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Abstract: We consider the stabilization of incompressible fluid flow using linearized and
spatially discretized models. In order to potentially work in applications, the designed con-
troller must stabilize the discrete model with a robustness margin that covers linearization,
discretization, and modeling errors. We expand on previous results that a linearization error
in the infinite-dimensional model amounts to a coprime factor uncertainty and show that H∞-
robust controllers can compensate this in the discrete approximation. In numerical experiments,
we quantify the robustness margins and show that the H∞-robust controller, unlike the LQG-
controller, is capable of stabilizing nonlinear incompressible Navier-Stokes equations with an
inexact linearization.
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1. INTRODUCTION

Linearization-based output feedback controllers for set-
point stabilization of laminar flows have been successfully
employed in simulations; see Benner and Heiland (2015).
However, in applications, one desires robust controllers
that can bridge the gaps between the approximation and
the model (with a certain guarantee) and (hopefully) the
model and reality. In linearization-based (flow) control
there are several targets for robustness:

(1) domain of attraction – the controllers work if pertur-
bations are small; see Raymond (2006) for theory,

(2) uncertainty in the linearization point; see Benner and
Heiland (2016),

(3) approximation of the infinite-dimensional model by
discretization and model reduction; see Benner and
Heiland (2017).

In this paper, we resume the discussion of linearization
uncertainties and robust controllers as started for infinite-
dimensional linearized incompressible Navier-Stokes equa-
tions in Benner and Heiland (2016). We combine analytical
results and confirm numerically that, for a given dis-
cretization, standard H∞-control theory provides robust
controllers that can compensate errors in the linearization.

� The first and third authors were supported by the German Re-
search Foundation (DFG) priority program 1897: “Calm, Smooth
and Smart – Novel Approaches for Influencing Vibrations by Means
of Deliberately Introduced Dissipation” and the German Research
Foundation (DFG) research training group 2297 “MathCoRe”,
Magdeburg.

The robustness margin of the controllers is measured in
terms of maximally admissible deviations in coprime fac-
torizations of the computed and the (hypothetical) exact
transfer function. Also, the considered Galerkin discretiza-
tions of the infinite-dimensional system are known to con-
verge in terms of coprime factors (see Morris (1994) for
the general theory, Benner and Heiland (2017) for the
extension to the incompressible Navier-Stokes equation
and Badra (2006) for general estimates on the convergence
of such approximations as well as results on uniform sta-
bilizability). Thus, the robustness of the controllers simi-
larly covers discretization and linearization errors so that
the presented results, together with Benner and Heiland
(2017), can be seen as a general approach to robust sta-
bilization of infinite-dimensional systems by numerically
approximated models.

In a previous work (Benner and Heiland (2016)) we have
shown, that the linearized (infinite-dimensional) Navier-
Stokes equation can be considered in the linear system
framework discussed in Curtain and Zwart (1995). Among
others, for the linearized Navier-Stokes equation, one can
find stabilizing controllers based on finite inputs and out-
puts and investigate their robustness with the theory of co-
prime factorizations that is also well developed for infinite-
dimensional linear systems; see (Curtain and Zwart, 1995,
Ch. 9) and Vidyasagar (1985). In this work, we provide
the theory for robust controller design under linearization
uncertainties and numerical algorithms that compute the
margins that guarantee stability.

This paper is structured as follows. In Section 2, we
review standard theory on robust control and coprime
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factorizations, and apply it to the case of linearization
uncertainty. We formulate the relevant equations for finite
element discretizations of the linearized incompressible
Navier-Stokes equation in Section 3 and provide numerical
results on the robustness margins of controllers for the 2D
cylinder wake in Section 4. We conclude the paper by a
summary and interpretation of the presented theory and
results.

2. LINEARIZATION UNCERTAINTIES

In the considered setup, the transfer function of the (lin-
earized, semi-discrete) Navier-Stokes equation with inputs
and outputs is strictly proper; see Ahmad et al. (2017).
This means it can be realized via ODEs as state equa-
tions, and the controller design and analysis can be done
with standard ODE theory. For the numerical simulations,
however, a realization as descriptor system is preferable;
see Benner and Heiland (2015).

In the same vein, a finite-element model typically comes
with a mass matrix. For the theory this matrix can be
eliminated by a state-transformation or a scaling of the
state equations. In practice, all algorithms are readily
extended to efficiently accommodate such a matrix factor.
Similarly, we assume that possible weighting parameters
from the underlying LQG problem are resolved in state
transforms or scaling of the inputs.

With these simplifications, in theory, a controller can be
based on a standard linear time-invariant (LTI) system

ẋ = Ax+Bu, (1a)

y = Cx, (1b)

that represents a linearization of the nonlinear system
about a steady-state.

If there is uncertainty in the linearization point, we have
to assume that the exact linearization is of the form

ẋ = [A+A∆]x+Bu, (2a)

y = Cx, (2b)

where A∆ is the difference to the computed linearization.

Let G : s �→ G(s) ∈ Cp×m and G∆ : s �→ G∆(s) ∈ Cp×m

be the transfer functions associated with (1) and (2),
respectively.

The question is now, whether a controller K, that was
designed to stabilize G, does also stabilize the actual
dynamics G∆. A quantitative answer to that is provided
by the theory of H∞-robust controllers and coprime fac-
torizations of the transfer functions; see McFarlane and
Glover (1990).

Let (M,N) be a left coprime factorization of G = M−1N
and let (M+M∆, N+N∆) be a left coprime factorization of
G∆ = (M+M∆)

−1(N+N∆). Here M , M+M∆ ∈ RHp×p
∞

and N , N +N∆ ∈ RHp×m
∞ . Accordingly, as a difference of

stable transfer functions, M∆ and N∆ are also stable.

If now a given controller K, stabilizing G, is such that∥∥∥∥
[
K
Ip

]
(Ip −GK)−1M−1

∥∥∥∥
H∞

≤ ε−1, (3)

then K also stabilizes G∆ provided that the difference in

the coprime factors ∆ := [N∆ M∆] ∈ RHp×(p+m)
∞ is small,

namely

‖∆‖H∞ < ε;

see (McFarlane and Glover, 1990, Cor. 3.7).

For our considerations, we will use the central controller
K0 that, for a suitable γ, can be defined via the stabilizing
solutions X∞, Y∞ of the two normalized H∞ Riccati
equations

CTC +ATX +XA+X(γ−2BBT −BBT )X = 0, (4)

BBT +AY + Y AT + Y (γ−2CTC − CTC)Y = 0. (5)

This output-based controller K0 satisfies (3) with ε−1 = γ;
see (McFarlane and Glover, 1990, Ch. 4.3.2).

For convenience, we set β := 1− γ−2.

Moreover, with Y∞ solving (5) and thus A − βY∞CTC
being stable, a left coprime factorization of G = M−1N is
given via

[N M ] =

[
A− βY∞CTC B −βY∞CT

C 0 I

]
; (6)

see (Mustafa and Glover, 1991, Lem. 5.7).

If we assume that also A+A∆ − βY∞CTC is stable, then

[
Ñ M̃

]
=

[
A+A∆ − βY∞CTC B −βY∞CT

C 0 I

]
(7)

defines a left coprime factorization of G∆.

Remark 1. Note that, since βY∞CTC in fact defines a
state feedback, the claim ofA+A∆−βY∞CTC being stable
is a much weaker claim than A + A∆ being stabilized by
an output-based controller K. The existence of uniformly
stabilizing state feedbacks could be observed in our nu-
merical experiments and is in line with known robustness
results; see, e.g., Doyle (1978).

In general, the modeling error A∆ is not known. In our
numerical tests on the linearization error, however, we can
compute the difference in the coefficients and, with the
solution of the H∞ filter Riccati equation (5) and the

constructions in (6) and (7), also the difference ∆ = (M̃ −
M, Ñ − N) in the coprime factors. The error ‖∆‖H∞ is
given as the H∞ norm of the difference of the associated
transfer functions, i.e., as the maximum singular value of

C(sI −A∆;LC)
−1BN |M − C(sI −ALC)

−1BN |M (8)

taken over s ∈ iR, where we have used the abbreviations

ALC := A− βY∞CTC,

A∆;LC := A+A∆ − βY∞CTC,

BN |M :=
[
B −βY∞CT

]
.

3. REALIZATION FOR INCOMPRESSIBLE FLOWS

The LTI system that is used for the controller design for
a semi-discretized linearized incompressible Navier-Stokes
equation reads

Ev̇ = Av + JT p+Bu, v(0) = v0 (9a)

0 = Jv, (9b)

together with the output definition

y = Cv, (9c)

where v(t) ∈ Rnv approximates the velocity, p(t) ∈ Rnp

approximates the pressure, and where the mass matrix
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E ∈ Rnv,nv is symmetric and invertible, as is JE−1JT .
We define

E =

[
E 0
0 0

]
, and A =

[
A JT

J 0

]
,

as well as

B =

[
B
0

]
, and C = [C 0] ,

and write the (transfer function of) system (9) as[
−sE +A B

C 0

]
←→ G(s) = C(sE − A)−1B.

If the initial value v0 is consistent, i.e., Jv0 = 0, then
system (9) can be equivalently realized via[

−sE + Ā B̄

C̄ 0

]
, (10)

where Ā := ΠTAΠ, B̄ := ΠTB, and C̄ := CΠ, and where
Π := Inv

− E−1JT (JE−1JT )−1J is the discrete Leray
projector; see, e.g., Ahmad et al. (2017) for an analysis
of these transfer functions.

Remark 2. Due to the involvement of the projector Π, the
matrices

[
Ā− λE B̄

]
and

[
Ā− λE

C̄

]

are rank deficient for λ = 0 and, thus, the projected
system is not stabilizable or detectable. However, since
the state v evolves in the range of Π, those zeros that are
associated with the kernel of Π can be eliminated from
the theoretical consideration, e.g., by a factorization of
Π as in Heinkenschloss et al. (2008). However, to avoid
another change of variables and since the solutions of the
Riccati equations employed for controller design are not
affected by these components, we stick to the form (10) and
understand stabilizability/detectability only with respect
to the range of Π.

For the realization (10), the H∞-Gramians can be ob-
tained via X∞ = EX̄∞E and Y∞ = Ȳ∞, where X̄∞ and
Ȳ∞ are the unique stabilizing solutions of

C̄T C̄ + ĀTXE + EXĀ− βEXB̄B̄TXE = 0, (11)

B̄B̄T + ĀY E + EY ĀT − βEY C̄T C̄Y E = 0. (12)

We note that, like for standard Riccati equations, the
solutions to (11) and (12) can be numerically computed
without resorting to the projector Π; see, e.g., Bänsch et al.
(2015).

In accordance to (6), with a stabilizing solution Ȳ∞, a left
coprime factorizations of (10) is given by

[N M ] =

[
E−1Ā− βȲ∞C̄T C̄ E−1B̄ −βȲ∞C̄T

C̄ 0 I

]
. (13)

Since we can assume that Ȳ∞ = ΠȲ∞ΠT (Benner and
Heiland, 2018, Rem. 5), we infer that

Ȳ∞C̄T = ΠȲ∞ΠT C̄T

= ΠEE−1Ȳ∞ΠT C̄T

= E−1ΠTEȲ∞C̄T ,

such that (13) can be realized as

[N M ] =

[
−sE +ALC B −L

C 0 I

]
, (14)
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ΓoutΓ0

Fig. 1. Computational domain of the cylinder wake.

where

ALC :=

[
A− βEY∞CTC JT

J 0

]
and

L :=

[
βEY∞CT

0

]
.

The corresponding perturbed system can be realized in
the same way without resorting to the projector Π. Thus,
for a given perturbation A∆ in the coefficient matrix A of
the linearized incompressible Navier-Stokes equation (9),
the perturbation in a left coprime factorization can be
computed as in (8) via the H∞ norm of the difference
of transfer functions with realizations of the form (14).

4. NUMERICAL SETUP

We consider a Navier-Stokes equation that models the
velocity v and the pressure p of an incompressible flow
for the time t > 0 in a domain Ω with boundary Γ = Γ0 ∪
Γw ∪ Γout ∪ Γ1 ∪ Γ2, as illustrated in Figure 1,

v̇ + (v · ∇)v +∇p− ν∆v = 0, in Ω, (15a)

div v = 0, in Ω, (15b)

with inflow and outflow boundary conditions

v = −ng0 · α on Γ0 and ν
∂v

∂n
− np = 0 on Γout, (15c)

and boundary control

v = −ng1 · u1 on Γ1 and v = −ng2 · u2 on Γ2, (15d)

where ν is a diffusion parameter and n is the outward
normal vector, g0, g1, and g2 are shape functions modeling
the spatial extension and where α, u1, and u2 control the
magnitude and direction of the flow at the boundary, and
with no-slip conditions at the walls, i.e., v = 0 on Γw.

The concrete setup is, as described in Behr et al. (2017),
with the height of the channel |Γ0| = 0.41 and the
diameter of the cylinder D = 0.1. Notably, the Dirichlet
boundary conditions (15d) are approximated by Robin-
type boundary conditions (which then ensure that the
operator that maps the controls into the dual of the state-
space is bounded; see (Benner and Heiland, 2016, Sec. 3))
and the inflow profile g0 is a parabola that is zero at the
upper and the lower wall and scaled such that the average
velocity satisfies 1

|Γ0|
∫
Γ0

g0 · αds = α. As is standard,

we remove the physical dimensions of the equations by
suitable scalings and parametrize them by means of the
Reynolds number Re, which, in this setup, we define as
Re = α·D

ν and which we have set to Re = 100 in the
presented numerical examples.
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Ā− λE

C̄

]

are rank deficient for λ = 0 and, thus, the projected
system is not stabilizable or detectable. However, since
the state v evolves in the range of Π, those zeros that are
associated with the kernel of Π can be eliminated from
the theoretical consideration, e.g., by a factorization of
Π as in Heinkenschloss et al. (2008). However, to avoid
another change of variables and since the solutions of the
Riccati equations employed for controller design are not
affected by these components, we stick to the form (10) and
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We note that, like for standard Riccati equations, the
solutions to (11) and (12) can be numerically computed
without resorting to the projector Π; see, e.g., Bänsch et al.
(2015).

In accordance to (6), with a stabilizing solution Ȳ∞, a left
coprime factorizations of (10) is given by

[N M ] =

[
E−1Ā− βȲ∞C̄T C̄ E−1B̄ −βȲ∞C̄T

C̄ 0 I

]
. (13)

Since we can assume that Ȳ∞ = ΠȲ∞ΠT (Benner and
Heiland, 2018, Rem. 5), we infer that

Ȳ∞C̄T = ΠȲ∞ΠT C̄T

= ΠEE−1Ȳ∞ΠT C̄T
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where

ALC :=

[
A− βEY∞CTC JT

J 0

]
and

L :=

[
βEY∞CT

0

]
.

The corresponding perturbed system can be realized in
the same way without resorting to the projector Π. Thus,
for a given perturbation A∆ in the coefficient matrix A of
the linearized incompressible Navier-Stokes equation (9),
the perturbation in a left coprime factorization can be
computed as in (8) via the H∞ norm of the difference
of transfer functions with realizations of the form (14).

4. NUMERICAL SETUP

We consider a Navier-Stokes equation that models the
velocity v and the pressure p of an incompressible flow
for the time t > 0 in a domain Ω with boundary Γ = Γ0 ∪
Γw ∪ Γout ∪ Γ1 ∪ Γ2, as illustrated in Figure 1,

v̇ + (v · ∇)v +∇p− ν∆v = 0, in Ω, (15a)

div v = 0, in Ω, (15b)

with inflow and outflow boundary conditions

v = −ng0 · α on Γ0 and ν
∂v

∂n
− np = 0 on Γout, (15c)

and boundary control

v = −ng1 · u1 on Γ1 and v = −ng2 · u2 on Γ2, (15d)

where ν is a diffusion parameter and n is the outward
normal vector, g0, g1, and g2 are shape functions modeling
the spatial extension and where α, u1, and u2 control the
magnitude and direction of the flow at the boundary, and
with no-slip conditions at the walls, i.e., v = 0 on Γw.

The concrete setup is, as described in Behr et al. (2017),
with the height of the channel |Γ0| = 0.41 and the
diameter of the cylinder D = 0.1. Notably, the Dirichlet
boundary conditions (15d) are approximated by Robin-
type boundary conditions (which then ensure that the
operator that maps the controls into the dual of the state-
space is bounded; see (Benner and Heiland, 2016, Sec. 3))
and the inflow profile g0 is a parabola that is zero at the
upper and the lower wall and scaled such that the average
velocity satisfies 1

|Γ0|
∫
Γ0

g0 · αds = α. As is standard,

we remove the physical dimensions of the equations by
suitable scalings and parametrize them by means of the
Reynolds number Re, which, in this setup, we define as
Re = α·D

ν and which we have set to Re = 100 in the
presented numerical examples.
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Table 1. The difference in the linearization
point, the difference in the coprime factoriza-
tions, and the robustness margin of the central
controller for varying accuracy in the approxi-

mation v� of v∞.

�
‖v∞−v�‖E

‖v∞‖E
‖∆�‖H∞ γ−1

�

3 0.094 2.323 0.103
5 0.030 0.579 0.204
6 0.018 0.168 0.233
7 0.011 0.226 0.237
8 0.006 0.123 0.240
10 0.002 0.028 0.242

We discretize the domain by Taylor-Hood finite elements
of order (2/1), which use P2 finite elements for the dis-
cretization of the velocity state-space and P1 for the pres-
sure state-space. The constructed triangulation of the do-
main approximates the velocity with nv = 19 500 degrees
of freedom. Thus, after linearization, the problem (15)
is modeled by the linear system of differential-algebraic
equations (DAEs)

Ev̇ = Av + JT p+Bu, (16a)

0 = Jv, (16b)

to which we add the linear observation operator C

y = Cv, (16c)

as spatially averaged velocities measured downstream in
the wake of the cylinder; see (Behr et al., 2017, Sec.
10.2) for a precise description. In the presented numerical
tests, we considered 3 sensor points such that, because
the velocities have two components, measurements result
in y(t) ∈ R6.

If the linearization (16) was computed around a steady-
state v∞ of the corresponding nonlinear system, then
a controller designed to stabilize (16) will also (locally)
stabilize v∞ in the actual nonlinear system; see Ray-
mond (2006) for results for the infinite-dimensional Navier-
Stokes equation.

We investigate the performance of controllers based
on (16) linearized around a state v� that is not exactly the
desired steady-state, but, as in this setup, the state that
is reached by the Picard iteration employed to compute
v∞ starting from the corresponding Stokes-solution after
� steps.

Let A� and A∞ be the coefficient matrices corresponding
to the linearizations about v� and v∞, respectively. Then,
for given �, with

A := A� and A∆;� := A∞ −A�,

we are in the setting described by (1) and (2). In fact,
since J and E are not affected by the linearization error,
the corresponding DAE systems of type (16) can be
simultaneously realized as ODE systems, as explained
in Section 3. However, for the computation of the H∞-
Gramians (11) and (12), as well as for the computation
of the H∞ norm of the coprime factor perturbations
∆� := (M̃ −M�, Ñ −N�) via the transfer function defined
in (8) we use the projector-free realizations like in (14).

In Table 1 we report the error in the coprime factors that
is caused by an inaccurate linearization over v� ≈ v∞ and
compare it to γ−1

� , where γ� is the robustness of the central
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Fig. 2. The components of the output y = Cv of the
nonlinear Navier-Stokes system (15) after spatial dis-
cretization and if integrated from the steady state v∞
that was slightly perturbed to trigger the instabilities.
The upper plot shows the output measured in the
uncontrolled case and the lower plot shows the output
of the closed-loop system with the central controller
K8. In both plots, the blue lines correspond to the
components in x direction and the red lines to the
components in y direction.

controller K�, compare (3), computed on the base of the
corresponding inaccurate linearization via the solutions
of (4) and (5). In theory, the controller K� will stabilize
the inexact linearization, whenever ‖∆�‖H∞ ≤ γ−1

� , which
we achieve for � ≥ 6.

We confirmed the stabilizing property of K8 even for the
nonlinear system in a numerical simulation as follows.
The spatially discretized (nonlinear) Navier-Stokes equa-
tions (15) were numerically integrated in time using the
semi-explicit trapezoidal rule and starting from v∞ + δ.
Here, δ is a random perturbation with ‖δ‖E = 10−5 and
Jδ = 0.

If no control is applied, the initial perturbation δ gets
amplified and the system gradually enters a periodic
regime known as vortex shedding. This can be clearly seen
from the response shown in the upper plot of Figure 2.
If, however, the loop is closed with the central controller
K8 that defines the control based on the current control
error Cv(t) − Cv∞, then the system is kept close to the
steady state v∞; see the lower plot of Figure 2. Thus,
although it was designed via a corrupted linearization,
the controller K8 is capable to compensate the initial and
further perturbations due to the numerical error in the
time discretization and the linearization.

5. CONCLUSION

As presented, the standard central robust H∞-controller
is capable to compensate model uncertainties that arise
from linearization errors. The provided formulas to esti-
mate the robustness were extended to cover the case of
the incompressible Navier-Stokes equation with a strictly
proper transfer function. The formulation in the discrete
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(FEM) approximations of the operators allows for actual
computation of the errors also in the large-scale setting.
All results are in line with considerations of the infinite-
dimensional model and serve as a base to design robust
controllers for partial differential equations based on finite-
dimensional approximations.
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