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Supplement A: Control model variant
Alongside the synchronous, asynchronous and linearly-constrained asynchronous model variants, we fitted a
fourth model variant, the control model variant, that was most faithful to the original formulation in Dell,
Burger, and Svec (1997). The performance of this model variant is, for unsurprising reasons, notably worse
than the other variants, so we do not report it in the article text. For completeness, we report it here, and
provide comparisons with the synchronous and asynchronous model variants.

The control model variant has a single duration parameter, dur0, that controls the duration of all the phases of
the activation pattern of both the first and second port. Each phase lasts dur0 model “ticks” (an arbitrary time
unit equivalent to 9ms). The frame output pattern of this model is depicted in the bottom cell of Figure 1, which
complements Figure 3 in the article text. The control model variant inherits the overly simplistic assumption
that the first and second syllables should be active for the same length of time.

Learning
The control model was fitted in the same way as the other models, as described in the article text in the Section
headed “Optimization procedure”. We used loess-fitting (Cleveland & Devlin, 1988) to identify the trend in
the score for each objective function in each rate condition. These loess-fits are shown in the Figure 2, which
complements Figure 6 in the article text. Relative to the synchronous and asynchronous model variants, the
control model variant makes slower progress, and achieves notably poorer scores.

Convergence
To assess convergence, we calculated the normalised hyper-volume indicator (Zitzler, Brockhoff, & Thiele, 2007),
and also the relegation count. These metrics are shown for the control, synchronous and asynchronous model
variants in Figure 3, which complements Figure 7 in the article text.

Qualitative model performance
Figure 4 is a companion to Figure 9 in the article text. We show the distributions resulting from combining
the duration distributions predicted by each member of the Pareto front of each run as solid violins. These are
compared against the target distributions measured from the corpus (translucent violins with dashed edges).

The control model variant fits the data strikingly poorly, suffering from the same bi-modality problem as the
synchronous model variant, but to a larger extent.
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Figure 1: The activation patterns produced by the frame node for port 1 (purple, solid) and port 2 (green,
dashed) in the asynchronous, synchronous and control models. The duration of each step in the activation
patterns is controlled by various parameters, depending on the model variant (such as dur0, see text for full
details).

synchronous
model variant

asynchronous
model variant

control
model variant

overlap
duration

syllable 1
duration

syllable 2
duration

0 2500 5000 0 2500 5000 0 2500 5000

1

4

16

1

4

16

1

4

16

generation

K
L

speaking rate fast medium slow

Figure 2: Loess-fits of the Kullback Leibler scores (y-axis, log-transformed scale, lower values indicate better
performance) of the solutions in the Pareto front in each generation (x-axis), for the three rate conditions (line
colours), the three objective functions (rows) and the synchronous, asynchronous and control model variants
(columns). The shading indicates the optimisation phases of the model, orange is the phase where only the µ
component of a subset of the parameters was adjusted by the optimiser, white indicates that the μ compoment
of all parameters was adjusted by the optimiser, purple indicates that the σ component of all parameters was
adjusted by the optimiser, and green indicates that both μ and σ components of all parameters were adjusted.
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Figure 3: Upper panels: The normalised hypervolume indicator (y-axis) during the 5000 generations of the
optimisation run (x-axis), for the three model variants (columns). Stabilisation of the normalised hypervolume
indicator at a value close to 1.0 indicates successful convergence. The colour of the lines indicate the speech
rate condition being optimised. Lower panels: the proportion of former front members relegated from the front
in each generation. See the caption of Figure 2 for the meaning of the shading.
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Figure 4: The duration (x-axis) distributions (filled violins) predicted by three models variants (facets) at the
three rate conditions (colours) for each of the three target distributions (y-axis), compared against the observed
distributions (translucent violins with dashed edges).
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Figure 5: First three panels: the bootstrapped distributions (violins) of the KL scores (y-axis, smaller is better,
log scale) achieved by the 0-ranked agents (the Pareto front) for each model variant (x-axis, control: control
model variant, async.: asynchronous model variant, sync.: synchronous model variant). in each speaking rate
condition (fill colours), in each objective (panels). The coloured dots indicate the model fits for the three-way
interaction term in the regression model. Fourth panel: the fits of the model variant term from the regression
model (main effect shown as black dots, fits of rate condition:model variant interaction in smaller coloured dots).
95% confidence intervals are omitted because they are too small to be visible. Significant differences in the main
effect are indicated. The main effect of model variant is plain to see; the asynchronous model variant performs
significantly better (achieves lower KL scores) than the synchronous and control model variants. In turn, the
synchronous model variant outperforms the control model variant.

Statistical test of model performance
To assess the performance of the control model, the same statistical analysis was conducted as for the other
comparisons. Figure 5 complements Figure 8 in the article text.

The regression table in Table 1 is comparable with the regression tables reported in Supplement C.

Table 1: Summary of regression model for log KL, comparing con-
trol, asynchronous and synchronous model variants

Estimate
(KL scale)

Estimate (log
transformed)

Std. Error (log
transformed)

t value Pr(>|t|)

(Intercept) 0.25 -1.37 0.0008 -1670.37 < 0.001
Model variant: sync. 1.25 0.22 0.0010 215.15 < 0.001
Model variant: control 1.60 0.47 0.0010 451.51 < 0.001
Rate condition: fast 0.98 -0.02 0.0012 -13.78 < 0.001
Rate condition: slow 1.09 0.09 0.0012 71.99 < 0.001

Objective: syllable 1 du-
ration

6.33 1.85 0.0012 1587.18 < 0.001

Objective: syllable 2 du-
ration

4.15 1.42 0.0012 1225.21 < 0.001
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Table 1: Summary of regression model for log KL, comparing con-
trol, asynchronous and synchronous model variants (continued)

Estimate
(KL scale)

Estimate (log
transformed)

Std. Error (log
transformed)

t value Pr(>|t|)

Interaction: sync and
fast

0.84 -0.17 0.0015 -116.67 < 0.001

Interaction: control and
fast

0.78 -0.25 0.0015 -166.66 < 0.001

Interaction: sync and
slow

0.92 -0.08 0.0015 -56.83 < 0.001

Interaction: control and
slow

1.20 0.18 0.0015 118.56 < 0.001

Interaction: sync and syl-
lable 1 duration

1.15 0.14 0.0015 94.92 < 0.001

Interaction: control and
syllable 1 duration

0.96 -0.04 0.0015 -27.08 < 0.001

Interaction: sync and syl-
lable 2 duration

1.05 0.05 0.0015 33.87 < 0.001

Interaction: control and
syllable 2 duration

0.95 -0.05 0.0015 -35.75 < 0.001

Interaction: fast and syl-
lable 1 duration

0.87 -0.14 0.0016 -83.66 < 0.001

Interaction: slow and syl-
lable 1 duration

1.05 0.05 0.0017 30.69 < 0.001

Interaction: fast and syl-
lable 2 duration

1.04 0.04 0.0016 24.00 < 0.001

Interaction: slow and syl-
lable 2 duration

0.91 -0.09 0.0017 -52.64 < 0.001

Interaction: sync, fast,
syllable 1

1.19 0.18 0.0021 85.06 < 0.001

Interaction: control, fast,
syllable 1

1.07 0.07 0.0021 32.84 < 0.001

Interaction: sync, slow,
syllable 1

1.00 0.00 0.0021 2.28 0.022

Interaction: control,
slow, syllable 1

0.74 -0.31 0.0021 -143.46 < 0.001

Interaction: sync, fast,
syllable 2

1.16 0.15 0.0021 73.27 < 0.001

Interaction: control, fast,
syllable 2

1.29 0.25 0.0021 120.28 < 0.001

Interaction: sync, slow,
syllable 2

1.60 0.47 0.0021 223.62 < 0.001

Interaction: control,
slow, syllable 2

0.94 -0.06 0.0021 -27.81 < 0.001
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Supplement B: Elicitation materials
Tables 2 and 3 list the words included in the production component of the study.

Filler words

Table 2: Filler words were included in the first, penultimate and
last slots of each trial.

orthography phonetic form meaning

gieter ˈxi.tər watering can

kabel ˈkaː.bəl cable

lasser ˈlɑ.sər welder

lichaam ˈlɪx.aːm body

molen ˈmoː.lən windmill

monnik ˈmɔ.nɪk monk

spiegel ˈspi.xəl mirror

tafel ˈta.fəl table

trommel ˈtrɔ.məl drum
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Table 2: Filler words were included in the first, penultimate and
last slots of each trial. (continued)

orthography phonetic form meaning

vinger ˈza.ŋər finger

zanger ˈza.ŋər singer

Target words

Table 3: Target words were included in the second to sixth slot of
each trial.

orthography phonetic form meaning

hagel ˈhaː.xəl hail

hamer ˈhaː.mər hammer

havik ˈhaː.mər hawk

nagel ˈnaː.xəl fingernail

navel ˈnaː.vəl navel

sinus ˈsi.nʉs sine wave

slager ˈslaː.xər butcher
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Table 3: Target words were included in the second to sixth slot of
each trial. (continued)

orthography phonetic form meaning

snavel ˈsnaː.vəl beak

visum ˈvi.sum visa

vlieger ˈvli.xər kite

vriezer ˈvri.zər freezer

wafel ˈwaːˌfəl waffle

zoemer ˈzu.mər alarm

Distribution of target words in the dataset
Figure 6 shows the proportions of the three speaking rate sections of the corpus that each word represents.
The fast speaking rate section shows more variation than the medium and slow speaking rate sections, but the
overall range of proportions is relatively small, extending from 6.8% to 8.6% percent.
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Figure 6: Distribution of target words in the dataset.
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Supplement C: Tables for regression analysis

Modelling approach
In order to evaluate the performance of the different model variants, we need to identify and statistically test
differences in the KL scores achieved by the Pareto front solutions of each of the model variants. Simultaneously,
we need to disregard variation in the KL scores as a function of objective, since KL scores for the various
objectives are not directly arithmetically comparable because of differences in the observed distributions, as
previously discussed. The same holds for comparing models fitting different rate conditions, between which
there are also differences in the variability of the observed distributions.

Instead of averaging scores across objectives, linear regression with categorical predictors for model variant,
rate condition and objective can be used to isolate the effect on the KL score attributable to model variant,
independent of rate condition and objective. This leads to a regression model with the following structure (R
syntax):

log(KL) ~ model variant * rate condition * objective

This is a model predicting KL with categorical predictors for model variant, rate condition and objective, and
all interactions between the levels of those categorical predictors.

The KL scores were bootstrap re-sampled to introduce variation required to perform regression modelling. The
bootstrapped distributions of the KL scores are shown in the first three panels of Figure 8 in the article text.
We took 2,000 samples with replacement of sets of syllable 1 duration, syllable 2 duration, and overlap duration
values from the observed dataset. For each of these samples, we calculated the KLs between the re-sampled
observed distributions and the model’s predicted distributions. The resulting bootstrapped KLs were then log
transformed and z‑normalised. The log transformation was necessary to de-skew the KLs, which obey a log
distribution.

Synchronous model variant vs. asynchronous model variant
This model compares the performance of the synchronous model variant vs. the asynchronous model variant.
The latter is on the intercept (treatment coding). The response variable was the KL score of the relevant
comparison between fitted distribution and observed distribution, so smaller values indicate better performance
(less divergence between fitted and observed distribution). Table 4 summarises the model fit.

Table 4: Summary of regression model for log KL, comparing asyn-
chronous and synchronous model variants

Estimate
(KL scale)

Estimate (log
transformed)

Std. Error (log
transformed)

t value Pr(>|t|)

(Intercept) 0.27 -1.30 0.0007 -1802.03 < 0.001
Model variant: sync. 1.25 0.22 0.0009 247.12 < 0.001
Rate condition: fast 0.98 -0.02 0.0010 -15.83 < 0.001
Rate condition: slow 1.09 0.09 0.0011 82.69 < 0.001
Objective: syllable 1 du-
ration

6.46 1.87 0.0010 1823.06 < 0.001

Objective: syllable 2 du-
ration

4.22 1.44 0.0010 1407.31 < 0.001

Interaction: sync and
fast

0.84 -0.17 0.0013 -134.01 < 0.001
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Table 4: Summary of regression model for log KL, comparing asyn-
chronous and synchronous model variants (continued)

Estimate
(KL scale)

Estimate (log
transformed)

Std. Error (log
transformed)

t value Pr(>|t|)

Interaction: sync and
slow

0.92 -0.08 0.0013 -65.28 < 0.001

Interaction: sync and syl-
lable 1 duration

1.15 0.14 0.0013 109.03 < 0.001

Interaction: sync and syl-
lable 2 duration

1.05 0.05 0.0013 38.91 < 0.001

Interaction: fast and syl-
lable 1 duration

0.87 -0.14 0.0014 -96.10 < 0.001

Interaction: slow and syl-
lable 1 duration

1.05 0.05 0.0015 35.25 < 0.001

Interaction: fast and syl-
lable 2 duration

1.04 0.04 0.0014 27.56 < 0.001

Interaction: slow and syl-
lable 2 duration

0.91 -0.09 0.0015 -60.46 < 0.001

Interaction: sync, fast,
syllable 1

1.19 0.18 0.0018 97.70 < 0.001

Interaction: sync, slow,
syllable 1

1.00 0.00 0.0018 2.62 0.009

Interaction: sync, fast,
syllable 2

1.17 0.15 0.0018 84.16 < 0.001

Interaction: sync, slow,
syllable 2

1.60 0.47 0.0018 256.85 < 0.001

Asynchronous model variant vs asynchronous model variant with linearity con-
straint
This model compares the performance of the asynchronous model variant with linearity constraint vs. the
asynchronous model variant without linearity constraint. The latter is on the intercept (treatment coding).
Table 5 summarises the model fit.

Table 5: Summary of regression model for log KL, comparing the
asynchronous model variant and the asynchronous model variant
with linearity constraint

Estimate
(KL scale)

Estimate (log
transformed)

Std. Error (log
transformed)

t value Pr(>|t|)

(Intercept) 0.22 -1.51 0.0008 -1969.17 < 0.001
With linearity constraint 4.31 1.46 0.0014 1055.85 < 0.001
Rate condition: fast 0.98 -0.02 0.0011 -18.11 < 0.001
Rate condition: slow 1.11 0.11 0.0011 94.61 < 0.001
Objective: syllable 1 du-
ration

9.62 2.26 0.0011 2085.92 < 0.001
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Table 5: Summary of regression model for log KL, comparing the
asynchronous model variant and the asynchronous model variant
with linearity constraint (continued)

Estimate
(KL scale)

Estimate (log
transformed)

Std. Error (log
transformed)

t value Pr(>|t|)

Objective: syllable 2 du-
ration

5.74 1.75 0.0011 1610.22 < 0.001

Interaction: with con-
straint and fast

1.03 0.03 0.0019 13.66 < 0.001

Interaction: with con-
straint and slow

0.91 -0.10 0.0020 -48.26 < 0.001

Interaction: with con-
straint and syllable 1 du-
ration

0.15 -1.92 0.0020 -979.74 < 0.001

Interaction: with con-
straint and syllable 2 du-
ration

0.42 -0.87 0.0020 -443.45 < 0.001

Interaction: fast and syl-
lable 1 duration

0.85 -0.17 0.0015 -109.95 < 0.001

Interaction: slow and syl-
lable 1 duration

1.07 0.06 0.0016 40.34 < 0.001

Interaction: fast and syl-
lable 2 duration

1.05 0.05 0.0015 31.54 < 0.001

Interaction: slow and syl-
lable 2 duration

0.90 -0.11 0.0016 -69.18 < 0.001

Interaction: with con-
straint, fast, syllable 1

0.92 -0.08 0.0028 -29.71 < 0.001

Interaction: with con-
straint, slow, syllable 1

1.40 0.34 0.0028 121.01 < 0.001

Interaction: with con-
straint, fast, syllable 2

0.84 -0.18 0.0028 -63.68 < 0.001

Interaction: with con-
straint, slow, syllable 2

1.11 0.11 0.0028 37.69 < 0.001
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Supplement D: Model parameters
The model has parameters that control many aspects of its behaviour and performance. These are illustrated
in Figure 7, and listed with descriptions of their functions in Table 6. Some parameters are adopted directly
from the 1997 DBS model. In those instances, the values that DBS used are recorded in the table. New
parameters, or parameters for which the values used by DBS were not discernible are recorded with a “?” in
that column. The values that we tested in the initial optimisation (the first 100 generations) are recorded in the
next column. Some parameters are clamped in this phase, meaning that their values are not allowed to vary.
After 100 generations, these parameters were allowed to vary. Some parameters were allowed to vary throughout
the optimisation procedure, and were spawned in the first generation, meaning that values associated with the
agents of the first generation were sampled from a normal distribution. The final column records the limits to
which the parameter values were constrained throughout the optimisation procedure.

Figure 7: Parameters of the asynchronous model variant

Table 6: Parameters of the asynchronous model variant

Parameter and description value in DBS

Clamp in
initial opti-
misation or
spawn centre

Limits of
parameter
value

1

plan activation Activation level. This is the ac-
tivation that is assigned to the plan node for the
period from tick for to tick 28, during which time
the plan node is constantly activated.

7
1.0, spawn
centre

0.0 - Inf

2

segmental stream gradient 1 Connection
weighting. This controls what proportion of the
activation in the plan node flows to the first con-
tent node.

Specified in-
dependently
for each
word

0.4, clamp 0.0 - 1.0

3

segmental stream gradient 2 Connection
weighting. This controls what proportion of the
activation in the plan node flows to the first con-
tent node.

Specified in-
dependently
for each
word

0.7, clamp 0.0 - 1.0
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Table 6: Parameters of the asynchronous model variant (continued)

Parameter and description value in DBS

Clamp in
initial opti-
misation or
spawn centre

Limits of
parameter
value

4
frame trigger threshold Connection weighting.
This controls what proportion of the activation in
the plan node flows to the first content node.

?
0.25, spawn
centre

0.0 - 0.75

5
frame-specific decay Decay rate. The rate at
which activation decays for the frame node.

0.4 - 0.6 0.9, clamp 0.0 - 1.0

6
duration of periods port 1 (dur0) Duration in
ticks. Duration of each period of the activation
pattern associated with the first port.

?
8, spawn cen-
tre

1 - 15

7
duration of periods port 2 (dur1) Duration in
ticks. Duration of each period of the activation
pattern associated with the second port.

?
8, spawn cen-
tre

1 - 15

8
full activation Activation level. The activation
level of periods of full activation transmitted by
the frame node ports.

1.0
1.0, spawn
centre

0.0 - 1.0

9
partial activation Activation level. The activa-
tion level of periods of partial activation transmit-
ted by the frame node ports.

0.4 - 0.6
0.5, spawn
centre

0.0 - 1.0

10
baseline activation Activation level. The acti-
vation level of periods of partial activation trans-
mitted by the frame node ports.

0.0
0.0, spawn
centre

0.0 - 1.0

11

threshold constant The constant baseline of the
threshold against which activation in the content
nodes is compared to establish times of syllable
onset and offset.

?
6.0, spawn
centre

-6.0 - 18.0

12

general excitation Connection weighting. The
weighting of all excitatory connections in the
model that do not have a specific parameter de-
fined weighting.

? 0.83, clamp 0.0 - 1.0

13
general decay Decay rate. The rate at which
activation decays for all model nodes, except the
frame node.

0.4 - 0.6 0.9, clamp 0.0 - 1.0
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Supplement E: Multiple regimes to achieve the same speaking rate
In the first analyses of strand 2, we assumed that only one regime exists for each speaking rate. It is of course
possible that several distinct combinations of parameter settings (regimes) might be able to account for the
temporal structure of speech at each speaking rate; that is, there might be several different, equally viable
“ways” to speak slow, fast, and at a medium rate. Such a situation would manifest itself in multiple distinct
clusters in the parameter space emerging in the set of best performing unique solutions in each rate condition
run. To establish whether multiple distinct regimes were present in the parameter values adopted to speak
at each speaking rate, we performed k-means clustering on the parameter dimensions for the Pareto optimal
solutions of each rate condition, which seeks to find k distinct clusters of points. We explored values of k from
1 to 39 (100 repetitions at each value of k), and calculated the Bayesian Information Criterion (BIC) for each
clustering attempt. The BIC characterises the quality of an attempt, balancing the likelihood of each cluster
with the number of clusters to avoid over-fitting. We retained the best clustering model for each value of k. For
all three speaking rates, the best supported number of clusters was 1, meaning that the Pareto fronts contained
only one “way” to achieve each speaking rate.
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Supplement F: The loading of parameters onto the PCA
To be able to examine the arrangement in parameter space of the regimes associated with each of the rate
conditions, we conducted a principal component analysis (PCA). This procedure loads as much variance as
possible onto each component in turn, whilst ensuring that each component is orthogonal to the preceding PCs.
PC1 (the first PC) accounted for 33.7% of the variance, PC2 accounted for 15.5% of the variance, PC3 for 11%,
and PC4 for 6%. The loadings of the parameters onto the PCs are listed in Table 7.

Table 7: The loading of parameters onto principal components

Parameter PC1 PC2 PC3

1 plan activation (μ) -0.164 0.488 -0.071
1 plan activation (σ) -0.135 0.197 0.076
2 segmental stream gradient 1 (μ) 0.351 0.064 0.066
2 segmental stream gradient 1 (σ) 0.093 -0.133 -0.385
3 segmental stream gradient 2 (μ) -0.312 -0.276 0.023

3 segmental stream gradient 2 (σ) -0.164 -0.238 0.315
4 frame trigger threshold (μ) 0.141 -0.219 -0.268
4 frame trigger threshold (σ) 0.073 0.003 -0.143
5 frame-specific decay (μ) 0.078 0.03 0.508
5 frame-specific decay (σ) 0.005 -0.009 -0.277

6 dur0 (μ) 0.246 -0.363 0.079
7 dur1 (μ) 0.333 0.065 0.065
8 full activation (μ) 0.053 0.007 -0.064
8 full activation (σ) 0.248 0.183 0.188
9 partial activation (μ) 0.355 0.089 0.057

9 partial activation (σ) -0.065 0.024 0.053
10 baseline activation (μ) 0.002 0.062 0.211
10 baseline activation (σ) -0.019 0.04 0.15
11 threshold constant (μ) 0.337 -0.195 0.07
12 general excitation (μ) -0.123 -0.532 0.052

12 general excitation (σ) -0.084 -0.079 0.075
13 general decay (μ) -0.328 0.074 -0.122
13 general decay (σ) -0.142 -0.013 0.35

Variance accounted for by principal component 33.7% 15.5% 11%

Figure 8 is an extended version of Figure 10 in the article text. The odd rows show the arrangement of the
regimes on the planes of various pairs of principal components. Dots indicate members of the set of best
performing solutions in each speaking rate condition (red for fast, green for medium and blue for slow). This
visualises the arrangement of the parameters in PC space.

The plots in the even rows visualise the loadings of the parameters onto the PCs of the plane of the plot
immediately above. The arrows point in the positive direction of the indicated parameter, the length of the
arrow indicates the weighting. For the sake of readability, only parameters with an absolute loading greater
than 0.35 on one of the PCs are included. Numbers refer to the parameter numbers given in the Table 7 and
the table and in Figure 7 and Table 6 in Supplement D.
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Figure 8: Odd rows: The Pareto optimal solutions identified for the fast (red), medium (green), and slow (blue)
rate conditions, plotted for PC1, PC2 and PC3. Even rows: visualisation of the loading of parameters onto the
PCs, see text for details.
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Supplement G: Durations predicted by a sample of optimal solutions
Figure 9 shows predicted durations for a sample of solutions from the Pareto front, and is complementary to
Figure 9 in the main text.

fe4c

f387

e633

bf38

a4b4

9107

86e5

79d3

624f

225c

fe4c

f387

e633

bf38

a4b4

9107

86e5

79d3

624f

225c

fe4c

f387

e633

bf38

a4b4

9107

86e5

79d3

624f

225c

b930

b3e5

aaf4

9d91

9181

80a5

61a2

48ad

47bd

2fae

b930

b3e5

aaf4

9d91

9181

80a5

61a2

48ad

47bd

2fae

b930

b3e5

aaf4

9d91

9181

80a5

61a2

48ad

47bd

2fae

ff08

edef

ccf4

a8ea

8f12

6e05

6580

6473

43f9

3bd4

ff08

edef

ccf4

a8ea

8f12

6e05

6580

6473

43f9

3bd4

ff08

edef

ccf4

a8ea

8f12

6e05

6580

6473

43f9

3bd4

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

b813

a2fa

89b6

7c85

7188

6d8d

5ce5

5c7a

4b77

2154

b813

a2fa

89b6

7c85

7188

6d8d

5ce5

5c7a

4b77

2154

b813

a2fa

89b6

7c85

7188

6d8d

5ce5

5c7a

4b77

2154

d517

c349

a213

6ced

6b70

58ab

5137

32d9

1981

0cf8

d517

c349

a213

6ced

6b70

58ab

5137

32d9

1981

0cf8

d517

c349

a213

6ced

6b70

58ab

5137

32d9

1981

0cf8

e356

cc91

c18b

be03

a9e5

9c52

7ce5

4567

18e7

0127

e356

cc91

c18b

be03

a9e5

9c52

7ce5

4567

18e7

0127

e356

cc91

c18b

be03

a9e5

9c52

7ce5

4567

18e7

0127

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

cc05

c73b

b516

9912

7b20

75c8

4bfb

32ef

2c6e

02ac

cc05

c73b

b516

9912

7b20

75c8

4bfb

32ef

2c6e

02ac

cc05

c73b

b516

9912

7b20

75c8

4bfb

32ef

2c6e

02ac

f9b3

d62f

c7ac

bc12

aa91

624d

5ef8

384e

3362

144a

f9b3

d62f

c7ac

bc12

aa91

624d

5ef8

384e

3362

144a

f9b3

d62f

c7ac

bc12

aa91

624d

5ef8

384e

3362

144a

d75e

d2bc

965b

93ae

7b9e

79d7

74ec

4971

1a5f

16df

d75e

d2bc

965b

93ae

7b9e

79d7

74ec

4971

1a5f

16df

d75e

d2bc

965b

93ae

7b9e

79d7

74ec

4971

1a5f

16df

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

ee04

d221

b450

b27e

8aa0

6f8b

3a75

226a

1dee

1a0a

control
sync.

async.
async.

constrained

0 200400600800 0 200400600800 0 200400600800

syllable 2 duration

overlap duration

syllable 1 duration

syllable 2 duration

overlap duration

syllable 1 duration

syllable 2 duration

overlap duration

syllable 1 duration

syllable 2 duration

overlap duration

syllable 1 duration

Duration (ms)

va
ria

bl
e

observed data

model fits

Cueing rate

fast

medium

slow

Figure 9: Predicted durations for a sample of solutions from the Pareto front
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Supplement H: Details of GAM analysis of rate-to-gait mapping
For each axis of the extrapolated fingerprint duration data, we regressed the normalised fingerprint durations
by the number of the step along the axis. Depending on the mapping to be modelled, this was either a “uniform”
fit, or a “splined” fit. The uniform fit was a simple linear regression, whereby duration was predicted by the
interaction between step number and a factor representing the three component fingerprint durations. The
splined fit had a thin-plate spline smooth with a basis dimension of 4, grouped by the component factor. A
basis of 4 means that the spline can adopt a sigmoid shape to fit the data.

We will take the example of the “fast is special” mapping, where fast is distinct and medium and slow are
mapped to the same gait. The fit resulting from this model is depicted in the Figure 10. We construct a model
consisting of a uniform fit for the axis between medium and slow, and splined fits for the axis between fast and
medium and the axis between fast and slow. The multivariate nature of the model means that we can extract
fit quality information for all three axes together, and thus evaluate statistical support for the five hypothesised
mappings directly.

We constructed multivariate models fitting the three axes together, so we have one model for each hypothesis.
The following tables summarise the regression coefficients of each the models in turn. Fitting was done using
the mgcv R package (version 1.8-28) in R (R Core Team, 2018, version 3.5.2).

Results
Figure 11 presents the model comparison results of both the GAMs (in panel A) and the the Bayesian linear
switchpoint models (in panel B). Panel B repeats the data shown in Panel E of Figure 11 in the article text.
In both cases, we compare models on information criteria, which aim to quantify the explanatory power of the
models in terms of the amount of information lost, while at the same time penalising model complexity to avoid
over fitting. For the GAMs, we calculate the Akaike information criterion (AIC, Akaike, 1974), for the Bayesian
linear switchpoint models we calculate an information criterion by leave-one-out cross validation (the LOOIC,
Vehtari, Gelman, & Gabry, 2017).

The ordering of the mappings is the same according to both the GAM analysis and the Bayesian linear switch-
point analysis.
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Model of “fast-is-special” mapping

durfs ~ s(stepnr, by = fcomponent, k = 4)
durfm ~ s(stepnr, by = fcomponent, k = 4)
durms ~ stepnr * component

Linear coefficients

Axis Parameter Estimate Standard Error z value p-value (> |z|)

fast-slow (Intercept) 0.00 0.02 0.05 0.96
fast-medium (Intercept) 0.00 0.02 0.22 0.82
medium-slow (Intercept) -0.17 0.07 -2.31 0.02
medium-slow step number 0.03 0.01 2.64 0.01
medium-slow syllable 1 -0.18 0.10 -1.75 0.08

medium-slow syllable 2 -0.35 0.10 -3.36 0.00
medium-slow step number:syllable 1 0.03 0.02 1.98 0.05
medium-slow step number:syllable 2 0.06 0.02 3.78 0.00

Smoothing coefficients

Axis Parameter edf Ref.df χ2 p-value

fast-slow componentoverlapdur 2.96 3.00 140.66 0
fast-slow smooth(stepnr):syllable 1 2.95 3.00 341.11 0
fast-slow smooth(stepnr):syllable 2 2.74 2.95 765.16 0
fast-medium componentoverlapdur 2.84 2.98 104.01 0
fast-medium smooth(stepnr):syllable 1 1.00 1.00 178.09 0

fast-medium smooth(stepnr):syllable 2 2.79 2.96 649.64 0
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Model of “medium-is-special” mapping

durfs ~ stepnr * component
durfm ~ s(stepnr, by = fcomponent, k = 4)
durms ~ s(stepnr, by = fcomponent, k = 4)

Linear coefficients

Axis Parameter Estimate Standard Error z value p-value (> |z|)

fast-slow (Intercept) -0.43 0.06 -6.70 0.00
fast-slow step number 0.07 0.01 7.58 0.00
fast-slow syllable 1 -0.42 0.09 -4.66 0.00
fast-slow syllable 2 -1.06 0.09 -11.82 0.00
fast-slow step number:syllable 1 0.07 0.01 5.26 0.00

fast-slow step number:syllable 2 0.18 0.01 13.35 0.00
fast-medium (Intercept) 0.00 0.02 0.22 0.82
medium-slow (Intercept) 0.00 0.02 0.09 0.93

Smoothing coefficients

Axis Parameter edf Ref.df χ2 p-value

fast-medium componentoverlapdur 2.85 2.98 105.17 0
fast-medium smooth(stepnr):syllable 1 1.00 1.01 178.09 0
fast-medium smooth(stepnr):syllable 2 2.79 2.97 649.58 0
medium-slow componentoverlapdur 2.95 3.00 47.18 0
medium-slow smooth(stepnr):syllable 1 2.94 3.00 67.54 0

medium-slow smooth(stepnr):syllable 2 1.46 1.77 70.53 0

Model of “one gait” mapping

durfs ~ stepnr * component
durfm ~ stepnr * component
durms ~ stepnr * component

Linear coefficients

Axis Parameter Estimate Standard Error z value p-value (> |z|)

fast-slow (Intercept) -0.43 0.06 -6.70 0.00
fast-slow step number 0.07 0.01 7.58 0.00
fast-slow syllable 1 -0.42 0.09 -4.66 0.00
fast-slow syllable 2 -1.06 0.09 -11.82 0.00
fast-slow step number:syllable 1 0.07 0.01 5.26 0.00

fast-slow step number:syllable 2 0.18 0.01 13.35 0.00
fast-medium (Intercept) -0.50 0.06 -7.69 0.00
fast-medium step number 0.08 0.01 8.74 0.00
fast-medium syllable 1 -0.26 0.09 -2.80 0.01
fast-medium syllable 2 -0.91 0.09 -9.93 0.00

21



(continued)

Axis Parameter Estimate Standard Error z value p-value (> |z|)

fast-medium step number:syllable 1 0.04 0.01 3.16 0.00
fast-medium step number:syllable 2 0.15 0.01 11.24 0.00
medium-slow (Intercept) -0.17 0.07 -2.31 0.02
medium-slow step number 0.03 0.01 2.64 0.01
medium-slow syllable 1 -0.18 0.10 -1.75 0.08

medium-slow syllable 2 -0.35 0.10 -3.36 0.00
medium-slow step number:syllable 1 0.03 0.02 1.98 0.05
medium-slow step number:syllable 2 0.06 0.02 3.78 0.00

For the one gait model, there are no smoothing fits, since all three axes are fitted by uniform regressions only.

Model of “slow-is-special” mapping

durfs ~ s(stepnr, by = fcomponent, k = 4)
durfm ~ stepnr * component
durms ~ s(stepnr, by = fcomponent, k = 4)

Linear coefficients

Axis Parameter Estimate Standard Error z value p-value (> |z|)

fast-slow (Intercept) 0.00 0.02 0.05 0.96
fast-medium (Intercept) -0.50 0.06 -7.69 0.00
fast-medium step number 0.08 0.01 8.74 0.00
fast-medium syllable 1 -0.26 0.09 -2.80 0.01
fast-medium syllable 2 -0.91 0.09 -9.93 0.00

fast-medium step number:syllable 1 0.04 0.01 3.16 0.00
fast-medium step number:syllable 2 0.15 0.01 11.24 0.00
medium-slow (Intercept) 0.00 0.02 0.09 0.93

Smoothing coefficients

Axis Parameter edf Ref.df χ2 p-value

fast-slow componentoverlapdur 2.96 3.00 140.81 0
fast-slow smooth(stepnr):syllable 1 2.95 3.00 342.20 0
fast-slow smooth(stepnr):syllable 2 2.75 2.95 765.29 0
medium-slow componentoverlapdur 2.95 3.00 49.48 0
medium-slow smooth(stepnr):syllable 1 2.95 3.00 71.12 0

medium-slow smooth(stepnr):syllable 2 1.52 1.85 70.47 0

Model of three gaits mapping

durfs ~ s(stepnr, by = fcomponent, k = 4)
durfm ~ s(stepnr, by = fcomponent, k = 4)
durms ~ s(stepnr, by = fcomponent, k = 4)
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Linear coefficients

Axis Parameter Estimate Standard Error z value p-value (> |z|)

fast-slow (Intercept) 0 0.02 0.05 0.96
fast-medium (Intercept) 0 0.02 0.22 0.82
medium-slow (Intercept) 0 0.02 0.09 0.93

Smoothing coefficients

Axis Parameter edf Ref.df χ2 p-value

fast-slow componentoverlapdur 2.96 3.00 141.85 0
fast-slow smooth(stepnr):syllable 1 2.95 3.00 342.20 0
fast-slow smooth(stepnr):syllable 2 2.74 2.95 765.19 0
fast-medium componentoverlapdur 2.85 2.98 105.08 0
fast-medium smooth(stepnr):syllable 1 1.00 1.00 178.10 0

fast-medium smooth(stepnr):syllable 2 2.79 2.96 649.57 0
medium-slow componentoverlapdur 2.95 3.00 49.96 0
medium-slow smooth(stepnr):syllable 1 2.95 3.00 71.11 0
medium-slow smooth(stepnr):syllable 2 1.47 1.78 70.55 0
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Supplement I: Details of Bayesian analysis of rate-to-gait mapping
For technical reasons, Supplement I, describing Bayesian switchpoint models could not be hosted by the APA.
It is available at https://osf.io/3mqgu/.

Supplement J: Model and analysis code
For technical reasons, Supplement J, including the code of the model and analysis code could not be hosted by
the APA. It is available at https://osf.io/3mqgu/.
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