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Abstract. Model order reduction is a technique that is used to construct low-order approximations of large-scale
dynamical systems. In this paper, we investigate a balancing based model order reduction method for
dynamical systems with a linear dynamical equation and a quadratic output function. To this aim,
we propose a new algebraic observability Gramian for the system based on Hilbert space adjoint
theory. We then show the proposed Gramians satisfy a particular type of generalized Lyapunov
equations and we investigate their connections to energy functionals, namely, the controllability and
observability. This allows us to find the states that are hard to control and hard to observe via
an appropriate balancing transformation. Truncation of such states yields reduced-order systems.
Finally, based on H2 energy considerations, we, furthermore, derive error bounds, depending on the
neglected singular values. The efficiency of the proposed method is demonstrated by means of two
semi-discretized partial differential equations and is compared with the existing model reduction
techniques in the literature.
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1. Introduction. Dynamical models of real-world problems are often constructed, for ex-
ample, with the purpose of simulations, predictions, optimization, and control. Such models
are usually governed by partial differential equations (PDEs). More often than not, a spatial
discretization of PDEs is necessary to perform engineering studies. To capture the important
dynamics of a complex phenomenon, we require a fine spatial discretization, thus leading to a
large number of equations. This imposes a huge computation burden. To overcome this issue,
one can use model order reduction, aiming at constructing lower-dimensional models which
capture the important dynamical behaviors of the original large-scale dynamical system.

A particular class of dynamical systems, which often occurs in modeling, is linear dynami-
cal (LD) systems. Model order reduction (MOR) of such systems has been extensively studied
in the literature and has been successfully applied for various real-world problems, see e.g.,
[1, 3, 9]. In this paper, we consider a variant of LD systems, as follows:

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = x(t)TMx(t),
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where A ∈ Rn×n, B ∈ Rn×m and M ∈ Rn×n. As can be seen in the above equation, the state
equation is linear, but the output equation takes a quadratic form of the state as shown. We
refer to (2.4) as an LD QO system. These kinds of systems, particularly, appears when one’s
interests lie in observing, e.g., the variance or deviation of the state variables from a reference
point. This happens to be the case in random vibration analysis [16] and problems where
response quantities related to energy or power are considered.

MOR techniques for LD QO systems have been investigated in the past. For instance, the
authors in [26, 27] have proposed to rewrite an LD QO system as an LD system. It is then
followed by reducing by well-known techniques for LD systems such as balanced truncation
and interpolation-based methods. Furthermore, very recently, the authors in [22] proposed
an alternative approach, where the LD QO system is written as a quadratic-bilinear (QB) sys-
tem. Subsequently, the QB system is reduced by tailoring the balanced truncation approach,
proposed in [6]. However, in the formal approach, we do not directly utilize the quadratic
structure of the output equation, and the latter approach is not only numerically expensive,
but it also fails to keep the structure of the original system into reduced systems.

In this paper, we study a balanced truncation method for LD QO systems by proposing
a novel pair of Gramians for the system. We, furthermore, investigate energy functionals,
namely controllability, and observability, which form a ground for a balancing based procedure.
We also characterize the controllability and observability of the system based on the Gramians.
This allows us to construct reduced-order systems, removing less important subspaces for the
dynamics. In this procedure, it is not required to rewrite the system as an LD or QB system,
and it, inherently, preserves the LD QO structure in a reduced-order system.

A precise structure of the remaining paper is as follows. In the subsequent section, we pro-
vide the problem description and briefly revise the state-of-the-art. In Section 3, we present a
novel pair of Gramians, the so-called controllability and observability Gramians for LD QO sys-
tems. Based on these Gramians, we study controllability and observability energy functionals,
allowing us to determine the states that are hard to reach as well as hard to observe. Conse-
quently, we propose a balancing method to construct a good quality of reduced-order systems.
In Section 4, we derive error bounds for the approximation error between the original and the
reduced-order systems. These errors bounds rely on the definition of the H2 norm for such
class of systems. Precisely, our contributions in the aspect are twofold. Firstly, we derive a
general a posteriori expression. Secondly, we show that the error bounds are directly associ-
ated with the neglected singular values. In Section 5, we test the accuracy of the proposed
method and compare with the techniques proposed in [22, 26]. Finally, in Section 6, we
conclude the paper by listing our main contributions and provide future directions.

2. Problem Formulation and Background Work. In this section, we discuss the MOR
problem and its related work in the literature. We begin by recalling the classical balanced
truncation method for LD systems.

2.1. Balanced Truncation of LD systems . Let us consider an LD system of the form:

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,(2.1a)

y(t) = Cx(t),(2.1b)
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with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n; x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the
state, input and output vectors, respectively; n,m, and p denote the state dimension or the
order of the system, the number of inputs, and the number of outputs, respectively. The
main purpose of MOR is to construct a low-dimensional system, precisely an r-dimensional
system with r � n, approximating the behavior of the system (2.1). To construct a reduced-
order system, we employ the Petrov-Galerkin framework. It consists in finding two projection
matrices V,W ∈ Rn×r such that W TV = Ir. This allows us to construct a reduced-order
system as follows:

˙̂x(t) = Âx̂(t) + B̂u(t), x̂(0) = 0,(2.2a)

ŷ(t) = Ĉx̂(t),(2.2b)

where Â = W TAV ∈ Rr×r, B̂ = W TB ∈ Rr×m and Ĉ = CV ∈ Rp×r. Furthermore, the
matrices V and W should be designed in a way that the reduced-order system meets desired
goals, e.g., y ≈ ŷ, meaning that the original and reduced-order systems should provide very
similar outputs when excited by the same input signal.

There exist several MOR techniques for LD systems and we refer the reader to the books
[1, 3] for more details. In this work, we focus on balanced truncation (BT), which was
introduced in the control systems literature in [17]. It mainly relies on the controllability and
observability energy functionals, see e.g., [14]. The controllability energy functional is defined
as the minimal amount of energy required to steer the system to zero from a given state.
On the other hand, the observability energy functional can be defined as the output energy
generated by a non-zero initial condition. For LD systems, these functionals can be given by
the functions using the controllability and observability Gramians, respectively denoted by P
and Q, see e.g., [1]. The Gramians satisfy the following Lyapunov equations:

AP + PAT +BBT = 0,(2.3a)

ATQ+QA+ CTC = 0.(2.3b)

The main principle of BT lies in determining the states that are simultaneously hard to reach
and hard to observe, in other words, these states require a lot of energy to steer from zero, as
well as, generate very little output energy. To identify such states, we make use of the balancing
tool based on the Gramians, leading to a reduced-order system on truncation. Furthermore,
it preserves stability and provides guaranteed error bounds, see e.g., [1]. In Algorithm 2.1,
we sketch the square-root balanced truncation algorithm, enabling us to determine a reduced-
order system.

It is worth mentioning that the most costly step in the algorithm is to compute the
Gramians as the solutions of (2.3). However, the solutions of the equations exhibit low-rank
phenomena, i.e., there exists ZP ∈ Rn×l, with l � n, such that P ≈ ZPZ

T
P . Thus, we make

use of low-rank solvers of Lyapunov equations, which are not only numerically efficient but
also yield directly the Gramians in Cholesky factors. In the past decades, several advance
algorithms have been proposed, allowing us to compute a solution of a Lyapunov equation of
a few thousands in a low-rank form on a moderate machine. We refer the reader to the review
papers [8, 10, 25] to get an overview of the existing methods.
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Algorithm 2.1 Balanced truncation method for LD systems.

Input: Matrices (A,B,C) and the order of a reduced-order system r.
Output: Reduced matrices (Â, B̂, Ĉ).

1: Compute low-rank factors of Gramians P ≈ ZPZTP , Q ≈ ZQZTQ, where P and Q solve for
(2.3a) and (2.3b), respectively.

2: Compute the SVD of ZTPZQ, and partition as follows:

ZTPZQ =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
, with Σ1 ∈ Rr×r.

3: Construct the projection matrices V = ZPU1Σ
− 1

2
1 and W = ZQV1Σ

− 1
2

1 .

4: Construct Â = W TAV , B̂ = W TB, Ĉ = CV .
5: return Â, B̂, and Ĉ.

2.2. Problem formulation for LDSQO systems. In this paper, our focus rather lies on
linear dynamical systems with quadratic output function (LD QO systems) which is of the form:

(2.4) H :=

{
ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = x(t)TMx(t),

where A ∈ Rn×n, B ∈ Rn×m and M ∈ Rn×n. For ease, the original LD QO system (2.4) is
denoted by H = (A,B,M). We assume that the matrix A is Hurwitz; hence, the LDS_QO

system is asymptotically stable. Furthermore, without loss of generality, we assume that the
matrix M is symmetric, i.e., M = MT . In case the matrix M is not symmetric, we can
always construct the symmetric matrix Ms :=

(
M +MT

)
/2, which ensures xT (t)Mx(t) =

x(t)TMsx(t). Note that an LD QO system (2.4) has an input-output nonlinear mapping, even
if the dynamical equation is linear. Our aim is to find two projection matrices V,W ∈ Rn×r,
with W TV = Ir, allowing to construct a reduced-order system Ĥ := (Â, B̂, M̂) as follows:

(2.5) Ĥ :=

{
˙̂x(t) = Âx̂(t) + B̂u(t), x̂(0) = 0,

ŷ(t) = x̂(t)T M̂x̂(t),

where Â = W TAV ∈ Rr×r, B̂ = W TB ∈ Rr×m and M̂ = V TMV ∈ Rr×r while ensuring the
desired properties.

2.3. State of the Art. In this subsection, we briefly discuss two existing MOR methods
for LD QO systems, see [22, 26].

2.3.1. Linear transformation and balanced truncation. A MOR method for LD QO sys-
tems was proposed in [26]. The primary concept of the method is to equivalently rewrite an
LD QO system as an LD system. This allows us to employ BT for the LD system. As discussed
in [26], for M � 0, we can rewrite the system (2.4) as follows:

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,(2.6a)

yT(t) = CTx(t),(2.6b)
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Algorithm 2.2 BT for LD QO systems (rewriting as an LD system from [26])

Input: The original system’s m3atrices (A,B,M) and the order of the reduced-order sys-
tem r.

Output: Reduced-order system’s matrices (Â, B̂, Ĉ).
1: Compute the Cholesky factorization of the matrix M = CTT CT.
2: For the LD system given by A,B,CT, apply Algorithm 2.1 to obtain Â, B̂, Ĉ.
3: return Â, B̂, and Ĉ.

where the matrices A,B and the state x(t) are the same as in (2.4), but the matrix CT ∈ Rq×n
is such that CTT CT = M , where q = rank (M). However, the outputs of the systems (2.1) and
(2.4) are related as y(t) = ‖yT(t)‖22. This transformation allows us to employ the BT method
for the LD system. For completeness, we sketch the steps to determined a reduced-order system
using the procedure given in Algorithm 2.2. One of drawbacks of the method is that it does
not make use of the quadratic-form of the output equation. Furthermore, later in the paper,
we will discuss that the approach might be very expensive when q is large or when M � 0.

Remark 2.1. Algorithm 2.2 is shown when the matrix M is symmetric positive semi-
definite. However, the authors in [26] also discusses the case general case where M is not a
positive semi-definite. We refer to the reference for details.

2.3.2. Quadratic-bilinear transformation and balanced truncation. Recently, a novel
approach to construct reduced-order systems for LD QO systems has been proposed in [22].
This approach consists of, firstly, converting the original LD QO system as a quadratic-bilinear
(QB) system by taking the derivative of the output equation of the original LD QO system and
followed by augmenting it into the state variable x(t). It results into the QB system as follows:

ẋqb(t) = Aqbxqb(t) +Bqbu(t) +Hqb(xqb ⊗ xqb) +

m∑
j=1

ujNqbxqb, xqb(0) = 0,(2.7a)

y(t) = Cqbxqb(t),(2.7b)

where

xqb =

[
x
y

]
, Aqb =

[
A 0
0 0

]
, Hqb =

[
0 0 0 0 · · · 0 0 0 0
sT1 0 sT2 0 · · · sTn 0 0 0

]
Bqb =

[
B
0

]
, Cqb =

[
1 0

]
, N

(j)
qb =

[
0 0

2bj
TM 0

]
, j = 1, . . . ,m

in which x(t), u(t), y(t), A,B, and C are as defined in (2.4); bj ∈ Rn is the j-th column vectors
of B; sj ∈ Rn is the j-th column of the the matrix S, which is defined as follows:

(2.8) S = ATM +MTA.

The system (2.7) has n + 1 states, m inputs, and 1 output. Note that Aqb ∈ R(n+1)×(n+1),

Bqb ∈ R(n+1)×m, N
(j)
qb ∈ Rm×(n+1) and Hqb ∈ R(n+1)×(n+1)2 .
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Algorithm 2.3 QB transformation and BT for LD QO systems.

Input: The original system’s matrices (A,B,M) and the order of a reduced-order system r.

Output: Reduced QB system’s matrices Âqb, B̂qb, Ĉqb, Ĥqb, and N̂
(j)
qb .

1: Determine QB system matrices, i.e., Aqb, Bqb, Cqb, Hqb and N
(j)
qb , as shown in (2.7).

2: Compute low-rank factors of Gramians Pqb ≈ ZPqbZ
T
Pqb

, Qqb ≈ ZQqbZ
T
Qqb

, where P and

Q solve (2.9a) and (2.9b), respectively.
3: Compute the SVD of ZTPqbZQqb , and decompose as:

ZTPqbZQqb =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
, with Σ1 ∈ Rr×r.

4: Construct the projection matrices V = ZPqbU1Σ
− 1

2
1 and W = ZQqbV1Σ

− 1
2

1 .
5: Construct reduced-order matrices:

Âqb = W TAqbV, B̂ = W TBqb, N̂
(j)
qb = W TN

(j)
qb V, j = 1, . . . ,m,

Ĉqb = CqbV, Ĥqb = W THqb (V ⊗ V ) .

6: return Reduced QB system’s matrices Âqb, B̂qb, Ĉqb, Ĥqb, and N̂
(j)
qb .

Once we have the equivalent QB system, we can employ recently developed MOR schemes
for QB systems, see e.g., [2, 6, 7]. Focusing on a BT method, controllability Gramian Pqb and
the observability Gramian Qqb for a QB system was proposed in [6], where it has been shown
that these Gramians satisfy the following quadratic-type Lyapunov equations:

AqbPqb + PqbA
T
qb +BqbB

T
qb +Hqb

(
Pqb ⊗ Pqb

)
HT

qb +
m∑
j=1

N
(j)
qb Pqb

(
N

(j)
qb

)T
= 0,(2.9a)

ATqbQqb +QqbAqb + CTqbCqb +H
(2)
qb

(
Pqb ⊗Qqb

) (
H

(2)
qb

)T
+

m∑
j=1

(
N

(j)
qb

)T
QqbN

(j)
qb = 0.(2.9b)

Having had the Gramians for QB systems, one can obtain a reduced-order system using
the classical square-root method, as shown in [6]. However, we would like to list an additional
challenge while solving (2.9), that is the matrix Aqb is a singular matrix, i.e., it contains zero
eigenvalues. This issue has been addressed in [22], where the authors have discussed in details
on how to solve (2.9) efficiently. We sketch the proposed methodology in Algorithm 2.3.

Both methodologies presented in [22, 26] rely on rewriting the original LD QO system into
a new form and then apply an appropriate MOR method to construct ROMs. In the next
section, we proposed Gramians and a MOR method which relies on the original structure of
the LD QO system.

3. Balanced truncation method for LDS QO systems. This section contains the main
theoretical contributions of the paper. We focus on deriving a new pair of Gramians for the
LD QO system. In particular, we propose a tailored observability Gramian for the considered
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systems by means of the adjoint systems for nonlinear systems [14]. We begin by discussing
the controllability Gramian for LD QO systems.

3.1. Controllability Gramian and controllability energy functional. Since the differential
equation of a LDS_QO system is a first-order linear time-invariant equation, it is well-known
that the controllability Gramian P is defined as follows:

(3.1) P :=

∫ ∞
0

eAτBBT eA
T τdτ.

Moreover, if A is Hurwitz, i.e., σ(A) ⊂ C−, then the controllability Gramian P satisfies the
following Lyapunov equation:

(3.2) AP + PAT +BBT = 0.

Moreover, the controllability energy functional Ec(x0) is defined as minimum input energy
required to steer the state from a non-zero initial condition to zero, i.e.,

Ec(x0) = min
x(−∞)=x0,
x(0)=0

‖u‖2L2
.

Furthermore, the controllability energy functionals can be given in terms of the controllability
Gramian as follows:

Ec(x0) =
1

2
xT0 P

−1x0,

assuming P > 0. The controllability energy functional relation shows us that the state
components, corresponding to the smaller singular values of the Gramian P are hard to reach.
We refer, e.g., to [1] for more details.

3.2. Observability Gramian. A major difference between a classical first-order linear time-
invariant and LD QO system is the output equation, i.e., the formal system has the output
equation as Cx(t), whereas the output equation of the latter system takes a quadratic form,
given by x(t)TMx(t). Hence, we expect to have a different observability Gramian, which
somehow relates the output energy functional of the LD QO system. For this, we make use of
the adjoint theory for nonlinear systems, developed in [14]. Following the discussion given
in the listed reference, we can write down the state-space realization of the nonlinear Hilbert
adjoint operator of an LD QO system as follows:

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,(3.3a)

ż(t) = −Az(t)−Mx(t)ud(t), z(∞) = 0,(3.3b)

yd(t) = BT z(t),(3.3c)

where z(t) ∈ Rn, ud(t) ∈ R and yd(t) ∈ Rm are, respectively, the dual state, the dual input
and the dual output. Based on this Hilbert adjoint operator, we construct the transfer map
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between the adjoint input and the adjoint state. To that end, let us integrate the adjoint
equation (3.3b) backwards as follows:

z(t) =

∫ t

∞
e−A

T (t−σ)Mx(σ)ud(σ) dσ.

After a suitable change of variables, we obtain

z(t) =

∫ 0

∞
eA

T σ1Mx(t+ σ1)ud(t+ σ1) dσ1.

Moreover, from (3.3a), we have

x(σ1 + t) =

∫ σ1+t

0
eAσ2Bu(t− σ2) dσ2.

By injecting the above expression in the former equation, we obtain

z(t) =

∫ 0

∞

∫ σ1+t

0
eA

T σ1MeAσ2Bu(t− σ2)ud(t+ σ1) dσ2 dσ1.(3.4)

This allows us to define the observability Gramian of the LD QO system as follows:

(3.5) Q =

∫ ∞
0

∫ ∞
0

eA
T σ1MeAσ2B

(
eA

T σ1MeAσ2B
)T

dσ1dσ2.

In what follows, we present the matrix equation, solving for the observability Gramian Q,
defined in (3.5).

Lemma 3.1. Let the observability Gramian Q be defined as in (3.5). Assuming the matrix
A in an LD QO system is Hurwitz, the observability Gramian Q is a unique solution to the
following Lyapunov equation:

(3.6) ATQ+AQ+MPM = 0,

where P is the controllability Gramian, satisfying

(3.7) AP + PAT +BBT = 0.

Proof. From (3.5), we know the observability Gramian satisfies:

Q =

∫ ∞
0

∫ ∞
0

eA
T σ1MeAσ2B

(
eA

T σ1MeAσ2B
)T

dσ1dσ2

=

∫ ∞
0

eA
T σ1M

(∫ ∞
0

eAσ2BBT eA
T σ2

)
MeAσ1dσ1dσ2.(3.8)

We know from, e.g., [1], that

(3.9)

∫ ∞
0

eAσ2BBT eA
T σ2dσ2 = P,
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where P is the controllability Gramian of LD QO systems. Substituting the above relation into
(3.8) yields

Q =

∫ ∞
0

eA
T σ1MPMeAσ1dσ1.(3.10)

Using the same arguments as used for (3.9), for σ(A) ∈ C−, it can be readily shown that the
observability Gramian Q satisfies (3.6).

Next, we investigate a relation between the observability Gramian and energy functionals.
The observability energy functional Eo(x0) is defined as the output energy produced by the
nonzero initial condition x0, i.e.,

Eo(x0) =

∫ ∞
0
‖y(t)‖2dt,

where y(t) is the output of a system. To that end, we establish a relation between the
observability Gramian and observability energy functionals Eo(x0) in the following theorem.

Theorem 3.2. Let the controllability P > 0 and observability Q be defined as (3.2) and
(3.6), respectively. Furthermore, let us assume that the state trajectory x(t), generated from a
non-zero initial condition x0 with u(t) ≡ 0, lies in Wδ, where Wδ denotes the balls of radius
δ centered around zero. Then, the output energy functional can be bounded as follows:

Eo(x0) ≤ xT0Qx0.

Proof. Using the definition of the observability energy functional, we have

Eo(x0) =

∫ t

0
‖y(t)‖22dt

=

∫ t

0
x(τ)TMTx(τ)x(τ)TMx(τ)dτ.

Note that x(τ) can be given as eAτx0. Since the system is assumed to be controllable (P > 0),
we can write x(τ) = Lz(τ) ∀τ , where the matrix L is the Cholesky factors of P , i.e., LLT = P .
Using all these relations, we obtain

Eo(x0) =

∫ t

0
x0e

AT τMT eAτx0x
T
0 e

AT τMeAτx0dτ

=

∫ t

0
x0e

AT τMTLz(τ)z(τ)TLTMeAτx0dτ.

Additionally, it can be easily shown that Lz(t)z(t)TLT ≤ LLT for ‖z(t)‖22≤ 1. Hence, if an
initial condition x0 is such that the generated state trajectory x(τ) ∈ Wδ, where Wδ is chosen
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such that every x(τ) can be written as Lz(t), where ‖z(t)‖22≤ 1. Thus, we get

Eo(x0) =

∫ t

0
x0e

AT τMTLz(τ)z(τ)TLTMeAτx0dτ

≤
∫ ∞
0

xT0 e
AT τMTLLTMeAτx0dτ

≤
∫ ∞
0

xT0 e
AT τMTPMeAτx0dτ

≤ xT0
(∫ ∞

0
eA

T τMTPMeAτdτ

)
x0

≤
∫ ∞
0

xT0Qx0.

This concludes the proof.

So far, we have proposed Gramians for LD QO systems and have shown how these Grami-
ans relate to the energy functionals of the systems, under required conditions. However, in
the following, we show that these Graimans, in a general case, encode controllability and
observable subspaces information.

Theorem 3.3. Let controllability Gramian (P ) and observability Gramian (Q) solve (3.2)
and (3.6), respectively. Then, we have the following results:

(a) If the system is aimed at steering from zero to x0, which belongs to kerP , then Ec(x0) =
∞; hence, it is unreachable.

(b) If P > 0 and the initial condition x0 ∈ kerQ, then E0(x0) = 0, thus making the state
x0 unobservable.

Proof. (a) This result is very well-known in the literature; hence, for the brevity of the
paper, we skip the details and refer the reader e.g., to [4, 6], where authors have considered a
more general case.

(b) We know that the observability Gramian satisfies the following relation:

(3.11) ATQ+QA+MPM = 0.

Next, let us consider a vector v ∈ kerQ and multiply (3.11) from the left and right-hand sides
by vT and v, respectively, yielding

vTATQv + vTQAv + vTMPMv = 0

vTMPMv = 0.

This implies PMv = 0. Furthermore, it can be noticed that QAv = 0. Next, we consider that
x(t) ∈ kerQ at time t and a vector ṽ ∈ range (Q); hence, we have

(3.12) ṽT ẋ(t) = ṽTAx(t) = 0.

This means that if x(t) ∈ kerQ, then ẋ(t) ∈ kerQ. So, if the initial condition x0 ∈ kerQ,
then x(t) ∈ kerQ,∀t ≥ 0. Furthermore, note that the system is assumed to be controllable;
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this means that x(t) ∈ range (P ), i.e., x(t) = Px̃(t),∀t ≥ 0. Thus, the output y(t) of the
LD QO system is given as x(t)TMx(t) = x̃(t)TPMx(t) = 0 since x(t) also lies in kerQ. As a
result, the output energy functional is zero; hence, the initial state x0 cannot be observed.

Having had all this discussion between the energy functionals and Gramians, it is clear that
these Gramians allow us to determine the states which are hard to reach and hard to observe.
In what follows, we propose a new BT algorithm for LD QO systems.

3.3. New balanced truncation method for LDS QO systems. The main idea of BT
lies in furthermore neglecting the states which are both hard to reach and hard to observe
states. In order to guarantee that hard to reach and hard to observe states are truncated
simultaneously, we need to find a state transformation TB such that the LD QO system is
transformed into a balanced realization. Thus, the controllability and observability Gramians
of the transformed realization are the same and diagonal, i.e.,

P = Q = Σ = diag(σ1, σ2, . . . , σn),

where σ1 ≥ σ2 ≥ . . . ≥ σn > 0 and σk are referred to as the singular values of LD QO systems.
Such a transformation exists whenever P and Q are positive definite matrices. Moreover, the
small singular values σk characterize the states that are hard to reach and hard to observe,
which can then be truncated. Next, we assume that the matrices of the balanced system
H = (A,B,M) are partitioned as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, M =

[
M11 M12

MT
12 M22

]
and Σ =

[
Σ1 0
0 Σ2

]
,(3.13)

where Σ1 = diag(σ1, . . . , σr) and Σ2 = diag(σr+1, . . . , σn). Since the system H is assumed to
be balanced, we have

AΣ + ΣAT +BBT = 0,(3.14a)

ATΣ + ΣA+MΣM = 0.(3.14b)

Subsequently, the reduced-order system can be easily obtained by considering the upper-
left blocks, yielding Ĥ = (A11, B1,M11). By simple algebra, it can also be seen that the
reduced matrices satisfy the following equations:

A11Σ1 + Σ1A
T
11 +B1B

T
1 = 0,(3.15a)

AT11Σ1 + Σ1A11 +M11Σ1M11 +M12Σ2M
T
12 = 0,(3.15b)

thus allowing us to make the following observation.

Remark 3.4. From (3.15b), one can conclude that the reduced-order system might not be
balanced even if the original model is. A necessary condition for the reduced-order system to
be a balanced one is M12 = 0, which in general is not true. Nevertheless, since M12Σ2M

T
12 is

a symmetric positive semi-definite matrix, the following matrix inequality holds

AT11Σ1 + Σ1A11 +M11Σ1M11 ≤ 0.

As a consequence, the reduced-order system is balanced in the generalized sense, see [12, Sec.
4.7].
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Algorithm 3.1 Novel BT method for LD QO systems.

Input: The original system’s matrices (A,B,M) and the order of the reduced-order system
r.

Output: The reduced-order system’s matrices (Â, B̂, M̂).
1: Compute low factors of Gramians P and Q, i.e., P ≈ ZPZTP and P ≈ ZQZTQ , where P and
Q solve (3.2) and (3.6), respectively.

2: Perform the SVD of ZTPZQ, and decompose as

ZTPZQ =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
, with Σ1 ∈ Rr×r.

3: Construct the projection matrices V = ZPU1Σ
− 1

2
1 and W = ZQV1Σ

− 1
2

1 .

4: Construct Â = W TAV , B̂ = W TA, M̂ = V TMV .
5: return Â, B̂, and M̂ .

Given a system H, it is not necessary that the system is in a balanced form. One way
to approximate it is to compute a balanced realization, which is followed by computing a
reduced-order system as described above. However, analogous to the linear case, the balanced
transformation is not required explicitly. Instead, one can construct two projection matrices
V and W using the Cholesky factors of P and Q to determine directly a reduced-order system.
This procedure is known as square-root BT, see [1, Sec. 7.3]; we sketch the steps to construct
reduced-order systems for LD QO systems based on the proposed Gramians in Algorithm 3.1.

3.4. Advantages of the proposed method. Next, we note advantages of the proposed
method over the existing BT methods for LD QO systems, which are:

• The methodology does not require any prior transformation of an LD QO system into
a classical linear system or a QB system. Hence, computational efforts converting it
into an equivalent linear or QB system can be saved.
• If an LD QO system is written as a linear system, then for the observability Gramian,

we need to solve

QAT +AQ = −CTT CT ,

where CTT CT = M and M � 0, whereas for LD QO systems, we solve (3.6) for the
observability Gramian. So, note that the rank of the matrix MPM , where P is the
controllability Gramian, is always smaller than or equal to the rank of CT , where
CTT CT = M if M ≥ 0. It is because MPM can be seen as a projection of the
controllable subspace onto the range of the matrix M .
Broadly speaking, we know that a lower rank of the right-hand side of a Lyapunov
equation can lead to a faster converge and also the solution is generally of a lower rank.
Hence, solving (3.6) might be computationally efficient, thus constructing reduced-
order systems. To illustrate this, we consider a 2-dimensional dynamical system as
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follows: [
ẋ1(t)
ẋ2(t)

]
=

[
−1 0
0 −1

] [
x1(t)
x2(t)

]
+

[
1
2

]
u(t),(3.16a)

y = x21 + x22 =
[
x1(t) x2(t)

] [1 0
0 1

] [
x1(t)
x2(t)

]
.(3.16b)

It can be easily seen that the controllability Gramian P for the system (3.16) is

(3.17) P =

[
0.5 1
1 2

]
.

If the method, proposed in [27], is employed, then we need for solve the following
Lyapunov equation for the observability Gramian:

(3.18) ATQ+QA+

[
1 0
0 1

]
= 0.

On the other hand, if we aim at employing the proposed method, Algorithm 3.1, then
we need to solve the following equation for the observability Gramian

ATQ+QA+MPM = 0,(3.19)

where MPM =

[
1 0
0 1

] [
0.5 1
1 2

] [
1 0
0 1

]
=

1

2

[
1
2

] [
1 2

]T
. Now, note that the right-

hand sides of (3.18) and (3.19) are of ranks 2 and 1, respectively. As we know from
the low-rank solvers for Lyapunov equation that higher the rank of the right-hand of
a Lyapunov equations, more it is expensive to determine a low-rank solution. Hence,
the new proposed observability Gramian most likely be comparatively computationally
cheaper. This effect in terms of computational can be seen even more when the matrix
M is not a positive-semi definite.

In the next section, we prove that the proposed method preserves stability, and it possesses
a guaranteed error bound, which can be given as a function of the neglected singular values.

4. Stability Preservation and Guaranteed Output Error Bounds. In this section, we
derive some theoretical results for the BT method proposed in Subsection 3.3. Firstly, as for
the case of LD systems [20] and bilinear systems [5], we show that the procedure preserves
stability under weak assumptions. Secondly, we derive error bounds in the output error
between the original system and the reduced-order system. For BT of LD systems, error
bounds are available, relating the H∞ norm [13, 15], the H2 norm [1, Thm. 7.10] and [11].
Here, we generalize the concept of H2 norm for LD QO systems, enabling us to develop a
time-domain error bound with respect to the L∞ norm.

4.1. Stability preservation. It is worth noting that the classical BT for LD systems pro-
duces a stable reduced-order system, see [20, Theorem 3.2]. In what follows, we provide an
equivalent result for the proposed balancing method to LD QO systems. Its proof is inspired
by the original one from [20] and extended to LD QO systems.
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Theorem 4.1 (Stability preservation). Suppose H = (A,B,M) is a stable balanced LD QO sys-
tem and Ĥ := (A11, B1,M11) is a reduced system obtained by the proposed method (Algo-
rithm 3.1). Then, A11 is also asymptotically stable if Λ(Σ1) ∩ Λ(Σ2) = ∅.

Proof. The proof is given in Appendix A.

From Theorem 4.1, if σr > σr+1, the reduced-order system will be also stable. In practice,
this condition is generally satisfied and stability is preserved.

Remark 4.2. For LD systems, if σr > σr+1, the reduced system is minimal. On con-
tradictory, that is not true for LD QO systems. To illustrate, let us consider the following
LD QO system:

A =

[
−1/4 −1/3
−1/3 −3/2

]
, B =

[
1 0

1
√

2

]
, and M =

[
0 1
1 1

]
.

The Gramians related to the system are P = Q =

[
2 0
0 1

]
. Hence, the reduce-order system

associated to the highest singular value is Â = −1

4
, B̂ =

[
1 0

]
and M̂ = 0, which is clearly

not minimal but a zero system.

In what follows, we derive error bounds for the output approximation.

4.2. First error bound expression. In this section, we begin by defining the notions of
H2 norm and inner product for LD QO systems. Based on this, we develop an error bound for
the output approximation. First, recall that the system output is given by

y(t) = xT (t)Mx(t) = (xT (t)⊗ xT (t)) vec (M)

= vec (M)T (x(t)⊗ x(t))

=

∫ t

0

∫ t

0
vec (M)T

(
eAσ1Bu(t− σ1)⊗ eAσ2Bu(t− σ2)

)
dσ1 dσ2

=

∫ t

0

∫ t

0
vec (M)T

(
eAσ1B ⊗ eAσ2B

)
(u(t− σ1)⊗ u(t− σ2)) dσ1 dσ2

=

∫ t

0

∫ t

0
h(σ1, σ2) (u(t− σ1)⊗ u(t− σ2)) dσ1 dσ2,

where

(4.1) h(σ1, σ2) = vec (M)T
(
eAσ1B ⊗ eAσ2B

)
= BT eA

T σ1MeAσ2B.

Hence, an LD QO system can be rewritten as a 2-D convolution whose kernel is given
by (4.1). Consequently, we have

|y(t)| ≤
∫ t

0

∫ t

0
|h(σ1, σ2) (u(t− σ1)⊗ u(t− σ2))|dσ1 dσ2

≤
∫ t

0

∫ t

0
‖h(σ1, σ2) dσ1 dσ2‖F ‖(u(t− σ1)⊗ u(t− σ2))‖2 dσ1 dσ2

≤
(∫ t

0

∫ t

0
‖h(σ1, σ2)‖2F dσ1 dσ2

) 1
2
(∫ t

0

∫ t

0
‖u(σ1)⊗ u(σ2)‖22 dσ1 dσ2

) 1
2

,
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where the last relation is followed by the Cauchy-Schwartz inequality. Additionally, given
an original system with the kernel h(σ1, σ2) = BT eA

T σ1MeAσ2B and a reduced-order system

with a kernel ĥ(σ1, σ2) = B̂T eÂ
T σ1M̂eÂσ2B̂, the output error can be bounded as

(4.2) ‖y − ŷ‖L∞≤
(∫ ∞

0

∫ ∞
0

∥∥∥h(σ1, σ2)− ĥ(σ1, σ2)
∥∥∥2
F

dσ1 dσ2

) 1
2

‖u⊗ u‖L2 ,

where ‖y‖L∞= maxt≥0|y(t)|. This leads us to the following definition.

Definition 4.3 (H2 norm and inner product for LD QO systems). Let H = (A,B,M) and
Ĥ = (Â, B̂, M̂) be stable LD QO systems. Then, the H2 norm of H is defined as

(4.3) ‖H‖H2=

√(∫ ∞
0

∫ ∞
0
‖h(σ1, σ2)‖2F dσ1 dσ2

) 1
2

,

and the H2 inner product is defined as

(4.4) 〈H, Ĥ〉H2 =

∫ ∞
0

∫ ∞
0

tr
(
h(σ1, σ2)ĥ(σ1, σ2)

T
)

dσ1 dσ2,

where h(σ1, σ2) = BT eA
T σ1MeAσ2B and ĥ(σ1, σ2) = B̂T eÂ

T σ1M̂eÂσ2B̂.

Also, the H2 norm and inner-product can be characterized by the Sylvester equation,
which is provided in the following proposition.

Proposition 4.4 (H2 norm and inner product for LD QO systems). Let H = (A,B,M) and
Ĥ = (Â, B̂, M̂) be stable LD QO systems of order n and r, respectively. Then, the H2 inner
product between the two systems can be characterized as

(4.5) 〈H, Ĥ〉H2 = tr
(
BTZB̂

)
,

where Z ∈ Rn×r is a unique solution of the following Sylvester equation:

(4.6) ATZ + ZÂ+MXM̂ = 0

in which X ∈ Rn×r is also a unique solution of the Sylvester equation, given by

(4.7) AX +XÂT +BB̂T = 0.

Moreover, the H2-norm of H can readily be characterized as

‖H‖H2=
√

tr (BTQB),

where Q ∈ Rn×n is the observability Gramian.

Proof. Since both H and Ĥ are stable systems, the Sylvester equations (4.7) and (4.6)
have unique solutions which can also be given by

X =

∫ ∞
0

eAσ1BB̂eÂ
T σ1dσ1 and Z =

∫ ∞
0

eA
T σ2MXM̂eÂσ2dσ2.

By inserting the expression of X into Z and following by multiplying with BT and B̂ from
the left and right-hand sides, respectively, we have the desired result.
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Finally, by assembling the results together and notions above, the following a posteriori
error bound holds.

Theorem 4.5 (A posteriori error bound). Let H = (A,B,M) and Ĥ = (Â, B̂, M̂) be stable
LD QO systems and suppose that y and ŷ are their respective outputs, subject to the same input
u. Then,

(4.8) ‖y − ŷ‖L∞ ≤ ‖H − Ĥ‖H2‖u⊗ u‖L2

where

(4.9) ‖H − Ĥ‖H2=

√
tr
(
BTQB + B̂Q̂B̂ − 2BTZB̂

)
,

where Q and Q̂ are the observability Gramians for the systems H and Ĥ, respectively, and Z
is the cross-Gramian, which is the solution of (4.6).

Proof. Equation (4.8) corresponds to (4.2) with the norm notation. Additionally, we
make use of the triangular inequality, i.e., ‖H − Ĥ‖2H2

= ‖H‖2H2
+‖Ĥ‖2H2

−2〈H, Ĥ〉H2 , and
Proposition 4.4, resulting into (4.9).

Theorem 4.5 provides a bound for the output error between the original system and the
reduced-order one. This bound relies on the H2 norm of the error between the H and Ĥ.
Hence, if they are close with respect to the H2 norm, they will both provide outputs that
are also close. Notice that the results presented in this subsection do not assume that a
reduced-order system is obtained by the proposed BT procedure. Indeed, Theorem 4.5 holds
for any reduced-order system Ĥ = (Â, B̂, M̂), provided that the matrix Â is stable. In the
next subsection, we will show for the proposed BT how this error bound relates to the singular
values.

4.3. Error bound and singular values. In this section, we will show how the error bound
given in Theorem 4.5 is related to the singular values in the proposed BT procedure. To
that aim, suppose that H = (A,B,M) is an n-order balanced system, whose Gramians P =
Q = Σ = diag(σ1, . . . , σn). Furthermore, we consider that the system matrices are partitioned
as (3.13). Next, we present how error can be bounded in terms of the singular values. This
result was mainly inspired by the error bounds for LD systems regarding the H2 and time-
limited H2 norms, see [1, Thm. 7.10] and [11, 23, 21].

Theorem 4.6 (BT error bound as a function of the singular values). The H2 norm of the
error system is given by

(4.10) ‖E‖2H2
= tr

((
B2B

T
2 + 2Z2A12 + 2MT

:2XM12 + 2X2A
T
21

)
Σ2

)
+ tr

(
BT

1

(
Q̂− Σ1 )B1) ,

where MT
:2 =

[
MT

12 M22

]
. where MT

:2 =
[
MT

12 M22

]
.

Proof. The proof is given in Appendix B.

Theorem 4.6 shows how the error bound for BT relates with the neglected singular values Σ2

and the preserved singular values Σ1. The following corollary removes the dependency of Σ1

in the error bound.
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Corollary 4.7 (BT error bound depending on neglected singular values). The following error
bound holds

(4.11) ‖E‖2H2
≤ tr

((
B2B

T
2 + 2Z2A12 + 2MT

:2XM12 + 2X2A
T
21

)
Σ2

)
.

Proof. To prove the above result, we show that tr
(
BT

1

(
Q̂ − Σ1 )B1) ≤ 0. This result

follows because Q̂ − Σ1 is a negative semi-definite matrix. Indeed, D := Q̂ − Σ1 satisfies the
following Lyapunov equation:

AT11D +DA11 −M12Σ2M
T
12 = 0.

Since A11 is Hurwitz and −M12Σ2M
T
12 is a negative semi-definite matrix, D is negative semi-

definite. This proves the result.

Corollary 4.7 shows that the ‖E‖H2 can be bounded only by the terms from Σ2. Furthermore,
the term tr

(
BT

1

(
Q̂− Σ1 )B1) can be written as function of Σ2, since

D = −
∫ ∞
0

eA
T
11σM12Σ2M

T
12e

A11σdσ

and tr
(
BT

1

(
Q̂− Σ1 )B1) = tr

(
BT

1 DB1

)
.

4.4. Small scale example. Now we illustrate the obtained results by applying the pro-
posed method to a small-scale system and by computing the error bounds from Theorem 4.5
(or Theorem 4.6) and Corollary 4.7.

We consider a random stable single-input single-output (SISO) system of order n = 10,
generated by using the command rss in MATLAB® with seed 0. The reduced-order system
of order r = 2 is computed using the proposed method, and the error bounds are computed
using MATLAB direct solver (command lyap). We simulate the time domain response of the

corresponding the original and reduced-order systems, using an input u(t) = e−
1
4
t for t ≥ 0. In

this case, ‖u⊗ u‖L2= ‖u2‖L2= 1. The results of the absolute errors are depicted in Figure 1,
as well as the bounds from Theorem 4.5 and Corollary 4.7.
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Figure 1: Small sclae example: Output errors |y(t)− ŷ(t)| and error bounds from Theorem 4.5
and Corollary 4.7 for small scale example to order n = 10, reduced order r = 2.
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Figure 2: Clamped Beam: Comparison of the normalized singular values.

As expected, the proposed method produces an stable reduced-order system. Additionally,
by inspecting the time-domain error, we observe that it satisfies the proposed error bounds.

5. Numerical Experiments. In this section, we test the efficiency of the proposed method-
ology, described in Algorithm 3.1 (denoted by SPBT) for LD QO systems by means of two numer-
ical examples and compare with the existing methods as discussed in Algorithm 2.2 (denoted
by LTBT), and Algorithm 3.1 (denoted by QBTBT). All the simulations are done using MAT-
LAB R2017a (64-bit) on a machine with Intel®Core™i5-6600 processors with 3.3-GHz clock
frequency, 8 GB RAM and Windows 8 operating system. To solve the Lyapunov equations,
we use the ADI-solvers provided in the M-M.E.S.S. toolbox [24].

5.1. Clamped beam. As a first example, we discuss a clamped beam model. It is widely
used as one of benchmark MOR problems, see e.g., [18]. A detailed description of the dynamics
can be found in the mentioned reference; therefore, we omit it in the interest of brevity.
However, we consider a variant of the example by only modifying the output equation while
keeping the differential equation for the state vector x(t) same. For the output equation, we
define a diagonal matrix M such that the output x(t)TMx(t) is a weighted sum of the squares
of 100 randomly components of the state. The random components are selected by setting
seed = 1. All the weights are the same and the sum of the weights is equals to 1. The order
of the system is 348.

Next, we aim at employing SPBT, LTBT and QBTBT to compute reduced-order systems. For
this, we plot the decay of the normalized singular values, obtained by the all three considered
methods in Figure 2. Next, we determine reduced systems of order r = 15. Also, for this
example, theH2 norm of the original system is ‖H‖H2≈ 5.12·103, the norm of the system error
‖H − Ĥ‖H2≈ 8.88 and the relative norm of the error system is ‖H − Ĥ‖H2/‖H‖H2≈ 2 · 10−3.
To compare the quality of these approximations, we simulate the original system and the
obtained reduced-order systems using a sinusoidal excitation u1(t) = sin

(
2πt
10

)
+ 1 and an

exponentially damped quadratic excitation u2(t) =
(
e−

t
5

)
t2. In Subsection 5.1, we plot

the transient responses of the original and reduced-order systems, and also the absolute errors
between the outputs of the original and reduced-order systems for the considered input signals.
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(a) Comparison of systems’ responses for the input u1.
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(b) Comparison of systems’ responses for the input u2.

These figures show that SPBT outperforms QBTBT; on the other hand, we see that SPBT is very
competitive with LTBT for this example. Moreover, SPBT can be shown to be more efficient
than LTBT as it includes the factor MPM in the Lyapunov equation for the observability
Gramian which can reduce the solution search space for the observability Gramian to the
space of controllable states.

Furthermore, we compute the error bound for ‖y(t) − ŷ(t)‖L∞ using Theorem 4.5. Since
this error bound assume that the input is in L2, we are only able to compute it for the case
of exponentially damped quadratic excitation. Hence, for this case, we compute the error
bound and show in Figure 3b. On the other hand, the quantity cannot be estimated for the
sinusoidal input since it is unbounded in L2.

5.2. Steel Profile. As a second example, we consider a semi-discretized heat transfer
problem for the optimal cooling of a steel profile, whose detailed description of the dynamics
can be found in [19]. Typically, the output function is given as y(t) = Cx(t). However,
we modify the output function and our interest of quantity is the 2−norm of the y(t), i.e.,
x(t)CTCx(t) =: x(t)TMx(t). Moreover, the system is converted into a stochastic system by
augmenting the input matrix B with an additional column bw for the the noise input w. All
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Figure 4: Steel Profile: Comparison of the normalized singular values.

the entries of the vector bw are the same and the values is set as the maximum entry of the
matrix B. This implies that when a noise signal is applied to the system, it affects each state
with the same way. The order of the system is n = 1357 and the system can be represented
by

ẋ(t) = Ax(t) +
[
B bw

] [u(t)
w(t)

]
,(5.1a)

y(t) = x(t)TMx(t),(5.1b)

As can be seen, all the theory in the paper is developed for deterministic systems, thus all
the results might not readily be extended to stochastic systems. Nevertheless, Theorem 3.3,
identifying of uncontrollable and unobservable subspaces, can be proven to be held even for
the stochastic case. Hence, we blindly employ SPBT, LTBT and QBTBT, and aim at constructing
order model models. To that end, in Figure 4, we first show the decay of the normalized
singular values, where we make a similar observation as in the previous example. Next, we
determine reduced-order systems of order r = 15 using the considered methods.

To compare the quality of these approximations, we simulate the original and the reduced
systems obtained by each method using setting each input component of the input vector u(t)

to a sinusoidal excitation u1(t) = 20 sin
(
2πt
10

)
+ 1 and an exponentially damped quadratic

excitation u2(t) = 3(e−
t
5 )t2. For a noisy input, a white Gaussian noise sequence with power

1dB and a magnitude scaling factor is set to 40. A total of 50 simulations are performed to
get an approximation of the expected response. The systems are simulated using a 4th order
Runge-Kutta method (RK4) based solver.

Figure 5 presents the transient responses and response errors of the output for these input
signals, which QBTBT fails to capture the dynamics of the system; on the other hand, we
observe that the proposed SPBT is marginally better as compared to LTBT for this example.

6. Conclusions. In this paper, we have studied a balanced truncation method for linear
dynamical systems with a quadratic output function. For this, we have proposed a new pair of
algebraic Gramians. In particular, the observability Gramian has been introduced by making
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Figure 5: Steel Profile: Comparison of the transient responses of the original and order model
models obtained by various methods for two arbitrary control inputs and Gaussian noise.

use of the corresponding adjoint system. Consequently, we have shown that these Gramians
encode controllability and observability of the system and have studied the connection between
the proposed Gramians and energy functionals. This has allowed us to proposed an algorithm
to determine reduced-order systems by truncating unimportant states for the input-output
dynamics. We have also discussed advantages of the proposed methods over the existing
methods in the literature. Finally, based on H2 energy considerations, we have derived error
bounds, depending on the neglected singular values. Furthermore, we have shown an efficiency
of the proposed methods by means of a couple of numerical examples.

Acknowledgements. We would like to thank Adil Ahsan for helping us with the MAT-
LAB implementations at Max Planck Institute for Dynamics of Complex Technical Systems,
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Appendix A. Proof of Theorem 4.1. For the balanced realization, (3.15a) holds, i.e.,

(A.1) A11Σ1 + Σ1A
T
11 +B1B

T
1 = 0.

This implies, from Σ1 > 0 and [20, Lemma 3.1], that the eigenvalues of A11 should have real
part less or equal to zero1. However, we still need to show that A11 has no eigenvalues on the
imaginary axis.

Suppose, by contradiction, that ν = iω, ω ∈ R is a eigenvalue of A11 and U is a basis of
the kernel of (νI −A11). Hence,

A11U = νU and U∗AT11 = ν∗U∗,

where ν∗ denotes the complex conjugate of ν and U∗ denotes the Hermitian transpose of U .
From (3.15b), we have

(A.2) AT11Σ1 + Σ1A11 +M11Σ1M11 +M12Σ2M
T
12 = 0.

Multiplying (A.2) from the right and left-hand sides with U and U∗, receptively, yields

U∗M11Σ1M11U + U∗M12Σ2M
T
12U = 0.

Since Σ1,Σ2 > 0, this yields

M11U = 0 and MT
12U = 0.

Now, by multiplying (A.2) by U from the right-hand side, we obtain

(AT11 + νIr)Σ1U = 0.

Furthermore, by multiplying (A.1) from the right and left-hand sides by Σ1U and U∗Σ1, we
obtain

U∗Σ1BB
TΣ1U = 0 =⇒ BTΣ1U = 0.

Again, by multiplying (A.1) from the right-hand side with Σ1U , we get

(A11 − νIr)Σ2
1U = 0.

As a result, it can be noticed that Σ2
1U is also a basis fo the null-space of (νI − A11), thus

leading to Σ2
1U = UΣ

2
1, for some matrix Σ

2
1. Note that the eigenvalues of Σ

2
1 are a subset of

1This result can also be seen as a consequence of the Inertia Theorem.
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those from Σ2
1. From the structure of the problem, it is possible to choose U such that Σ

2
1 is

diagonal, whose elements are a subset of the diagonal entries of Σ1.
Next, we consider the blocks (2, 1) from (3.14a) and (3.14b), which are as follows:

A21Σ1 + Σ2A
T
12 +B2B

T
1 = 0,(A.3a)

AT12Σ1 + Σ2A21 +MT
12Σ1M11 +M22Σ2M

T
12 = 0.(A.3b)

By multiplying (A.3a) by Σ1U and (A.3b) by U from the right-hand side, we have

A21Σ
2
1U + Σ2A

T
12Σ1U = 0,(A.4)

AT12Σ1U + Σ2A21U = 0.(A.5)

Multiplying (A.5) on the left-hand side by Σ2 and subtracting (A.4) yields

Σ2
2A21U = A21Σ

2
1U = A21UΣ

2
1.

Hence, one can write [
Σ
2
1 0

0 Σ2
2

][
I

A21U

]
=

[
I

A21U

]
Σ1.

From the hypothesis that Σ
2
1 and Σ2

2 have no common eigenvalues, it follows that A21U = 0.
As a consequence, we have [

A11 A12

A21 A22

] [
U
0

]
= ν

[
U
0

]
,

which contradicts the fact that the original matrix A is Hurwitz. Hence, the matrix A11 is
also Hurwitz.

Appendix B. Proof of Theorem 4.6. Let us consider the matrices X and Z, which are the
solutions of the Sylvester equations (4.7) and (4.6), respectively, and are portioned in the same
way, i.e., ZT =

[
ZT1 ZT2

]
and XT =

[
XT

1 XT
2

]
, with Z1, X1 ∈ Rr×r and Z2, X2 ∈ R(n−r)×r,

Hence, the H2 norm of the error system can be given by

‖E‖2H2
= tr

(
BTΣB − 2BTZB1 +BT

1 Q̂B1

)
= tr

(
BTΣB − 2BT

1 Z1B1 − 2BT
2 Z2B1 +BT

1 Q̂B1

)
,(B.1)

where Q̂ satisfies
AT11Q̂+ Q̂A11 +M11Σ1M11 = 0.

Firstly, let us analyze the term tr
(
2BT

2 Z2B1

)
. By developing the block (2,1) of (3.14a), we

obtain
A12Σ2 + Σ1A

T
21 +B1B

T
2 = 0,

and, consequently, −B1B
T
2 Z2 = (A12Σ2 + Σ1A

T
21)Z2. This implies

tr
(
−2BT

2 Z2B1

)
= tr

(
−2B1B

T
2 Z2

)
= tr

(
2A12Σ2Z2 + 2Σ1A

T
21Z2

)
.
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Substituting the above relation in (B.1) yields

‖E‖2H2
= tr

(
BT

2 Σ2B2 + 2A12Σ2Z2

)
+ tr

(
BT

1

(
Q̂− Σ1 )B1)

+ 2 tr
(
BT

1 Σ1B1 −BT
1 Z1B1 + Σ1A

T
12Z2

)
.

Now, let us have a closer look at the block (1, 1) of ATZ + ZA11 +MXM11, that is:

AT11Z1 +AT21Z2 + Z1A11 +M11X1M11 +M12X2M11 = 0.

Hence, we have

Σ1A
T
12Z2 = −(Σ1A

T
11Z1 + Σ1Z1A11 +Qo),

where Qo := Σ1M11X1M11 + Σ1M12X2M11. Thus, we obtain

tr
(
BT

1 Σ1B1 −BT
1 Z1B1 + Σ1A

T
12Z2

)
= tr

(
BT

1 Σ1B1 −BT
1 Z1B1 − Σ1A

T
11Z1 − Σ1Z1A11 −Qo

)
= tr

(
BT

1 Σ1B1 −Q0

)
− tr

(B1B
T
1 + Σ1A

T
11 +A11Σ1

)︸ ︷︷ ︸
=0

Z1

 .

Having combined all, we finally have

‖E‖2H2
= tr

(
BT

2 Σ2B2 + 2A12Σ2Z2

)
+ tr

(
BT

1

(
Q̂− Σ1 )B1) + 2 tr

(
BT

1 Σ1B1 −Q0

)
.

Now, we study the following term:

tr
(
BT

1 Σ1B1 −Q0

)
= tr

(
BT

1 Σ1B1 − Σ1M11X1M11 − Σ1M12X2M11

)
.

Moreover, by analyzing the block (1,1) of (4.7), we obtain

A11X1 +X1A
T
11 +A12X2 +B1B

T
1 = 0

and recall that

AT11Σ1 + Σ1A11 +M11Σ1M11 +M12Σ2M
T
12 = 0.

As a consequence,

tr
(
XT

1

(
M11Σ1M11 +M12Σ2M

T
12

))
= tr

(
Σ1

(
A12X2 +B1B

T
1

))
.

Hence,

tr
(
BT

1 Σ1B1 − Σ1M11X1M11

)
= tr

(
MT

12X
T
1 M12Σ2 − Σ1A12X2

)
.

Now, the total error can be written as

‖E‖2H2
= tr

(
BT

2 Σ2B2 + 2A12Σ2Z2 + 2MT
12X

T
1 M12Σ2

)
+ tr

(
BT

1

(
Q̂− Σ1 )B1)

− 2 tr (Σ1A12X2 + Σ1M12X2M11) .
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Finally, from the block (1,2) of ATΣ + ΣA+MΣM , we have

AT21Σ2 + Σ1A12 +M11Σ1M12 +M12Σ2M22 = 0,

giving us
tr ((Σ1A12 +M11Σ1M12)X2) = − tr

(
AT21Σ2X2 +M12Σ2M22X2

)
.

By substituting the latter equation in the error expression, we obtain

‖E‖2H2
= tr

((
B2B

T
2 + 2Z2A12 + 2MT

12X1M12 +M22X2M12 + 2X2A
T
21

)
Σ2

)
+ tr

(
BT

1

(
Q̂− Σ1 )B1) ,

which proves the theorem.
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