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Abstract

We prove an analogue of Klein combination theorem for Anosov subgroups by using a local-
to-global principle for Morse quasigeodesics.

Contents

1 Introduction 1

2 Geometric background 4

2.1 Symmetric spaces of non-compact type . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 ∆-valued distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Ideal boundaries and Tits buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Parallel sets, regularity, cones and diamonds . . . . . . . . . . . . . . . . . . . . . . . 7

3 Visual angle estimates 8

3.1 Small visual angles I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Small visual angles II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Morse condition 15

4.1 Stability of quasigeodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Straight sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Replacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Morse subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Residual finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 A combination theorem 23

References 27

1 Introduction

The combination theorems in geometric group theory provide tools to construct new groups with

“nice” geometric properties out of old ones. The classical Klein combination theorem [Kle83]

states that under certain assumptions the group 〈Γ1,Γ2〉 generated by two Kleinian groups Γ1

and Γ2 is Kleinian, and is naturally isomorphic to the free product Γ1 ∗ Γ2. In a series of articles

[Mas65, Mas68, Mas71, Mas93], Maskit generalized the Klein combination theorem to amalgamated
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free products and HNN extensions. These so called “Klein-Maskit combination theorems” have

been generalized to the geometrically finite subgroups of the isometry groups of higher dimensional

hyperbolic spaces by several mathematicians. For instance, in [BC08], Baker and Cooper proved

the following theorem.

Theorem 1.1 (Virtual amalgam theorem, [BC08]). If Γ1 and Γ2 are two geometrically finite

subgroups of Isom (Hn) which have compatible parabolic subgroups, and if H = Γ1∩Γ2 is separable in

Γ1 and Γ2, then there exists finite index subgroups Γ′1 and Γ′2 of Γ1 and Γ2, respectively, containing

H such that the group 〈Γ′1,Γ′2〉 generated by Γ′1 and Γ′2 is geometrically finite, and is naturally

isomorphic to the amalgam Γ′1 ∗H Γ′2.

When Γ1 and Γ2 intersect trivially, the “compatibility condition” in the above theorem simply

means that the limit sets of Γ1 and Γ2 in ∂∞Hn are disjoint. Since this case would be most relevant

to our work, we state it separately.

Corollary 1.2. If Γ1 and Γ2 are two geometrically finite subgroups of Isom (Hn) with disjoint limit

sets in ∂∞Hn, then there exists finite index subgroups Γ′1 and Γ′2 of Γ1 and Γ2, respectively, such

that the group 〈Γ′1,Γ′2〉 generated by Γ′1 and Γ′2 is geometrically finite and is naturally isomorphic

Γ′1 ∗ Γ′2.

There are also certain generalizations of these combination theorems in the realm of subgroups

of hyperbolic groups and, more generally, isometry groups of Gromov-hyperbolic spaces. In [Git99],

Gitik proved that under certain conditions two quasiconvex subgroups of a δ-hyperbolic group “can

be virtually amalgamated.” In this regard, our main theorem is an analogue of [Git99, Corollary 3].

See also the papers by Mart́ınez-Pedroza [MP09] and Mart́ınez-Pedroza–Sisto [MPS12] for closely

related results.

In the present work, we prove a combination theorem for Anosov subgroups of semisimple Lie

groups. Anosov representations of surface groups (and, more generally, fundamental groups of com-

pact negatively curved manifolds) were introduced by Labourie [Lab06] to study the “Hitchin com-

ponent” of the space of reducible representations in PSL(n,R). Guichard and Weinhard [GW12]

generalized this notion in the setting of representations of hyperbolic groups in real semisimple Lie

groups. Anosov subgroups can be regarded as higher rank generalizations of convex-cocompact

subgroups of isometry groups of negatively curved symmetric spaces.

Our main result presents an analogue of Corollary 1.2 for Anosov subgroups. Before stating our

theorem, we briefly discuss our framework. Let G be a semisimple Lie group, let P be a maximal

parabolic subgroup conjugate to its opposite subgroups.

Our main result is the following.

Theorem 1.3 (Combination theorem). Let Γ1, . . . ,Γn be pairwise antipodal, residually finite1 P -

Anosov subgroups of G. Then there exist finite index subgroups Γ′i of Γi, for i = 1, . . . , n, such that

the subgroup 〈Γ′1, . . . ,Γ′n〉 generated by Γ′1, . . . ,Γ
′
n in G is P -Anosov, and is naturally isomorphic

to the free product Γ′1 ∗ · · · ∗ Γ′n.

The undefined term “antipodal” will be made precise later in the paper (Definition 4.22): This

condition replaces the disjointness of the limit sets in Corollary 1.2. Moreover, the geometric

finiteness in Corollary 1.2 is replaced by the Anosov condition.

1It suffices to assume that each Γi has trivial intersection with the center of G. See also the remark following

Theorem 5.1.
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In fact, our combination theorem is a special case of a more geometric result (Theorem 5.2),

stated in terms of “sufficiently high displacements” and “sufficient antipodality” of the groups Γi
at a point x ∈ X = G/K; with this condition, there is no need to pass to finite index subgroups.

Although we state main result (Theorem 1.3) in the language of Anosov representations, we

never really use it in our proof. Instead, we use the language of Morse subgroups, and prove an

equivalent statement in this context (Theorem 5.1).

In [KLPa], Kapovich, Leeb and Porti introduced a class of discrete subgroups of isometries of

higher rank symmetric spaces. This class of subgroups generalizes the convex cocompact subgroups

in the rank one Lie groups. In [KLPa] and in subsequent articles [KLPb, KLP17, KLP18], they

introduced and proved several equivalent definitions of this class, and studied their geometric

properties (e.g. structural stability, cocompactness etc.). Some of these equivalent definitions are

given in terms of RCA subgroups, URU subgroups, Morse subgroups, asymptotically embedded

subgroups, etc. In [KLPa], they also proved that the classes of Morse subgroups and Anosov

subgroups are equal.

Theorem 1.4 (Morse ⇔ Anosov, [KLPa]). For a discrete subgroup Γ of G, the following are

equivalent.

1. Γ is Pτmod
-Anosov.

2. Γ is τmod-Morse.

See also [KLar] and [KLP16] for detailed surveys on these results.

In [KLPa, Theorem 7.40] they used the local-to-global principle for Morse quasigeodesics to

construct (free) Morse-Schottky subgroups of semisimple Lie groups (cf. also [Ben97]):

Theorem 1.5. Suppose that g1, ..., gn are hyperbolic isometries of a symmetric space X = G/K

of noncompact type, whose repelling/attracting points in the flag-manifold G/Pτmod
are pairwise

antipodal. Then for all sufficiently large N , the subgroup of G generated by gN1 , ..., g
N
n is τmod-

Morse and free of rank k.

While our main theorem contains this result as a special case when the subgroups Γ1, ...,Γn are

cyclic, our proof uses some of the main ideas of the proof of [KLPa, Theorem 7.40].

Organization of this paper

In section 2, we give a brief overview on symmetric spaces of noncompact type, ∆-valued distances

and the triangle inequalities, τmod-regularities, parallel sets, ξ-angles, Θ-cones, and Θ-diamonds,

mostly to set up our notations while leaving the details to the references. In section 3, we prove

several estimates on ξ-angles which will provide crucial ingredients for construction of Morse em-

beddings in the proof of our main result. In section 4, or more specifically in 4.1 and 4.4, we

discuss Morse properties. In section 4.3, we introduce the replacement lemma (Theorem 4.11, and

a generalized version Theorem 4.13) which is another important ingredient in the proof of our main

result. In section 4.5, we discuss the residual finiteness property of Morse subgroups. Finally, in

section 5, we state and prove our main result in terms of Morse subgroups (Theorem 5.1).
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Notations

Here is a list of commonly used notations.

• ∠ξx(x1, x2) = ξ-angle between τmod-regular segments xx1 and xx2 (see section 2.3)

• ♦Θ (x1, x2) = Θ-diamond with tips at x1 and x2 (see section 2.4)

• ι = the opposition involution (see section 2.1)

• ND (·) = open D-neighborhood

• ost (τ) = open star of τ in the visual boundary (see section 2.4)

• st (τ) = star of τ in the visual boundary (see section 2.4)

• V (x, stΘ (τ)) = Θ-cone asymptotic to τ with tip at x (see section 2.4)

Acknowledgements. The second author was partly supported by the NSF grant DMS-16-

04241, by KIAS (the Korea Institute for Advanced Study) through the KIAS scholar program, by a

Simons Foundation Fellowship, grant number 391602, and by Max Plank Institute for Mathematics

in Bonn.

2 Geometric background

In this section, we first review some notions pertinent to geometry of symmetric spaces of noncom-

pact type. A standard reference for this section is [Ebe96]. Then we briefly review various notions

such as ideal boundaries, Tits metrics, τmod-regularity, Θ-cones, Θ-diamonds etc. enough to fix our

notations and conventions. For a detailed exposition on these topics, we refer to [KLPa, KLPb].

2.1 Symmetric spaces of non-compact type

A (global) symmetric space X is a Riemannian manifold which has an inversion symmetry about

each point, i.e. for each point x ∈ X, there exists an isometric involution sx : X → X fixing x,

called the Cartan involution, whose differential dsx restricts to −Id on the tangent space TxX. In

this paper we consider only simply connected symmetric spaces.

Each symmetric space has a de Rham decomposition into irreducible symmetric spaces. A

symmetric space X is said to be of noncompact type if it is nonpositively curved, simply connected

and without a Euclidean factor. Under these assumptions, X is a Hadamard manifold, and is

diffeomorphic to a Euclidean space.

A semisimple Lie algebra g is called compact if its Killing form is negative definite. A semisimple

Lie group G is compact if and only if its Lie algebra is compact. G is said to have no compact

factors or of noncompact type if none of the factors of the direct sum decomposition of its Lie

algebra g into simple Lie algebras is compact, and the decomposition has no commutative factors.

Let G be a semisimple Lie group with no compact factors and with a finite center, let K be a

maximal compact subgroup of G. Maximal compact subgroups of G are conjugate to each other.

The coset space X = G/K can be given a natural G-invariant Riemannian metric with respect to

which it becomes a symmetric space of noncompact type. Moreover, under our assumptions, G
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is commensurable with the isometry group of X, Isom (X), in the sense that the homomorphism

G→ Isom (X) has finite kernel and cokernel. The group G acts on X = G/K transitively, so X is

a homogeneous G-space.

In fact, any symmetric space of noncompact type arises as a quotient space as above. Let X be

a symmetric space of noncompact type, and let Isom0 (X) be the identity component of Isom (X).

Then Isom0 (X) is a semisimple Lie group with no compact factors and trivial center. We can

identify X with the quotient Isom0 (X) /Isom0 (X)x where Isom0 (X)x is the isotropy subgroup for

some x ∈ X.

In the rest of this paper we reserve the letter X to denote a symmetric space of noncompact

type. We identify X with G/K where G and K are as above. More assumptions on G will be

made later on, see section 2.3.

A flat in X is a totally geodesic submanifold of zero sectional curvature. A flat is called maximal

if it is not properly contained in another flat. The group G acts transitively on the set of all maximal

flats; the dimension of a maximal flat is called the rank of X.

A choice of a maximal flat will be called the model flat, and will be denoted by Fmod. Fmod

is isometric to Ek, where k is the rank of X. The image of the subgroup GFmod
< G stabilizing

the model flat in the group of isometric affine transformations Isom (Fmod) under restriction homo-

morphism is a semidirect product Rk oW . Here W , called the Weyl group, is a (finite) group of

isometries of Fmod generated by reflections fixing a chosen base point (origin) omod. A fundamental

domain for the action W y Fmod is a certain convex cone with tip at omod, called the model Weyl

chamber, and will be denoted by ∆.

2.2 ∆-valued distances

Given any two points x, y ∈ X, the unique oriented geodesic segment from x to y will be denoted

by xy. All geodesics considered in this paper are unit speed parametrized. We denote the distance

between x and y by d(x, y).

Each oriented segment xy uniquely defines a vector v in ∆ which can be realized as follows.

Any geodesic segment xy can be extended to a complete geodesic f ⊂ X which is, in fact, a

flat of dimension one. This geodesic f is contained in a maximal flat F . There exists an isometry

g ∈ G sending F to Fmod, x to omod and y to ∆. The vector v ∈ ∆ is defined as the image g(y);

it is independent of the choice of g. This vector v is called the ∆-valued distance from x to y, and

denoted by d∆(x, y).

It follows from our discussion that d∆(x, y) is a complete G-congruence invariant for an oriented

segment xy or an ordered pair (x, y). Precisely, for two pairs of points (x, y) and (x′, y′), there exists

g ∈ G satisfying (gx, gy) = (x′, y′) if and only if d∆(x, y) = d∆(x′, y′).

The ∆-valued distances satisfy a set of inequalities which are generalizations of the ordinary

triangle inequality (see [KLM09]). For our purpose, the following form will be sufficient.

Triangle inequality for ∆-valued distances. For any triple of points x, y, z ∈ X,

‖d∆(x, y)− d∆(x, z)‖ ≤ d(y, z),

where d∆(x, y)− d∆(x, z) is realized as a vector in Fmod and ‖ · ‖ is the induced Euclidean norm.
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2.3 Ideal boundaries and Tits buildings

Two geodesic rays in X are said to be asymptotic if they are within a finite Hausdorff distance from

each other. The ideal or visual boundary ∂∞X is the set of asymptotic classes of rays. Given x ∈ X
and an asymptotic class ζ, the unique ray emanating from x which is a member of the asymptotic

class ζ will be denoted by xζ. For a fixed base point x ∈ X, the set ∂∞X can be metrized by the

angle metric ∠x,

∠x(ζ1, ζ2) = angle between the rays xζ1 and xζ2.

The visual topology on ∂∞X induced by an angle metric ∠x is independent of the choice of a base

point. In fact, ∂∞X is homeomorphic to Sn−1 where n is the dimension of X.

The natural Tits metric on the ideal boundary ∂∞X can be defined as

∠Tits(ζ, η) = sup
x∈X

∠x(ζ, η).

This metric defines Tits topology on ∂∞X which is finer than the visual topology, and ∂∞X equipped

with this topology is called the Tits boundary of X denoted by ∂TitsX.

The Weyl group W acts as a reflection group on the Tits boundary amod = ∂TitsFmod
∼= Sk−1,

where k is the rank of X. The pair (amod,W ) is called the spherical Coxeter complex associated

with X. The quotient σmod = amod/W is called the spherical model Weyl chamber which we

identify as a fundamental chamber of (amod,W ). Accordingly, we regard the model Weyl chamber

∆ of Fmod as a cone in Fmod with tip at the origin omod and ideal boundary σmod.

The spherical Coxeter complex structure on amod induces a G-invariant spherical simplicial

structure on ∂TitsX. This simplicial complex, called the spherical or Tits building associated to X;

we assume this building to be thick. The facets of this simplicial complex are called chambers in

∂TitsX and the ideal boundaries of maximal flats are apartments in ∂TitsX.

Each chamber is naturally identified with the model chamber σmod under the projection map

(also called the type map)

θ : ∂TitsX → σmod.

The type map is equivariant with respect to the isometric actions of Isom (X) on ∂TitsX and σmod;

hence, G acts on σmod.

From now on, we always assume that G acts on the model chamber σmod trivially. In particular,

G preserves each de Rham factor of X and the type map θ amounts to the quotient map ∂TitsX →
∂TitsX/G.

For an ideal point ζ, ζmod = θ(ζ) ∈ σmod is called the type of ζ. Accordingly, for a face τ of a

chamber σ, the face τmod = θ(τ) of σmod is called the type of τ .

We denote the opposition involution on σmod by

ι = −w0,

where w0 denotes the longest element in W y amod.

Two simplices τ1, τ2 of ∂TitsX are called antipodal or opposite if there exists a point x ∈ X

such that sx(τ1) = τ2, where sx is the Cartan involution with respect to x. Equivalently, two such

simplices are contained in an apartment a such that the antipodal map −Id (induced by a Cartan

involution) sends τ1 to τ2. Their types are related by θ(τ1) = ιθ(τ2).
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Throughout the paper, we will consider only ι-invariant faces τmod of σmod. For every such face

we pick one and for all a fixed point ξ = ξmod of ι in the interior of τmod. Then, for every simplex

τ in ∂TitsX of type τmod, we define a point ξτ ∈ τ by

{ξτ} = θ−1(ξmod) ∩ τ.

For a type (face) τmod of σmod and a point x ∈ X, we define the ξ-angle between two simplices

τ1 and τ2 of type τmod with respect to x by

∠ξx(τ1, τ2) = ∠x(ξτ1 , ξτ2).

Similarly, given τmod-regular segments xy1, xy2 in X, we define the ξ-angle

∠ξx(y1, y2) := ∠ξx(τ1, τ2),

where yi ∈ V (x, st (τi)), i = 1, 2.

The angular distance ∠ξx induces a visual topology on the space of simplices of type τmod. The

group G acts transitively on this space. The stabilizers Pτ of simplices τ ⊂ ∂TitsX are called

the parabolic subgroups of G. After identifying τmod with a simplex τ of type τmod, the space of

simplices of type τmod,

Flag (τmod) = G/Pτmod
,

is called the partial flag manifold. The topology of Flag (τmod) as a homogeneous G-space agrees

with the visual topology.

2.4 Parallel sets, regularity, cones and diamonds

We often denote a pair of antipodal simplices by τ+ and τ−. Let τ± be a pair of antipodal simplices

of same type τmod. Every such pair τ± is contained in a unique minimal2 singular sphere S ⊂ ∂∞X.

The parallel set of the pair τ± is defined to be the union of all flats in X which are asymptotic to

S, and denoted by P (τ−, τ+). Equivalently, P (τ−, τ+) is the union of all maximal flats F whose

ideal boundaries ∂∞F contain τ±. The parallel set P (τ−, τ+) is a nonpositively curved symmetric

space with Euclidean de Rham factor.

In the simplicial complex ∂TitsX, we define the star st (τ), the open star ost (τ) and the boundary

∂st (τ) for a simplex τ ∈ ∂TitsX as

st (τ) = minimal subcomplex of ∂TitsX consisting of simplices σ ⊃ τ ,

ost (τ) = union of all open simplices whose closure intersects int (τ),

∂st (τ) = st (τ)− ost (τ) .

Accordingly, we denote the open star and boundary of the star of a model face τmod in the simplicial

complex σmod by ost (τmod) and ∂st (τmod), respectively. Note that the simplicial map θ : ∂TitsX →
σmod sends ost (τ) and ∂st (τ) to ost (τmod) ⊂ σmod and ∂st (τmod) = σmod−ost (τmod), respectively,

where τmod is the type of τ .

For a subset Θ ⊂ ost (τmod), we define the τmod-boundary ∂Θ in the topological sense as a subset

of ost (τmod), where the topology is provided by the Tits metric. We define the interior int (Θ) of

2“Minimal” means that the dimension of S matches with the dimension of the cells τ±.
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Θ as Θ − ∂Θ. If Θ is compact, then ε0(Θ) := ∠Tits(∂st (τ) ,Θ) > 0. Moreover, if Θ′ and Θ are

two compact subsets of ost (τmod) such that Θ ⊂ int (Θ′), a scenario we will often consider in our

paper, then ε0(Θ,Θ′) := ∠Tits(Θ, ∂Θ′) > 0.

A subset Θ of σmod is called τmod-Weyl-convex if its symmetrization Wτmod
Θ in amod is convex.

Here Wτmod
denotes the stabilizer of the face τmod for the action W y amod. For a (τmod-)Weyl-

convex subset Θ ⊂ ost (τmod), we define the Θ-star of a simplex τ ∈ ∂TitsX as

stΘ (τ) = θ−1(Θ) ∩ st (τ) .

The star st (τ) and Θ-stars stΘ (τ) of a simplex τ are convex subsets of ∂TitsX with respect to the

Tits metric (see [KLPa, KLP17]).

Define the τmod-regular part of the ideal boundary as ∂τmod−reg
∞ X = θ−1ost (τmod). An ideal

point ξ is called τmod-regular if ξ ∈ ∂τmod−reg
∞ . Given x ∈ X and ξ ∈ ∂∞X, the geodesic ray xξ

is called τmod-regular if ξ ∈ ost (τmod). A geodesic segment xy is called τmod-regular if xy can be

extended to a τmod-regular ray xξ. For a Weyl-convex subset Θ ⊂ ost (τmod), in a similar fashion

we define Θ-regularities for ideal points, rays and segments. Note that a segment xy is τmod-regular

if and only if yx is ι(τmod)-regular.

Let τmod be an ι-invariant face of σmod, and Θ is an ι-invariant, Weyl-convex, compact subset

of ost (τmod). Given a point x ∈ X and a simplex τ of type τmod, the Θ-cone V (x, stΘ (τ)) with tip

x is defined as the union of all Θ-regular rays xξ asymptotic to st (τ). For a Θ-regular segment xy,

the Θ-diamond ♦Θ (x, y) is defined as

♦Θ (x, y) = V (x, stΘ (τ+)) ∩ V (y, stΘ (τ−)) ⊂ P (τ−, τ+),

where τ± are unique (unless x = y) pair of antipodal simplices in Flag (τmod) such that y ∈
V (x, stΘ (τ+)) and x ∈ V (y, stΘ (τ+)). The cones and diamonds are convex subsets of X, see

[KLPa, KLP17].

3 Visual angle estimates

The key result in this section is Proposition 3.8 which will be used in the proof of Theorem 5.1

to construct Morse quasigeodesics (see Definition 4.3). In the first section, we first obtain some

weaker results which would lead to the estimates in Proposition 3.8 in the later section.

In what follows, we always denote by τmod an ι-invariant face of the model chamber σmod. The

sets denoted by Θ,Θ′ etc. will always be ι-invariant, Weyl-convex, compact subset of ost (τmod).

By ξmod we denote an ι-invariant point in the interior of τmod.

3.1 Small visual angles I

Define the space of opposite simplices

X = (Flag (τmod)× Flag (τmod))opp ⊂
open

Flag (τmod)× Flag (τmod) ,

which consists of all pairs of opposite simplices of Flag (τmod). This space has a transitive G-action

which makes it a homogeneous G-space. The point stabilizer H of this action is the intersection of

two opposite parabolic subgroups of G.
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Throughout in this section x will be a fixed point of X. For a point ω = (τ+, τ−) ∈ X , let P (ω)

denote the parallel set P (τ+, τ−). We define a function dopp
x : X → R≥0 by

dopp
x (ω) = d (x, P (ω)) .

Proposition 3.1. The function dopp
x is continuous.

Proof. The proof is the same as of Lemma 2.21 of [KLP17]. Fix a point ω0 ∈ X . From the fiber

bundle theory, we have a fibration

H → G
evω0−−−−→ X ,

where H denotes the point stabilizer of the transitive G action, and evω0 denotes the evaluation

map evω0(g) = g · ω0. See [Ste99, Sections 7.4, 7.5]. For any ω ∈ X , there exists a neighborhood U

such that evω0 has a local section σ over U ,

σ : U → G, evω0 ◦ s = IdU .

It suffices to show that dopp
x is continuous on such neighborhoods U .

Define a function d′ : X ×X → R≥0 by d′(x, ω) = dopp
x (ω). Note that the action of G on X ×X

given by g(x, ω) = (gx, gω) leaves d′ invariant. Therefore, on U ,

dopp
x (ω) = d′(x, ω) = d′(x, σ(ω)ω0) = d′(σ(ω)−1x, ω0) = d(s(ω)−1x, P (ω0)),

where the last function is continuous on U . Therefore, dopp
x is continuous on U .

Definition 3.2 (Antipodal subsets). A pair of subsets Λ1, Λ2 of Flag (τmod) is called antipodal, if

any simplex τ1 ∈ Λ1 is antipodal3 to any simplex τ2 ∈ Λ2 and vice versa.

Let Λ1 and Λ2 be a pair of compact, antipodal subsets of Flag (τmod). Then, Λ1 × Λ2 is a

compact subset of X .

Proposition 3.1 implies:

Corollary 3.3. Let Λ1 and Λ2 be compact, antipodal subsets of Flag (τmod). If Λ1 and Λ2 are

antipodal, then, for any point x ∈ X, there is a number D = D(Λ1,Λ2, x) such that

d(x, P (τ1, τ2)) ≤ D, ∀τ1 ∈ Λ1, ∀τ2 ∈ Λ2.

Proposition 3.4. Let Λ1,Λ2 ⊂ Flag (τmod) be compact, antipodal subsets. There exists a function

f = f(Λ1,Λ2, x) : [0,∞) → [0, π] satisfying f(R) → 0 as R → ∞ such that for any τ1 ∈ Λ1,

τ2 ∈ Λ2, and for any z1 ∈ xξτ1, z2 ∈ xξτ2 satisfying d(z1, x), d(z2, x) ≥ R, we have

α1 = ∠z1(x, z2) ≤ f(R), α2 = ∠z2(x, z1) ≤ f(R).

Proof. Let x̄ ∈ P (τ1, τ2) be the point closest to x. Since τ1 and τ2 are antipodal, ∠ξx̄(τ1, τ2) = π, i.e.

sx̄(ξτ1) = ξτ2 . Let c : (−∞,∞) → P (τ1, τ2), c(0) = x̄, be the biinfinite geodesic passing through x̄

and asymptotic to c(+∞) = ξτ1 and c(−∞) = ξτ2 . For i = 1, 2, let ci : [0,∞)→ X be the geodesic

ray xξτi (see Figure 1(a)). Since the functions d(c(t), c1(t)) and d(c(−t), c2(t)) are bounded convex

functions, they are decreasing with maximum at t = 0. Therefore,

d(c(t), c1(t)) ≤ D, d(c(−t), c2(t)) ≤ D, ∀t ∈ [0,∞), (3.1)
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Figure 1

where D > 0 is a number as in Corollary 3.3.

For R ≥ 0, let c1(t1) = z1 ∈ xξτ1 and c2(t2) = z2 ∈ xξτ2 be any points satisfying t1 =

d(z1, x) ≥ R and t2 = d(z2, x) ≥ R. By (3.1), the Hausdorff distance between the segments z1z2

and c(t1)c(−t2) is bounded above by D. Combining with d(x, x̄) ≤ D we obtain

d(x, z1z2) ≤ 2D. (3.2)

Let x′ be the point on z1z2 nearest to x. When R ≥ 2D + 1, x′ is in the interior of z1z2.

Consider geodesic triangles 41 = 4(x, x′, z1) and 42 = 4(x, x′, z2); the angle of 41 and 42 at

the vertex x′ is π/2. Let α1 = ∠z1(x, x′) = ∠z1(x, z2) and α2 = ∠z2(x, x′) = ∠z2(x, z1) (see Figure

1(b)). Let 4̃1 and 4̃2 be the Euclidean comparison triangles of 41 and 42, respectively; we denote

the corresponding vertices of 4̃1 and 4̃2 by the same symbols. In the triangles 4̃1, 4̃2, since the

angles at the vertex x′ are at least π/2, we have

α̃i ≤ sin−1

(
xx′

xzi

)
≤ sin−1

(
2D

R

)
, i = 1, 2,

where α̃i denotes the angle corresponding to αi. The second inequality in above comes from (3.2).

Since the triangles 41 and 42 are thinner than the triangles 4̃1 and 4̃2, respectively, we have

αi ≤ α̃i. Therefore, when R ≥ 2D + 1, f(R) can be given by the following formula:

f(R) = sin−1

(
2D

R

)
.

The domain of f can be extended to R < 2D + 1 continuously. However, the continuity of f is

irrelevant; we can simply set f(R) = π for R < 2D + 1.

We also give a ξ-angle version of the proposition above which will be useful in the next section.

Proposition 3.5. Let Λ1,Λ2 ⊂ Flag (τmod) be compact antipodal subsets. Given Θ ⊂ ost (τmod)

containing ξmod in its interior, there exists R0 = R0(x,Λ1,Λ2,Θ, ξ) such that for any τ1 ∈ Λ1,

τ2 ∈ Λ2, and for any z1 ∈ xξτ1, z2 ∈ xξτ2 satisfying d(z1, x), d(z2, x) ≥ R0, the segment z1z2 is

Θ-regular.

3See subsection 2.3 for the definition of antipodal simplices.
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Moreover, there exists a function f0 = f0(x,Λ1,Λ2, ξ) : [0,∞) → [0, π] satisfying f0(R) → 0

as R → ∞ such that for any τ1 ∈ Λ1, τ2 ∈ Λ2, and for any z1 ∈ xξτ1, z2 ∈ xξτ2 satisfying

d(z1, x), d(z2, x) ≥ R ≥ R0, we have

∠ξz1(x, z2),∠ξz2(x, z1) ≤ f0(R).

Proof. Let α = min {∠Tits(ξ, ζ) | ζ ∈ ∂Θ} > 0. Using the triangle inequality for the ∆-lengths, we

get

‖d∆(x, z1)− d∆(x1, z1)‖ ≤ d(x, x1),

for any point x1 ∈ X. Specializing to x1 = x′, the point on z1z2 closest to x, we obtain∥∥d∆(x, z1)− d∆(x′, z1)
∥∥ ≤ 2D.

Then x′z1 is Θ-regular when xz1 has length ≥ 2D/ sinα. Therefore, the constant R0 can be given

by

R0 =
2D

sinα
. (3.3)

This proves first part of the proposition.

For the second part, let (Θn)n∈N be a nested sequence of ι-invariant, Weyl-convex, compact

subsets of ost (τmod) such that ξ is an interior point of each Θn, and
⋂∞
n=1 Θn = {ξ}. Let αn be

the Tits-distance from ξ to the boundary of Θn,

αn = min {∠Tits(ξ, ζ) | ζ ∈ ∂Θn} > 0.

Clearly, (αn)n∈N is a strictly decreasing sequence converging to zero. This implies that R0(Θn)

is strictly increasing which diverges to infinity, where R0 is as in (3.3). If R0(Θn) ≤ d(x, z1) <

R0(Θn+1), then the first part of the proposition implies that z2z1 is Θn-regular, which then implies

∠ξz2(x, z1) ≤ ∠z2(x, z1) + ∠omod
(ξ, d∆(z2, z1))

≤ f(R) + αn,

where the function f is as in Proposition 3.4. Therefore, when R0(Θn) ≤ R < R0(Θn+1), we may

define

f0(R) = f(R) + αn.

As in the case of f in Proposition 3.4, continuity of f0 is irrelevant.

3.2 Small visual angles II

The Θ-cones (over a fixed simplex τ ∈ Flag (τmod)) vary continuously with their tips. Here, the

topology on the set of Θ-cones over a fixed simplex τ is given by their Hausdorff distances. Precisely,

we have,

Theorem 3.6 (Uniform continuity of Θ-cones, [KLPa]). The Hausdorff distance between two Θ-

cones over a fixed τ ∈ Flag (τmod) is bounded by the distance between their tips,

dHaus (V (x, stΘ (τ)), V (x̄, stΘ (τ))) ≤ d(x, x̄).

Moreover, for diamonds, one also has the following form of uniform continuity. This will be

useful in our paper, especially in the discussion of replacements (section 4.3).
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Theorem 3.7 (Uniform continuity of diamonds). Given any Θ′ with int (Θ′) ⊃ Θ, and any δ > 0,

there exists c = c(Θ,Θ′, δ) such that for all Θ-regular segments xy and x′y′ with d(x, x′) ≤ δ,

d(y, y′) ≤ δ, we have

♦Θ (x, y) ⊂ Nc
(
♦Θ′

(
x′, y′

))
.

Proof. We will prove this theorem as a corollary of [KLPb, Theorem 5.16]: For every (Θ, B)-regular

(L,A)-quasigeodesic q : [a−, a+] → X and points x± ∈ X within distance ≤ B from q(a±), the

image of q is contained in the D(L,A,Θ, B)-neighborhood of the diamond ♦τmod
(x−, x+).

Remark. Using the hard theorem [KLPb, Theorem 5.16] in order to prove Theorem 3.7 is an

overkill, but it is quicker than a direct argument. We refer the reader to section 4 for the definition

of (Θ, B)-regular quasigeodesics.

By appealing to the triangle inequalities for ∆-length, one gets a slightly more precise statement,

namely, there exists D(L,A,Θ,Θ′, B) such that the image of q is contained in the D(L,A,Θ,Θ′, B)-

neighborhood of the diamond ♦Θ′ (x−, x+).

We observe that for every point z ∈ ♦Θ (x, y) the broken geodesic segment

xz ? zy

is (L, 0)-quasigeodesic for some L = L(Θ), and is (Θ, 0)-regular. Hence, according to the above

sharpening of [KLPb, Theorem 5.16], the point z belongs to the c = D(L, 0,Θ,Θ′, δ)-neighborhood

of the diamond ♦Θ′ (x
′, y′), provided that

d(x, x′) ≤ δ, d(y, y′) ≤ δ.

Thus,

♦Θ (x, y) ⊂ Nc
(
♦Θ′

(
x′, y′

))
.

Now we turn to the main estimate in this section.

Proposition 3.8 (Uniformly small visual angles). Let Λ1,Λ2 ⊂ Flag (τmod) be compact, antipodal

sets, and let Θ′ be a subset of ost (τmod) containing Θ in its interior. Let y1 ∈ V (x, stΘ (τ1)) and

y2 ∈ V (x, stΘ (τ2)) be any points, where τ1 ∈ Λ1 and τ2 ∈ Λ2 are any simplices. Then,

1. There exists a constant R1 = R1(x,Λ1,Λ2,Θ
′,Θ) such that y1y2 is Θ′-regular if d(x, yi) ≥ R1.

2. There exists a function f1 = f1(x,Λ1,Λ2,Θ
′,Θ, ξ) : [0,∞)→ [0, π] satisfying limR→∞ f1(R) =

0 such that if d(x, yi) ≥ R ≥ R1, then

∠ξy1(x, y2),∠ξy2(x, y1) ≤ f1(R). (3.4)

Proof. For part 1, we take an approach similar to the one given in the proof of Proposition 3.5.

Let x̄ be the nearest point projection of x into the parallel set P (τ1, τ2), and for each i = 1, 2 let ȳi
denote the nearest point projection of yi into V (x̄, stΘ (τi)) ⊂ P (τ1, τ2). Let α = ∠Tits(Θ, ∂Θ′) > 0,

and α′ = ∠Tits(Θ, ∂st (τmod)) ≥ α. Finally, let D = D(Λ1,Λ2, x) be the constant given by Corollary

3.3.

Since d(x, x̄) ≤ D, we combine this with Theorem 3.6 to get

d(yi, ȳi) ≤ D, i = 1, 2.
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Then, using the triangle inequality for ∆-lengths we deduce

‖d∆(y1, y2)− d∆(ȳ1, ȳ2)‖ ≤ ‖d∆(y1, y2)− d∆(ȳ1, y2)‖+ ‖d∆(ȳ1, y2)− d∆(ȳ1, ȳ2)‖
≤ d(y1, ȳ1) + d(y2, ȳ2) ≤ 2D.

Since ȳ1ȳ2 is Θ-regular, y1y2 is Θ′-regular whenever y1y2 has length ≥ 2D/ sinα. Moreover,

d(y1, y2) ≥ d(ȳ1, ȳ2)− 2D ≥ d(ȳi, x̄) sinα′ − 2D ≥ (d(yi, x)− 2D) sinα− 2D

= d(yi, x) sinα− 2D(1 + sinα), (3.5)

where the second inequality comes from triangle comparisons. Using (3.5), we obtain: d(y1, y2) ≥
2D/ sinα whenever d(x, y1) or d(x, y2) is greater than 2D(1/ sin2 α+ 1/ sinα+ 1). We may set

R1 = 2D

(
1 +

1

sinα
+

1

sin2 α

)
.

This proves part 1.

To prove part 2 we need the following lemmas.

Recall that sx : X → X denotes the Cartan involution of X fixing x.

Lemma 3.9. Let τ, τ ′ ∈ Flag (τmod) be a pair of simplices, let x ∈ X be any point, and let

y ∈ V (x, stΘ (sxτ)) be a point satisfying d(x, y) ≥ l. For sufficiently small ε, ε ≤ ε0(ξmod), we have:

If ∠ξx(τ, τ ′) ≤ ε, then

∠ξy(τ, τ
′) ≤ ε′(Θ, l)

with ε′(Θ, l)→ 0 as l→∞.

Proof. This is a restatement of [KLPa, Lemma 2.44(ii)].

In the following, Θ′′ will denote an auxiliary subset of ost (τmod) such that int (Θ′′) ⊃ Θ. Let

α′′ = ∠Tits(Θ, ∂Θ′′).

Lemma 3.10. Let τ ∈ Flag (τmod) be any simplex, and y ∈ V (x, stΘ (τ)) be any point. If z ∈ xξτ
is any point such that d(x, y) sinα′′ ≥ d(x, z), then

y ∈ V (z, stΘ′′ (τ)).

Proof. Let F be a maximal flat asymptotic to τ containing x and y, and let y′ be the nearest point

projection of y into xξτ . Since ξ ∈ τmod, the Tits distance from ξ to any point in Θ is bounded

above by π/2− ε(Θ) where ε(Θ) > 0. Then, the distance from x to y′ is comparable to d(x, y), i.e.

d(x, y) cos(θ) = d(x, y′), θ = ∠x(y, y′) ≤ π/2− ε(Θ).

Notice that 0 < α′′ ≤ θ + α′′ ≤ π/2 − ε(Θ′′). For any point z′ ∈ xy′, y ∈ V (z′, stΘ′′ (τ)) whenever

d(y, y′) ≤ d(z′, y′) tan(θ + α′′).

Let z′ ∈ xy′ be a point which satisfies d(y, y′) = d(z′, y′) tan(θ + α′′). In that case,

d(x, z′) = d(x, y′)− d(z′, y′) = d(x, y) cos θ − d(y, y′) cot(θ + α′′)

= d(x, y) cos θ − d(x, y) sin θ cot(θ + α′′) = d(x, y)
sinα′′

sin(θ + α′′)
≥ d(x, y) sinα′′.

Moreover, if z ∈ xξτ is the point satisfying d(x, z) = d(x, y) sinα′′, then z′ ∈ V (z, stΘ′′ (τ)), and

from convexity of cones, y ∈ V (z, stΘ′′ (τ)).
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Lemma 3.11. There exists a function f ′1(x,Λ1,Λ2,Θ, ξ) : [0,∞) → [0, π] satisfying f ′1(R) → 0

as R → ∞ such that the following holds: For τ1 ∈ Λ1, let y1 ∈ V (x, stΘ (τ1)) be any point. If

d(x, y1) ≥ R, then

max
τ2∈Λ2

∠ξy1(x, τ2) ≤ f ′1(R).

Proof. Using Lemma 3.10, if z1 ∈ xξτ1 is satisfies d(x, z1) = d(x, y1) sinα′′, then y1 ∈ V (z1, stΘ′′ (τ1)).

See Figure 2. Letting d(x, z2)→∞ in Proposition 3.5, we get

∠ξz1(sx(τ1), τ2) = ∠ξz1(x, τ2) ≤ f0(R sinα′′), ∀τ2 ∈ Λ2.

When R is sufficiently large, R ≥ R2(x,Λ1,Λ2, ξ), then f0(R sinα) ≤ ε0(ξmod), where ε0(ξmod) is as

in Lemma 3.9. Moreover, since d(y1, z1) ≥ R(1− sinα′′), Lemma 3.9 implies that

∠ξy1(x, τ2) = ∠ξy1(sx(τ1), τ2) ≤ ε′(Θ′′, R(1− sinα′′)), ∀τ2 ∈ Λ2.

x

z1

y1

τ1

τ2

ε0≥

ε′≥

Figure 2: A schematic picture depicting small angles. The thick lines

are Weyl cones V (x, stΘ (τ1)) and V (x, stΘ (τ2)), while the thin lines

are the geodesic rays z1ξ2 and y1ξ2.

So, we may define

f ′1(R) =

{
ε′(Θ′′, R(1− sinα′′)), if R ≥ R2

π, otherwise
.

Now we are ready to prove the estimate (3.4). We first observe that the only property of the

point x ∈ X we have used to estimate the functions f in Proposition 3.4, R0 and f0 in Proposition

3.5 and subsequently f ′1 in Lemma 3.11 is that

d(x, P (τ1, τ2)) ≤ D, ∀τ1 ∈ Λ1,∀τ2 ∈ Λ2.

All these estimates for x work for any other point x1 satisfying this inequality with the same number

D. Moreover, all these estimates work if we replace Λ1 or Λ2 by their proper subsets. In particular,
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we may replace Λ2 by any of its singleton subsets {τ2}, or replace x by a point y2 ∈ V (x, stΘ (τ2)).

Here we use the fact that for a fixed τ2 and a point y2 in V (x, stΘ (τ2)),

d(y2, P (τ1, τ2)) ≤ d(x, P (τ1, τ2)) ≤ D, ∀τ1 ∈ Λ1.

Therefore, the same estimate f ′1(x,Λ1,Λ2, ξ) works when x and Λ2 (elsewhere) in Lemma 3.11 are

replaced by y2 and {τ2}, respectively. Precisely, whenever y1y2 is a Θ′-regular,

∠ξy1(y2, τ2) ≤ f ′1(d(y1, y2)), (3.6)

where f ′1 = f ′1(x,Λ1,Λ2,Θ
′, ξ). Θ′-regularity of y1y2 is also guaranteed whenever, for i = 1, 2,

d(x, yi) ≥ R1(x,Λ1,Λ2,Θ
′,Θ).

Therefore, if R ≥ R1(x,Λ1,Λ2,Θ
′,Θ) and d(x, y1), d(x, y2) ≥ R, we can use Lemma 3.11, (3.5)

and (3.6) to get

∠ξy1(x, y2) ≤ ∠ξy1(x, τ2) + ∠ξy1(y2, τ2)

≤ f ′1(R) + f ′1(R sinα− 2D(1 + sinα)) ≤ 2f ′1(R sinα− 4D),

where α = ∠Tits(Θ, ∂Θ′).

This completes the proof of part 2.

4 Morse condition

In this section, we discuss Morse quasigeodesics, Morse embeddings and Morse subgroups and their

various properties. These notions were introduced in [KLPa], and it was proved that the notions

of Morse subgroups and Anosov subgroups are equivalent (Theorem 1.4).

One of the important new result in this section is the replacement lemma (see Theorems 4.11

and 4.13) which will be proved in section 4.3. This will be an important ingredient in the proof of

Theorem 5.1.

4.1 Stability of quasigeodesics

Recall that a quasigeodesic in a metric space (Y, dY ) is a coarse-isometric embedding of an interval

I ⊂ R into Y . Quantitively speaking, an (L,A)-quasigeodesic in Y is a map, not necessarily

continuous, γ : I → Y which satisfies

L−1|a− b| −A ≤ dY (γ(a), γ(b)) ≤ L|a− b|+A,

where dY is the metric of Y . When Y is assumed to be a geodesic δ-hyperbolic space, the Morse

lemma, proven for these spaces by Gromov [Gro87, Proposition 7.2.A], establishes stability of

quasigeodesics. Precisely, an (L,A)-quasigeodesic in a δ-hyperbolic space stays within a uniform

neighborhood of a geodesic; the radius H of this neighborhood solely depends on the given param-

eters, namely L,A and δ,

H = L2(A1A+A2δ),

where A1 and A2 are universal constants, see [Shc13]. The stability of quasigeodesics can also be

stated without referring to geodesics: An (L,A)-quasigeodesic path is stable if the image of any

(L′, A′)-quasigeodesic with the same endpoints is uniformly close to the original path. Thus, any
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uniform quasigeodesic in a δ-hyperbolic space is stable. Morse lemma is a vital ingredient to prove

the invariance of hyperbolicity under quasiisometries, see [DK18, Corollary 11.43].

One of the major differences between the coarse geometric nature of CAT(0) (or non-positively

curved) and δ-hyperbolic spaces is that the quasigeodesics in CAT(0) spaces can be unstable, and

thus the most naive generalization of the Morse lemma fails in the CAT(0) settings, already for

the Euclidean plane. Some versions of the Morse lemma are known for CAT(0) spaces; in [Sul14]

it has been shown that a quasigeodesic is stable if and only if it is strongly contracting. However,

this class of quasigeodesics is too restrictive in the context of symmetric spaces.

Nevertheless, according to the main theorem of [KLPb], an analogue of the Morse lemma

holds for τmod-regular quasigeodesics, with diamonds (or, cones, or parallel sets) replacing geodesic

segments (rays, complete geodesics).

The letters B, D appear bellow are non-negative numbers.

Definition 4.1 (Regular quasigeodesics). A pair of points in X is called Θ-regular if the geodesic

segment connecting them is Θ-regular. An (L,A)-quasigeodesic γ : I → X is called (Θ, B)-regular

if for all t1, t2 ∈ I, |t1 − t2| ≥ B implies that (γ(t1), γ(t2)) is Θ-regular.

In [KLPb, Theorem 5.17], it is shown that (finite) regular quasigeodesics are special in the sense

that they live very close to the diamonds. We state this result in the next theorem.

Theorem 4.2 (Morse Lemma for Symmetric Spaces of Higher Rank). Let γ : [a, b] → X be

a (Θ, B)-regular (L,A)-quasigeodesic. There exists a constant D = D(L,A,Θ,Θ′, B,X) > 0 such

that the image of γ is contained in the D-neighborhood of a diamond ♦Θ′(x1, x2) with tips satisfying

d(γ(a), x1) ≤ D, d(γ(b), x2) ≤ D.

Now we review the notion of Morse quasigeodesics.

Definition 4.3 (Morse quasigeodesics, [KLPa]). A (finite, semiinfinite, or biinfinite) (L,A)-quasi-

geodesic γ : I → X is called a (L,A,Θ, D)-Morse quasigeodesic if for all t1, t2 ∈ I, the image

γ([t1, t2]) is D-close to a Θ-diamond ♦Θ(x1, x2) with tips satisfying d(xi, γ(ti)) ≤ D, for i = 1, 2.

Remark.

1. In light of this definition, the Theorem 4.2 is equivalent to saying that the uniformly regular

uniform quasigeodesics are uniformly Morse. Conversely, uniformly Morse quasigeodesics are

also uniformly regular.

2. Note that it is not in general true that for an (L,A,Θ, D)-Morse quasigeodesic γ, the segment

γ(t1)γ(t2) is τmod-regular. However, when t2 − t1 is uniformly large, γ(t1)γ(t2) becomes uni-

formly τmod-regular, and in this case one can say that γ([t1, t2]) lies in a uniform neighborhood

of ♦Θ′ (γ(t1), γ(t2)) for any subset Θ′ ⊂ ost (τmod) containing Θ in its interior (cf. Theorem

3.7).

4.2 Straight sequences

We review some important tools for constructing Morse quasigeodesics.

Let Θ, Θ′ be subsets of Flag (τmod) such that

int
(
Θ′
)
⊃ Θ.
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Definition 4.4 (Straight-spaced sequences, [KLPa]). Let ε ≥ 0 be a number. A (finite, infinite, or

biinfinite) sequence (xn) is called (Θ, ε)-straight if, for each n, the segments xnxn+1 are Θ-regular

and

∠ξxn(xn−1, xn+1) ≥ π − ε.

Moreover, (xn) is called l-spaced if d(xn, xn+1) ≥ l for all n.

Definition 4.5 (Morse sequence). A sequence (xn) is called (Θ, D)-Morse if the piecewise geodesic

path formed by connecting consecutive points by geodesic segments is a (Θ, D)-Morse quasigeodesic.

Theorem 4.6 (Morse lemma for straight spaced sequences, [KLPa]). For Θ,Θ′, D, there exists l, ε

such that any (Θ, ε)-straight l-spaced sequence (xn) in X is D-close to a parallel set P (τ+, τ−) of

type τmod. Moreover, the nearest point projection x̄n of xn on P (τ+, τ−) satisfies

x̄n±m ∈ V (x̄n, stΘ′ (τ±)), ∀m ∈ N.

Furthermore, the sequence (xn) is a uniform Morse sequence with parameters depending only on

the given data Θ,Θ′, D.

4.3 Replacements

Here we define an alternative notion of stability of quasigeodesics, namely that Morse property is

stable under replacements. See Theorem 4.11, and its generalized version Theorem 4.13.

We first develop an important tool which will be needed in the proof of these results.

Definition 4.7 (Longitudinal segments). Let y1, y2 be any points in P (τ−, τ+). The (oriented)

segment y1y2 is called Θ-longitudinal if y2 ∈ V (y1, stΘ (τ+)). Moreover, y1y2 is called (τmod)-

longitudinal if y2 ∈ V (y1, ost (τ+))

Convexity of Θ-cones implies:

Lemma 4.8 (Concatenation of longitudinal segments). Let x1, x2, x3 ∈ P (τ−, τ+) be points such

that x1x2 and x2x3 are Θ-longitudinal. Then x1x2 is also Θ-longitudinal.

Proposition 4.9 (Nearby diamonds). Let γ : [a, b] → X be an (L,A,Θ, D)-Morse qusaigeodesic,

and let δ > 0 be any number. Let P (τ−, τ+) be a parallel set such that the image of γ is contained

in Nδ (P (τ−, τ+)). Denote the nearest point projection of γ(t) into P (τ−, τ+) by γ̄(t). Suppose that

γ̄(a)γ̄(b) is longitudinal. Then, there exist R′ = R′(L,A,Θ,Θ′, D, δ), D′ = D′(L,A,Θ,Θ′, D, δ)

such that the following holds: For any t1, t2 ∈ [a, b], if (t2 − t1) ≥ R′, then γ̄(t1)γ̄(t2) is Θ′-

longitudinal and γ([t1, t2]) ⊂ ND′ (♦Θ′ (γ̄(t1), γ̄(t2))).

Proof. Let Θ′′,Θ′′′ ⊂ τmod be auxiliary subsets such that int (Θ′) ⊃ Θ′′′, int (Θ′′′) ⊃ Θ′′, and

int (Θ′′) ⊃ Θ. Note that when (b− a) is sufficiently large, the triangle inequality for the ∆-lengths

asserts that γ̄(a)γ̄(b) is Θ′′-regular, which in turn makes γ̄(a)γ̄(b) Θ′′-longitudinal. Therefore, it

follows that

γ̄([a, b]) ⊂ Nc+δ (♦Θ′′′ (γ̄(a), γ̄(b))) ⊂ Nc+δ (V (γ̄(a), stΘ′′′ (τ+))) ,

where c = c(Θ′′,Θ′′′, D + δ) is the constant as in Theorem 3.7.

Let t ∈ [a, b] be any point. From above, we get d(γ̄(t), V (γ̄(a), stΘ′′′ (τ+))) ≤ c + δ. Using the

triangle inequality for the ∆-lengths again, we obtain that when t− a ≥ R� L(c+ δ), then

γ̄(t) ∈ V (γ̄(a), stΘ′ (τ+)) ,
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i.e. γ̄(a)γ̄(t) is Θ′-longitudinal. By reversing the direction of γ, we also get that when b − t ≥ R,

then γ̄(t)γ̄(b) is Θ′-longitudinal.

For arbitrary t1, t2 ∈ [a, b], we let t = (t2 − t1)/2. The same argument applied to the paths

γ([a, t]), γ([t, b]) implies that when t − t1 ≥ R, and t2 − t ≥ R, then γ̄(t1)γ̄(t) and γ̄(t)γ̄(t2) are

Θ′-longitudinal segments. Using Lemma 4.8, we get that γ̄(t1)γ̄(t2) is Θ′-longitudinal.

Therefore, γ̄(t1)γ̄(t2) is Θ′-longitudinal whenever t2 − t1 ≥ 2R.

After enlarging Θ′, the second part follows from Theorem 3.7.

We now turn to the discussion of replacements.

Definition 4.10 (Morse quasigeodesic replacements). Let γ : I → X be an (L,A,Θ, D)-Morse

quasigeodesic, and let [t1, t2] be a subinterval of I. Let γ′ : [t1, t2]→ X be another (L′, A′,Θ′, D′)-

Morse quasigeodesic such that γ|{t1,t2} = γ′|{t1,t2}. An (L′, A′,Θ′, D′)-Morse quasigeodesic replace-

ment of γ|[t1,t2] is the concatenation of γ|I−(t1,t2) with γ′|[t1,t2].

Theorem 4.11 (Replacement lemma). Uniform Morse quasigeodesic replacements are uniformly

Morse.

Proof. Suppose that I = [a, b] is some interval. Let γ : I → X be an (L,A,Θ, D)-Morse quasi-

geodesic, and let ρ : I → X be obtained by replacing of γ|[t1,t2] by a (L′, A′,Θ′, D′)-Morse quasi-

geodesic γ′ : [t1, t2] → X. Let Θ′′ be subset of ost (τmod) which contains Θ and Θ′. Replac-

ing the parameters (L,A,Θ, D) and (L′, A′,Θ′, D′) by (L′′, A′′,Θ′′, D′′), where L′′ = max{L,L′},
A′′ = max{A,A′}, D′′ = max{D,D′}, and some Θ′′ ⊃ Θ ∪Θ′, we may assume that (L,A,Θ, D) =

(L′, A′,Θ′, D′) to begin with.

By the definition, there exists a diamond ♦Θ (x1, x2) with d(x1, γ(a)) ≤ D, d(x2, γ(b)) ≤ D such

that γ([a, b]) ⊂ ND (♦Θ (x1, x2)). Without loss of generality, we may assume that x1 6= x2. The

diamond ♦Θ (x1, x2) spans a unique parallel set P (τ−, τ+) such that x2 ∈ V (x1, stΘ(τmod)) τ+. We

denote the nearest point projections of γ(t) and γ′(t) to P (τ−, τ+) by γ̄(t) and γ̄′(t), respectively.

By the triangle inequality for the ∆-lengths we get that when (b − a) is sufficiently large,

(b−a) ≥ C(Θ,Θ′, D), then γ̄(a)γ̄(b) is Θ′-longitudinal4. Using Proposition 4.9, when (t2−t1) ≥ R′,
then γ̄(t1)γ̄(t2) = γ̄′(t1)γ̄′(t2) is also Θ′-longitudinal. From Theorem 3.7 we get a constant D′ such

that γ′([t1, t2]) ⊂ ND′ (P (τ−, τ+)).

We prove that any subpath ρ|[r1,r2] is uniformly close to a diamond. From above, if (r2−r1) ≥ R′,
for r1, r2 ∈ I, then γ̄(r2) ∈ V (γ̄(r1), stΘ′ (τ+)). This also holds for γ′ and r1, r2 ∈ [t1, t2] for a bigger

R′ because γ′([t1, t1]) is D′-close to P (τ−, τ+), and γ̄′(t1)γ̄′(t2) is longitudinal. Also, note that in this

case, possibly after enlarging Θ′, γ|[r1,r2] and γ′|[r1,r2] become uniformly close to ♦Θ′ (γ̄(r1), γ̄(r2))

and ♦Θ′ (γ̄
′(r1), γ̄′(r2)), respectively (Theorem 3.7).

Clearly, when both r1, r2 belong to one of the sets [a, t1], [t1, t2], [t2, b], then ρ([r1, r2]) is uni-

formly close to a diamond. Therefore, the following are only nontrivial cases.

Case 1. r1 ∈ [a, t1] and r2 ∈ [t1, t2].

In this case, if (t1 − r1) ≥ R′ and (r2 − t1) ≥ R′, then from the discussion above we get

γ̄(t1) ∈ V (γ̄(r1), stΘ′ (τ+)), γ̄′(r2) ∈ V (γ̄(t1), stΘ′ (τ+)).

4the nearest point projection might not send γ(a) (resp. γ(b)) to x1 (resp. x2), but sends into a D-neighborhood

of x1 (resp. x2).
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From convexity of cones, it follows that

γ̄′(r2) ∈ V (γ̄(r1), stΘ′ (τ+)).

Since ♦Θ′ (γ̄(r1), γ̄(t1)) and ♦Θ′ (γ̄
′(t1), γ̄′(r2)) are subsets of ♦Θ′ (γ̄(r1), γ̄′(r2)), ρ|[r1,r2] is uniformly

close to ♦Θ′ (γ̄(r1), γ̄′(r2)).

Now we prove the quasiisometric inequality for ρ(r1) and ρ(r2). Since the points γ̄(r1) and

γ̄′(r2) belong to two opposite cones with tip γ̄(t1) = γ̄′(t1),

∠γ̄(t1)

(
γ̄(r1), γ̄′(r2)

)
≥ α′,

where α′ = ∠Tits(Θ
′, ∂st (τmod)). Comparing the geodesic triangle 4 (γ̄(r1), γ̄(t1), γ̄′(r2)) with a

Euclidean one, we get

d
(
γ̄(r1), γ̄′(r2)

)
≥ sinα′

2

(
d (γ̄(r1), γ̄(t1)) + d

(
γ̄′(t1), γ̄′(r2)

))
.

It follows that

d(ρ(r1), ρ(r2)) = d
(
γ(r1), γ′(r2)

)
≥ sinα′

2

(
d (γ(r1), γ(t1)) + d

(
γ′(t1), γ′(r2)

))
− 2D′(1 + sinα′) ≥ sinα′

2L
|r1 − r2| −

(
4D′ +A

)
.

In the last inequality, we are using the quasigeodesic data for the paths γ and γ′.

Case 2. r1 ∈ [t1, t2] and r2 ∈ [t2, b].

This case is settled by reversing the direction of γ in the case 1.

Case 3. r1 ∈ [a, t1] and r2 ∈ [t2, b].

The quasiisometric inequality for ρ(r1) and ρ(r2) is clear, since

d (ρ(r1), ρ(r2)) = d (γ(r1), γ(r2)) ≥ |r1 − r2|
L

−A.

It remains only to show that the image ρ([r1, r2]) is uniformly close to a Θ′-diamond.

We know that γ([r1, r2]) is D-close to a diamond ♦Θ (x1, x2) satisfying d(xi, γ(ri)) ≤ D, and

that γ′([t1, t2]) is D-close to a diamond ♦Θ (y1, y2) satisfying d(yi, γ
′(ti)) ≤ D, for i = 1, 2. Since

γ(ti) = γ′(ti), it follows that the points y1 and y2 are 2D-close to ♦Θ (x1, x2). Let P (τ−, τ+) be the

unique parallel set spanned by ♦Θ (x1, x2) satisfying x2 ∈ V (x1, stΘ(τmod)) τ+. Then,

y1y2 ⊂ N2D (P (τ−, τ+)) .

Let ȳ1, ȳ2 denote the projections of y1, y2, respectively, in P (τ−, τ+). Note that the points y1, y2

are D-close to γ([r1, r2]). Using Proposition 4.9, it follows that when d(y1, y2), or equivalently

(t2 − t1), is sufficiently large, then ȳ1ȳ2 is Θ′-longitudinal. In addition, note that the points ȳ1, ȳ2

are 4D-close to the cones V (x1, stΘ (τ+)), V (x2, stΘ (τ−)), respectively. Using the triangle inequality

for the ∆-lengths it follows that when d(x1, ȳ1) and d(x2, ȳ2), or equivalently (t1−r1) and (r2− t2),

are large enough, then x1ȳ1 and ȳ2x2 are Θ′-longitudinal. Therefore,

ȳ1ȳ2 ⊂ ♦Θ′ (x1, x2) .
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Using Theorem 3.7, there is a constant c which depends only on D,Θ′,Θ′′ such that

♦Θ′′ (y1, y2) ⊂ Nc (♦Θ′ (ȳ1, ȳ2)) ⊂ Nc (♦Θ′ (x1, x2)) .

Therefore, ρ([r1, r2]) is (c+D)-close to ♦Θ′ (x1, x2).

Remark. The replacement lemma is false if we relax the Morse condition. It is not generally

true that a uniform quasigeodesic replacement of an (ordinary) quasigeodesic in a CAT(k) space,

k ≥ 0, is a uniform quasigeodesic. See the example below. However, if k < 0, then the ordinary

quasigeodesics are Morse quasigeodesics, so the replacement lemma for ordinary quasigeodesics

holds.

Example 4.12. Let Y = R2, γ be the x-axis. For r ≥ 0, define γ′r : [−r, r] → R2 as in Figure 3

which is a (4, 0)-quasigeodesic. If φr is the replacement, then φr(2r) = φ(r− kr), for some number

kr > 0 (observe the point (2r, 0)). However, if φ is an (l, a)-quasigeodesic, then d(φr(2r) − φ(r −
kr)) ≥ r/l − a, which is false for large r.

(−r,0) (r,0)(−2r,0) (2r,0)

(−2r,r) (2r,r)

x

y

γ′

Figure 3

We can also replace a Morse quasigeodesic at multiple segments.

Theorem 4.13 (Generalized replacement lemma). Let γ : [a, b] → X be an (L,A,Θ, D)-Morse

quasigeodesic, and let a = t0 ≤ t1 ≤ · · · ≤ tr0−1 ≤ tr0 = b. For r = 1, . . . , r0, let γr : [tr−1, tr]→ X

be an (L′, A′,Θ′, D′)-Morse quasigeodesic with γr|{tr−1,tr} = γ|{tr−1,tr}. Then the concatenation of

γr’s is an (L′′, A′′,Θ′′, D′′)-Morse quasigeodesic where (L′′, A′′,Θ′′, D′′) depends only on (L,A,Θ, D)

and (L′, A′,Θ′, D′).

The proof of this theorem closely follows the proof of the previous one and, we are omitting the

details.

4.4 Morse subgroups

We first review the notion of Morse subgroups of G. See [KLPa, Sections 7.4, 7.5].

For a finitely generated group H with a finite generating set A, we denote by Cay (H,A)

the associated Cayley graph equipped with the word metric. We usually suppress “A” from the

notation, and denote the Cayley graph by Cay (H). A finitely generated group H is called hyperbolic

if Cay (H) is hyperbolic.
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A metric space Y is called (l, a)-quasigeodesic if any pair of points can be connected by an

(l, a)-quasigeodesic. Y is called quasigeodesic, if it is (l, a)-quasigeodesic for some constants l, a.

For a finitely generated subgroup H < G and a chosen base point x ∈ X, there is a natural map

ox : Cay (H) → X induced by the orbit map H → Hx. A subgroup H < G is called undistorted

(in G), if some (any) ox is a quasiisometric embedding. General quasiisometric embeddings of a

quasigeodesic space into a symmetric space tend to be “bad”. However, one obtains a good control

on these embeddings when they are Morse; we review this notion below.

Definition 4.14 (Morse embeddings, [KLPa]). Let X be a symmetric space of noncompact type.

A map f : Y → X from a quasigeodesic space Y is called Θ-Morse embedding if it sends uniform

quasigeodesics in Y to uniform Θ-Morse quasigeodesics in X. Moreover, f is called τmod-Morse

embedding if it is Θ-Morse embedding for some Θ.

Now we state the notion of Morse subgroups.

Definition 4.15 (Morse subgroups, [KLPa]). A finitely generated subgroup Γ of G is called τmod-

Morse if, for an(y) x ∈ X, the map ox : Cay (H) → X of Cay (Γ) into X induced by Γ → Hx is

τmod-Morse.

Note that Morse subgroups are undistorted.

Every τmod-Morse subgroup Γ induces a canonical boundary embedding β : ∂∞Γ→ Flag (τmod),

see [KLPa, KLP17]. The image of β in Flag (τmod) is called the flag limit set of Γ, and will be

denoted by Λτmod
(Γ).

Moreover, τmod-Morse subgroups are uniformly τmod-regular (see [KLP17]) and, hence, the

accumulation set in ∂∞X of any orbit Γx contains only points whose types are elements of Θ, for

some compact Weyl-convex subset Θ ⊂ ost (τmod). The smallest such Θ will be denoted by ΘΓ.

Remark. A finitely generated uniformly τmod-regular and undistorted subgroup Γ < G is called a

τmod-URU subgroup. The equivalence of τmod-Morse and τmod-URU is the main result of [KLPb];

see also [KLP17].

Proposition 4.16. Let Γ be a τmod-Morse subgroup, let Λ′ be any compact set in Flag (τmod)

whose interior contains Λ = Λτmod
(Γ), and let Θ′ be any compact set containing Θ = ΘΓ(x) in its

interior. There exists a number S > 0 such that any γ ∈ Γ satisfying d(x, γx) > S also satisfies

γx ∈ V (x, stΘ′(τ)), for some τ ∈ Λ′.

Proof. We first prove that there exists S′ > 0 such that d(x, γx) > S′ implies that (x, γx) is Θ′-

regular. Suppose that S′ does not exist; then, there is an unbounded sequence (γi)i∈N in Γ such

that (x, γix) is not Θ′-regular for all i. Then, (γix)i∈N subconverge to an ideal point whose type

6∈ int (Θ′). This can not happen because the interior of Θ′ contains Θ.

Next we prove that S exists. Assuming that it does not exist, we get an unbounded sequence

(γ′i)i∈N in Γ such that γ′ix 6∈ V (x, stΘ′(τ)), for all i ∈ N and τ ∈ Λ′. After extraction we may

assume that (x, γ′ix) is Θ′-regular, for all i. But then, (γ′ix)i∈N does not accumulate in any simplex

in the interior of Λ′ i.e. Γ has a limit simplex outside Λ, but this gives a contradiction.

4.5 Residual finiteness

An important feature shared by many finitely generated subgroups of G is the residual finiteness

property which enables us to obtain finite index subgroups which avoid a given finite set of elements.
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Definition 4.17 (Residual finiteness). A group H is called residually finite (RF) if it satisfies one

of the following equivalent conditions: (1) Given a finite subset S ⊂ H \ {1H}, there exists a finite

index subgroup F < H such that F ∩ S = ∅. (2) Given an element h ∈ H \ {1H}, there exits a

finite group Φ and a homomorphism φ : H → Φ such that φ(h) 6= 1Φ. (3) The intersection of finite

index subgroups of H is trivial.

Residual finiteness of Morse subgroups is a corollary to the following celebrated theorem.

Let R be a commutative ring with unity, and let GL(N,R) denote the group (with multiplica-

tion) of non-singular N ×N matrices with entries in R. Then,

Theorem 4.18 (A. I. Mal’cev, [Mal40]). Finitely generated subgroups of GL(N,R) are RF.

As an application to this theorem, one obtains,

Corollary 4.19. Each finitely generated subgroup Γ < G which intersects the center of G trivially

is RF.

Proof. Under our assumptions, the adjoint representation Γ→ GL(g) is faithful.

For a subgroup Γ < G, we define the norm of Γ with respect to x ∈ X as

‖Γ‖x = inf{d(x, γx) | 1Γ 6= γ ∈ Γ}.

Note that when ‖Γ‖x > 0, Γ is discrete. Residual finiteness implies the following useful lemma

which we use to obtain subgroups whose nontrivial elements send x arbitrarily far:

Lemma 4.20. Let Γ be a RF discrete subgroup of G. For any R ∈ R, there exist a finite index

subgroup Γ′ < Γ such that ‖Γ′‖x ≥ R.

Proof. Since Γ is discrete, the set Φ = {γ | d(x, γx) < R} is finite. The assertion follows from the

residual finiteness property.

Combining this lemma with Proposition 4.16, we get the following:

Corollary 4.21. Let Γ < G be a RF τmod-Morse subgroup, let Λ′ be any compact set in Flag (τmod)

whose interior contains Λ = Λτmod
(Γ), and let Θ′ be any compact set containing Θ = ΘΓ in its

interior. There exists S1 > 0 such that for any S ≥ S1 there exists a finite index subgroup Γ′ of

Γ satisfying ‖Γ′‖x > S which also satisfies the following: For any γ′ ∈ Γ′ exists τ ∈ Λ′ for which

γ′x ∈ V (x, stΘ′(τ)).

Now we briefly turn to the discussion of pairwise antipodal subgroups before proving our main

theorem in the next section.

Definition 4.22 (Antipodal Morse subgroups). A pair of τmod-Morse subgroups Γ1,Γ2 < G is

called antipodal if their flag limit sets in Flag (τmod) are antipodal.

Let Γ1, . . . ,Γn be pairwise antipodal, RF τmod-Morse subgroups of G. Let Θ ⊂ ost (τmod) be a

subset which contains the sets ΘΓi , for i = 1, . . . , n, in its interior.
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Proposition 4.23. There exists a collection {Λ′1, . . . ,Λ′n} of pairwise antipodal, compact subsets

of Flag (τmod), and a number S2 > 0 such that for any S ≥ S2 there exists a collection of finite

index subgroups Γ′1, . . . ,Γ
′
n of Γ1, . . . ,Γn, respectively, satisfying ‖Γ′1‖x ≥ S, . . . , ‖Γ′n‖x ≥ S which

also satisfies the following: For each i = 1, . . . , n, and for each γi ∈ Γ′i, there exists τi ∈ Λ′i such

that

γix ∈ V (x, stΘ (τi)).

Proof. Once we show that there exists a collection {Λ′1, . . . ,Λ′n} such that, for each i, the interior

of Λ′i contains the flag limit set Λi of Γi, the first part of the proposition follows from the Corollary

4.21. We may construct Λ′1, . . . ,Λ
′
n as follows:

Lemma 4.24. Let {Λ1, . . . ,Λn} be a collection pairwise antipodal, compact subsets of Flag (τmod).

Then, there exists a collection {Λ′1, . . . ,Λ′n} of pairwise antipodal, compact subsets of Flag (τmod)

such that each Λi is contained in the interior of Λ′i.

Proof. The case n = 2 can be proved as follows. Let Λ1,Λ2 be a pair of antipodal, compact subsets

of Flag (τmod). Then,

Λ1 × Λ2 ⊂
compact

(Flag (τmod)× Flag (τmod))opp ⊂
open

Flag (τmod)× Flag (τmod) .

There is a open neighborhood of Λ1 ×Λ2 in (Flag (τmod)× Flag (τmod))opp of the form U1 ×U2. In

particular, the subsets U1 and U2 are antipodal. Then any pair of compact subsets Λ′1 and Λ′2 of

U1 and U2, respectively, containing Λ1 and Λ2 in their respective interiors, does the job.

We consider now the general case n ≥ 3 and let {Λ1, . . . ,Λn} be a collection of subsets as in

proposition. For Λ1, using the lemma, we find a compact neighborhood Λ′1 of Λ1 which is antipodal

to the compact
n⋃
k=2

Λk.

Then, {Λ′1,Λ2, . . . ,Λn} is new collection pairwise antipodal, compact subsets of Flag (τmod). The

same argument yields a compact neighborhood Λ′2 of Λ2 antipodal to Λ′1,Λ3, ...,Λk. We continue

inductively.

This completes the proof of the proposition.

5 A combination theorem

In this section, we prove our main result.

Theorem 5.1 (Combination theorem). Let Γ1, . . . ,Γn be pairwise antipodal, RF τmod-Morse sub-

groups of G. Then, there exist finite index subgroups Γ′i < Γi, for i = 1, . . . , n, such that 〈Γ′1, . . . ,Γ′n〉
is τmod-Morse, and is naturally isomorphic to Γ′1 ∗ · · · ∗ Γ′n

Proof. We first fix our notations. We denote the τmod-flag limit sets of Γ1, . . . ,Γn by Λ1, . . . ,Λn,

respectively. Let Θ ⊂ ost (τmod), let {Λ′1, . . . ,Λ′n} be a collection of compact, pairwise antipodal

subsets in Flag (τmod), and let S2 > 0 be as in Proposition 4.23. As always, the point x will be

treated as a fixed base point in X. Finally, Θ ⊂ Θ′ ⊂ Θ′′ are ι-invariant, Weyl-convex, compact

subsets of ost (τmod) such that

int
(
Θ′′
)
⊃ Θ′, int

(
Θ′
)
⊃ Θ.
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By Proposition 4.23, for each S > S2 there exist finite index subgroups Γ′1, . . . ,Γ
′
n of Γ1, . . . ,Γn,

respectively, of norms ‖Γ′i‖x ≥ S, such that for each i = 1, . . . , n, and each γi ∈ Γ′i,

γix ∈ V (x, stΘ (τi)), (5.1)

for some τi ∈ Λ′i. Let Ai be a finite generating set of Γ′i, for each i = 1, . . . , n. This choice endows

each Γ′i with a word metric, and thus yields a Θ-Morse embedding oix : Cay (Γ′i, Ai) → X induced

by the orbit map Γ′i → Γ′ix. We take the standard generating set A = A1 ∪ · · · ∪An of the abstract

free product Γ′ = Γ′1∗· · ·∗Γ′n. We obtain a natural homomorphism ϕ : Γ′ → G. When S sufficiently

large we prove that ox : Cay (Γ′, A)→ X is a Θ′-Morse embedding, i.e. we prove that the geodesics

of Cay (Γ′, A) are mapped to uniform Morse quasigeodesics in X. This not only will prove that

ϕ is injective, but also will show that the subgroup 〈Γ′1, . . . ,Γ′n〉 of G generated by Γ′1, . . . ,Γ
′
n is

τmod-Morse.

Claim. There exists S0 > 0 such that if S ≥ S0, then the map ox : Cay (Γ′, A)→ X sends (finite)

geodesics to uniform Morse quasigeodesics.

Proof. Given any γ ∈ Γ′, there is a natural embedding of Cay (Γ′i) into Cay (Γ′) given by the right

multiplication map γi 7→ γiγ. Any geodesic in Cay (Γ′) is a concatenation of paths which are images

of the geodesics under the maps above. By equivariance, it suffices to study the geodesics in Γ′

starting at 1Γ′ . Any geodesic ψ with starting point 1Γ′ in Cay (Γ′) can be written as

ψ : 1Γ′ , γk1 , γk2γk1 , . . . , (5.2)

where the path joining γkrγkr−1 . . . γk1 and γkr−1 . . . γk1 in Cay (Γ′) is the image of a geodesic

segment in Cay (Γ′i) connecting the identity to γkr under the map (·) 7→ (·)(γkr−1 . . . γk1), assuming

that γkr ∈ Γ′i. We group together γkr ’s in above to avoid two consecutive ones coming from same

Γi’s.

The (finite) sequence (5.2) is mapped to x, γk1x, γk2γk1x, . . . under the map ox; to avoid

cumbersome notations, we denote γkrγkr−1 . . . γk1 by gr, denote γkrγkr−1 . . . γk1x by pr and assume

that the index r of this sequence varies between 0 and r0. Using these notations, we have

gr = γkrgr−1, grx = pr. (5.3)

Let m1 = p0, mr0 = pr0 , and, for 2 ≤ r ≤ r0 − 1, let mr denote the midpoint of pr−1 and pr (see

Figure 4).

It follows from (5.1) that all the segments pr−1pr in X are Θ-regular and have length at least S.

Moreover, it follows from (5.3) that, for any 1 ≤ r ≤ r0 − 1, precomposing the right multiplication

action g−1
r y Γ with ox maps the hinge pr−1prpr+1 to (γ−1

kr
x)(x)(γkr+1x) which is of the form

(γix)(x)(γjx), for some γi ∈ Γ′i, γj ∈ Γ′j , i 6= j. From (5.1), we get that γix ∈ V (x, stΘ (τi)) and

γjx ∈ V (x, stΘ (τj)), for some τi ∈ Λ′i and τj ∈ Λ′j . To simplify our notation, the corresponding

images of mr and mr+1 are denoted by m′i and m′j , respectively.

Let D = max{D(Λ′i,Λ
′
j , x) | 1 ≤ i < j ≤ n}, where D(Λ′i,Λ

′
j , x) is the constant given by

Corollary 3.3. Moreover, let R1(x,Λ′i,Λ
′
j ,Θ

′,Θ) and f1(x,Λ′i,Λ
′
j ,Θ

′,Θ, ξ) be the quantities as in

Proposition 3.8. Define

R1 = max
i,j, i 6=j

{
R1(x,Λ′i,Λ

′
j ,Θ

′,Θ)
}
,

and

f1 = max
i,j, i 6=j

{
f1(x,Λ′i,Λ

′
j ,Θ

′,Θ, ξ)
}
.
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Figure 4: Morse embedding of quasigeodesics. The hollow points

represent the midpoint sequence (mi).

Note that d(x,m′i), d(x,m′j) ≥ S/2. Using part 1 of Proposition 3.8, when S/2 ≥ R1, then m′im
′
j is

Θ′-regular. Using part 2 of the same proposition we get

∠ξ
m′i

(x,m′j),∠
ξ
mj

(x,m′i) ≤ f1(S/2).

Moreover, using and (3.5), we obtain

d(m′i,m
′
j) ≥ (S sinα)/2− 4D,

where α = ∠Tits(Θ, ∂Θ′). Therefore, when S ≥ 2R1, the sequence (mr) is (Θ′, 2f1(S/2))-straight

and ((S sinα)/2− 4D)-spaced.

For any δ′ > 0, Theorem 4.6 applied to Θ′, Θ′′ and δ′ concludes that there exists S0 � R1

such that when S ≥ S0, then the sequence (mr) is δ′-close to a parallel set P (τ−, τ+) such that the

nearest point projection map sends mrmr+1 to a Θ′′-longitudinal segment. This proves that the

piecewise geodesic path p0p1 . . . pr0 is a uniform Morse quasigeodesic for sufficiently small δ′.

Finally, we prove that ox ◦ ψ is uniformly Morse. By invoking the Morse property of Γ′i’s, we

get that each segment of ox ◦ ψ connecting a consecutive pair pr and pr+1 is a uniform Morse

quasigeodesic. Therefore, ox ◦ ψ is obtained by replacing the geodesic segments prpr+1 of the path

p0p1 . . . pr0 by uniform Morse quasigeodesics. From the generalized replacement lemma (Theorem

4.13), it follows that ox ◦ ψ is also a uniform Morse quasigeodesic.

This completes the proof of the theorem.

Remark. The RF condition in the above theorem can be relaxed by integrating the content of

Corollary 4.19 into the hypothesis. Precisely, instead of requiring Γi’s to be RF one may require

that Γi’s intersect the center of G trivially. When G ∼= Isom0 (X), this happens automatically,

because Isom0 (X) is centerless.

Below is a more general form of Theorem 5.1 which does not involve passing to finite index

subgroups, but instead requires “sufficient antipodality and sparseness” of the subgroups Γi. Let

(Flag (τmod)× ...× Flag (τmod)︸ ︷︷ ︸
n times

)opp

25



denote the subset of (Flag (τmod))n consisting of n tuples of pairwise antipodal flags. For a subset

A ⊂ (Flag (τmod)× ...× Flag (τmod)︸ ︷︷ ︸
n times

)opp

and for x ∈ X define the subset OA,x ⊂ Xn consisting of n-tuples (x1, ..., xn) such that for some

(τ1, ..., τn) ∈ A, we have xi ∈ V (x, st (τi)), i = 1, ..., n.

Theorem 5.2. For each compact

A ⊂ (Flag (τmod)× ...× Flag (τmod)︸ ︷︷ ︸
n times

)opp,

and Θ ⊂ ost (τmod), there exists a constant S = S(A,Θ, x) such that the following holds. Let

Γ1, ...,Γn be P -Anosov subgroups of G such that:

a. ‖Γi‖x ≥ S, i = 1, ..., n.

b. For each γi ∈ Γi, i = 1, ..., n, the segment xγi(x) is Θ-regular.

c. For each n-tuple of nontrivial elements γi ∈ Γi − {1}, i = 1, ..., n, we have

(γ1(x), ..., γn(x)) ∈ OA,x.

Then the subgroup of G generated by Γ1, ...,Γn is P -Anosov, and is naturally isomorphic to the

free product Γ1 ∗ ... ∗ Γn.

Proof. The proof is very similar to the one of Theorem 5.1. The conclusion of Proposition 4.23

now becomes a hypothesis on the subgroups Γi, so no passage to finite index subgroups is required.

Hence, the rest of the proof of Theorem 5.1 goes through.

Remark. We should note that this theorem is in the spirit of the “quantitative ping-pong lemma”

of Breuillard and Gelander, see [BG08, Lemma 2.3].

As a last remark, we note that the traditional Klein-Maskit combination theorems are stated

not in terms of group actions on symmetric spaces but in terms of their actions on the sphere at

infinity; they also do not involve passing to finite index subgroups. The following is a reasonable

combination conjecture in the setting of Anosov subgroups:

Conjecture 5.3. Let A1, ..., An ⊂ Flag (τmod) be nonempty compact subsets such that any two

distinct elements of

A :=
n⋃
i=1

Ai

are antipodal. Suppose that Γ1, ...,Γn are Pτmod
-Anosov subgroups of G such that for all i = 1, ..., n

and all γ ∈ Γi − {1} we have

γ(A−Ai) ⊂ int (Ai) .

Then the subgroup Γ of G generated by Γ1, ...,Γn is Pτmod
-Anosov.

Note that under the above assumptions, Γ is naturally isomorphic to the free product Γ1∗...∗Γn,

see e.g. [Tit72].

26



References

[BC08] M. Baker and D. Cooper, A combination theorem for convex hyperbolic manifolds, with

applications to surfaces in 3-manifolds, J. Topol. 1 (2008), no. 3, 603–642.

[Ben97] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997),
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