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Abstract
Low-rank Krylov methods are one of the few options available in the literature to
address the numerical solution of large-scale general linear matrix equations. These
routines amount to well-known Krylov schemes that have been equipped with a cou-
ple of low-rank truncations to maintain a feasible storage demand in the overall
solution procedure. However, such truncations may affect the convergence properties
of the adopted Krylov method. In this paper we show how the truncation steps have
to be performed in order to maintain the convergence of the Krylov routine. Several
numerical experiments validate our theoretical findings.

Keywords Linear matrix equations · Krylov subspace methods · Low-rank
methods · Low-rank truncations
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1 Introduction

We are interested in the numerical solution of general linear matrix equations of the
form

p∑

i=1

AiXBT
i + C1C

T
2 = 0, (1.1)
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where Ai ∈ R
nA×nA , Bi ∈ R

nB×nB are large matrices that allow matrix-vector prod-
ucts Aiv, Biw to be efficiently computed for all i = 1, . . . , p, and any v ∈ R

nA ,
w ∈ R

nB . Moreover, C1, C2 are supposed to be of low rank, i.e., C1 ∈ R
nA×q , C2 ∈

R
nB×q , q � nA, nB . For sake of simplicity we consider the case of nA = nB ≡ n in

the following, so that the solution X ∈ R
n×n is a square matrix, but our analysis can

be applied to the rectangular case, with nA �= nB , as well.
Many common linear matrix equations can be written as in (1.1). For instance, if

p = 2 and B1 = A2 = In, In identity matrix of order n, we get the classical Sylvester
equations. Moreover, if B2 = A1, A2 = B1, and C1 = C2, the Lyapunov equation is
attained. These equations are ubiquitous in signal processing and control and systems
theory. See, e.g., [1–3]. The discretization of certain elliptic PDEs yields Lyapunov
and Sylvester equations as well. See, e.g., [4, 5].

Generalized Lyapunov and Sylvester equations1 amount to a Lyapunov/Sylvester
operator plus a general linear operator:

AXBT + BXAT +
p−2∑

i=1

NiXNT
i + CCT = 0, and

A1XB1 + A2XBT
2 +

p−2∑

i=1

NiXMT
i + C1C

T
2 = 0.

See, e.g., [6, 7]. These equations play an important role in model order reduction of
bilinear and stochastic systems, see, e.g., [6, 8, 9], and many problems arising from
the discretization of PDEs can be formulated as generalized Sylvester equations as
well. See, e.g., [4, 10, 11].

General multiterm linear matrix equations of the form (1.1) have been attract-
ing attention in the very recent literature because they arise in many applications
like the discretization of deterministic and stochastic PDEs, see, e.g., [12, 13],
PDE-constrained optimization problems [14], data assimilation [15], matrix regres-
sion problems arising in computational neuroscience [16], fluid-structure interaction
problems [11], and many more.

Even when the coefficient matrices Ai’s and Bi’s in (1.1) are sparse, the solution
X is, in general, dense and it cannot be stored for large scale problems. However, for
particular instances of (1.1), as the ones above, and under certain assumptions on the
coefficient matrices, a fast decay in the singular values of X can be proved and the
solution thus admits accurate low-rank approximations of the form S1S

T
2 ≈ X, S1,

S2 ∈ R
n×t , t � n, so that only the low-rank factors S1 and S2 need to be computed

and stored. See, e.g., [6, 7, 17, 18].
For the general multiterm linear equation (1.1), robust low-rank approximability

properties of the solution have not been established so far even though X turns out to
be numerically low-rank in many cases. See, e.g., [14, 15]. In the rest of the paper we
thus assume that the solution X to (1.1) admits accurate low-rank approximations.

1We note that also for p = 2, the equations we get when B1 �= In, A2 �= In are sometimes referred to as
generalized Sylvester (Lyapunov) equations. In this work the term generalized always refers to the case
p > 2 consisting of a Lyapunov/Sylvester operator plus a linear operator.
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The efficient computation of the low-rank factors S1 and S2 is the task of the so-
called low-rank methods and many different algorithms have been developed in the
last decade for both generalized and standard Lyapunov and Sylvester equations. A
non complete list of low-rank methods for such equations includes projection meth-
ods proposed in, e.g., [7, 13, 19–21], low-rank (bilinear) ADI iterations [6, 22, 23],
sign function methods [24, 25], and Riemannian optimization methods [26, 27]. We
refer the reader to [28] for a thorough presentation of low-rank techniques.

To the best of our knowledge, few options are present in the literature for the
efficient numerical solution of general equations (1.1): A greedy low-rank method
by Kressner and Sirković [29], and low-rank Krylov procedures (e.g., [6, 14, 15, 30])
which are the focus of this paper.

Krylov methods for matrix equations can be seen as standard Krylov subspace
schemes applied to the n2 × n2 linear system

Avec(X) = −vec(C1C
T
2 ), A :=

(
p∑

i=1

Bi ⊗ Ai

)
∈ R

n2×n2
, (1.2)

where ⊗ denotes the Kronecker product and vec : Rn×n → R
n2

is such that vec(X)

is the vector obtained by stacking the columns of the matrix X one on top of each
other.

These methods construct the Krylov subspace

Km(A, vec(C1C
T
2 )) = span

{
vec(C1C

T
2 ),Avec(C1C

T
2 ), . . . ,Am−1vec(C1C

T
2 )

}
,

(1.3)
and compute an approximate solution of the form vec(Xm) = Vmym ≈ vec(X),
where Vm = [v1, . . . , vm] ∈ R

n2×m has orthonormal columns and it is such that
Range(Vm) = Km(A, vec(C1C

T
2 )) with ym ∈ R

m. The vector ym can be computed
in different ways which depend on the selected Krylov method. The most common
schemes are based either on a (Petrov-)Galerkin condition on the residual vector or a
minimization procedure of the residual norm; see, e.g., [31].

The coefficient matrix A in (1.2) is never assembled explicitly in the construction
of Km(A, vec(C1C

T
2 )) but its Kronecker structure is exploited to efficiently perform

matrix-vector products. Moreover, to keep the memory demand low, the basis vectors
of Km(A, vec(C1C

T
2 )) must be stored in low-rank format. To this end, the Arnoldi

procedure to compute Vm has to be equipped with a couple of low-rank trunca-
tion steps. In particular, a low-rank truncation is performed after the “matrix-vector
product” Avm where vm denotes the last basis vector, and during the orthogo-
nalization process. See, e.g., [14, Section 3], [30, Section 2], [15, Section 3] and
Section 2.

In principle, the truncation steps can affect the convergence of the Krylov method
and the well-established properties of Krylov schemes (see, e.g., [31]) may no longer
hold. However, it has been numerically observed that Krylov methods with low-rank
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truncations often achieve the desired accuracy, even when the truncation strategy is
particularly aggressive. See, e.g., [14, 15].

In this paper we establish some theoretical foundations to explain the converge
of Krylov methods with low-rank truncations. In particular, the full orthogonaliza-
tion method (FOM) [31, Section 6] and the generalized minimal residual method
(GMRES) proposed in [32] are analyzed.

We assume that two different truncation steps are performed within our routine
and, to show that the convergence is maintained, we deal with these truncations in two
distinct ways. First, the truncation performed after the matrix-vector product Avm is
seen as an inexact matrix-vector product and results coming from [33] are employed.
The low-rank truncations that take place during the Gram-Schmidt procedure pro-
vide us with basis vectors with lower ranks and they are thus very advantageous from
a storage demand perspective. However, these truncations lead to a computed basis
that is no longer orthogonal in general. We propose to perform a second orthogo-
nalization step that takes place only in the space generated by the columns of the
low-rank matrix representing the newly generated basis vector. Since this subspace is
very low-dimensional in general, the extra orthogonalization step can be performed
exactly, namely no truncations are computed afterwards. In addition to retrieve the
orthogonality of the basis, our new procedure maintains the benefits in terms of
memory allocation coming from the previously computed low-rank truncations. The
additional orthogonalization leads to some modifications in the procedure adopted to
compute the vector ym and we show how the projected problem formulation can be
adjusted accordingly.

We would like to underline the fact that the schemes studied in this paper signif-
icantly differ from tensorized Krylov methods analyzed in, e.g., [34]. Indeed, our A
is not a Laplace-like operator in general, i.e., A �= ∑p

i=1 In1 ⊗ · · · ⊗ Ini−1 ⊗ Ai ⊗
Ini+1 ⊗ · · · ⊗ Inp .

The following is a synopsis of the paper. In Section 2 we review the low-rank
formulation of FOM and GMRES and their convergence is proved in Section 3. In
particular, in Section 3.1 and 3.2 the two different low-rank truncation steps are ana-
lyzed, respectively. Some implementation aspects of these low-rank truncations are
discussed in Section 4. It is well known that Krylov methods must be equipped with
effective preconditioning techniques in order to achieve a fast convergence in terms
of number of iterations. Due to some peculiar aspects of our setting, the precondition-
ers must be carefully designed as we discuss in Section 5. Short recurrence methods
like CG, MINRES and BICGSTAB can be very appealing in our context due to their
small memory requirements and low computational efforts per iteration. Even though
their analysis can be cumbersome since the computed basis is not always orthogonal
(e.g., the orthogonality may be lost in finite precision arithmetic), their application to
the solution of (1.1) is discussed in Section 6. Several numerical examples reported in
Section 7 support our theoretical analysis. The paper finishes with some conclusions
given in Section 8.

Throughout the paper we adopt the following notation. The matrix inner product is
defined as 〈X, Y 〉F = trace(Y T X) so that the induced norm is ‖X‖F = √〈X, X〉F .
In the paper we continuously use the identity vec(Y )T vec(X) = 〈X, Y 〉F so that
‖vec(X)‖2

2 = ‖X‖2
F . Moreover, the cyclic property of the trace operator allows
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for a cheap evaluation of matrix inner products with low-rank matrices. Indeed, if
Mi, Ni ∈ R

n×ri , ri � n, i = 1, 2, 〈M1N
T
1 , M2N

T
2 〉F = trace(N2M

T
2 M1N

T
1 ) =

trace((MT
2 M1)(N

T
1 N2)) and only matrices of small dimensions ri are involved in

such a computation. Therefore, even if it is not explicitly stated, we will always
assume that matrix inner products with low-rank matrices are cheaply computed
without assembling any dense n × n matrix. For the sake of simplicity we will omit
the subscript in ‖ · ‖F and write only ‖ · ‖.

The kth singular value of a matrix M ∈ R
m1×m2 is denoted by σk(M), where

the singular values are assumed to be ordered in a decreasing fashion. The con-
dition number of M is denoted by κ(M) = σ1(M)/σp(M), p = rank(M) =
arg mini{σi(M) �= 0}.

As already mentioned, In denotes the identity matrix of order n and the subscript
is omitted whenever the dimension of I is clear from the context. The ith canonical
basis vector of Rn is denoted by ei while 0m is a vector of length m whose entries are
all zero.

The brackets [·] are used to concatenate matrices of conforming dimensions. In
particular, a Matlab-like notation is adopted and [M, N] denotes the matrix obtained
by stacking M and N one next to the other whereas [M; N] the one obtained by
stacking M and N one of top of each other, i.e., [M; N] = [MT , NT ]T . The notation
diag(M, N) is used to denote the block diagonal matrix with diagonal blocks M and
N .

2 Low-rank FOM and GMRES

In this section we revise the low-rank formulation of FOM (LR-FOM) and GMRES
(LR-GMRES) for the solution of the multiterm matrix equation (1.1).

Low-rank Krylov methods compute an approximate solution Xm ≈ X of the form

vec(Xm) = x0 + Vmym. (2.1)

In the following we will always assume the initial guess x0 to be the zero vector
0n2 and in Remark 3.1 such a choice is motivated. Therefore, the m orthonormal

columns of Vm = [v1, . . . , vm] ∈ R
n2×m in (2.1) span the Krylov subspace (1.3) and

ym ∈ R
m.

One of the peculiarities of low-rank Krylov methods is that the basis vectors must
be stored in low-rank format. We thus write vj = vec(V1,jVT

2,j ) where V1,j , V2,j ∈
R

n×sj , sj � n, for all j = 1, . . . , m.
The basis Vm can be computed by a reformulation of the underlying Arnoldi

process (see, e.g., [31, Section 6.4]) that exploits the Kronecker structure of A
and the low-rank format of the basis vectors. In particular, at the mth iteration,
the n2-vector v̂ = Avm must be computed. For sparse matrices Ai, Bi , a naive
implementation of this operation costs O(nnz(A)) floating point operations (flops)
where nnz(A) denotes the number of nonzero entries of A. However, it can be
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replaced by the linear combination V̂ = ∑p

i=1

(
AiV1,j

) (
BiV2,j

)T , vec(V̂ ) = v̂,
where 2psj matrix-vector products with matrices of order n are performed. The
cost of such operation is O((maxi nnz(Ai) + maxi nnz(Bi))psj ) flops and it is
thus much cheaper than computing v̂ naively via the matrix-vector product by A
since nnz(A) = O(maxi nnz(Ai) · maxi nnz(Bi)), sj is supposed to be small
and p is in general moderate. A similar argumentation carries over when (some
of) the matrices Ai, Bi are not sparse but still allow efficient matrix vector
products.

Moreover, since

V̂ =
p∑

i=1

(
AiV1,j

) (
BiV2,j

)T = [A1V1,j , . . . , ApV1,j ][B1V2,j , . . . , BpV2,j ]T

= V̂1V̂
T
2 , V̂1, V̂2 ∈ R

n×psj ,

the low-rank format is preserved in the computation of V̂ . In order to avoid
an excessive increment in the column dimension psj of V̂1, V̂2, it is necessary
to exercise a column compression of the factors V̂1 and V̂2, i.e., the matrices
(V1, V2) = trunc(V̂1, I, V̂2, εA) are computed. With trunc(L, M, N, εtrunc) we
denote any routine that computes low-rank approximations of the product LMNT

with a desired accuracy of order εtrunc, so that, the matrices V1, V2 are such

that ‖V1
V T
2 − V̂1V̂

T
2 ‖/‖V̂1V̂

T
2 ‖ = εA with V1, V2 ∈ R

n×s , s ≤ psj . Algo-
rithm 1 illustrates a standard approach for such compressions that is based on thin
QR-factorizations and a SVD thereafter; see, e.g., [30, Section 2.2.1], and used in
the remainder of the paper. Some alternative truncation schemes are discussed in
Section 4.

The vector vec(V1
V T
2 ) ≈ v̂ returned by the truncation algorithm is then orthog-

onalized with respect to the previous basis vectors vec(V1,jVT
1,j ), j = 1, . . . , m.

Such orthogonalization step can be implemented by performing, e.g., the modi-
fied Gram-Schmidt procedure and the low-rank format of the quantities involved
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can be exploited and maintained in the result. The vector formulation of the
orthogonalization step is given by

ṽ = vec(V1
V T
2 ) −

m∑

j=1

(
vec(V1,jVT

2,j )
T vec(V1

V T
2 )

)
vec(V1,jVT

2,j ), (2.2)

and, since vec(V1,jVT
2,j )

T vec(V1
V T
2 ) = 〈V1,jVT

2,j ,
V1

V T
2 〉F , we can reformu-

late (2.2) as

Ṽ = V1
V T
2 −

m∑

j=1

hj,mV1,jVT
2,j

= [V1,V1,1, . . . ,V1,m]�m[V2,V2,1, . . . ,V2,m]T , hj,m = 〈V1,jVT
2,j ,

V1
V T
2 〉F ,

where �m = diag(Is , −h1,mIs1 , . . . , −hm,mIsm), vec(Ṽ ) = ṽ, and the m coefficients
hj,m are collected in the mth column of an upper Hessenberg matrix Hm ∈ R

m×m.
Obviously, the resulting Ṽ has factors with increased column dimension so that

a truncation of the matrix [V1,V1,1, . . . ,V1,m]�m[V2,V2,1, . . . ,V2,m]T becomes
necessary. In particular, if εorth is a given threshold, we compute

(Ṽ1, Ṽ2) = trunc([V1,V1,1, . . . ,V1,m], �m, [V2,V2,1, . . . ,V2,m], εorth). (2.3)

The result in (2.3) is then normalized to obtained the (m + 1)th basis vector, namely

V1,m+1 = Ṽ1/

√
‖Ṽ1Ṽ

T
2 ‖ and V2,m+1 = Ṽ2/

√
‖Ṽ1Ṽ

T
2 ‖. The upper Hessenberg

matrix Hm ∈ R
(m+1)×m is defined such that its square principal submatrix is given

by Hm and eT
m+1Hmem = hm+1,m := ‖Ṽ1Ṽ

T
2 ‖.

The difference between FOM and GMRES lies in the computation of the vector
ym in (2.1). In FOM a Galerkin condition on the residual vector

vec(C1C
T
2 ) + Avec(Xm) ⊥ Km(A, vec(C1C

T
2 )), (2.4)

is imposed. If no truncation steps are performed during the Arnoldi procedure, the
Arnoldi relation

AVm = HmVm + hm+1,mvec(V1,m+1VT
2,m+1)e

T
m, (2.5)

is fulfilled and it is easy to show that imposing the Galerkin condition (2.4) is
equivalent to solving the m × m linear system

Hmy
f om
m = βe1, β = ‖C1C

T
2 ‖, (2.6)

1389Numerical Algorithms (2021) 88:1383–1417



for ym = y
f om
m . Moreover, in the exact setting where (2.5) holds, the norm of the

residual vector vec(C1C
T
2 ) + Avec(Xm) can be cheaply computed as

‖vec(C1C
T
2 ) + Avec(Xm)‖ = hm+1,m|eT

my
f om
m |.

See, e.g., [31, Proposition 6.7].
In GMRES, the vector ym = y

gm
m is computed by solving a least squares problem

y
gm
m = arg min

ym

‖vec(C1C
T
2 ) + AVmym‖,

which corresponds to the Petrov-Galerkin orthogonality condition

vec(C1C
T
2 ) + Avec(Xm) ⊥ A · Km(A, vec(C1C

T
2 )). (2.7)

If (2.5) holds, y
gm
m can be computed as

y
gm
m = arg min

ym

‖βe1 + Hmym‖ (2.8)

By following, e.g., [31, Section 6.5.3] the vector y
gm
m and the related residual norm

can be computed at low cost.
If at the mth iteration the residual norm ‖vec(C1C

T
2 ) + AVmym‖ is sufficiently

small2, we recover the solution Xm. Clearly, the full Xm is not constructed explicitly
as this is a large, dense matrix. However, since we have assumed that the solution
X to (1.1) admits accurate low-rank approximations, we can compute low-rank fac-
tors S1, S2 ∈ R

n×t , t � n, such that S1S
T
2 ≈ X. Also this operation can be

performed by exploiting the low-rank format of the basis vectors. In particular, if
ϒ = diag((eT

1 ym)Is1 , . . . , (e
T
mym)Ism), then

(S1, S2) = trunc([V1,1, . . .V1,m], ϒ, [V1,2, . . .V2,m], ε). (2.9)

The low-rank FOM and GMRES procedures are summarized in Algorithm 2. For
sake of simplicity, we decide to collect the two routines in the same pseudo-algorithm
as they differ only in the computation of ym and the convergence check.

2ym = y
f om
m or ym = y

gm
m .
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At each iteration step m of Algorithm 2 we perform three low-rank truncations3

and these operations substantially influence the overall solution procedure. If the
truncation tolerances εA and εorth are chosen too large, the whole Krylov method
my break down. Therefore, in the following sections we discuss how to adaptively
choose the truncation tolerances εA and εorth along with a novel procedure which
ensures the orthogonality of the computed, low-rank basis. Moreover, the low-rank
truncation does have its own computational workload which can be remarkable, espe-
cially if the ranks of the basis vectors involved is quite large. In Section 4 we discuss
some computational appealing alternatives to Algorithm 1.

3 A convergence result

In this section we show that the convergence of LR-FOM and LR-GMRES is guar-
anteed if the thresholds εA and εorth for the low-rank truncations in lines 4 and 10

3One after the application of A in line 4, and two during the orthogonalization procedure in line 10, at the
end of each of the two loops of the modified Gram-Schmidt method.
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of Algorithm 2 are properly chosen and if a particular procedure which guarantees
the orthogonality of the basis is adopted.

The truncation that takes place in line 17, after the iterative process terminated, to
recover the low-rank factors of the approximate solution is not discussed. Indeed, this
does not affect the convergence of the Krylov method and it is justified by assuming
that the exact solution X admits low-rank approximations.

3.1 Inexact matrix-vector products

We start by analyzing the truncation step in line 4 of Algorithm 2 assuming, for the
moment, that the one in line 10 is not performed. In this way the generated basis
Vm is ensured to be orthogonal. In Section 3.2 we will show how to preserve the
orthogonality of the constructed basis when the truncations in line 10 of Algorithm 2
are performed so that the results we show here still hold.

The low-rank truncation performed in line 4 of Algorithm 2 can be understood as
an inexact matrix-vector product with A. Indeed, at the mth iteration, we can write

V̂1V̂
T
2 = V1 V T

2 + Em,

where Em is the matrix discarded when trunc(V̂1, I, V̂2, εA) is applied so that
‖Em‖/‖V̂1V̂

T
2 ‖ ≤ εA. Therefore, we have

vec(V1 V T
2 ) = Avec(V1,mVT

2,m)−vec(Em), ‖vec(Em)‖ ≤ εA ·‖Avec(V1,mVT
2,m)‖,

and the vector vec(V1 V T
2 ) can thus be seen as the result of an inexact matrix-vector

product by A.
Following the discussion in [33], the Arnoldi relation (2.5) must be replaced by

the inexact counterpart

AVm − [vec(E1), . . . , vec(Em)] = VmHm + hm+1,mvec(V1,m+1VT
2,m+1)e

T
m, (3.1)

and Range(Vm) is no longer a Krylov subspace generated by A.
The vectors y

f om
m and y

gm
m can be still calculated as in (2.6) and (2.8), respectively,

but these are no longer equivalent to imposing the Galerkin and Petrov-Galerkin
conditions (2.4)–(2.7) since the Arnoldi relation (2.5) no longer holds; different
constraints must be taken into account.

Proposition 3.1 (See [33]) Let (3.1) hold and define Wm = AVm −
[vec(E1), . . . , vec(Em)]. If ygm

m is computed as in (2.8), then q
gm
m := Wmy

gm
m is such

that

q
gm
m = arg min

q∈Range(Wm)
‖vec(C1C

T
2 ) + q‖.

Similarly, if yf om
m is computed as in (2.6), then q

f om
m := Wmy

f om
m is such that

vec(C1C
T
2 ) + q

f om
m ⊥ Range(Vm).

Consequently, Hm is not a true Galerkin projection of A onto Range(Vm). One
may want to compute the vectors y

f om
m and y

gm
m by employing the true projection
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Tm := V T
m AVm = Hm+V T

m [vec(E1), . . . , vec(Em)] in place of Hm in (2.6)–(2.8) so
that the reduced problems represent a better approximation (cf. [35]) of the original
equation and the orthogonality conditions imposed are in terms of the true residual.
However, the computation of Tm requires to store the matrix [vec(E1), . . . , vec(Em)]
and this is impracticable as the benefits in terms of memory demand coming from
the low-rank truncations are completely lost due to the allocation of both Vm and
[vec(E1), . . . , vec(Em)]. A different option is to store the matrix AVm and compute
an explicit projection of A onto the current subspace, but also this strategy leads to an
unfeasible increment in the memory requirements of the overall solution process as
the storage demand grows of a factor p. Therefore, in all the numerical experiments
reported in Section 7, the matrix Hm arising from the orthonormalization procedure
is employed in the computation of y

f om
m and y

gm
m .

If (3.1) holds and vec(Xm) = Vmym is the approximate solution to (1.2) computed
by projection onto Range(Vm), then, at the mth iteration, the true residual vector can
be expressed as

rm = vec(C1C
T
2 ) + Avec(Xm) = vec(C1C

T
2 ) + AVmym = r̃m − [vec(E1), . . . , vec(Em)]ym, (3.2)

where r̃m is the computed residual vector.
In [33, Section 4] it has been shown that the residual gap δm := ‖rm− r̃m‖ between

the true residual and the computed one can be bounded by

δm ≤
m∑

j=1

‖Ej‖ · |eT
j ym|.

Since |eT
j ym| decreases as the the iterations proceed (see, e.g., [33, Lemma 5.1–

5.2]), ‖Em‖ is allowed to increase while still maintaining a small residual gap and
preserving the convergence of the overall solution process. This phenomenon is often
referred to as relaxation.

Theorem 3.1 (See [33]) Let ε > 0 and let r
gm
m := vec(C1C

T
2 ) + AVmy

gm
m be the

true GMRES residual after m iterations of the inexact Arnoldi procedure. If for every
k ≤ m,

‖Ek‖ ≤ σm(Hm)

m

1

‖̃rgm

k−1‖
ε, (3.3)

then ‖rgm
m − r̃

gm
m ‖ ≤ ε. Moreover, if

‖Ek‖ ≤ 1

mκ(Hm)

1

‖̃rgm

k−1‖
ε, (3.4)

then ‖(Vm+1Hm)T r
gm
m ‖ ≤ ε.

Similarly, if r
f om
m := vec(C1C

T
2 ) + AVmy

f om
m is the true FOM residual after m

iterations of the inexact Arnoldi procedure, and if for every k ≤ m,

‖Ek‖ ≤ σm(Hm)

m

1

‖̃rgm

k−1‖
ε, (3.5)

then ‖rf om
m − r̃

f om
m ‖ ≤ ε and ‖V T

m r
f om
m ‖ ≤ ε.
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The quantities involved in the estimates (3.3), (3.4) and (3.5) are not available at
iteration k < m making the latter of theoretical interest only. To have practically
usable truncation thresholds, the quantities in (3.3), (3.4) and (3.5) must be approx-
imated with computable values. Following the suggestions in [33], we can replace
m by the maximum number mmax of allowed iterations, σmmax(Hmmax

) is replaced
by σn2(A), and we approximate σ1(Hmmax

) by σ1(A) when computing κ(Hmmax
)

in (3.4). The extreme singular values of A can be computed once and for all at the
beginning of the iterative procedure, e.g., by the Lanczos method that must be care-
fully designed to avoid the construction of A and to exploit its Kronecker structure.
Approximations of σ1(A) and σn2(A) coming, e.g., from some particular features of
the problem of interest, can be also employed. To conclude, we propose to use the
following practical truncation thresholds ε

(k)

A in line 4 of Algorithm 2 in place of εA:

‖Ek‖ ≤ ε
(k)

A =
⎧
⎨

⎩

c1
mmax

1
‖̃rgm

k−1‖
ε, c1 ≈ σn2(A),

1
mmaxc2

1
‖̃rgm

k−1‖
ε, c2 ≈ κ(A),

(3.6)

for LR-GMRES, and

‖Ek‖ ≤ ε
(k)

A = c1

mmax

1

‖̃rgm

k−1‖
ε, (3.7)

for LR-FOM.
Allowing ‖Ek‖ to grow is remarkably important in our setting, especially for the

memory requirements of the overall procedure. Indeed, if the truncation step in line 4
of Algorithm 2 is not performed, the rank of the basis vectors increases very quickly
as, at the mth iteration, we have

rank(V1,mVT
2,m) ≤ qpm.

Therefore, at the first iterations the rank of the basis vectors is low by construc-
tion and having a very stringent tolerance in the computation of their low-rank
approximations is not an issue. When the iterations proceed, the rank of the basis
vectors increases but, at the same time, the increment in the thresholds for computing
low-rank approximations of such vectors leads to more aggressive truncations with
consequent remarkable gains in the memory allocation.

The interpretation of the truncation in line 4 of Algorithm 2 in terms of an inex-
act Krylov procedure has been already proposed in [36] for the more general case of
GMRES applied to (1.2) where A is a tensor and the approximate solution is repre-
sented in the tensor-train (TT) format. However, also in the tensor setting, the results
in Theorem 3.1 hold if and only if the matrix Vm has orthonormal columns. In gen-
eral, the low-rank truncation in line 10 can destroy the orthogonality of the basis. In
the next section we show that Vm has orthogonal columns if the truncation step is
performed in an appropriate way.

We first conclude this section with a couple of remarks.

Remark 3.1 We have always assumed the initial guess x0 ∈ R
n2

in (2.1) to be zero.
This choice is motivated by the discussion in, e.g., [33, Section 3], [37], where the
authors show how this is a good habit in the framework of inexact Krylov methods.
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Remark 3.2 Since

‖rm‖ ≤ ‖̃rm‖ +
m∑

j=1

‖Ej‖ · |eT
j ym| ≤ ‖̃rm‖ +

m∑

j=1

ε
(j)

A · |eT
j ym|,

where ε
(j)

A denotes one of the values in (3.6) and (3.7) depending on the selected

procedure, the quantity ‖̃rm‖+∑m
j=1 ε

(j)

A ·|eT
j ym| must be computed to have a reliable

stopping criterion in Algorithm 2.

3.2 An orthogonality safeguard

In this section we show how to preserve the orthogonality of the basis while main-
taining the benefits in terms of memory requirements coming from the low-rank
truncations performed during the Gram-Schmidt procedure in line 10 of Algorithm 2.
Thanks to the orthogonality of the basis Vm, the results presented in Section 3.1 are
still valid.

At the mth iteration, the (m + 1)th basis vector is computed by per-
forming (2.3) and then normalizing the result. In particular, if �m =
diag(Is , −h1,mIs1 , . . . , −hm,mIsm), then

(Ṽ1, Ṽ2) = trunc([V1,V1,1, . . . ,V1,m], �m, [V2,V2,1, . . . ,V2,m], εorth),
that is

Ṽ1Ṽ
T
2 + F1,mFT

2,m = V1
V T
2 −

m∑

j=1

hj,mV1,jVT
2,j , (3.8)

where F1,mFT
2,m is the matrix discarded during the application of Algorithm 1.

If Q
(m)
1 R1 = [V1,V1,1, . . . ,V1,m], Q

(m)
2 R2 = [V2,V2,1, . . . ,V2,m] denote the

skinny QR factorizations performed during trunc(·) and U	WT = R1�mRT
2 is

the SVD with U = [u1, . . . , usm ], W = [w1, . . . , wsm], 	 = diag(σ1, . . . , σsm),
sm :=s + ∑m

j=1 sj , then we consider the partitions

U = [Ukm, Û ], W = [Wkm, Ŵ ], 	 = diag(	km, 	̂),

where Ukm , Wkm , 	km contain the leading km singular vectors and singular values,

respectively, and km is the smallest index such that
√∑sm

i=km+1 σ 2
i ≤ εorth‖	‖. We

can write

Ṽ1 = Q
(m)
1 Ukm	

1
2
km

, Ṽ2 = Q
(m)
2 Wkm	

1
2
km

, F1,m = Q
(m)
1 Û	̂

1
2 , F2,m = Q

(m)
2 Ŵ 	̂

1
2 ,

and, since Q
(m)
1 , Q

(m)
2 , W and U are orthogonal matrices,

(Q
(m)
1 Ukm)T F1,mFT

2,m(Q
(m)
2 Wkm) ≡ 0.

However, the rank truncation destroys the orthogonality of the expanded basis, in
general, so that 〈V1,jVT

2,j , Ṽ1Ṽ
T
2 〉F �= 0 for all j = 1, . . . , m.
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To retrieve the orthogonality of the basis we propose to perform an extra Gram-
Schmidt step without rank truncation in order to reorthogonalize Ṽ1Ṽ

T
2 with respect to

Vm = span{Q(m)
1 Ukm(Q

(m)
1 Ukm)T V1,jVT

2,j (Q
(m)
2 Wkm)(Q

(m)
2 Wkm)T , j = 1, . . . , m}.

(3.9)
Since the vectors vec(Ṽ1Ṽ

T
2 ) and vec(Q(m)

1 Ukm(Q
(m)
1 Ukm)T V1,jVT

2,j (Q
(m)
2 Wkm)

(Q
(m)
2 Wkm)T ) both live in Range(Q(m)

2 Wkm) ⊗ Range(Q(m)
1 Ukm), the extra orthog-

onalization step can be carefully implemented in order to involve only matrices of
order km. Indeed, if {
(m)

j , j = 1, . . . , tm}, 

(m)
j ∈ R

km×km , tm ≤ m, is an orthonor-

mal basis for span{(Q(m)
1 Ukm)T V1,jVT

2,j (Q
(m)
2 Wkm), j = 1, . . . , m}, then we have

Vm = span{Q(m)
1 Ukm


(m)
j (Q

(m)
2 Wkm)T }j=1,...,tm and we can thus write

where

so that the overall workload of Algorithm 2 does not remarkably increase. Notice that
also the computation of the matrices 


(m)
j ’s can be implemented such that only the

km×km matrices (Q
(m)
1 Ukm)T V1,jVT

2,j (Q
(m)
2 Wkm) are manipulated. Morevover, such

a reorthogonalization procedure does not increase the ranks of the results because

We must mention that if dim(Vm) = k2
m, then . However, such a

scenario is very unlikely since tm ≤ m and m � km in general; see, e.g., Section 7.
Moreover, if the dimension of Vm turns out to be k2

m, we can always make a step
back and consider a larger value of km ≤ sm in the construction of Ṽ1, Ṽ2 to be able
to compute . Notice that we can always find such a km since for km = sm

we can set and this is orthogonal to V1,jVT
2,j for all j = 1, . . . , m

by construction.
By defining , then

V1,m+1VT
2,m+1 has unit norm and it is orthogonal with respect to V1,jVT

2,j for all

j = 1, . . . , m. Indeed, each V1,jVT
2,j can be written as

V1,jVT
2,j = V1,jVT

2,j − Q
(m)
1 Ukm(Q

(m)
1 Ukm)T V1,jVT

2,j (Q
(m)
2 Wkm)(Q

(m)
2 Wkm)T

+Q
(m)
1 Ukm(Q

(m)
1 Ukm)T V1,jVT

2,j (Q
(m)
2 Wkm)(Q

(m)
2 Wkm)T ,

and, since

vec
(
V1,jVT

2,j − Q
(m)
1 Ukm (Q

(m)
1 Ukm )T V1,jVT

2,j (Q
(m)
2 Wkm )(Q

(m)
2 Wkm )T

)
⊥ Range(Q(m)

2 Wkm )⊗Range(Q(m)
1 Ukm ),
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we have

The overall procedure is illustrated in Algorithm 3. To preserve the orthonormality
of the computed basis, Algorithm 3 should be used in line 10 of Algorithm 2 in place
of Algorithm 1.

We thus have shown the following proposition.

Proposition 3.2 The matrix Vm+1 = [vec(V1,1VT
2,1), . . . , vec(V1,m+1VT

2,m+1)] ∈
R

n2×(m+1) computed by performing m iterations of Algorithm 2, where the low-rank
truncations in line 10 are carried out using Algorithm 3, has orthonormal columns.

We would like to underline that the matrices Ṽ1Ṽ
T
2 and F1,mFT

2,m we compute

are block-orthogonal to each other, i.e., (Ṽ1Ṽ
T
2 )T F1,mFT

2,m = 0, see, e.g., [38], an
not only orthogonal with respect to the matrix inner product 〈·, ·〉F . This property
is due to the QR-SVD-based truncation we perform which directly provides us with
an orthonormal basis for the space Range(Q(m)

2 Wkm) ⊗ Range(Q(m)
1 Ukm) where the

second, exact orthogonalization step is carried out. Further computational efforts may
be necessary if different truncation strategies are adopted.
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The matrix Ṽ1Ṽ
T
2 = Q

(m)
1 Ukm	km(Q

(m)
2 Wkm)T can be numerically orthogonal to

V1,jVT
2,j , j = 1, . . . , m, if εtrunc is very small and span(Ṽ1Ṽ

T
2 ) ≈ span(Ṽ1Ṽ

T
2 +

F1,mFT
2,m). In this case, the second orthogonalization step is no longer necessary.

Therefore, once the matrices (Q
(m)
1 Ukm)T V1,jVT

2,jQ
(m)
2 Wkm in line 4 of Algorithm 3

are computed, we suggest to calculate 〈	k, (Q
(m)
1 Ukm)T V1,jVT

2,jQ
(m)
2 Wkm〉F and

perform the extra orthogonalization step only with respect those matrices for which
a loss of orthogonality is detected.

We would like to mention that if the procedure presented in this section is not
performed, the computed basis is not guaranteed to be orthogonal and the theory
developed in, e.g., [39] may be exploited to estimate the distance of Vm to orthog-
onality and such a value can be incorporated in the bounds (3.3), (3.4) and (3.5) to
preserve the convergence of the overall iterative scheme.

In spite of Proposition 3.2, in finite precision arithmetic the computed basis Vm+1
may fall short of being orthogonal and the employment of a modified Gram-Schmidt
procedure with reorthogonalization—as outlined in Algorithm 2—is recommended.
See, e.g., [40, 41] for some discussions about the loss of orthogonality in the Gram-
Schmidt procedure.

The truncations performed during the Gram-Schmidt procedure consist in another
source of inexactness that must be taken into account. Moreover, also the exact
reorthogonalization step in Algorithm 3 introduces an extra factor in the Arnoldi
relation (3.1).

Collecting all the steps presented in this section, we can write

so that the Arnoldi relation (3.1) becomes

AVm−[vec(E1), . . . , vec(Em)] = VmHm+hm+1,mvec(V1,m+1VT
2,m+1)e

T
m

+ [vec(F1,1F
T
2,1), . . . , vec(F1,mFT

2,m)]+Tm, (3.10)

where the matrix Tm ∈ R
n2×m takes into account the extra orthogonalization step in

Algorithm 3 and its j th column is given by

(3.11)
Therefore, we can write

AVm − [vec(E1 + F1,1F
T
2,1), . . . , vec(Em + F1,mFT

2,m)] = VmHm + Tm

+hm+1,mvec(V1,m+1VT
2,m+1)e

T
m,

(3.12)
and in the next section we show how to deal with the extra terms F1,kF

T
2,k and Tm.

In particular, the latter can be handled by modifying the inner problem formulation
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(2.6)–(2.8) whereas one can derive results similar to the ones in Theorem 3.1 to obtain
estimates for ‖Ek + F1,kF

T
2,k‖.

3.2.1 Modified inner problem formulations

Since we are still looking for a solution of the form vec(Xm) = Vmym, by using the
inexact Arnoldi relation (3.12) we can write

rm = Avec(Xm) + vec(C1C
T
2 ) = AVmym + vec(C1C

T
2 )

= (VmHm + Tm)ym + vec(C1C
T
2 )

+
(
hm+1,mvec(V1,m+1VT

2,m+1)e
T
m + [vec(E1 + F1,1F

T
2,1), . . . , vec(Em + F1,mFT

2,m)]
)

ym.

If we compute y
f om
m as the solution of the linear system

V T
m (VmHm + Tm) y

f om
m = −V T

m vec(C1C
T
2 ),

namely (
Hm + V T

m Tm

)
y

f om
m = −βe1, (3.13)

then we are not imposing a Galerkin condition on the residual but a result similar to
the one in Proposition 3.1 can be stated. Similarly, if we compute

ygm = arg min ‖(Vm+1Hm + Tm)ym + vec(C1C
T
2 )‖, (3.14)

i.e., y
gm
m is the solution of the normal equations

(
Vm+1Hm + Tm

)T (
Vm+1Hm + Tm

)
y

gm
m = − (

Vm+1Hm + Tm

)T vec(C1C
T
2 ).
(3.15)

Proposition 3.3 Let (3.12) hold and define Wm = AVm − [vec(E1 +
F1,1F

T
2,1), . . . , vec(Em + F1,mFT

2,m)]. If y
gm
m is computed as in (3.14) then q

gm
m :=

Wmy
gm
m is such that

q
gm
m = arg min

q∈Range(Wm)
‖vec(C1C

T
2 ) + q‖.

Similarly, if yf om
m is computed as in (3.13) then q

f om
m := Wmy

f om
m is such that

vec(C1C
T
2 ) + q

f om
m ⊥ Range(Vm).

Proof The proof follows exactly the same steps as the proof of [33, Proposition
3.2–3.3].

To make the overall scheme feasible also in terms of number of operations, the
computation of the vectors y

f om
m and y

gm
m in (3.13)–(3.14) should not remarkably

increase the workload of the iterative procedure. To this end, we first show that the
matrix V T

m Tm in (3.13) can be computed at reasonable extra cost.
The j th column of Tm, j ≤ m, is given in (3.11) and we can thus write
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Following the same argument of Section 3.2, we write

vec
(
V1,kVT

2,k

)
= vec

(
V1,kVT

2,k − Q
(j)

1 Ukj
(Q

(j)

1 Ukj
)T V1,kVT

2,k(Q
(j)

2 Wkj
)(Q

(j)

2 Wkj
)T

)

+vec
(
Q

(j)

1 Ukj
(Q

(j)

1 Ukj
)T V1,kVT

2,k(Q
(j)

2 Wkj
)(Q

(j)

2 Wkj
)T

)
, k = 1, . . . , m,

so that

Recalling that span{
(j)
i , i = 1, . . . , tj } = span{(Q(j)

1 Ukj
)T V1,iVT

2,i (Q
(j)

2 Wkj
),

i = 1, . . . , j}, then there exists a matrix Rj ∈ R
tj ×j such that

[vec(
(j)

1 ), . . . , vec(
(j)
tj

)]Rj =
[
vec

(
(Q

(j)

1 Ukj
)T V1,1VT

2,1(Q
(j)

2 Wkj
)
)

, . . . , vec
(
(Q

(j)

1 Ukj
)T V1,jVT

2,j (Q
(j)

2 Wkj
)
)]

.

If the matrices (Q
(j)

1 Ukj
)T V1,iVT

2,i (Q
(j)

2 Wkj
), i = 1, . . . , j, are linearly inde-

pendent, the relation above corresponds to a skinny QR factorization and tj =
j .

We can write

which means that the upper triangular part of V T
m Tm can be easily computed at low

cost. Moreover, it easy to show that the first subdiagonal of V T
m Tm is zero. Indeed,

for all j = 1, . . . , m − 1, V1,j+1VT
2,j+1 = Q

(j)

1 Ukj
�kj

(Q
(j)

2 Wkj
)T so that

Q
(j)

1 Ukj
(Q

(j)

1 Ukj
)T V1,j+1VT

2,j+1(Q
(j)

2 Wkj
)(Q

(j)

2 Wkj
)T = V1,j+1VT

2,j+1,

and V1,j+1V2,j+1 is orthogonal to span{
(j)
i }i=1,...,tj by construction. We are thus

left with computing the last m − j − 1 entries of V T
m Tmej . These entries have to be

explicitly computed via

This operation does not significantly increase the computational efforts of the overall
procedure because it amounts to m−j−1 matrix inner products with kj ×kj matrices.
This task has to be performed for all of the m columns of V T

m Tm so that we have to
compute m · (m − j − 1) matrix inner products with small dimensional matrices.
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However, the computational cost can be reduced by exploiting the recursive structure
of V T

m Tm, namely

so that only the vector vec(V1,mVT
2,m)T Tm−2 has to be computed at the mth iteration.

From a storage perspective, the computation of V T
m Tm first requires the allocation

of Q
(j)

1 Ukj
, Q

(j)

2 Wkj
for all j = 1, . . . , m. This does not remarkably increase the

memory requirements of the overall procedure if the basis vectors are represented by
means of a LDU format, namely V1,jVT

2,j = Q
(j)

1 Ukj
�j (Q

(j)

2 Wkj
)T . Additionally,

the matrices have to be stored for all j = 1, . . . , m, but
this introduces again reasonable extra costs since kj is supposed to be small.

If y
gm
m is computed as in (3.14), the exact same procedure as before can be applied

to compute the terms HT
mV T

m+1Tm and T T
m vec(C1C

T
2 ) = βT T

m V1 in the normal equa-
tions formulation (3.15). A similar approach can be also adopted to compute the
symmetric matrix T T

m Tm whose (�, j)th entry is given by

3.2.2 Dealing with further inexactness

In contrast to what we have shown in the previous section for the term Tm in
(3.12) that can be included in the formulation of the projected problem, the matrix
[vec(F1,1F

T
2,1), . . . , vec(F1,mFT

2,m)] is completely neglected to fully take advantage
of the low-rank truncations we perform. On the other hand, by disregarding such term
we introduce a further inexactness in our scheme.

Since

‖Ek + F1,kF
T
2,k‖ ≤ ‖Ek‖ + ‖F1,kF

T
2,k‖,

it may be interesting to study how to distribute the allowed inexactness between the
truncation steps.

Since the rank of the iterates grows less dramatically during the orthogonalization
step compared to what happens after the multiplication with A, we allow 2‖Ek‖ to
grow in accordance with Theorem 3.1, while ‖F1,kF

T
2,k‖ is maintained sufficiently

small. Indeed, the matrix [V1,V1,1, . . . ,V1,m]�m[V2,V2,1 . . . ,V2,m]T in line 10 of
Algorithm 2 is, in general, very rank-deficient and a significant reduction in the num-
ber of columns to be stored takes place even when the trunc function is applied
with a small threshold.

In particular, at the mth iteration, we can set

εorth = min{‖Ek‖, ε/(mmax)}, (3.16)
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where ε is the desired accuracy of the final solution in terms of relative residual norm.
This means that ‖Ek + F1,kF

T
2,k‖ fulfills the estimates in (3.3), (3.4) and (3.5) and

the convergence is thus preserved.
The true relative residual norm can be written as

rm = r̃m − [vec(E1 + F1,1F
T
2,1), . . . , vec(Em + F1,mFT

2,m)]ym,

and following the discussion in Remark 3.2 we have

‖rm‖ ≤ ‖̃rm‖ +
m∑

j=1

‖Ej‖ · |eT
j ym| +

m∑

j=1

‖F1,j F
T
2,j‖ · |eT

j ym| ≤ ‖̃rm‖ +
m∑

j=1

(
ε
(j)
A + m

mmax
ε

)
|eT

j ym|,
(3.17)

so that the right-hand side in the above expression must be computed to check
convergence.

We would like to point that the norm of the computed residual ‖̃rm‖ can no longer
be calculated as illustrated in Section 2 since the formulation of the inner problem is
now changed. See Section 3.2.1. For LR-FOM we can write

‖̃rm‖2 = ‖(VmHm + Tm + hm+1,mvec(V1,m+1VT
2,m+1)e

T
m)y

f om
m + vec(C1C

T
2 )‖2

= ‖Vm

=0︷ ︸︸ ︷
((Hm + V T

m Tm)y
f om
m + V T

m vec(C1C
T
2 ))

+((I − VmV T
m )Tm + hm+1,mvec(V1,m+1VT

2,m+1e
T
m)y

f om
m ‖2

= (y
f om
m )T T T

m Tmy
f om
m − (y

f om
m )T T T

m VmV T
m Tmy

f om
m

+2hm+1,m · (eT
my

f om
m )(y

f om
m )T T T

m vec(V1,m+1VT
2,m+1) + h2

m+1,m · (eT
my

f om
m )2,

so that also at the mth LR-FOM iteration the matrices T T
m Tm and the vector

T T
m vec(V1,m+1VT

2,m+1) have to be computed. Similarly, for LR-GMRES, we have

‖̃rm‖2 = ‖(Vm+1Hm + Tm)y
gm
m + vec(C1C

T
2 )‖2

= (y
gm
m )T

=0︷ ︸︸ ︷
((Vm+1Hm + Tm)T (Vm+1Hm + Tm)y

gm
m + (Vm+1Hm+Tm)T vec(C1C

T
2 ))

+vec(C1C
T
2 )T (Vm+1Hm + Tm)y

gm
m + β2

= β(eT
1 Hm + V T

1 Tm)y
gm
m + β2.

4 Alternative truncation strategies

As we discussed above, to keep the low-rank Krylov methods computationally fea-
sible, the quantities involved in the solution process have to be compressed so that
their rank, i.e., the sizes of the low-rank factors, is kept small. Let NMLT with fac-
tors N, L ∈ R

n×m, M ∈ R
m×m, be the quantity to be compressed, and assume

that rank(NMLT ) = m. So far we have used a direct approach using QR and SVD
decompositions in Algorithms 1 and 3 which essentially computes a partial SVD of
NMLT corresponding to all m nonzero singular values. This whole procedure relies
heavily on dense linear algebra computations and can, hence, become quite expen-
sive. This is especially due to the QR decompositions which will be expensive if the
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rectangular factors N, L have many columns. Moreover, if NMLT has a very small
numerical numerical rank, say k � m, then Algorithms 1 and 3 will generate a sub-
stantial computational overhead because m− k singular vectors will be thrown away.
Nevertheless, thanks to the complete knowledge of all singular values, this proce-
dure is able to correctly assess the truncation error in the Frobenius norm so that the
required accuracy of the truncation is always met.

Following the discussion in, e.g., [14, 42, 43], a more economical alternative
could be to compute only a partial SVD NMLT ≈ Uk	kW

T
k associated to the

k singular values that are larger than the given truncation threshold. If also the
(k + 1)th singular value is computed, one has the truncation error in the 2-norm:
‖NMLT − Uk	kW

T
k ‖2 ≤ σk+1(NMLT ).

Obviously, the results of the previous section are still valid if this form of
truncation is used.

Approximations of the dominant singular values and corresponding singular vec-
tors can be computed by iterative methods for large-scale SVD computations as, e.g.,
Lanczos bidiagonalization [44–46] or Jacobi-Davidson methods [47]. To apply these
methods, only matrix vector products N(M(LT x)) and L(MT (NT x)) are required.
For achieving the compression goal one could, e.g., compute kmax ≥ k triplets and,
if required, neglect any singular vectors corresponding to singular value below a cer-
tain threshold. However, we do in general not know in advance how many singular
values will be larger than a given threshold. Picking a too small value of kmax can
lead to very inaccurate truncations that do not satisfy the required thresholds (3.3)–
(3.5), and (3.16) and, therefore, endanger the convergence of the low-rank Krylov
method. Some of the aforementioned iterative SVD methods converge theoretically
monotonically, i.e., the singular values are found in a decreasing sequence starting
with the largest one. Hence, the singular value finding iteration can be kept running
until a sufficiently small singular value approximation, e.g., σ̃ < εtrunc‖NMLT ‖2,
is detected. In the practical situations within low-rank Krylov methods, the neces-
sary number of singular triplets can be O(102) or larger and it may be difficult to
ensure that the iterative SVD algorithms do not miss some of the largest singular val-
ues or that no singular values are detected several times. Due to the sheer number
of occurrences where compression is required in Algorithm 2, preliminary tests with
iterative SVD methods did not yield any substantial savings compared to the standard
approach used in Algorithms 1 and 3.

Compression algorithms based on randomized linear algebra might offer further
alternative approaches with reduced computational times. See, e.g., [48–50].

5 Preconditioning

It is well-known that Krylov methods require preconditioning in order to obtain a
fast convergence in terms of number of iterations and low-rank Krylov methods are
no exception. However, due to the peculiarity of our framework, the preconditioner
operator must possess some supplementary features with respect to standard precon-
ditioners for linear systems. Indeed, in addition to be effective in reducing the number
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of iterations at a reasonable computational cost, the preconditioner operator must not
dramatically increase the memory requirements of the solution process.

Given a nonsingular operator P or its inverse P−1, if we employ right precondi-
tioning, the original system (1.2) is transformed into

AP−1x = −vec(C1C
T
2 ), vec(X) = P−1x, (5.1)

so that, at each iteration m, we have to apply P−1 to the current basis vector
vec(V1,mVT

2,m). Note that we restrict ourselves here to right preconditioning because
this has the advantage that one can still monitor the true unpreconditioned residuals
without extra work within the Krylov routine. Of course, in principle also left and
two-sided preconditioning can be used.

The preconditioning operation must be able to exploit the low-rank format of
V1,mVT

2,m. Therefore, a naive operation of the form P−1vec(V1,mVT
2,m) is not admis-

sible in our context as this would require the allocation of the dense n × n

matrix V1,mVT
2,m. One way to overcome this numerical difficulty is to employ a

preconditioner operator P which can be represented as a Kronecker sum:

P =
�∑

i=1

Pi ⊗ Ti . (5.2)

This means that the operation zm = P−1vec(V1,mVT
2,m) is equivalent to solving the

matrix equation

�∑

i=1

TiYmP T
i − V1,mVT

2,m = 0, vec(Ym) = zm. (5.3)

In our setting, the operator P often amounts to an approximation to A in (1.2)
obtained by either dropping some terms in the series or replacing some of them by a
multiple of the identity. See, e.g., [4, 13, 51]. Another option that has not been fully
explored in the matrix equation literature so far is the case of polynomial precon-
ditioners (see, e.g., [52, 53]) where P−1 resembles a fixed low-degree polynomial
evaluated in A. Alternatively, we can formally set P = A in (5.2) and inexactly solve
(5.3) by few iterations of another Krylov method (e.g., Algorithm 2) leading to an
inner-outer or nested Krylov method; see, e.g., [54].

Clearly, (5.3) must be easy to solve. For instance, if � = 1, then Ym =
(T −1

1 V1,m)(P −1
1 V2,m)T and an exact application of the preconditioner can be carried

out. Similarly, when � = 2 and a fixed number of ADI iterations are performed at
each Krylov iteration m, then it is easy to show that we are still working in an exact
preconditioning framework. See, e.g., [6, 9]. In all these cases, the results presented
in the previous sections still hold provided A is replaced by the preconditioned matrix
AP−1.

Equation (5.3) is often iteratively solved and, in general, this procedure leads to
the computation of a low-rank approximation Z1,mZT

2,m to Ym that has to be inter-
preted as a variable preconditioning scheme with a different preconditioning operator
at each outer iteration. In these cases, a flexible variant of Algorithm 2 must be
employed which consists in a standard flexible Krylov procedure equipped with the
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low-rank truncations presented in the previous sections. See, e.g., [55, Section 10]
for some details about flexible Krylov methods and [31, Section 9.4.1; 56] for a
discussion about flexible GMRES.

We must mention that the employment of a flexible procedure doubles, at least,
the memory requirements of the solution process. Indeed, both the preconditioned
and unpreconditioned bases must be stored and rank(Z1,mZT

2,m) ≥ rank(V1,mVT
2,m)

for all m. This aspect must be taken into account when designing the preconditioner.
See Example 1.

At a first glance, the presence of a variable preconditioning procedure can
complicate the derivations illustrated in Sections 3.1–3.2 for the safe selection of
the low-rank truncation thresholds that guarantees the convergence of the solution
method. Indeed, if at iteration m, Z1,mZT

2,m is the result of the preconditioning
step (5.3), we still want to truncate the matrix

[A1Z1,m, . . . , ApZ1,m][B1Z2,m, . . . , BpZ2,m]T ,

in order to moderate the storage demand and one may wonder if the inexactness
of step (5.3) plays a role in such a truncation. Thanks to the employment of a
flexible strategy, we are going to show how the tolerances for the low-rank trunca-
tions, namely εA and εorth in Algorithm 2, can be still computed as illustrated in
Sections 3.1–3.2.

Flexible Krylov methods are characterized not only by having a preconditioner
that changes at each iteration but also from the fact that the solution is recovered by
means of the preconditioned basis. In particular,

vec(Xm) = Zmym, Zm := [vec(Z1,1ZT
2,1), . . . , vec(Z1,mZT

2,m)],
see, e.g., [56]; this is a key ingredient in our analysis.

We start our discussion by considering flexible Krylov methods with no trunca-
tions. For this class of solvers the relation

AZm = VmHm + hm+1,mvec(V1,m+1VT
2,m+1)e

T
m, (5.4)

holds, see, e.g., [31, Equation (9.22)], and span{vec(Z1,1ZT
2,1), . . . , vec(Z1,mZT

2,m)}
is not a Krylov subspace in general. Therefore, also for the flexible Krylov methods
with no low-rank truncations we must consider constrains different from the ones
in (2.4)–(2.7) and results similar to the ones in Proposition 3.1 with Wm = AZm

hold. See, e.g., [31, Proposition 9.2].
If we now introduce a low-rank truncation of the matrix

[A1Z1,m, . . . , ApZ1,m][B1Z2,m, . . . , BpZ2,m]T ,

at each iteration m, that is we compute

(V1, V2) = trunc([A1Z1,m, . . . , ApZ1,m], I, [B1Z2,m, . . . , BpZ2,m], εA), (5.5)

then the relation (5.4) becomes

AZm − [vec(E1), . . . , vec(Em)] = VmHm + hm+1,mvec(V1,m+1VT
2,m+1)e

T
m, (5.6)
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where the matrices Ek’s are the ones discarded when (5.5) is performed. If ‖Ek‖
satisfies the inequalities in Theorem 3.1, then the convergence of the low-rank flex-
ible Krylov procedure is still guaranteed in the sense that the residual norm keeps
decreasing as long as span{vec(Z1,1ZT

2,1), . . . , vec(Z1,mZT
2,m)} grows. However, the

matrix Hm no longer represents an approximation of A onto the current subspace
and approximations of σmmax(Hmmax

) and σ1(Hmmax
) in the right-hand side of (3.3)–

(3.4)–(3.5) via the corresponding singular values of A may no longer be effective. In
our numerical experience, approximating σmmax(Hmmax

) and σ1(Hmmax
) by the small-

est and largest singular values of the preconditioned matrix AP−1, i.e., mimicking
what is done in case of exact applications of P , provides satisfactory results. Obtain-
ing computable approximations to σmmax(Hmmax

) and σ1(Hmmax
) for the inner-outer

approach is not straightforward. In this case, a practical approach may be to still
approximate σmmax(Hmmax

) and σ1(Hmmax
) by σn2(A) and σ1(A), respectively. These

approximations may be very rough as they completely neglect the role of the precon-
ditioner so that they may lead to quite conservative truncation thresholds. However,
at the moment, we do not see any another possible alternatives.

The introduction of the low-rank truncations that lead to (5.6) implies that the
constraints imposed on the residual vector are no longer in terms of the space
spanned by Zm and the results presented in Proposition 3.1 with Wm = AZm −
[vec(E1), . . . , vec(Em)] hold.

In flexible Krylov methods, the orthogonalization procedure involves only the
unpreconditioned basis Vm so that the truncation step in line 10 of Algorithm 2 is not
really affected by the preconditioning procedure and the results in Propositions 3.2–
3.3 are still valid. The truncation threshold εorth can be still selected as proposed in
Section 3.2.

6 Short recurrencemethods

Short recurrence Krylov methods can be very appealing in our context as only a
fixed, usually small, number of basis vectors have to be stored. In case of symmetric
problems, i.e., (1.1) where all the coefficient matrices Ai’s and Bi’s are symmetric,
the low-rank MINRES algorithm proposed in [57] can be employed in the solution
process.

If A in (1.2) is also positive definite, the low-rank CG method illustrated in [58]
is a valid candidate for the solution of (1.1). Notice that, in general, it is not easy to
characterize the spectral distribution of A in terms of the spectrum of the coefficient
matrices Ai’s and Bi’s. However, it can be shown that if Ai and Bi are positive
definite for all i, then also A is positive definite.

Short recurrence methods can be appealing also in case of a nonsymmetric A and
low-rank variants of BICGSTAB [59], QMR [60] or other methods can be employed
to solve (1.1). See, e.g., [6, 14] for an implementation of low-rank MINRES, CG and
BICGSTAB.

In many short recurrence Krylov methods, the constructed basis Vm is not orthogo-
nal in practice and this loss of orthogonality must be taken into account in the bounds
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for the allowed inexactness proposed in Theorem 3.1. In [33, Section 6], the authors
propose to incorporate the smallest singular value of the computed basis, namely
σm(Vm), in the right-hand side of (3.3), (3.4) and (3.5) to guarantee the convergence
of the method. However, no practical approximation to σm(Vm) is proposed in [33].

A different approach that can be pursued is the one illustrated in [61]. In this paper
the authors propose to select bounds of the form

‖Ek‖ ≤ min {αkε, 1} , αk = 1

min {‖̃rk‖, 1} , (6.1)

where r̃k is the current computed residual vector, and in [62] the authors studied
the effects of such a choice on the convergence of a certain class of inexact Krylov
methods. In particular, in [62] it is shown how the residual gap δm remains small if
‖Ek‖ fulfills (6.1) for all k ≤ m. Even though the true residual and the computed one
are close, this does not imply that the residual norm is actually always small and we
thus have to assume that the norm of the computed residual goes to zero as it is done
in [62].

7 Numerical examples

In this section we present some numerical results that confirm the theoretical analysis
derived in the previous sections. To this end we consider some general multiterm
linear matrix equations of the form (1.1) stemming from the discretization of certain
deterministic and stochastic PDEs.

We apply the LR-GMRES variant of Algorithm 2 in the solution process and we
always select Algorithm 1 and 3 for the low-rank truncations as previously explained.

We report the number of performed iterations, the rank of the computed solution,
the computational time needed to calculate such a solution together with the relative
residual norm achieved, and the storage demand. For the latter, we document the
number of columns s = ∑m+1

j=1 sj of the matrix [V1,1, . . . ,V1,m+1], where m is the
number of iterations needed to converge. Similarly, if a flexible strategy is adopted,
we also report the number of columns z of [Z1,1, . . . ,Z1,m].

This means that, for equations of the form (1.1) where nA = nB = n, we have
to allocate 2s (2(s + z)) vectors of length n. If nA �= nB , the memory requirements
amount to s (s + z) vectors of length nA and s (s + z) vectors of length nB .

The solution process is stopped as soon as the upper bound on the residual norm
in (3.17), normalized by ‖C1C

T
2 ‖, gets smaller than 10−6.

As already mentioned, we always assume that the exact solution X admits accurate
low-rank approximations. Nevertheless, if S1, S2 are the low-rank factors computed
by Algorithm 2, we report also the real relative residual norm ‖∑p

i=1 AiS1S
T
2 BT

i +
C1C

T
2 ‖/‖C1C

T
2 ‖ in the following to confirm the reliability of our numerical proce-

dure. Once again, the real residual norm can be computed at low cost by exploiting
the low rank of S1S

T
2 and the cyclic property of the trace operator.

All results were obtained with Matlab R2017b [63] on a Dell machine with
2.4GHz processors and 250 GB of RAM.
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Example 7.1 We consider a slight modification of Example 4 in [4]. In particular, the
continuous problem we have in mind is the convection-diffusion equation

−ν�u + �w · ∇u = 1, in D = (0, 1)2,

u = 0, on ∂D,
(7.1)

where ν > 0 is the viscosity parameter and the convection vector �w is given by

�w = (φ1(x)ψ1(y), φ2(x)ψ2(y)) = ((1 − (2x + 1)2)y, −2(2x + 1)(1 − y2)).

The centered finite differences discretization of (7.1) yields the following matrix
equation

νT X + νXT + �1BX�1 + �2XBT �2 − 11T = 0, (7.2)

where T ∈ R
n×n is the negative discrete laplacian, B ∈ R

n×n corresponds to the
discretization of the first derivative, �i and �i are diagonal matrices collecting the
nodal values of the corresponding functions φi , ψi , i = 1, 2, and 1 ∈ R

n is the vector
of all ones. See [4] for more details.

Equation (7.2) can be seen as a generalized Lyapunov equation since the over-
all operator we need to invert can be viewed as the sum of a Lyapunov operator
M(X) = νT X + νXT and a linear operator N (X) = �1BX�1 + �2XBT �2.
However, the solution schemes available in the literature and tailored to this kind of
problems cannot be applied to (7.2) in general. Indeed, to the best of our knowledge,
all the existing methods for large-scale generalized equations rely on the existence
of a convergence splitting of the overall discrete operator, namely ρ(M−1N ) < 1,
where ρ(·) denotes the spectral radius. See, e.g., [6, 7, 21]. The latter property may be
difficult to meet in case of the convection-diffusion equation, especially for dominant
convection.

We would like to mention that also different solution procedures based on, e.g., a
low-rank multigrid method tailored to (7.2) which exploits the possible data-sparse
format of the involved coefficient matrices can be employed as well. See, e.g., [64,
65].

We interpret (7.2) as a general multiterm matrix equation of the form (1.1) and we
solve it by the preconditioned LR-GMRES. Following the discussion in [4], we use
the operator

L : Rn×n → R
n×n

X �→ (νT + ψ1�1B)X + X(νT + φ2B
T �2),

as preconditioner, where ψ1, φ2 ∈ R are the mean values of ψ1(y) and φ2(x) on
(0, 1), respectively.

At each LR-GMRES iteration, we approximately invert L by performing 10 itera-
tions of the extended Krylov subspace method for Sylvester equations4 derived in [5].
Since this scheme gives a different preconditioner every time it is called, we must
employ the flexible variant of LR-GMRES. To avoid an excessive increment in the
memory requirements due to the allocation of both the preconditioned and unprecon-
ditioned bases, we do not apply L to the current basis vector, i.e., at iteration k, we

4A Matlab implementation is available at http://www.dm.unibo.it/∼simoncin/software.html.
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Table 1 Example 1. Results for different values of n and ν

Memory Conv. checks

ν n It. rank(S1S
T
2 ) Time (s) Vm Zm (3.17)/‖C1C

T
2 ‖F Real Res.

0.5 5000 8 66 3.328e1 1301 658 4.243e-7 3.097e-7

10,000 8 87 7.937e1 1881 869 7.096e-7 4.209e-7

15,000 8 77 1.031e2 1955 811 4.328e-7 3.338e-7

0.1 5000 15 73 1.256e2 3368 1495 7.809e-7 4.509e-7

10,000 15 80 3.102e2 4656 1764 8.212e-7 4.507e-7

15,000 15 92 5.589e2 5780 1968 8.521e-7 4.523e-7

0.05 5000 20 89 3.874e2 5782 2503 8.697e-7 2.650e-7

10,000 20 73 9.538e2 7145 2928 8.634e-7 2.652e-7

15,000 20 77 1.794e3 8840 3175 8.631e-7 2.666e-7

do not compute Z1,kZT
2,k ≈ L−1(V1,kVT

2,k). We first truncate the low-rank factors

V1,k,V2,k , namely we compute (V̂1,k, V̂2,k) = trunc(V1,k, I,V2,k, εprecond), and
then define Z1,k,Z2,k such that Z1,kZT

2,k ≈ L−1(V̂1,kV̂T
2,k). This procedure leads to

a lower storage demand of the overall solution process and to less time consuming
preconditioning steps. On the other hand, the effectiveness of the preconditioner in
reducing the total iteration count may get weakened, especially for large εprecond.
In the results reported in the following we have always set εprecond = 10−3.

In Table 1 we report the results for different values of n and ν.
We notice that the number of iterations is very robust with respect to the problem

dimension n, and thus the mesh-size, confirming the quality of the preconditioner
L. Unfortunately, this does not lead to a storage demand that is also independent
of n. The rank of the basis vectors, i.e., the number of columns of the matrices
[V1,1, . . . ,V1,m+1] and [Z1,1, . . . ,Z1,m] increases with the problem size. This trend
is probably inherited from some intrinsic properties of the continuous problem but
further studies in this direction are necessary. A similar behavior is observed when
decreasing the viscosity parameter ν as well.

A growth in the rank of the basis vectors determines also a remarkable increment
in the computational time as illustrated in Table 1. Indeed, the computational cost of
basically all the steps of Algorithm 2, from the Arnoldi procedure and the low-rank
truncations, to the preconditioning phase, depends on the rank of the basis vectors.

We also underline the fact that the true relative residual norm turns out to be always
smaller than the normalized computed bound (3.17) validating the reliability of (3.17)
as convergence check.

In Fig. 1 (left) we report the normalized bound (3.17) together with the truncation
threshold ε

(j)

A /‖C1C
T
2 ‖F for the case n = 5000 and ν = 0.5. We can appreciate how

the tolerance for the low-rank truncations increases as the residual norm decreases.
As already mentioned, this is a key element to obtain a solution procedure with a fea-
sible storage demand. Moreover, in Fig. 1 (right) we document the increment in the
rank of the vectors of the preconditioned and unpreconditioned bases as the iterations
proceed. We also plot the rank of the unpreconditioned basis we would obtain if no
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Fig. 1 Example 7.1, n = 5000, ν = 0.5. Left: Normalized bound (3.17) and ε
(A)
j /‖C1C

T
2 ‖F for j =

1, . . . , 9. Right: Rank of the matrix representing the j th vector of the preconditioned and unpreconditioned
basis

truncations (and no preconditioning steps) were performed, i.e., 4j . We can see how
we would obtain full-rank basis vectors after very few iterations with consequent
impracticable memory requirements of the overall solution process.

To conclude, in Fig. 2, we report the inner product between the last basis vector
we have computed and the previous ones, namely we report 〈V1,9VT

2,9,V1,jVT
2,j 〉F for

j = 1, . . . , 9. This numerically confirms that the strategy illustrated in Section 3.2 is
able to maintain the orthogonality of the basis.

Example 7.2 In the second example we consider the algebraic problem stemming
from the discretization of stochastic steady-state diffusion equations. In particular,
given a sufficiently regular spatial domain D and a sample space � associated with
the probability space (�,F,P), we seek an approximation to the function u : D ×
� → R which is such that P-almost surely

−∇ · (a(x, ω)∇u(x, ω)) = f (x), in D,

u(x, ω) = 0, on ∂D.
(7.3)

1 2 3 4 5 6 7 8 9
10 -20

10 -15

10 -10

10 -5

10 0

Fig. 2 Example 7.1, n = 5000, ν = 0.5. 〈V1,9VT
2,9,V1,jVT

2,j 〉F for j = 1, . . . , 9. eps denotes machine
precision
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We consider D = [−1, 1]2 and we suppose a to be a random field of the form

a(x, ω) = a0(x) +
r∑

i=1

ai(x)σi(ω),

where σi : � → �i ⊂ R are real-valued independent random variables (RVs).
In our case, a(x, ω) is a truncated Karhunen-Loève (KL) expansion

a(x, ω) = μ(x) + θ

r∑

i=1

√
λiφi(x)σi(ω). (7.4)

See, e.g., [66] for more details.
The stochastic Galerkin method discussed in, e.g., [13, 51, 67–69], leads to a

discrete problem that can be written as a matrix equation of the form

K0XGT
0 +

r∑

i=1

KiXGT
i = f0g

T
0 , (7.5)

where Ki ∈ R
nx×nx , Gi ∈ R

nσ ×nσ , and f0 ∈ R
nx , g0 ∈ R

nσ . See, e.g., [13, 69].
We solve (7.5) by LR-GMRES and the following operators

Pmean : R
nx×nσ → R

nx×nσ

X �→ K0X,

PUllmann : R
nx×nσ → R

nx×nσ

X �→ K0XGT , G := ∑r
i=0

trace(KT
i K0)

trace(KT
0 K0)

Gi,

are selected as preconditioners. Pmean is usually referred to as mean-based pre-
conditioner, see, e.g., [13, 69] and the references therein, while Ullmann proposed
PUllmann in [51].

Both Pmean and PUllmann are very well-suited for our framework as their appli-
cation amounts to the solution of a couple of linear systems so that the rank of the
current basis vector does not increase. See the discussion in Section 5. Moreover, sup-
posing that these linear systems can be solved exactly by, e.g., a sparse direct solver,
there is no need to employ flexible GMRES so that only one basis has to be stored.
In particular, in all our tests, we precompute once and for all the LU factors of the
matrices5 which define the selected preconditioner so that only triangular systems
are solved during the LR-GMRES iterations.

We generate instances of (7.5) with the help of the S-IFISS6 package version
1.04; see [70]. The S-IFISS routine stoch diff testproblem pc is executed
to generate two instances of (7.5). The first equation (Data 1) is obtained by using
a spatial discretization with 27 points in each dimension, r = 2 RVs in (7.4) which
are approximated by polynomial chaos expansions of length � = 100 leading to
nx = 16129, nσ = 5151, and r + 1 = 3. The second instance (Data 2) was gener-
ated with 28 grid points, r = 5, and chaos expansions of length � = 10 resulting in
nx = 65025, nσ = 3003, and r + 1 = 6.

5The computational time of such decompositions is always included in the reported results.
6Available at https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/sifiss.html
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Table 2 Example 7.2. Results of preconditioned LR-GMRES applied to different test problems. Data
1: nx = 16129, nσ = 5151, r + 1 = 3, Data 2: nx = 65025, nσ = 3003, r + 1 = 6

Conv. Checks

Prec. Its rank(S1S
T
2 ) Mem. (3.17)/‖C1C

T
2 ‖F Real Res. Time (s)

Data 1

PUllmann 9 43 220 5.073e-7 3.551e-7 8.118e0

Pmean 14 71 601 5.555e-7 2.680e-7 1.956e1

Data 2

PUllmann 15 791 8990 7.879e-7 5.363e-7 2.049e3

Pmean 21 815 14216 8.517e-7 4.171e-7 4.353e3

Table 2 summarizes the results and apparently problem Data 2 is much more
challenging than Data 1. This is meanly due to the number of terms in (7.5).
Indeed, the effectiveness of the preconditioners may deteriorate as r increases even
though the actual capability of Pmean and PUllmann in reducing the iteration count
is related to the coefficients of the KL expansion (7.4). See, e.g., [69, Theorem 3.8]
and [51, Corollary 5.4]. Moreover, r + 1 terms are involved in the products in line 3
of Algorithm 2 and a sizable r leads, in general, to a faster growth in the rank of the
basis vectors so that a larger number of columns are retained during the truncation
step in line 4. As a result, the computational cost of our iterative scheme increases as
well leading to a rather time consuming routine.

If the discrete operator stemming from the discretization of (7.3) is well posed,
then it is also symmetric positive definite and the CG method can be employed in the
solution process. See, e.g., [69, Section 3]. We thus try to apply the (preconditioned)
low-rank variant of CG (LR-CG) to the matrix (7.5). To this end, we adopt the LR-CG
implementation proposed in [6]. With the notation of [6, Algorithm 1] we truncate all
the iterates Xk+1, Rk+1, Pk+1 and Qk+1. In particular, the threshold for the truncation
of Xk+1 is set to 10−12 while the value on the right-hand side of (6.1) is used at the
kth LR-CG iteration for the low-rank truncation of all the other iterates. We want
to point out that in the LR-CG implementation proposed in [6], the residual matrix
Rk+1 is explicitly calculated by means of the current approximate solution Xk+1.
We compute the residual norm before truncating Rk+1 so that what we are actually
evaluating is the true residual norm and not an upper bound thereof.

The results are collected in Table 3 where the column “Mem.” reports the max-
imum number of columns that had to be stored in the low-rank factors of all the
iterates Xk+1, Rk+1, Pk+1, Qk+1, and Zk+1.

Except for Data 1 with PUllmann as a preconditioner where LR-GMRES and
LR-CG show similar results especially in terms of memory requirements, LR-CG
allows for a much lower storage demand with a consequent reduction in the total
computational efforts while achieving the prescribed accuracy. However, for Data
2, LR-CG requires a rather large number of iterations to converge regardless of the
adopted preconditioner. This is due to a very small reduction of the residual norm,
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Table 3 Example 7.2. Results of preconditioned LR-CG applied to different test problems. Data 1:
nx = 16129, nσ = 5151, r + 1 = 3, Data 2: nx = 65025, nσ = 3003, r + 1 = 6

Prec. Its rank(S1S
T
2 ) Mem. Real Res. Time (s)

Data 1

PUllmann 11 41 234 9.517e-7 1.921e0

Pmean 19 52 288 9.629e-7 3.369e0

Data 2

PUllmann 46 483 4404 9.976e-7 9.642e2

Pmean 67 450 4096 9.981e-7 1.325e3

almost a stagnation, from one iteration to the following one we observe in the final
stage of the algorithm. See Fig. 3 (left). This issue may be fixed by employing a more
robust, possibly more conservative, threshold for the low-rank truncations. Alterna-
tively, a condition of the form ‖Xk −Xk+1‖F ≤ ε can be included in the convergence
check as proposed in [13].

We conclude by mentioning a somehow surprising behavior of LR-CG. In partic-
ular, in the first iterations the rank of all the iterates increases as expected, while it
starts decreasing from a certain k on until it reaches an almost constant value. See
Fig. 3 (right). This trend allows for a feasible storage demand also when many iter-
ations are performed as for Data 2. We think that such a phenomenon deserves
further studies. Indeed, it seems that the truncation strategy we employed may be
able to overcome a severe issue detected in previously studied Krylov methods for
linear matrix equations like a possibly excessive increment of the ranks of the iterates
during the transient phase of the adopted scheme. See, e.g., [71].
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Fig. 3 Example 7.2. Left: LR-CG relative residual norm for Data 2. Right: Sum of the rank of all the
LR-CG iterates Xk+1, Rk+1, Pk+1, Qk+1, and Zk+1 as the iterations proceed
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8 Conclusions

Low-rank Krylov methods are one of the few options for solving general linear matrix
equations of the form (1.1), especially for large problem dimensions. An important
step of these procedures consists in truncating the rank of the basis vectors to main-
tain a feasible storage demand of the overall solution process. In principle, such
truncations can severely impact on the converge of the adopted Krylov routine.

In this paper we have shown how to perform the low-rank truncations in order to
maintain the convergence of the selected Krylov procedure. In particular, our analysis
points out that not only the thresholds employed for the truncations are important, but
further care has to be adopted to guarantee the orthogonality of the computed basis.
In particular, we propose to perform an auxiliary, exact Gram-Schmidt procedure in a
low dimensional subspace which is able to retrieve the orthogonality of the computed
basis—if lost—while preserving the memory-saving features of the latter. This addi-
tional orthogonalization step leads to a modified formulation of the inner problems
and we have shown how this is still feasible in terms of computational efforts.
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