日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

ポスター

Reverse engineering of a 7T 16-channel dual-row transmit array coil

MPS-Authors
/persons/resource/persons19793

Kozlov,  Mikhail       
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19864

Möller,  Harald E.
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Kozlov, M., Weiskopf, N., Möller, H. E., & Shajan, G. (2018). Reverse engineering of a 7T 16-channel dual-row transmit array coil. Poster presented at Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France.


引用: https://hdl.handle.net/21.11116/0000-0004-C422-8
要旨
We developed a reverse engineering numerical workflow that yielded a good match between measured and simulated scattering parameters of an inductively decoupled non-overlapped dual-row transmit array for MRI at 7T. We evaluated and compared the performance of different tuning conditions resulted in similar scattering parameters. For the circular polarization mode under-coupled, over-coupled, or mixed tuning conditions resulted in up to 65% variation of different coil losses but small variation of transmit efficiency. For comparisons of array transmit performance, consideration of array-internal losses as well as reflected and radiated power is very important, because their sum can be as high as 71% of the total transmit power.