T806

Power-Law Dynamics in Cortical Excitability as Probed by Early Somatosensory Evoked Potentials

T. Stephani^{1,2}, G. Waterstraat³, S. Haufe⁴, G. Curio^{3,5}, A. Villringer^{1,6}, V. V. Nikulin^{1,7}

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany | ²International Max Planck Research School NeuroCom, Leipzig, Germany | ³Neurophysics Group, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany | ⁴Machine Learning Group, Dept. for Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany | ⁵Bernstein Center for Computational Neuroscience, Berlin, Germany | ⁶MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt University Berlin, Berlin, Germany | ⁷Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation

contact: stephani@cbs.mpg.de

Introduction

- ➤ Brain processes in response to identical sensory stimuli vary from moment to moment → fluctuations in cortical excitability (e.g. VanRullen, 2016; lemi et al., 2017)
- > Neuronal systems operate at a critical state
 - Optimal trade-off between robustness to perturbations and flexibility to adapt to changes (Munoz, 2018; Shew & Plenz, 2013)
 - Characteristic signature of a system being at a critical state: spatio-temporal dependencies measured as "power-law dynamics"
- "Probe" of cortical excitability: N20 component of the somatosensory evoked potential (SEP)
 - First afferent volley from thalamus to cortex (Allison et al., 1991)
 - Reflects excitatory post-synaptic potentials (EPSP)
 (Wikström et al., 1996; Bruyns-Haylett et al., 2017)
- > Hypothesis: Cortical excitability demonstrates longrange temporal dependencies (power-law dynamics).

Methods

- > 31 healthy subjects (male; 21-45 years)
- ➤ Electrical stimulation of the median nerve at the left wrist (1000 stimuli; ISI: 713±50 ms; intensity: 1.2 x motor threshold)
- ➤ EEG recording (60 channels) + compound nerve action potential (CNAP) of median nerve (on inner side of upper arm)
- ➤ Detrended Fluctuation Analysis (DFA) for evaluation of power-law dynamics:

 $\langle F(\tau) \rangle \propto \tau^{\alpha}$

The DFA exponent α indicates the degree of temporal dependencies within a time series (fluctuation F is measured in window sizes τ from 7 to 70 trials, i.e. ~5 to ~50 sec).

EEG analysis

- Interpolation of stimulus artifact, average reference, artifact removal by visual inspection and ICA, band-pass filter 30-200 Hz
- Single-trial SEPs were extracted using Canonical Correlation Analysis (CCA) and components with a tangential spatial pattern were identified
- Source reconstruction was performed with eLoreta (Pascual-Marqui, 2007) based on individual head models

the data: CCA components; e.g.:

Results

Derivation of power-law dynamics from single-trial SEPs of an exemplary subject (tangential CCA component)

DFA exponent time courses were calculated individually for every subject before being averaged across subjects

—— at 25 ms

Grand average of power-law dynamics (tangential CCA components)

Power-law dynamics are present in the early SEP, starting around the peak of the N20 component

Average spatial pattern

of the thalamus-related

CCA component

Strongest generators of the SEP (tangential CCA component) in Brodmann area 3b, hand region

3 Control measures

log(window size τ)

No power-law dynamics in peripheral nerve activity

No power-law dynamics in thalamic activity (P15 component of the SEP)

4

Influence of signal-to-noise ratio (SNR)

r (SNR ~ power-law dynamics) = .55;
 p < .05; average SNR = 1.64

Simulations:
 Time series expressing power-law dynamics were mixed with white noise (DFA exponent of 0.5) and varying SNR

→ Given an SNR of 1.64, a true exponent of ~0.63 can be expected when observing an empirical exponent of ~0.575

Conclusions

- > Long-range temporal dependencies in fluctuations of cortical excitability
 - Power-law dynamics are present in early somatosensory evoked potentials starting with the N20 peak which reflects EPSPs
 - Power-law dynamics likely of cortical origin
 - Starting with first cortical excitation (N20)
 - White noise in subcortical and peripheral signals
 - Presumably, underestimation of true exponents due to SNR
- ➤ Results are consistent with the hypothesis that instantaneous neuronal excitability is poised at a critical state → criticality hypothesis

References

Allison, T., McCarthy, G., Wood, C. C., & Jones, S. J. (1991). Potentials Evoked in Human and Monkey Cerebral Cortex by Stimulation of the Median Nerve. *Brain, 114(6)*, 2465–2503. https://doi.org/10.1093/brain/114.6.2465

Bruyns-Haylett, M., Luo, J., Kennerley, A. J., Harris, S., Boorman, L., Milne, E., . . . Zheng, Y. (2017). The neurogenesis of P1 and N1: A concurrent EEG/LFP study. *Neurolmage*, 146, 575–588. https://doi.org/10.1016/j.neuroimage.2016.09.034

588. https://doi.org/10.1016/j.neuroimage.2016.09.034
lemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous Neural Oscillations Bias Perception by Modulating Baseline Excitability. *The Journal of Neuroscience, 37(4),* 807–819. https://doi.org/10.1523/JNEUROSCI.1432-16.2017

Muñoz, M. A. (2018). Colloquium: Criticality and dynamical scaling in living systems. Reviews of Modern Physics, 90(3), 551. https://doi.org/10.1103/RevModPhys.90.031001

Open questions & project prospects

- > Do power-law dynamics of cortical excitability reflect local or global fluctuations?
- > Relation to ongoing activity (e.g. alpha oscillations)?
- Functional implications: Do fluctuations in initial cortical excitability influence stimulus perception (e.g. in somatosensory discrimination tasks)?
- > What network parameters underlie long-range temporal dependencies in the primary somatosensory cortex and are they generalizable to other modalities?

Pascual-Marqui, R. D. (2007). Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. Retrieved from http://arxiv.org/pdf/0710.3341v2

Shew, W. L., & Plenz, D. (2013). The functional benefits of criticality in the cortex. The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry, 19(1), 88–100. https://doi.org/10.1177/1073858412445487

https://doi.org/10.1177/1073858412445487
VanRullen, R. (2016). Perceptual Cycles. *Trends in Cognitive Sciences, 20(10),* 723–735. https://doi.org/10.1016/j.tics.2016.07.006

Wikström, H., Huttunen, J., Korvenoja, A., Virtanen, J., Salonen, O., Aronen, H., & Ilmoniemi, R. J. (1996). Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): A hypothesis concerning SEF generation at the primary sensorimotor cortex. *Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 100(6),* 479–487. https://doi.org/10.1016/S0168-5597(96)95688-9