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- EEG/MEG record a mixture of all activities in the brain. Therefore, A~ il SIS b o oeitiems
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kind of source separation method. . Goal: extraction of oscillations and activations

SQ Sl S3
\ / \/ patternsatf and f L
- Oscillatory neural populations Block-diagram of NID

Sy + S, S, + Ss Nonlinear Interaction Decomposition (NID)

frequency f

Different types of nonlinear interactions

N interact within one frequency
among brain oscillations. ]
band (Engel and Fries, 2010),
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- Linear mixture of two independent narrow-band * NID activation pattern: P 7, = A Ay ; !

oscillations (S,,S,) has Gaussian distributed. - NID source signals: S%’}D — WX%X{EZ& Nifgf;ﬁagtiees

- We propose a novel method
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Fast - SSD is a method for extraction of oscillations at components + their

\/\/\/\/\/\/ oscillation SR a specific frequency band (Nikulin et al, 2011). It spatial mixing pattern
finds the spatial filters maximizing the SNR at a

defined frequency band.

Results

Simulated Data Resting-state EEG

- Alpha-beta interaction of resting-state EEG data of 82 subjects fromLEMON dataset (Babayan et

. . . . al, 2018).
St data with2 pairs of oscillat h . 2/'3;” lp"ft‘ E”"rPOL‘;m:CX'Eg pattern ZX"aCtI'Og fors'm“_'ate? data. - Many diverse interactions are extracted by NID. A particularly interesting coupling is between
e SiIMulate dla Wi palrs or oSscCiliations wi ubplot: mean of the extracted coupled source signals. alpha activity of occipital area and beta activity of motor area.

phase-phase coupling at frequency f. = nf, and f,, = mJ;

(denoted by n:m coupling). [T T ]
5 - A bipartite graph (panel A) illustrating the alpha-beta interactions between ROIls of Harvard-Oxford atlas (panel B),
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. . . . & ol - A connection between node r1 of the upper and node r2 of the lower part indicates that alpha oscillations in ROI r1
recovered and original activation patterns. 2 0. . . e
QL g interact with beta-oscillations in ROl r2.
. . . - B T 3 0 - The edge weighs are proportional to the number of active voxels (across subjects) in the two ROls. Color-codes in panel C.
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Extension of NID for extraction of I S
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NID for extraction of triplets of coupled oscillations at 10Hz, 20Hz, and 30Hz. A: Error of
mixing pattern extraction for simulated data. B: mean PLV of the extracted coupled source

signals. - The augmented matrix is built from
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