Analysis of switching strategies for the optimization of periodic chemical reactions with controlled flow-rate

Peter Benner, Andreas Seidel-Morgenstern, Alexander Zuyev*
Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstraße 1, 39106 Magdeburg, Germany

Abstract

An isoperimetric optimal control problem with non-convex cost is considered for a class of nonlinear control systems with periodic boundary conditions. This problem arises in chemical engineering as the maximization of the product of nonisothermal reactions by consuming a fixed amount of input reactants. It follows from the Pontryagin maximum principle that the optimal controls are piecewise constant in the considered case. We focus on a parametrization of optimal controls in terms of switching times in order to estimate the cost under different switching strategies. We exploit the Chen-Fliess functional expansion of solutions to the considered nonlinear system with bang-bang controls to satisfy the boundary conditions and evaluate the cost analytically for small periods. In contrast to the previous results in this area, the system under consideration is not control-affine, and the integrand of the cost depends on the state. This approach is applied to non-isothermal chemical reactions with simultaneous modulation of the input concentration and the volumetric flowrate.

1 Introduction

Strategies for the dynamic optimization of chemical reaction models have been studied in the mathematical literature by using the Pontryagin maximum principle [1, 13], vibrational control technique [2], frequency-domain methods [9—11], center manifold theory [7],

[^0]flatness-based approach and extremum seeking [5], model predictive control methodology [4], and other approaches.

A remarkable result in this area was formulated for a mathematical model of an isothermal reaction the type " $\nu_{1} A_{1}+\nu_{2} A_{2} \rightarrow$ Product" with the power law rate $r=$ $k C_{1}^{n_{1}} C_{2}^{n_{2}}$ in [6]. Namely, it was shown that the conversion of A_{1} and A_{2} to the product cannot be improved by using time-varying controls if $0<n_{1}<1,0<n_{2}<1$, and $n_{1}+n_{2} \leq 1$. In the non-isothermal case, it turns out that it is possible to improve the performance of first-order reactions of the type " $A \rightarrow$ Product" by using sinusoidal periodic inputs [9]. For a realistic non-isothermal reaction of this type, it was shown that the optimal controls are bang-bang, and periodic switching strategies have been described by applying the Pontryagin maximum principle in [13]. An analytic approach for computing the switching parameters of τ-periodic controls has been developed in [3] for the case of small periods τ.

Note that the above papers deal with reaction models with a constant flow-rate, while the periodic flow-rate modulation is shown to be an important ingredient for improving the reaction performance [8]. The corresponding isoperimetric optimal control problem is rigorously formulated in [14] for a non-isothermal mathematical model with two independent inputs: the inlet concentration and the flow-rate. As in the case of constant flow-rate, it is shown in 14 that the optimal controls are piecewise constant, and their switching times are defined in terms of zeros of certain auxiliary functions. However, the structure of switching controllers has not been analyzed so far. This paper aims at developing an efficient approach for computing periodic bang-bang controls and evaluating the cost for the isoperimetric optimal control problem introduced in [14].

2 Optimization problem

Consider a nonlinear control system describing non-isothermal chemical reactions of the type " $A \rightarrow$ Product" and order \bar{n} [8, 14]:

$$
\begin{equation*}
\dot{x}=f_{0}(x)+v_{1} v_{2} g_{1}(x)+v_{2} g_{2}(x), \quad x=\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

where x_{1} is the dimensionless concentration of A in the reactor, x_{2} is the dimensionless temperature,

$$
\begin{align*}
& f_{0}(x)=\binom{-k_{1}\left(1+x_{1}\right)^{\bar{n}} \exp \left\{-\frac{\gamma}{x_{2}+1}\right\}}{\delta-S t\left(1+x_{2}\right)-k_{2}\left(1+x_{1}\right)^{\frac{x_{2}}{n}} \exp \left\{-\frac{\gamma}{x_{2}+1}\right\}} \tag{2}\\
& g_{1}(x)=\binom{1+k_{1} \exp \{-\gamma\}}{0}, g_{2}(x)=\binom{-1-x_{1}}{k_{2} \exp \{-\gamma\}+S t-\delta-x_{2}}
\end{align*}
$$

and k_{1}, k_{2}, St, γ, and δ are physical parameters (cf. [8]). The dimensionless control variables $v_{1} \in\left[v_{1}^{\min }, v_{1}^{\max }\right]$ and $v_{2} \in\left[v_{2}^{\min }, v_{2}^{\max }\right]$ correspond to the inlet concentration of A and the flow-rate, respectively. We assume that $0<v_{i}^{\min } \leq 1$ and $v_{i}^{\max } \geq 1$ for $i=1,2$. Then it is easy to see that $x_{1}=x_{2}=0$ is an equilibrium of system (1) that corresponds to a steady-state operation of the considered chemical reactor with $v_{1}=v_{2}=1$.

System (11) can be transformed to the control-affine form with respect to the inputs $u_{1}=v_{1} v_{2}$ and $u_{2}=v_{2}$ as follows (14):

$$
\begin{equation*}
\dot{x}=f_{0}(x)+u_{1} g_{1}(x)+u_{2} g_{2}(x), \quad x \in \mathbb{R}^{2}, u=\left(u_{1}, u_{2}\right)^{T} \in U=\operatorname{Conv} U_{b}, \tag{3}
\end{equation*}
$$

where

$$
\begin{gathered}
U_{b}=\left\{\binom{u_{1}^{\min }}{u_{2}^{\min }},\binom{u_{1}^{\max }}{u_{2}^{\max }},\binom{u_{1}^{-}}{u_{2}^{\max }},\binom{u_{1}^{+}}{u_{2}^{\min }}\right\}, \\
u_{1}^{\min }=v_{1}^{\min } v_{2}^{\min }, u_{1}^{-}=v_{1}^{\min } v_{2}^{\max }, u_{1}^{+}=v_{1}^{\max } v_{2}^{\min }, u_{1}^{\max }=v_{1}^{\max } v_{2}^{\max } .
\end{gathered}
$$

As maximizing the conversion of A to the product over a given time period $t \in[0, \tau]$ can be treated in the sense of minimizing the remaning mass of A in the outgoing stream, our goal is to minimize the cost

$$
\begin{equation*}
J=\frac{1}{\tau} \int_{0}^{\tau}\left(x_{1}(t)+1\right) u_{2}(t) d t \tag{4}
\end{equation*}
$$

We also assume that the consumption of A over the period is fixed as $\frac{1}{\tau} \int_{0}^{\tau} u_{1}(t) d t=\bar{u}_{1}$, which yields the following isoperimetric optimal control problem.

Problem 2.1. 14 Given $\tau>0, \bar{u}_{1} \in \mathbb{R}$, and $x^{0} \in \mathbb{R}^{2}$, the goal is to find an admissible control $\hat{u} \in L^{\infty}([0, \tau] ; U)$ that minimizes the cost J along the trajectories of (3) corresponding to the admissible controls $u \in L^{\infty}([0, \tau] ; U)$ such that

$$
\begin{equation*}
\frac{1}{\tau} \int_{0}^{\tau} u_{1}(t) d t=\bar{u}_{1} \text { and } x(0)=x(\tau)=x^{0} \tag{5}
\end{equation*}
$$

If $\hat{u}(t)(0 \leq t \leq \tau)$ is an optimal control for Problem 2.1, then it follows from the results of $\left[14\right.$ that $\hat{u}(t) \in U_{b}$ almost everywhere on $[0, \tau]$, and the switching times of $\hat{u}(t)$ are related to zeros of the following functions: $I_{1}(t) I_{2}(t), \frac{u_{1}^{-}-u_{1}^{\text {min }}}{u_{2}^{\text {max }}-u_{2}^{\text {min }}} I_{1}(t)+I_{2}(t)$, $\frac{u_{1}^{\max }-u_{1}^{+}}{u_{2}^{\max }-u_{2}^{\min }} I_{1}(t)+I_{2}(t)$, where $I_{1}(t)$ and $I_{2}(t)$ are defined by solutions of the associated Hamiltonian system. It should be noted that $I_{1}(t)$ and $I_{2}(t)$ are parameterized by initial values of the adjoint variables. In this paper, we will not use any information on the behavior of adjoint variables and define the switching parameters directly from (5). Then the cost (4) will be approximated analytically to estimate the performance improvement for the considered class of bang-bang controllers.

3 Computation of the switching controls

Assuming that a bang-bang control $\hat{u}(t) \in U_{b}(0 \leq t \leq \tau)$ has a finite number of switchings, we enumerate the switching times

$$
\begin{equation*}
0=t_{0}<t_{1}<\ldots<t_{N}=\tau \text { with some } N \in \mathbb{N} \tag{6}
\end{equation*}
$$

and denote

$$
\begin{equation*}
u^{j}=\hat{u}(t) \in U_{b} \text { for } t \in S_{j}=\left(t_{j-1}, t_{j}\right), j=1,2, \ldots, N . \tag{7}
\end{equation*}
$$

Our goal is to analyse the cost J on the trajectories of system (3) with piecewiseconstant controls of the form (7) depending on the parameters $\left(t_{1}, \ldots, t_{N}\right)$ and $\left(u^{1}, \ldots, u^{N}\right)$.

A straightforward computation of $\int_{0}^{\tau} \hat{u}_{1}(t) d t$ for the piecewise-constant control (7) shows that the isoperimetric constraint in (5) is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{N} \alpha_{j} u_{1}^{j}=\bar{u}_{1} \text { with } \alpha_{j}=\frac{t_{j}-t_{j-1}}{\tau}>0 \tag{8}
\end{equation*}
$$

In order to satisfy the periodic boundary condition $x(0)=x(\tau)$ and estimate the cost (4) analytically for small τ, we exploit the Chen-Fliess expansion of solutions to system (3) with the initial value $x(0)=x^{0}$ and control $u=\hat{u}(t)$ (see, e.g., [3]):

$$
\begin{equation*}
x=x^{0}+\sum_{i=0}^{2} g_{i}\left(x^{0}\right) V_{i}(t)+\sum_{i, j=0}^{2}\left(L_{g_{j}} g_{i}\right)\left(x^{0}\right) V_{i j}(t)+\sum_{i, j, l=0}^{2}\left(L_{g_{l}} L_{g_{j}} g_{i}\right)\left(x^{0}\right) V_{i j l}(t)+O\left(t^{4}\right), \tag{9}
\end{equation*}
$$

where we assume that $g_{0}(x)=f_{0}(x), L_{g_{i}} g_{j}(x)=\frac{\partial g_{j}(x)}{\partial x} g_{i}(x)$ is the directional derivative of $g_{j}(x)$ along $g_{i}(x)$, and

$$
\begin{aligned}
V_{i}(t) & =\int_{0}^{t} u_{i}(s) d s, u_{0}(t) \equiv 1, V_{i j}(t)=\int_{0}^{t} \int_{0}^{s} u_{i}(s) u_{j}(p) d p d s \\
V_{i j l}(t) & =\int_{0}^{t} \int_{0}^{s} \int_{0}^{p} u_{i}(s) u_{j}(p) u_{l}(r) d r d p d s, \quad t \in[0, \tau]
\end{aligned}
$$

The remainder of formula (9) is of order $O\left(t^{4}\right)$ for small $t>0$ if the vector fields $g_{j}(x)$ are of class C^{3} in a neighborhood of x^{0}.

As in [3], we will restrict our analysis to the cases $N \leq 4$, motivated by the estimate of the number of switchings in isoperimetric problems proposed in [13]. The main analytical result of our study is summarized as follows.

Proposition 3.1. Let $\hat{u}(t), t \in[0, \tau]$ be a bang-bang control represented by (7) with the parameters $0<t_{1} \leq t_{2} \leq t_{3} \leq t_{4}=\tau$ and $u^{1}, u^{2}, u^{3}, u^{4} \in U_{b}$, and let $x(t), t \in[0, \tau]$
be the corresponding solution of (3) such that $x(0)=x^{0} \in \mathbb{R}^{2}$. Then the isoperimetric constraint (8) is equivalent to

$$
\begin{equation*}
\sum_{j=2}^{4} \alpha_{j}\left(u_{1}^{j}-u_{1}^{1}\right)=\bar{u}_{1}-u_{1}^{1}, \quad \alpha_{1}=1-\alpha_{2}-\alpha_{3}-\alpha_{4} \tag{10}
\end{equation*}
$$

and the periodic boundary condition $x(0)=x(\tau)$ reduces to

$$
\begin{align*}
& \sum_{j=1}^{4} \alpha_{j} f_{j}+\frac{\tau}{2}\left\{\alpha_{1}^{2} L_{f_{1}} f_{1}+\alpha_{2}^{2} L_{f_{2}} f_{2}-\alpha_{3}^{2} L_{f_{3}} f_{3}-\alpha_{4}^{2} L_{f_{4}} f_{4}+2 \alpha_{1} \alpha_{2} L_{f_{1}} f_{2}-2 \alpha_{3} \alpha_{4} L_{f_{4}} f_{3}\right\} \\
& +\frac{\tau^{2}}{6}\left\{\alpha_{1}^{3} L_{f_{1}}^{2} f_{1}+\alpha_{2}^{3} L_{f_{2}}^{2} f_{2}+\alpha_{3}^{3} L_{f_{3}}^{2} f_{3}+\alpha_{4}^{3} L_{f_{4}}^{2} f_{4}+3 \alpha_{1} \alpha_{2} L_{f_{1}}\left(\alpha_{1} L_{f_{1}}+\alpha_{2} L_{f_{2}}\right) f_{2}\right. \tag{11}\\
& \left.+3 \alpha_{3} \alpha_{4} L_{f_{4}}\left(\alpha_{4} L_{f_{4}}+\alpha_{3} L_{f_{3}}\right) f_{3}\right\}=O\left(\tau^{3}\right),
\end{align*}
$$

where $f_{i}(x)=f_{0}(x)+u_{1}^{i} g_{1}(x)+u_{2}^{i} g_{2}(x), i=1,2,3,4$. Moreover, the cost (4) evaluated for $x(t)$ admits the representation $J=\bar{u}_{2}+X_{1}$, where

$$
\begin{equation*}
\bar{u}_{2}=\frac{1}{\tau} \int_{0}^{\tau} \hat{u}_{2}(t) d t=u_{2}^{1}+\sum_{j=2}^{4} \alpha_{j}\left(u_{2}^{j}-u_{2}^{1}\right) \tag{12}
\end{equation*}
$$

and X_{1} is the first component of the vector $X \in \mathbb{R}^{2}$:

$$
\begin{align*}
X=\frac{1}{\tau} & \int_{0}^{\tau} x(t) \hat{u}_{2}(t) d t=\bar{u}_{2} x^{0}+\frac{\tau}{2}\left(\alpha_{1}^{2} u_{2}^{1} f_{1}-\left(1-\alpha_{1}\right)^{2} u_{2}^{2} f_{2}\right) \\
& +\frac{\tau^{2}}{6}\left(\alpha_{1}^{3} u_{2}^{1} L_{f_{1}} f_{1}+\left(1-\alpha_{1}\right)^{3} u_{2}^{2} L_{f_{2}} f_{2}\right) \tag{13}\\
& +\frac{\tau^{3}}{24}\left(\alpha_{1}^{4} u_{2}^{1} L_{f_{1}} L_{f_{1}} f_{1}-\left(1-\alpha_{1}\right)^{4} u_{2}^{2} L_{f_{2}} L_{f_{2}} f_{2}\right)+O\left(\tau^{4}\right)
\end{align*}
$$

The vector fields $f_{i}(x)$ and their directional derivatives in (11), (13) are evaluated at $x=x^{0}$.

The assertion of Proposition 3.1 is obtained from the Chen-Fliess expansion (9) for the solution $x(t)$ of system (3) with $u=\hat{u}(t)$.

Note that the cases with $N<4$ can be considered as particular cases of $N=4$ with some of the α_{j} being zero. In particular, the case $N=2$ is treated by assuming $\alpha_{3}=$ $\alpha_{4}=0$ in (8). In this case, the equations (10), (11), and (12) are reduced, respectively, to

$$
\begin{gather*}
\alpha_{1}=\frac{\bar{u}_{1}-u_{1}^{2}}{u_{1}^{1}-u_{1}^{2}} \in(0,1), \alpha_{2}=1-\alpha_{1} \text { if } u_{1}^{1} \neq u_{1}^{2}, \tag{14}\\
\alpha_{1}\left(f_{1}-f_{2}\right)+f_{2}+\frac{\tau}{2}\left(\alpha_{1}^{2} L_{f_{1}} f_{1}-\left(1-\alpha_{1}\right)^{2} L_{f_{2}} f_{2}\right)+\frac{\tau^{2}}{6}\left(\alpha_{1}^{3} L_{f_{1}}^{2} f_{1}+\left(1-\alpha_{1}\right)^{3} L_{f_{2}}^{2} f_{2}\right)=O\left(\tau^{3}\right), \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{u}_{2}=\frac{1}{\tau} \int_{0}^{\tau} \hat{u}_{2}(t) d t=\alpha_{1} u_{2}^{1}+\left(1-\alpha_{1}\right) u_{2}^{2} \tag{16}
\end{equation*}
$$

4 Simulation results

We take the following parameters for numerical simulations for the first-order ($\bar{n}=1$) adiabatic reaction considered in (3):

$$
\gamma=\frac{E_{A}}{R \bar{T}}=17.77, k_{1}=k_{0} \bar{C}_{A}^{\bar{n}-1} \frac{V}{\bar{F}}=5.819 \cdot 10^{7}, k_{2}=\frac{\Delta H_{R} k_{0} \bar{C}_{A}^{\bar{n}} V}{\rho c_{p} \bar{T} \bar{F}}=-8.99 \cdot 10^{5}, \delta=S t=0 .
$$

The above dimensionless parameters are computed with the gas constant

$$
R=8.3144598 \frac{J}{K \cdot m o l}
$$

and the activation energy $E_{A}=44.35 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$, the collision factor $k_{0}=1.4 \cdot 10^{5} \mathrm{~s}^{-1}$, the reaction heat $\Delta H_{R}=-55.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$, and $\rho c_{p}=4.186 \frac{\mathrm{~kJ}}{\mathrm{~K} \cdot \mathrm{l}}$ being the product of the density and the heat capacity. This model corresponds to the chemical reaction $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+$ $\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}$ in the CSTR of volume $V=0.298 l$ with the steady-state outlet concentration $\bar{C}_{A}=0.3498 \frac{\mathrm{~mol}}{\mathrm{l}}$ and the steady-state temperature $\bar{T}=300.17 \mathrm{~K}$. In contrast to the previous works [3, 13], we consider the case of variable flow-rate in this paper. Namely, we assume that the flow-rate and the inlet concentration can be controlled around their steady-state values $\bar{F}=7.17 \cdot 10^{-4} \frac{l}{s}$ and $\bar{C}_{A i}=0.74 \frac{\mathrm{~mol}}{\mathrm{l}}$, respectively, within the range of 85%, i.e. $v_{i}^{\min }=0.15, v_{i}^{\max }=1.85, i=1,2$. This choice of control constraints corresponds to the following components of the points in U_{b} :

$$
\begin{equation*}
u_{1}^{\min }=0.0225, u_{1}^{\max }=3.4225, u_{1}^{+}=u_{1}^{-}=0.2775, u_{2}^{\min }=0.15, u_{2}^{\max }=1.85 \tag{17}
\end{equation*}
$$

In the sequel, we impose the isoperimetric constraint (5) with $\bar{u}_{1}=1$. The constraint $\bar{u}_{1}=1$ is satisfied, in particular, by the constant controls $u_{1}=u_{2}=1$ for system (3) (or, equivalently, $v_{1}=v_{2}=1$ for system (11). As it was already mentioned, system (3) admits the equilibrium $x_{1}=x_{2}=0$ with $u_{1}=u_{2}=1$, and this equilibrium corresponds to the cost $\bar{J}=1$ in (4). In this section, we will compare the steady-state value \bar{J} with the values of J for the periodic trajectories corresponding to controls (7). As the goal of Problem 2.1 is to minimize the cost J, we will treat the periodic trajectories with $J<\bar{J}$ as improving the reactor performance in comparison with its steady-state operation.

The results of numerical simulations with controls of the form (7) are summarized in

Table 1 and Figs. 12 for the following switching strategies:

$$
\begin{align*}
& N=2, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\max }}, u^{2}=\binom{u_{1}^{\min }}{u_{2}^{\min }}, \tag{18}\\
& N=2, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\max }}, u^{2}=\binom{u_{1}^{+}}{u_{2}^{\min }}, \tag{19}\\
& N=3, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\max }}, u^{2}=\binom{u_{1}^{\min }}{u_{2}^{\min }}, u^{3}=\binom{u_{1}^{-}}{u_{2}^{\max }}, \tag{20}\\
& N=3, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\text {max }}}, u^{2}=\binom{u_{1}^{\min }}{u_{2}^{\min }}, u^{3}=\binom{u_{1}^{+}}{u_{2}^{\text {min }}}, \tag{21}\\
& N=3, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\max }}, u^{2}=\binom{u_{1}^{+}}{u_{2}^{\min }}, u^{3}=\binom{u_{1}^{-}}{u_{2}^{\max }}, \tag{22}\\
& N=3, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\max }}, u^{2}=\binom{u_{1}^{-}}{u_{2}^{\max }}, u^{3}=\binom{u_{1}^{+}}{u_{2}^{\min }}, \tag{23}\\
& N=4, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\max }}, u^{2}=\binom{u_{1}^{+}}{u_{2}^{\min }}, u^{3}=\binom{u_{1}^{\min }}{u_{2}^{\min }}, u^{4}=\binom{u_{1}^{-}}{u_{2}^{\max }}, \tag{24}\\
& N=4, u^{1}=\binom{u_{1}^{\max }}{u_{2}^{\max }}, u^{2}=\binom{u_{1}^{-}}{u_{2}^{\max }}, u^{3}=\binom{u_{1}^{\min }}{u_{2}^{\min }}, u^{4}=\binom{u_{1}^{+}}{u_{2}^{\min }} . \tag{25}
\end{align*}
$$

Note that we only keep the switching strategies compatible with the constraint $\bar{u}_{1}=1$ in formulas (18)-(25), given the numerical values of controls in $\sqrt{17)}$. These formulas also allow the analysis of strategies obtained by cyclic permutations of $\left(u^{1}, u^{2}, u^{3}, u^{4}\right)$ because of the periodic nature of the considered control problem. In Table I, the switching parameters $\alpha_{j}=\frac{t_{j}-t_{j-1}}{\tau}$ are chosen according to the initial value x^{0} of system (3) by solving the algebraic equations (10), (11) in Proposition 3.1.

5 Conclusions

The presented simulation results confirm that the best performance improvement in the sense of the cost (4) is achieved by bang-bang controls of the form (7) in the case (19) (up to a permutation of u^{1} and u^{2}). Note that the periodic trajectories in Figs. 1 and 2 are obtained as numerical solutions of system (3), (7), and their orbital stability (or partial stability [12]) remains to be verified in future work to justify the practical relevance of the proposed discontinuous control strategies.

Control strategy	Parameters $\alpha_{j}=\left(t_{j}-t_{j-1}\right) / \tau$	Initial data x^{0}	Cost J
(18)	$\alpha_{1}=0.2875, \alpha_{2}=0.7125$	$(-0.307,0.0219)$	0.6293
$(19$	$\alpha_{1}=0.2297, \alpha_{2}=0.7703$	$(-0.3259,0.0325)$	0.4883
20	$\alpha_{1}=0.2365, \alpha_{2}=0.0833, \alpha_{3}=0.6802$	$(-0.2413,0.017)$	0.653
21	$\alpha_{1}=0.2703, \alpha_{2}=0.5, \alpha_{3}=0.2297$	$(-0.198,0.00078)$	1.055
22	$\alpha_{1}=0.2297, \alpha_{2}=0.0833, \alpha_{3}=0.6870$	$(-0.3305,0.0312)$	0.502
$(22$	$\alpha_{1}=0.2297, \alpha_{2}=0.1667, \alpha_{3}=0.6036$	$(-0.3326,0.0299)$	0.5169
22	$\alpha_{1}=0.2297, \alpha_{2}=0.25, \alpha_{3}=0.5203$	$(-0.332,0.0287)$	0.5326
(22)	$\alpha_{1}=0.2297, \alpha_{2}=0.3333, \alpha_{3}=0.4370$	$(-0.3306,0.0273)$	0.5488
$(22$	$\alpha_{1}=0.2297, \alpha_{2}=0.4167, \alpha_{3}=0.3536$	$(-0.3269,0.026)$	0.5659
22	$\alpha_{1}=0.2297, \alpha_{2}=0.5, \alpha_{3}=0.2703$	$(-0.323,0.0249)$	0.5828
$(23$	$\alpha_{1}=0.2297, \alpha_{2}=0.5, \alpha_{3}=0.2703$	$(-0.271,0.00076)$	1.0591
$(24$	$\alpha_{1}=0.264, \alpha_{2}=0.083, \alpha_{3}=0.417, \alpha_{4}=0.236$	$(-0.329,-0.0056)$	1.1259
$(24$	$\alpha_{1}=0.237, \alpha_{2}=0.417, \alpha_{3}=0.083, \alpha_{4}=0.263$	$(-0.263,0.0133)$	0.7179
$(24$	$\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0.25$	$(-0.266,0.00066)$	0.9465
$(25$	$\alpha_{1}=0.264, \alpha_{2}=0.083, \alpha_{3}=0.417, \alpha_{4}=0.236$	$(-0.2077,0.0007)$	1.057
25	$\alpha_{1}=0.237, \alpha_{2}=0.417, \alpha_{3}=0.083, \alpha_{4}=0.263$	$(-0.256,0.0007)$	1.0604
(25)	$\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0.25$	$(-0.228,0.00067)$	1.0616

Table 1: Simulation results for system (3) with controls (7), $\tau=0.5$.

References

[1] Bailey, J., and Horn, F. Comparison between two sufficient conditions for improvement of an optimal steady-state process by periodic operation. Journal of Optimization Theory and Applications 7, 5 (1971), 378-384.
[2] Bellman, R., Bentsman, J., and Meerkov, S. Vibrational control of systems with Arrhenius dynamics. Journal of Mathematical Analysis and Applications 91, 1 (1983), 152-191.
[3] Benner, P., Seidel-Morgenstern, A., and Zuyev, A. Periodic switching strategies for an isoperimetric control problem with application to nonlinear chemical reactions. Applied Mathematical Modelling 69 (2019), 287-300.
[4] Ellis, M., Liu, J., and Christofides, P. Economic Model Predictive Control: Theory, Formulations and Chemical Process Applications. Springer, London, 2017.

Figure 1: Periodic trajectories of system (3) with $N=2$.
[5] Guay, M., Dochain, D., Perrier, M., and Hudon, N. Flatness-based extremum-seeking control over periodic orbits. IEEE Transactions on Automatic Control 52, 10 (2007), 2005-2012.

Figure 2: Periodic trajectories of system (3) with $N=3$ and $N=4$.
[6] Hoffmann, U., and Schädlich, H.-K. The influence of reaction orders and of changes in the total number of moles on the conversion in a periodically operated CSTR. Chemical Engineering Science 41 (1986), 2733-2738.
[7] Kravaris, C., Dermitzakis, I., and Thompson, S. Higher-order corrections to the pi criterion using center manifold theory. European Journal of Control 18, 1 (2012), 5-19.
[8] Nikolić, D., Seidel-Morgenstern, A., and Petkovska, M. Nonlinear frequency response analysis of forced periodic operation of non-isothermal cstr using single input modulations. Part I: Modulation of inlet concentration or flow-rate. Chemical Engineering Science 117 (2014), 7184.
[9] Petkovska, M., and Seidel-Morgenstern, A. Evaluation of periodic processes. In Periodic Operation of Chemical Reactors, P. Silveston and R. Hudgins, Eds. Butterworth-Heinemann, 2013, p. 387413.
[10] Shi, H., Lang, Z., Zhu, Y., Yuan, D., and Wang, W. Optimal design of the inlet temperature based periodic operation of non-isothermal CSTR using nonlinear output frequency response functions. IFAC-PapersOnLine 51, 18 (2018), 620-625.
[11] Sterman, L., and Ydstie, B. Periodic forcing of the cstr: An application of the generalized π-criterion. AIChE Journal 37, 7 (1991), 986-996.
[12] Zuyev, A. Partial Stabilization and Control of Distributed Parameter Systems with Elastic Elements. Springer, Cham, 2015.
[13] Zuyev, A., Seidel-Morgenstern, A., and Benner, P. An isoperimetric optimal control problem for a non-isothermal chemical reactor with periodic inputs. Chemical Engineering Science 161 (2017), 206-214.
[14] Zuyev, A., Seidel-Morgenstern, A., and Benner, P. Optimal periodic control of nonlinear chemical reactions with a time-varying flow rate. PAMM - Proceedings in Applied Mathematics and Mechanics 19 (2019), in Press, DOI: 10.1002/pamm. 201900160.

[^0]: *Corresponding author is with the Max Planck Institute for Dynamics of Complex Technical Systems and is on leave from the Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine.

