatial and time components of the algebraic problem and
combine them in a very efficient solution procedure. In particular, state-of-the-art projection
techniques have been proposed to tackle the spatial operator while the circulant-plus-low-
rank structure of the time discrete operator has been exploited to derive effective solution
schemes.

We have shown how to fully exploit the possible Kronecker structure of the stiffness
matrix. Very good results are obtained also when this structure is not capitalized on in the
solution process. Moreover, in Example 7.2 our method has been able to compute accurate
numerical solutions for a heat equation on a L-shaped spatial domain whose discretization
has been carried out by Q2 finite elements. This means that our approach can be successfully
applied also to problems which do not lead to a stiffness matrix that possesses a Kronecker
form as, e.g., in case of spatial domains Ω with a complex geometry or when sophisticated
discretization methods (in space) are employed. We believe that also elaborate space-time
adaptive techniques [11,29] can benefit from our novel approach. In particular, our routines
can be employed to efficiently address the linear algebra phase within adaptive schemes for
fixed time and space grids. Once the grids have been modified, our solvers can deal with
the discrete operator defined on the newly generated time-space meshes. Both EKSM and
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RKSM can be easily implemented and we believe they can be incorporated in state-of-the-art
software packages like, e.g., KARDOS [18].

As already mentioned, in the proposed approach the time step size τ is assumed to be
fixed. We plan to extend our algorithm to the case of adaptive time-stepping discretization
schemes in the near future.
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