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Abstract

An isoperimetric optimal control problem with non-convex cost is considered
for a class of nonlinear control systems with periodic boundary conditions. This
problem arises in chemical engineering as the maximization of the product of non-
isothermal reactions by consuming a fixed amount of input reactants. It follows from
the Pontryagin maximum principle that the optimal controls are piecewise constant
in the considered case. We focus on a parametrization of optimal controls in terms of
switching times in order to estimate the cost under different switching strategies. We
exploit the Chen–Fliess functional expansion of solutions to the considered nonlinear
system with bang-bang controls to satisfy the boundary conditions and evaluate the
cost analytically for small periods. In contrast to the previous results in this area,
the system under consideration is not control-affine, and the integrand of the cost
depends on the state. This approach is applied to non-isothermal chemical reactions
with simultaneous modulation of the input concentration and the volumetric flow-
rate.

1 Introduction

Strategies for the dynamic optimization of chemical reaction models have been studied
in the mathematical literature by using the Pontryagin maximum principle [1,13], vibra-
tional control technique [2], frequency-domain methods [9–11], center manifold theory [7],
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flatness-based approach and extremum seeking [5], model predictive control methodol-
ogy [4], and other approaches.

A remarkable result in this area was formulated for a mathematical model of an
isothermal reaction the type “ν1A1 + ν2A2 → Product” with the power law rate r =
kCn1

1 Cn2
2 in [6]. Namely, it was shown that the conversion of A1 and A2 to the product

cannot be improved by using time-varying controls if 0 < n1 < 1, 0 < n2 < 1, and
n1 + n2 ≤ 1. In the non-isothermal case, it turns out that it is possible to improve
the performance of first-order reactions of the type “A → Product” by using sinusoidal
periodic inputs [9]. For a realistic non-isothermal reaction of this type, it was shown
that the optimal controls are bang-bang, and periodic switching strategies have been
described by applying the Pontryagin maximum principle in [13]. An analytic approach
for computing the switching parameters of τ -periodic controls has been developed in [3]
for the case of small periods τ .

Note that the above papers deal with reaction models with a constant flow-rate, while
the periodic flow-rate modulation is shown to be an important ingredient for improving
the reaction performance [8]. The corresponding isoperimetric optimal control problem
is rigorously formulated in [14] for a non-isothermal mathematical model with two in-
dependent inputs: the inlet concentration and the flow-rate. As in the case of constant
flow-rate, it is shown in [14] that the optimal controls are piecewise constant, and their
switching times are defined in terms of zeros of certain auxiliary functions. However, the
structure of switching controllers has not been analyzed so far. This paper aims at de-
veloping an efficient approach for computing periodic bang-bang controls and evaluating
the cost for the isoperimetric optimal control problem introduced in [14].

2 Optimization problem

Consider a nonlinear control system describing non-isothermal chemical reactions of the
type “A→ Product” and order n̄ [8, 14]:

ẋ = f0(x) + v1v2g1(x) + v2g2(x), x = (x1, x2)T ∈ R2, (1)

where x1 is the dimensionless concentration of A in the reactor, x2 is the dimensionless
temperature,

f0(x) =

(
−k1(1 + x1)n̄ exp{− γ

x2+1
}

δ − St(1 + x2)− k2(1 + x1)n̄ exp{− γ
x2+1
}

)
,

g1(x) =

(
1 + k1 exp{−γ}

0

)
, g2(x) =

(
−1− x1

k2 exp{−γ}+ St− δ − x2

)
,

(2)
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and k1, k2, St, γ, and δ are physical parameters (cf. [8]). The dimensionless control
variables v1 ∈ [vmin1 , vmax1 ] and v2 ∈ [vmin2 , vmax2 ] correspond to the inlet concentration of
A and the flow-rate, respectively. We assume that 0 < vmini ≤ 1 and vmaxi ≥ 1 for i = 1, 2.
Then it is easy to see that x1 = x2 = 0 is an equilibrium of system (1) that corresponds
to a steady-state operation of the considered chemical reactor with v1 = v2 = 1.

System (1) can be transformed to the control-affine form with respect to the inputs
u1 = v1v2 and u2 = v2 as follows [14]:

ẋ = f0(x) + u1g1(x) + u2g2(x), x ∈ R2, u = (u1, u2)T ∈ U = ConvUb, (3)

where

Ub =

{(
umin1

umin2

)
,

(
umax1

umax2

)
,

(
u−1
umax2

)
,

(
u+

1

umin2

)}
,

umin1 = vmin1 vmin2 , u−1 = vmin1 vmax2 , u+
1 = vmax1 vmin2 , umax1 = vmax1 vmax2 .

As maximizing the conversion of A to the product over a given time period t ∈ [0, τ ]
can be treated in the sense of minimizing the remaning mass of A in the outgoing stream,
our goal is to minimize the cost

J =
1

τ

∫ τ

0

(
x1(t) + 1

)
u2(t)dt. (4)

We also assume that the consumption of A over the period is fixed as 1
τ

∫ τ
0
u1(t)dt = ū1,

which yields the following isoperimetric optimal control problem.
Problem 2.1. [14] Given τ > 0, ū1 ∈ R, and x0 ∈ R2, the goal is to find an ad-

missible control û ∈ L∞
(

[0, τ ];U
)

that minimizes the cost J along the trajectories of (3)

corresponding to the admissible controls u ∈ L∞
(

[0, τ ];U
)

such that

1

τ

∫ τ

0

u1(t)dt = ū1 and x(0) = x(τ) = x0. (5)

If û(t) (0 ≤ t ≤ τ) is an optimal control for Problem 2.1, then it follows from the
results of [14] that û(t) ∈ Ub almost everywhere on [0, τ ], and the switching times of

û(t) are related to zeros of the following functions: I1(t) I2(t),
u−1 −umin

1

umax
2 −umin

2
I1(t) + I2(t),

umax
1 −u+1

umax
2 −umin

2
I1(t) + I2(t), where I1(t) and I2(t) are defined by solutions of the associated

Hamiltonian system. It should be noted that I1(t) and I2(t) are parameterized by initial
values of the adjoint variables. In this paper, we will not use any information on the
behavior of adjoint variables and define the switching parameters directly from (5). Then
the cost (4) will be approximated analytically to estimate the performance improvement
for the considered class of bang-bang controllers.
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3 Computation of the switching controls

Assuming that a bang-bang control û(t) ∈ Ub (0 ≤ t ≤ τ) has a finite number of switch-
ings, we enumerate the switching times

0 = t0 < t1 < ... < tN = τ with some N ∈ N (6)

and denote
uj = û(t) ∈ Ub for t ∈ Sj = (tj−1, tj), j = 1, 2, ..., N. (7)

Our goal is to analyse the cost J on the trajectories of system (3) with piecewise-
constant controls of the form (7) depending on the parameters (t1, ..., tN) and (u1, ..., uN).

A straightforward computation of
∫ τ

0
û1(t)dt for the piecewise-constant control (7)

shows that the isoperimetric constraint in (5) is equivalent to

N∑
j=1

αju
j
1 = ū1 with αj =

tj − tj−1

τ
> 0. (8)

In order to satisfy the periodic boundary condition x(0) = x(τ) and estimate the cost (4)
analytically for small τ , we exploit the Chen–Fliess expansion of solutions to system (3)
with the initial value x(0) = x0 and control u = û(t) (see, e.g., [3]):

x = x0 +
2∑

i=0

gi(x
0)Vi(t) +

2∑
i,j=0

(
Lgj gi

)
(x0)Vij(t) +

2∑
i,j,l=0

(
LglLgj gi

)
(x0)Vijl(t) +O(t4), (9)

where we assume that g0(x) = f0(x), Lgigj(x) =
∂gj(x)

∂x
gi(x) is the directional derivative of

gj(x) along gi(x), and

Vi(t) =

∫ t

0

ui(s)ds, u0(t) ≡ 1, Vij(t) =

∫ t

0

∫ s

0

ui(s)uj(p)dp ds,

Vijl(t) =

∫ t

0

∫ s

0

∫ p

0

ui(s)uj(p)ul(r)dr dp ds, t ∈ [0, τ ].

The remainder of formula (9) is of order O(t4) for small t > 0 if the vector fields gj(x)
are of class C3 in a neighborhood of x0.

As in [3], we will restrict our analysis to the cases N ≤ 4, motivated by the estimate of
the number of switchings in isoperimetric problems proposed in [13]. The main analytical
result of our study is summarized as follows.

Proposition 3.1. Let û(t), t ∈ [0, τ ] be a bang-bang control represented by (7) with
the parameters 0 < t1 ≤ t2 ≤ t3 ≤ t4 = τ and u1, u2, u3, u4 ∈ Ub, and let x(t), t ∈ [0, τ ]
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be the corresponding solution of (3) such that x(0) = x0 ∈ R2. Then the isoperimetric
constraint (8) is equivalent to

4∑
j=2

αj(u
j
1 − u1

1) = ū1 − u1
1, α1 = 1− α2 − α3 − α4, (10)

and the periodic boundary condition x(0) = x(τ) reduces to
4∑

j=1

αjfj +
τ

2

{
α2
1Lf1f1 + α2

2Lf2f2 − α
2
3Lf3f3 − α

2
4Lf4f4 + 2α1α2Lf1f2 − 2α3α4Lf4f3

}
+
τ2

6

{
α3
1L

2
f1
f1 + α3

2L
2
f2
f2 + α3

3L
2
f3
f3 + α3

4L
2
f4
f4 + 3α1α2Lf1 (α1Lf1 + α2Lf2 )f2

+ 3α3α4Lf4 (α4Lf4 + α3Lf3 )f3
}

= O(τ3),

(11)

where fi(x) = f0(x) + ui1g1(x) + ui2g2(x), i = 1, 2, 3, 4. Moreover, the cost (4) evaluated
for x(t) admits the representation J = ū2 +X1, where

ū2 =
1

τ

∫ τ

0

û2(t)dt = u1
2 +

4∑
j=2

αj(u
j
2 − u1

2) (12)

and X1 is the first component of the vector X ∈ R2:

X =
1

τ

∫ τ

0

x(t)û2(t) dt = ū2x
0 +

τ

2

(
α2

1u
1
2f1 − (1− α1)2u2

2f2

)
+
τ 2

6

(
α3

1u
1
2Lf1f1 + (1− α1)3u2

2Lf2f2

)
+
τ 3

24

(
α4

1u
1
2Lf1Lf1f1 − (1− α1)4u2

2Lf2Lf2f2

)
+O(τ 4).

(13)

The vector fields fi(x) and their directional derivatives in (11), (13) are evaluated at
x = x0.

The assertion of Proposition 3.1 is obtained from the Chen–Fliess expansion (9) for
the solution x(t) of system (3) with u = û(t).

Note that the cases with N < 4 can be considered as particular cases of N = 4 with
some of the αj being zero. In particular, the case N = 2 is treated by assuming α3 =
α4 = 0 in (8). In this case, the equations (10), (11), and (12) are reduced, respectively, to

α1 =
ū1 − u2

1

u1
1 − u2

1

∈ (0, 1), α2 = 1− α1 if u1
1 6= u2

1, (14)

α1(f1 − f2) + f2 +
τ

2

(
α2
1Lf1f1 − (1− α1)2Lf2f2

)
+
τ2

6

(
α3
1L

2
f1
f1 + (1− α1)3L2

f2
f2
)

= O(τ3), (15)

and

ū2 =
1

τ

∫ τ

0

û2(t)dt = α1u
1
2 + (1− α1)u2

2. (16)
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4 Simulation results

We take the following parameters for numerical simulations for the first-order (n̄ = 1)
adiabatic reaction considered in [3]:

γ =
EA
RT̄

= 17.77, k1 = k0C̄
n̄−1
A

V

F̄
= 5.819·107, k2 =

∆HRk0C̄
n̄
AV

ρcpT̄ F̄
= −8.99·105, δ = St = 0.

The above dimensionless parameters are computed with the gas constant

R = 8.3144598
J

K ·mol

and the activation energy EA = 44.35 kJ
mol

, the collision factor k0 = 1.4 · 105 s−1, the
reaction heat ∆HR = −55.5 kJ

mol
, and ρcp = 4.186 kJ

K·l being the product of the density
and the heat capacity. This model corresponds to the chemical reaction (CH3CO)2O +
H2O → 2 CH3COOH in the CSTR of volume V = 0.298 l with the steady-state outlet
concentration C̄A = 0.3498 mol

l
and the steady-state temperature T̄ = 300.17K. In

contrast to the previous works [3, 13], we consider the case of variable flow-rate in this
paper. Namely, we assume that the flow-rate and the inlet concentration can be controlled
around their steady-state values F̄ = 7.17 ·10−4 l

s
and C̄Ai = 0.74 mol

l
, respectively, within

the range of 85%, i.e. vmini = 0.15, vmaxi = 1.85, i = 1, 2. This choice of control constraints
corresponds to the following components of the points in Ub:

umin1 = 0.0225, umax1 = 3.4225, u+
1 = u−1 = 0.2775, umin2 = 0.15, umax2 = 1.85. (17)

In the sequel, we impose the isoperimetric constraint (5) with ū1 = 1. The constraint
ū1 = 1 is satisfied, in particular, by the constant controls u1 = u2 = 1 for system (3)
(or, equivalently, v1 = v2 = 1 for system (1)). As it was already mentioned, system (3)
admits the equilibrium x1 = x2 = 0 with u1 = u2 = 1, and this equilibrium corresponds
to the cost J̄ = 1 in (4). In this section, we will compare the steady-state value J̄ with
the values of J for the periodic trajectories corresponding to controls (7). As the goal of
Problem 2.1 is to minimize the cost J , we will treat the periodic trajectories with J < J̄
as improving the reactor performance in comparison with its steady-state operation.

The results of numerical simulations with controls of the form (7) are summarized in
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Table 1 and Figs. 1–2 for the following switching strategies:

N = 2, u1 =

(
umax1

umax2

)
, u2 =

(
umin1

umin2

)
, (18)

N = 2, u1 =

(
umax1

umax2

)
, u2 =

(
u+

1

umin2

)
, (19)

N = 3, u1 =

(
umax1

umax2

)
, u2 =

(
umin1

umin2

)
, u3 =

(
u−1
umax2

)
, (20)

N = 3, u1 =

(
umax1

umax2

)
, u2 =

(
umin1

umin2

)
, u3 =

(
u+

1

umin2

)
, (21)

N = 3, u1 =

(
umax1

umax2

)
, u2 =

(
u+

1

umin2

)
, u3 =

(
u−1
umax2

)
, (22)

N = 3, u1 =

(
umax1

umax2

)
, u2 =

(
u−1
umax2

)
, u3 =

(
u+

1

umin2

)
, (23)

N = 4, u1 =

(
umax1

umax2

)
, u2 =

(
u+

1

umin2

)
, u3 =

(
umin1

umin2

)
, u4 =

(
u−1
umax2

)
, (24)

N = 4, u1 =

(
umax1

umax2

)
, u2 =

(
u−1
umax2

)
, u3 =

(
umin1

umin2

)
, u4 =

(
u+

1

umin2

)
. (25)

Note that we only keep the switching strategies compatible with the constraint ū1 = 1
in formulas (18)–(25), given the numerical values of controls in (17). These formulas
also allow the analysis of strategies obtained by cyclic permutations of (u1, u2, u3, u4)
because of the periodic nature of the considered control problem. In Table I, the switching
parameters αj =

tj−tj−1

τ
are chosen according to the initial value x0 of system (3) by solving

the algebraic equations (10), (11) in Proposition 3.1.

5 Conclusions

The presented simulation results confirm that the best performance improvement in the
sense of the cost (4) is achieved by bang-bang controls of the form (7) in the case (19) (up
to a permutation of u1 and u2). Note that the periodic trajectories in Figs. 1 and 2 are
obtained as numerical solutions of system (3), (7), and their orbital stability (or partial
stability [12]) remains to be verified in future work to justify the practical relevance of
the proposed discontinuous control strategies.
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Control Parameters Initial data Cost
strategy αj = (tj − tj−1)/τ x0T J

(18) α1 = 0.2875, α2 = 0.7125 (−0.307, 0.0219) 0.6293
(19) α1 = 0.2297, α2 = 0.7703 (−0.3259, 0.0325) 0.4883
(20) α1 = 0.2365, α2 = 0.0833, α3 = 0.6802 (−0.2413, 0.017) 0.653
(21) α1 = 0.2703, α2 = 0.5, α3 = 0.2297 (−0.198, 0.00078) 1.055
(22) α1 = 0.2297, α2 = 0.0833, α3 = 0.6870 (−0.3305, 0.0312) 0.502
(22) α1 = 0.2297, α2 = 0.1667, α3 = 0.6036 (−0.3326, 0.0299) 0.5169
(22) α1 = 0.2297, α2 = 0.25, α3 = 0.5203 (−0.332, 0.0287) 0.5326
(22) α1 = 0.2297, α2 = 0.3333, α3 = 0.4370 (−0.3306, 0.0273) 0.5488
(22) α1 = 0.2297, α2 = 0.4167, α3 = 0.3536 (−0.3269, 0.026) 0.5659
(22) α1 = 0.2297, α2 = 0.5, α3 = 0.2703 (−0.323, 0.0249) 0.5828
(23) α1 = 0.2297, α2 = 0.5, α3 = 0.2703 (−0.271, 0.00076) 1.0591
(24) α1 = 0.264, α2 = 0.083, α3 = 0.417, α4 = 0.236 (−0.329,−0.0056) 1.1259
(24) α1 = 0.237, α2 = 0.417, α3 = 0.083, α4 = 0.263 (−0.263, 0.0133) 0.7179
(24) α1 = α2 = α3 = α4 = 0.25 (−0.266, 0.00066) 0.9465
(25) α1 = 0.264, α2 = 0.083, α3 = 0.417, α4 = 0.236 (−0.2077, 0.0007) 1.057
(25) α1 = 0.237, α2 = 0.417, α3 = 0.083, α4 = 0.263 (−0.256, 0.0007) 1.0604
(25) α1 = α2 = α3 = α4 = 0.25 (−0.228, 0.00067) 1.0616

Table 1: Simulation results for system (3) with controls (7), τ = 0.5.
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