
High angular resolution gravitational
wave astronomy

Proposing team: John Baker2, Tessa Baker3, Carmelita Carbone4, Giuseppe Congedo5, Carlo
Contaldi6, Irina Dvorkin1,∗, Jonathan Gair1, Zoltan Haiman7, David F. Mota8, Arianna Renzini6,
Ernst-Jan Buis9, Giulia Cusin10, Jose Maria Ezquiaga11, Guido Mueller12, Mauro Pieroni13, John
Quenby6, Angelo Ricciardone14, Ippocratis D. Saltas15, Lijing Shao16, Nicola Tamanini1, Gianmassimo
Tasinato17, Miguel Zumalacárregui18

∗ Contact Scientist, email: irina.dvorkin@aei.mpg.de

1 Albert-Einstein-Institute, Potsdam, Germany
2 Goddard Space Flight Centre, US
3 Queen Mary University of London, UK
4 INAF - Institute of Space Astrophysics and Cosmic Physics, Milano, Italy
5 Institute for Astronomy, University of Edinburgh, UK
6 Imperial College London, UK
7 Columbia University, US
8 University of Oslo, Norway
9 TNO, Delft, the Netherlands
10 University of Oxford, UK
11 Universidad Autónoma de Madrid, Spain
12 University of Florida, US
13 IFT, Universidad Autónoma de Madrid, Spain
14 INFN, Sezione di Padova, Italy
15 CEICO, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
16 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
17 Swansea University, Swansea, UK
18 University of California at Berkeley, US

A submission to the ESA Voyage 2050 call for White Papers.

ar
X

iv
:1

90
8.

11
41

0v
1 

 [
as

tr
o-

ph
.H

E
] 

 2
9 

A
ug

 2
01

9



Abstract

Since the very beginning of astronomy the location of objects on the sky has been a fundamental
observational quantity that has been taken for granted. While precise two dimensional positional
information is easy to obtain for observations in the electromagnetic spectrum, the positional accuracy
of current and near future gravitational wave detectors is limited to between tens and hundreds of
square degrees. This lack of precision makes it extremely challenging to identify the host galaxies
of gravitational wave events or to confidently detect any electromagnetic counterparts that may be
associated with them. Gravitational wave observations provide information on source properties and
distances that is complementary to the information in any associated electromagnetic emission and
that is very hard to obtain in any other way. Observing systems with multiple messengers thus
has scientific potential much greater than the sum of its parts. A gravitational wave detector with
higher angular resolution, i.e., better capability to determine the astrometric position of an object on
the sky, would significantly increase the prospects for finding the hosts of gravitational wave sources
and triggering a multi-messenger follow-up campaign. The angular resolution of gravitational wave
detector networks is not fundamentally limited at the degree level. An observatory with arcminute
precision or better could be realised within the Voyage 2050 programme by creating a large baseline
interferometer array in space. A gravitational wave observatory with arcminute angular resolution
would have transformative scientific potential. Precise positional information for standard sirens
would enable precision measurements of cosmological parameters and offer new insights on structure
formation; a high angular resolution gravitational wave observatory would allow the detection of a
stochastic background and resolution of the anisotropies within it; it would also allow the study of
accretion processes around black holes and could shed light on the origin of the diffuse neutrino
background; and it would have tremendous potential for tests of modified gravity and the discovery
of physics beyond the Standard Model.
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1 Introduction

Over the past few years, the first detections of gravitational waves (GWs) by the ground-based LIGO
and Virgo interferometers have had a profound impact on our physical understanding of the Universe.
These observations have shed light on the population of compact objects in the Universe and their
formation mechanisms [3], provided some of the most stringent tests to date of the Theory of General
Relativity [9, 10] and enabled the first measurement of a cosmological parameter, the Hubble constant,
using GW sources [2]. The impact of GW observations will be further extended by third generation
ground based detectors [114] and the space-based interferometer LISA [14]. One fundamental limi-
tation of all of these current and planned detectors is their resolution. GW detectors do not make
images and so this is not resolution in the usual astronomical sense, but rather means astrometric
precision, i.e., the ability of networks of GW detectors to determine the direction from which the
gravitational waves are arriving at the detector. The direction to the first GW sources observed by
the LIGO interferometers was only determined to O(100)s of square degrees, improving to O(10)s
of square degrees when Virgo joined the network in 2017 [7]. The anticipated capability of LISA to
determine sky location is comparable, being of the order of ten square degrees on average, and one
square degree in the best cases [14].

High accuracy positional information is relatively easy to obtain for most conventional electro-
magnetic telescopes and has therefore been a cornerstone of astronomy for centuries. GW observations
now and in the near future will not provide accurate positions, but instead give a wealth of alternative
information about the intrinsic properties of the sources, such as their masses, rotation rates and
distances, that are very hard to obtain electromagnetically. If the GW astrometric positions can be
improved, it greatly increases the chance that the GW source can be localised to an individual galaxy
or cluster, and that any counterpart emission in the electromagnetic spectrum will be found. This
would provide an unprecedented opportunity to understand the relationships between compact ob-
ject binaries and their hosts, understand the formation channels for these systems and their physical
environments and constrain the physical laws driving the emission in the GW and electromagnetic
spectra. The observation of the binary neutron star GW170817 by the LIGO/Virgo interferometers [6]
has already illustrated the tremendous potential of multi-messenger astronomy. The proximity of that
source to the Earth (∼ 40Mpc) allowed the host galaxy to be determined through the identification
of an optical counterpart, which triggered an unprecedented observational campaign with ground and
space based facilities [8]. This allowed vastly more to be learnt about the physics of the source than
would have been possible using electromagnetic or gravitational wave observations alone.

Astrometric precision can be improved by increasing the baseline in an array of detectors. For
ground-based detectors, the size of the network is fundamentally limited by the radius of the Earth,
but in space separations that are up to ∼AU can be realised. Improvements in angular resolution
also come from targeting higher frequencies and improving the sensitivity of the instrument. Ways
to increase resolution are discussed in more detail in Section 2, but an L-class instrument launched
by ESA in the Voyage 2050 programme, operating in the millihertz or decihertz GW frequency band
and operating in conjunction with a similar instrument, perhaps provided by an international partner,
could achieve astrometric precisions at the arcminute level.

Arcminute precision GW astronomy has massive scientific potential. Identifying the unique host
galaxy, or a small number of potential host galaxies to a GW source allows the GW distance infor-
mation to be combined with electromagnetic redshift information to derive statistical constraints on
cosmological parameters and reconstruction of the weak lensing potential (see Section 3.1). Improved
astrometric precision also aids better characterisation and subtraction of individual GW sources from
the instrumental data, making it more plausible to detect a stochastic gravitational wave background.
Missions that are better able to measure astrometric positions will also be better able to constrain
anisotropies in any detected background (see Section 3.2). High angular resolution could enable the
identification of the hosts of massive black hole (MBH) mergers weeks or even months before the
merger, allowing detailed studies of accretion processes in those systems. Additionally, it will allow
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detailed studies of the hosts of MBH mergers that will shed light on the co-evolution of MBHs with
the galaxies in which they reside, and will facilitate searches for neutrinos emitted in these systems.
This will be discussed in more detail in Section 3.3. Finally, the identification of host galaxies or
electromagnetic counterparts to GW sources enable stringent tests of fundamental physics, such as
the propagation speed, polarisation state and dispersion of GWs. This is discussed in more detail in
Section 3.4.

2 Achieving high angular resolution

Gravitational wave detectors do not directly image gravitational wave point sources, but positional
information comes from astrometry. The astrometric precision achievable can be intuitively estimated
by scaling the Rayleigh criterion by signal-to-noise ratio (SNR). Thereby ∆θ∼ λ/(Dρ), where λ is the
GW wavelength, ρ is the signal-to-noise ratio (SNR) and D is the effective size of the aperture. For
a given λ we can improve the resolution by increasing ρ and/or D. For a single space based detector
like LISA the aperture D is synthesised by the motion of the detector around the Sun and can be as
large as ∼AU for sources that are long-lived. For sources that are short-lived, for example massive
black hole mergers where the majority of the SNR is accumulated in the final week before merger, the
effective aperture is much smaller.

A large aperture can be synthesised even for short-lived sources by having more than one detector
operating simultaneously with a separation of a significant fraction of an AU, for example with one
detector leading the Earth and one trailing the Earth in its orbit. While we might expect some
economies of scale, it is likely that two LISA-like detectors would not be affordable within the L-class
ESA mission budget. However, several international partners have advanced plans or the expertise to
launch a space-based interferometer on the Voyage 2050 timescale, including China [95], Japan [122]
and the US. High angular resolution could therefore be achieved by an ESA launch of a single space-
based interferometer to coincide with data taking of these other instruments. Such a mission would
be L-class, but not smaller.

Improved angular resolution also comes from increased SNR and from shorter wavelengths.
Therefore, detectors with improved sensitivity operating at higher frequency would also provide in-
creases in resolution. In LISA Pathfinder the acceleration noise at these frequencies was dominated
mostly by gas pressure which was orders of magnitude higher than the pressure that is routinely
achieved in UHV chambers. Other limiting noise sources can be reduced by using larger gaps, better
– maybe even active – gravitational balancing, µN thrusters with a faster response time to reduce
residual spacecraft motion, and maybe an optical readout system which monitors all degrees of free-
dom of relative spacecraft to test mass motion to improve better calibration and subtraction of these
forces and torques. Based on the performance of LISA Pathfinder and the projected performance of
LISA, these improvements should allow the acceleration noise to be reduced significantly at higher
frequencies. Operating at frequencies around 1 decihertz requires a constellation with smaller inter-
spacecraft separations, which for the same optical parameters, would allow to reach LISA’s shot noise
limit in terms of strain sensitivity at higher frequencies. Further shot noise reductions require higher
laser power (∝

√
P ) and larger telescope diameters (∝D2 ). Beyond this, significant improvements in

phasemeter technology and the timing and ranging system as well as ways to minimize, for example,
tilt to length coupling will be required to reach shot noise limited performance at this new level.

Such a detector concept, ALIA, was considered in [42], along with several other ideas for constel-
lations of gravitational wave interferometers. The ALIA concept assumes acceleration noise a factor
of 10 lower than the LISA requirement, and positional noise a factor of 100 better. Such improve-
ments would require research and development but are certainly achievable within the Voyage 2050
timeframe. A network of two detectors with the sensitivity of ALIA would typically localise sources to
arcminute precision, which is two orders of magnitude better than LISA. We note that one ALIA-like
instrument already has exciting scientific potential, particularly working in conjunction with future
ground-based interferometers. This science is described in a separate submission to the Voyage 2050
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call, “The missing link in gravitational-wave astronomy: Discoveries waiting in the decihertz range”,
and is not discussed here. We focus on what is achievable with high angular resolution. A network
of one space-based and one ground-based interferometer will also provide an ∼AU baseline for events
that can be observed simultaneously with high SNR, such as the mergers of binaries of intermediate
(∼ 100–1000M�) mass black holes. Sources that are observed at different times from the ground and
in space will typically be slowly evolving in the space-based detector band and therefore already have a
large synthesised aperture before the observation by the ground-based detector. For such systems the
gain in resolution is primarily driven by increased signal-to-noise and is limited by the precision with
which the arrival time at the second detector can be predicted by the observation with the first.

In this proposal we discuss what could be achieved with arcminute angular resolution and do
not make detailed reference to a mission concept. The preceding discussion illustrates that such a
resolution is in principle achievable for an L-class mission on the Voyage 2050 timescale, although it
would almost certainly rely on collaboration with an international partner. Angular resolution as small
as arcseconds could be achieved by multi-interferometer concepts such as the Big Bang Observer [42].
Such a mission is most likely unfeasible for ESA alone on the Voyage 2050 timescale, but some results
for that resolution will also be given for illustration.

3 Science with high angular resolution gravitational wave
observations

3.1 Statistical cosmology

Cosmology is currently facing two unresolved “tensions”. The first concerns the H0 parameter that
has been measured to a precision of a few percent. The best constraints we now have are discrepant
at the level of 4.4σ: CMB angular diameter distance measurements at z ∼ 1,100 [13], and SNIa
surveys via luminosity distance measurements at z < 1 [117]. More recent results have been obtained
by calibrating distances using the Tip of the Red Giant Branch [68] instead of the Cepheids, which
leads to a measured H0 midway between the values from CMB and SNIa. Contrarily, an independent
measurement using lensed quasars has found that the discrepancy with CMB is even bigger, at the
5.3σ level [143].

The second tension happens purely in the dark matter sector defined by the Ωm-σ8 parameter
space, where Ωm is the dark matter density parameter and σ8 is the rms of the matter fluctuations
(amplitude of linear matter power spectrum) at a scale of 8h−1Mpc. A recent reanalysis of both
the Kilo Degree Survey and the Dark Energy Survey has confirmed full consistency between the two
experiments, yet again a tension of 2.5σ with the CMB measurements [80].

GW astronomy has provided us with a new way to do cosmological measurements that are
completely independent from electromagnetic (EM) observations. For coalescing binary systems, the
strain is proportional to the redshifted chirp mass to the power of 5/3, and inversely proportional to the
luminosity distance, dL. Therefore, these two quantities can be jointly inferred directly from the GW
inspiral+merger signal by measuring the amplitude and frequency evolution over time. With a single
detection of a binary neutron star (BNS) merger, GW170817 – a bright standard siren so called because
it had a multitude of EM follow-up observations – H0 has been constrained to ∼15% precision level
[2, 66], with percent level achievable in a few years time by combining future similar observations [36].
Even without any EM counterpart, the GW170814 dark standard siren event brought a measurement
of H0 with a 48% precision [132], thanks to the synergy with galaxy surveys that provided a calibrated
galaxy sample selected in the GW position error box for statistical inference of the redshift.

With the upcoming third generation ground-based detectors, such as the Einstein Telescope
(ET) [114], and the space-based detector LISA [14], GW cosmology will be taken to a whole new
level. These detectors will reach a median horizon of z ∼ 1 from the ground and z ∼ 2 in space, hence
improving statistical power to constrain other cosmological parameters, such as those for dark energy
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[135, 134, 34, 32] or modified gravity [25]. Also, the position error box will shrink down to a few deg2

or better, which will improve the chance of identifying an EM counterpart. Finally, the event rate
will dramatically increase, reaching a few thousand sources by the 2030s, significantly improving the
statistics.

A detector working in the decihertz band with ∼ arcmin resolution (or better) will be capable
to revolutionise cosmology as we know it today, even after Euclid [90] and the Large Synoptic Survey
Telescope (LSST) [93] for the following reasons:

• An angular resolution of . 1arcmin2 will make the identification of the EM counterpart almost
guaranteed for most of the GW sources. Euclid and LSST will provide galaxy catalogues for ∼ 40%
of the entire sky, so the galaxy number density will be, on average, 30arcmin−2 at the Euclid depth
(slightly higher for LSST), hence making the identification of the host galaxy relatively straightforward.
Likewise for any spectroscopic follow-up, with marginal redshift errors.

• Typical sources in the decihertz will be persistent, hence allowing high SNR detection with dL mea-
sured to 1% precision or better, likely to 0.1% over a broad range of redshifts, which will provide great
leverage on the distance vs redshift relation to jointly constrain a number of cosmological parameters.

• Multi-band GW observations, where decihertz sources are subsequently observed by the network
of ground-based GW detectors operating above 1Hz will allow joint inference of source parameters,
including dL.

• High angular resolution attained by cross-correlating over a long baseline will allow accurate deter-
mination of the polarisation angle, hence breaking the degeneracy between distance and inclination,
which was a major source of uncertainty for GW170817.

In the decihertz frequency band there are mainly two classes of GW sources that can be ex-
ploited for cosmology: stellar-mass binary black holes (BBHs) and binary neutron stars (BNSs). For
both of them a space-based decihertz detector will observe the long-lasting inspiral phase, extracting
accurate measurements of the binary’s parameters. The high angular resolution will further boost
the cosmological potential of these detections. BBHs and BNSs are, however, expected to contribute
differently.

Stellar-mass BBHs will be detected roughly at the same rate as current LIGO/Virgo sources,
since no long-living BBH should appear in the decihertz range. The total number of detections will
depend on the sensitivity of the instrument. Achieving a localization of ∼ arcmin or better will provide
accurate forewarnings to Earth-based detectors, and will drastically reduce the localization volume.
Although no EM counterparts are expected for BBHs, the small localization volume will contain a
reduced number of possible host galaxies, leading to the identification of a single host galaxy in the
most favorable cases. By taking results from the proposed Big Bang Observer telescope (BBO; see
Fig. 6 of [47]) and simply degrading the angular resolution from arcsec2 to arcmin2 (and assuming
roughly the same distance measurements), we find a maximum of few tens/hundreds of galaxies within
the volume error box at each redshift, and the identification of the unique hosting galaxy for all BBHs
below redshift 0.5. This will improve the constraining power of the “statistical” cosmological analyses
[125, 54], providing an independent test not only of H0, but also of other cosmological parameters.
These considerations will be particularly relevant for BBHs jointly observed both in space and on
Earth by third generation detectors such as ET or the Cosmic Explorer (CE), whose investigation
can be improved and pushed to higher redshift with a space-based interferometer in the decihertz
frequency band.

The most promising sources for cosmology in the decihertz band are, however, BNSs, especially
with a coincident Earth-based detection. In this case the excellent sky localization achieved long
in advance of the merger, will give enough time to detect the associated EM signal (kilonova and
possibly a gamma-ray burst) for all the detected BNSs, which can then be used as bright standard
sirens for cosmology. The actual rates and horizon of BNSs will depend on the sensitivity of the
instrument, but drawing from similar results for DECIGO [47, 110] one can comfortably assume that
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a Hubble diagram with more than ∼ 105 events out to redshift ∼3 can be constructed, especially if
joint detections with Earth-based detectors will be possible. With these numbers one can hope to
obtain sub-percent constraints on H0 and also to probe the equation of state of dark energy at the
10% level or better [47].

Figure 1: Adapted from Fig. 1 of Ref. [37], cosmological fore-
cast for the flat ΛCDM model assuming a very conservative
source number density of 1deg−2. The figure shows the con-
straints from luminosity distance only, dL, the weak lensing
convergence power spectrum, Cκ` , and jointly. Decihertz ar-
cmin resolution would guarantee up to a factor of 50 im-
provement in number density (likewise for shot noise), hence
allowing access to non-linear scales. The constraining power
would be improved almost surely by an order of magnitude.

Furthermore by the 2035-2050
time period we will also have a good
handle on the physics of neutron stars
and might be able to use this infor-
mation to estimate the redshift of the
event directly from the GW signal [138,
55]. This is another reason to argue
that each BNS will have an associated
redshift measurement, and that a Hub-
ble diagram with 105 − 106 standard
sirens could be built.

In the decihertz band one should
also be able to see the merger of
intermediate-mass BBHs, although the
rates so far are unknown. Moreover it
is not as yet clear if any EM counter-
part signal could be observed for these
events. Given these uncertainties, it
is impossible to predict if intermedi-
ate mass BBHs will be useful in a cos-
mological context, although their likely
larger horizon makes them an appeal-
ing class of GW standard sirens.

Besides probing the cosmic back-
ground expansion through the distance-
redshift relation [135, 134], high an-
gular resolution GW astronomy also
yields unprecedented accuracy to con-
strain two key properties of our uni-
verse: geometry and dark matter clus-
tering. This will be attained by ad-
ditional observables as recently illus-
trated by [37] – all measured by a single
detector:

• The weak lensing power spec-
trum, derived through statistical anal-
ysis of rms fluctuations around the
nominal distance vs redshift relation
[47], which is sensitive to dark matter
clustering through As, ns, and σ8 as
shown in Ref. [37]. Given the negligi-
ble measurement error on dL, the rms
error is itself a point estimate of con-
vergence at the source position. The
statistical power obtained by a high angular resolution GW detector would be at least a factor 103

better than galaxy lensing surveys, hence allowing very precise constrains in the Ωm-σ8 space [37],
and also on extensions to the ΛCDM model [33]. As shown in Ref. [37], the constraining power on all
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cosmological parameters would be enhanced if a joint analysis of distance-redshift relation and lensing
were to be carried out by such a high resolution decihertz detector. In fact, given an expected total
number of events between 105–106, a ballpark estimate based on Ref. [37] guarantees a source number
density between 5−50deg−2, which would be more than enough to beat down shot noise and access
the non-linear scales of `∼ 1,000 or above. This would allow us to comfortably reach the 0.1% level on
all cosmological parameters, that would significantly outperform galaxy lensing surveys of the future.
An example of the cosmological results that could be achieved with such high angular resolution is
illustrated by the forecast of Fig. 1, which shows the constraints on the rms of matter fluctuations σ8,
the dark matter density parameter Ωm (upper panel) and the Hubble parameter h with H0 = 100h
km/s/Mpc (lower panel).

• The one-point probability density function of lensing convergence (with the aid of cos-
mological simulations) is also sensitive to clustering [113]. A high angular resolution detector will be
able to reconstruct the pdf of the measured convergence field, and allow the extraction of additional
information. This is a probe that would complement luminosity distance and weak lensing [37].

• Gravitational lensing also affects the amplitude and polarisation of GW backgrounds. In fact,
GWs follow null geodesics of the space-time and their propagation suffers distortions due to the large
scale structure (LSS) distribution in the Universe as happens to photons in the geometric optics
approximation. In addition, as in the photon case, effects such as the Shapiro time delay and the
Integrated Sachs-Wolfe (ISW) due to the time evolution of the gravitational potentials in the presence
of dark energy or massive neutrinos affect GW propagation [38, 43, 28]. Modelling unperturbed GW
backgrounds and comparing with future high angular resolution observations (affected by cosmological
perturbations) in GW total intensity and polarisation will provide the possibility to extract information
about the underlying dark matter distribution as can be performed in the case, for example, of CMB-
lensing reconstruction (see also Section 3.2.2).

• Non-linear effects induced in the GW propagation by large scale structure correlate
with other cosmological probes such as galaxy-lensing and galaxy clustering, which trace the same
underlying dark matter distribution. Such cross-correlations represent further probes to be exploited
in the determination of cosmological parameters affecting the LSS distribution. On the other hand,
the non-linear evolution of structure formation needs to be taken fully into account in the accurate
modelling of such new signals, especially in the presence of modifications to the standard cosmological
framework. This will be achieved in the near future via the use of full-sky simulations of GW maps
accounting for the non-linear structure evolution as provided by large cosmological simulations in
different cosmological scenarios [79, 123, 44, 45]. Such modelling will soon improve estimations of the
luminosity-distance relation of GW sources, as well as modifications in GW intensity and polarisation
due to the evolution of intervening structures during their propagation.

• Cross-correlations of the GW signal with future surveys, such as Euclid and SKA, will
also make possible the so-called GW delensing. This will allow the full constraining power of future
high angular resolution GW experiments to be exploited in extracting cosmological parameters. On
the other hand, data delensing could be achieved also via mock simulated weak-lensing maps from
cosmological simulations. This approach will also help to break degeneracies between non-standard
cosmology and GW lensing effects.

3.2 Stochastic background detection and characterisation

The stochastic background is, by definition, made up of an incoherent superposition of signals from
multiple sources that are unresolved in both the time and angular domain. A stochastic background
will exist for most sources being probed by gravitational wave detectors if the distribution of luminosity
of the underlying population extends below the detection threshold of the observatory or if the signal
duration and event rates are such that an incoherent superposition is guaranteed. In the millihertz
to decihertz frequency range this will be the case for galactic and extra-galactic compact binary
systems [96, 115, 60, 107, 59, 61].
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Another class of stochastic backgrounds is that generated by phase transitions in the early
universe [131, 49] or perhaps a gravitational wave background generated during the epoch of reheating.
Although the mechanism is very different these will also be incoherent given that the horizon scale at
the time of generation is tiny compared to today.

Yet another class is the primordial background due to inflation [140, 133]. During the epoch of
inflation, tensor modes are inflated to super-horizon scales where their comoving amplitude becomes
constant. Once they re-enter the horizon, during the deceleration phase of the expansion, these modes
will appear as squeezed gravitational waves. The squeezing results in phase correlations which are
possible only in modes that have re-entered the horizon. The phase correlations are a distinguishing
feature of a primordial inflationary background although, on observable scales/frequencies, the corre-
lation will be destroyed by sub-horizon metric perturbations. As such, a primordial background can
also be thought of as an incoherent one for observational purposes. A primordial background is ex-
pected to be the smallest in amplitude by some orders of magnitude with Ωgw ∼ 10−15 for inflationary
potentials on the order of 1016 GeV, where Ωgw is the energy density in GW per unit logarithmic
frequency in units of the critical density of the Universe.

Astrophysical and cosmological information is contained in both the average (monopole) am-
plitude Ωgw and anisotropies of any background. The amplitude of the background is an integrated
measure of the underlying population which probes very different limits of the distribution than the
collection of single, high signal-to-noise, detections. The anisotropies contain information about the
angular distribution of the sources. This information can be used either as an aide to source separation
in conjunction with spectral resolution or as a tracer of astrophysical or cosmological structure.

3.2.1 Constraining backgrounds and their anisotropies

The angular resolution of a GW detector depends on its configuration as well as on the type of source
(see Section 2). In particular, if we consider astrophysical resolvable sources, a space-based detector,
like LISA, is not a pointed instrument but an ‘all-sky monitor’. Ground-based detectors share the
same property, but since there is a network of such detectors, the signals can be correlated. This
method cannot be extended to a single space-based detector. Instead, the motion of the satellite
must be considered and eventually the combination of the two time series that can be extracted from
a single detector, or correlating with a future ground-based detector working in the same frequency
range. The situation is different for stochastic gravitational wave backgrounds, both of astrophysical
and cosmological origin, where the duration of the signal is very long (infinite) compared to the time
of observation. Given that the noise in different detectors is uncorrelated, while the signal is expected
to be correlated, a way to circumvent this problem and to improve the signal-to-noise-ratio is to
cross-correlate the output from two detectors.

We can therefore distinguish between two types of angular resolution afforded by GW detectors.
The first is the astrometric resolution - this is the resolution with which the instrument can pinpoint the
location of a single coherent source. To achieve the quoted level of ∼arcmin the full phase information
of the coherently observed signal is used.

For incoherent signals this resolution limit is not achievable. In this case angular resolution is
limited by the combination of the detector response functions and the baseline over which the cross-
correlation of individual signals is being carried out. The angular response function of any detector
is severely limited by the fact that no focusing of gravitational waves can be achieved on practical
scales. The baseline and frequency coverage are therefore the most important factors that determine
the angular resolution of any set up.

Astrometric resolution however is still of fundamental importance in searching for backgrounds.
The efficiency with which individual signals can be identified and subtracted (masked) in the time
domain is correlated with the phase sensitive, astrometric resolution. In fact, in order to perform a
detection and possibly, a characterization, of any cosmological backgrounds, the subtraction of galactic
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Figure 2: Idealised angular resolution for different detector configurations (see text). The relative
sensitivity to different angular multipoles is obtained by integrating the spherical response to a cross-
correlation baseline weighted by a simple model of the noise spectrum based on the individual detector
arm lengths. Convolution with the detector response functions and the sky-phase coverage would give
additional structure on top of the idealised case.

and extragalactic foregrounds/backgrounds must be performed with extremely high precision. For
this purpose, it is crucial to exploit the fact that different information can be extracted by performing
cross-correlation of the data sets in time and/or frequency domains. For example, while cosmological
backgrounds are expected to be stationary, the foreground due to the unresolved white dwarf binaries
in the galaxy is expected to present some yearly modulation [11] which can be used for component
separation. Analogously, since the spectral shapes of backgrounds arising from different sources are
not expected to match, different signals can be disentangled by accurately modeling the different
components. It is worth stressing that while in very small frequency ranges different signals may
appear to be degenerate, this degeneracy is eventually broken for sufficiently large intervals.

The ideal configuration is therefore one that maximises the astrometric resolution in the given
frequency range and the angular resolution so that the unresolved signal can also be masked or cross-
correlated with other tracers most efficiently. This can be achieved with an optimised configuration
of detectors whose signal can be cross-correlated over large distances. An idealised figure of merit for
the angular resolution can be obtained by integrating the contribution of each frequency to spherical
multipoles on the sky. The plane waves at each frequency can be expanded in spherical Bessel functions
j` to obtain an angular response

A` =
∫ fmax

fmin
df w(f)j`

(
2πfb

c

)
, (1)
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where b is the length of the baseline formed by the cross-correlation of detector signals and w(f) is
a weighting function determined by the high-frequency noise of the detectors. This figure of merit is
idealised and the actual response would be a convolution of the full spherical mode expansion with the
detector response function and sky modes given a particular phase coverage on the sky but it gives a
limiting case for relative comparisons between configurations.

Figure 2 shows the normalised response function for four different configurations: single LISA,
2 LISA-type detectors with a 0.7 AU separation, 2 decihertz detectors with a 0.7 AU separation and
2 decihertz detectors with a 2 AU separation. For the decihertz detector case we used an ALIA-like
configuration as a prototype [42]. The dominant contribution to angular resolution is given by the
longest cross-correlation baseline length. For a single LISA this is the same order of magnitude as the
individual arm lengths. However, having two LISA-type detectors dramatically increases the angular
resolution. The optimal configuration consists of two detectors separated by a distance of the order
of an AU with sensitivity peaking in the decihertz range, which would have an angular resolution for
stochastic backgrounds of around a degree. This resolution would greatly facilitate the separation of
galactic and extra-galactic stochastic signals and also enable the search for statistical, cosmological
effects by cross-correlation with large scale structure [38, 43, 44, 45].

3.2.2 Stochastic background anisotropies from astrophysical and cosmological
sources

The anisotropies of the stochastic background are a unique observable that contains both astrophysical
and cosmological information. Astrophysical sources that contribute to the stochastic background in
the millihertz-decihertz frequency range (stellar-mass compact binaries, intermediate-mass BH bina-
ries, extreme mass ratio inspirals) reside in galaxies, and it is therefore expected that the intensity
of the background will depend on sky direction, analogously to the cosmic infrared background. As
shown in [45, 46], both the amplitude and the shape of astrophysical component of the stochastic
background anisotropies depend on the formation and evolution processes of binary compact objects
(such as the properties of their stellar progenitors, supernova explosion mechanism etc.). Crucially,
the detection of individual merging binaries will only provide information on the brightest sources
in the population, in contrast to the stochastic background. Detecting the anisotropies of this back-
ground will allow us to study how the properties of GW sources in the faint end of the distribution
correlate with those of their host galaxies. For example, a signal from a population of primordial BHs,
formed in the early Universe and presumably closely following the distribution of dark matter, would
have different angular power spectrum compared with the signal from stellar-origin BHs which form
in the late Universe and reside in luminous galaxies, which are a biased tracer of the dark matter
distribution [123].

The latest observational upper limits from the first and second Advanced LIGO runs [4] are
derived for multipoles only up to `= 4 and are several orders of magnitude above current theoretical
predictions [44, 79, 45, 46]. Major advances both in detector sensitivity and in analysis methods
are required in order to be able to detect the anisotropic component of the stochastic background.
Moreover, since the astrophysical background is expected to dominate any cosmological backgrounds
from the early Universe, it is necessary to detect and fully characterize the former in order to be able
to also measure the latter.

One of the limiting factors in observing the stochastic background anisotropies in the 10−100
Hz frequency band, accessible to ground-based detectors, is the time-like shot noise, which arises
because the signals from merging binary compact objects have a very short duration with respect to
the integration time and almost no time overlap, especially in the case of BBHs. As a result, shot
noise is expected to dominate the signal for any realistic time of integration [78, 45, 76]. However, in
the decihertz frequency range the astrophysical background can be considered stationary, since each
individual signal duration (the inspiraling phase of a binary compact merger) is longer than the time
of observation.
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Therefore, the best observational setup that will allow the detection and characterisation of the
stochastic background anisotropies is a combination of two detectors operating in the millihertz to
decihertz frequency range, which will alleviate the shot noise problem and allow small angular scales
to be resolved (see Figure 2).

Finally, as mentioned in Section 3.1, GWs are distorted by intervening LSS and are affected
by the Shapiro time delay and ISW effect, similarly to photons. These effects are imprinted in
the angular power spectrum of the stochastic background and can be used to study the LSS [43,
44, 45]. Moreover, the astrophysical GW background is expected to be a biased tracer of the galaxy
distribution. A particularly promising way to study these effects is to cross-correlate the GWmap with
EM observables, such as the weak lensing map or galaxy number counts. EM-GW cross-correlation
can also help to extract the astrophysical signal in the presence of a shot noise dominated background
map.

Stochastic backgrounds are also produced by sources in the early Universe. For example, the
background produced by a cosmic string network will have an anisotropic component that depends
on the string tension [77]. In general, the plethora of stochastic backgrounds contributing in the same
frequency band may make it difficult to distinguish them via the observation of the monopole alone.
Observing the anisotropies will help in identifying the various contributions to the overall stochastic
signal.

3.3 Multi-messenger observations of massive black holes

Massive black holes (MBHs), ubiquitous in galactic nuclei, play an important role in galaxy evolution.
Binary MBHs, expected to form following galaxy mergers, are prime GW sources, targeted by LISA
and pulsar timing array experiments. Multi-messenger observations of binary MBH mergers are the
key to understanding how they form and co-evolve with their host galaxies. In particular, high angular
resolution GW observations will allow the localization of binaries well in advance of the merger (a few
months or more), so that electromagnetic observatories can search for characteristic merger signatures.
These observations will provide unique information on the properties of accretion disks that fuel active
galactic nuclei (AGNs). Moreover, coincident neutrino-GW observations that may be possible with a
high-resolution GW detector, will allow the identification of the sources of the diffuse neutrino flux
and to study particle acceleration processes.

3.3.1 Accretion disks of active galactic nuclei

Despite the fact that quasars and AGN are a key ingredient in galaxy formation, our knowledge of the
basic properties of the accretion disks that fuel them, such as their density, temperature, geometry,
accretion rate or lifetime, remain poorly understood [97]. GW signatures of mergers involving MBHs
and/or stellar-mass BHs in an AGN disk can complement EM data and provide novel information on
disk properties by probing beneath the AGN photosphere [67, 75, 136].

First, with unique identifications of host galaxies of MBH mergers we will, for the first time,
have direct, detailed data on the bright EM emission (e.g. spectrum, light-curve) from MBHs whose
masses, spins, and orbital parameters are precisely known, opening up new ways to study the physics
of accretion.

Second, a high-resolution GW detector will be able to directly measure the effect of gas drag
on the GW waveform of stellar-mass BHs or intermediate-mass BHs merging with the MBH or in
intermediate mass-ratio inspirals (IMRIs). The imprint of gas drag on the GWs will reveal average
AGN disk properties underneath the EM photosphere [147, 83, 103, 56]. The rate of gas hardening of
BH binaries implicitly reveals the relative importance of dynamical hardening in the AGN channel of
BH mergers. If gas hardening is too slow or inefficient, tertiary encounters within the disk are required
to harden a binary to merger [91]. The magnitude and frequency-dependence of the deviation from
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vacuum waveforms will probe disk properties and with high signal to noise measurements they can be
disentangled from uncertainties in MBH binary parameters [83, 147, 56].

Third, we will be able to detect IMRIs and identify them with known AGN. Identifying IMRIs
in AGNs will constrain both the structure and the lifetime of AGN disks by implying the existence of
migration traps and information on the timescale for migration within the disk. Indeed, depending
on AGN disk structure, gas torques cause embedded migrators to converge at traps where large mass
intermediate-mass black holes (IMBHs) can be built up via hierarchical mergers [126, 104, 145]. If
AGN episodes persist long enough (≥ 1Myr), most AGNs should produce IMBHs, yielding a large
population of MBH-IMBH binaries and IMRIs [102, 103, 104].

Finally, GW observations are complemented by EM observations of broad emission lines in both
X-ray and optical bands. The presence of a binary strongly perturbs the nearby gas disk and changes
the kinematics of emission lines and imprints unusual periodic variability. Binary stellar-mass BHs
or IMRIs resolved in GWs are precursors to EM signatures that can outshine moderate luminosity
AGN disks, if due to Hill sphere implosion [101]. EM effects can be especially large in X-rays, probing
gas closest to MBHs. The broad Fe Kα line, and other broad X-rays lines detectable with Athena
can display strongly disturbed spectral shapes, and/or periodic Doppler modulations on the binary’s
orbital timescale of O(hr) [105, 128, 100]. With simultaneous EM and GW observations these effects
will be especially robust, and will strongly constrain system parameters (e.g. disk properties, as well
as BH spins and masses). Moreover, the absence of EM counterparts to resolved GW emission from
an AGN will allow us to strongly constrain accretion disk optical depths.

Precursor observations

The EM counterpart of the MBH binary merger needs to be identified to accomplish the above
scientific goals. This is likely to be hampered by the lack of an ab-initio understanding of binary
accretion and the corresponding spectral evolution properties. This necessitates sufficiently accurate
GW localization to allow for the host of the GW source to be uniquely identified.

For much of the science above, it will be necessary to identify the GW source well in advance of
the merger, so that the GW chirp and any corresponding EM chirp can be observed in tandem, for at
least a few hundred cycles.

A promising signal is a quasi-periodic EM “chirp”, tracking the phase of the GWs. The torques
from the binary are expected to create a central cavity in the surrounding disk, nearly devoid of
gas, within a region about twice the orbital separation [17]. However, numerical simulations have
found copious gas inflow into this cavity [119, 130, 112, 58, 65], fueling accretion onto the BHs and
producing detectable EM emission. Because of copious shock-heating, gas near the BHs in this late
stage is expected to be hotter than in the case of a single-BH AGN [130, 118, 64, 30, 137]. The
corresponding UV/X-ray emission would have different (harder) spectra, with possible signatures of a
disk cavity in the form of a ’notch’ [118].

Most importantly and robustly, the EM light-curve should display a characteristic modulation on
the orbital timescale of an ∼hour (a month before the merger) to ∼ minutes (a day before the merger).
Hydrodynamical simulations of circumbinary disks predicts that MBH binaries can excite periodic
enhancements of the mass accretion rate that could translate into periodic luminosity enhancements,
not only at the orbital period, but also on longer and shorter timescales. These periodic modulations
are on timescales corresponding to ≈1/2 and 1 times the binary’s orbital period. For high BH mass
ratios (q ≡M1/M2 & 0.3), the cavity is lopsided, leading to the formation of a hotspot in the accretion
disk. The strongest modulation in the accretion rate in this case is observed at the orbital period of
the overdense region, a few (∼3-8) times the orbital period of the binary.

In addition, both BHs should have their own photospheres in X-ray and possibly also in optical
bands [71], because the empirical sizes (from microlensing and variability studies) show that the X-ray
emitting regions of quasars have sizes of a few Rs, whereas the separation of massive binaries entering
the detector frequency range is ≈ 100Rs. Relativistic Doppler modulations and lensing effects will then
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inevitably imprint periodic variability in the EM light-curve at the several percent level, tracking the
phase of the orbital motion, and serving as a template for the GW inspiral waveform. The Doppler-
induced variability amplitude will increase over time, as in the GW chirp [71, 124], while self-lensing
for near edge-on binaries would imprint additional characteristic, periodically recurring spikes on the
EM light-curve [57].

3.3.2 Co-evolution of massive black holes and their host galaxies

Nuclear MBHs correlate with many properties of their host galaxies, suggesting that MBHs and galax-
ies co-evolve over cosmic time. However, the nature of this co-evolution and the physics responsible
for it is not yet understood [85]. If EM observations can identify unique host galaxies of the MBH
binaries detected in GWs then this will directly provide the relation between (merging) MBHs and
their host galaxies as a function of redshift, as well as luminosity and other parameters. The GW data
will yield precise and reliable estimates of the masses (as well as orbital parameters and spins) of the
MBHs, which will not be available from EM observations alone.

3.3.3 What can neutrinos tell us?

Correlation between a GW detector with high angular resolution and cosmic neutrino detectors can
yield new information on energetic particle acceleration, binary BH mergers and the neutrino mass. In
particular, the origin of the observed diffuse neutrino flux remains unknown. The recent detection of
a high-energy neutrino in the direction of the gamma-ray emitting blazar TXS 0506+056 [1] strongly
suggests that blazars, and AGNs in general, may be a source of high-energy neutrinos. Searches of
coincident neutrino-GW emission have not led to a successful detection yet [12], and obtaining high
angular resolution for GW observations can significantly improve the prospects of a neutrino-GW
observation. Even if neutrino flux and GW signals cannot be correlated in time or position, high
angular resolution observation of GW sources may allow for population studies from which a diffuse
neutrino flux may be derived that might explain the observed neutrino spectrum.

Recent observation of a high-energy neutrino in the direction of a blazar is consistent with a
hadronic neutrino emission from a relativistic jet emitting beamed gamma-rays towards Earth, which
can occur for large BH masses [1]. Moreover, modelling suggests that the coalescence of two MBHs
with aligned jets pointing towards Earth to get maximum Doppler boost, would provide the required
shock acceleration just before impact to give an observable peak in gamma and neutrino flux [86]. The
directional properties of the GW detection would be valuable in identifying the neutrino source while
the time relation between the GW waveform and gamma ray and neutrino arrival will help elucidate
the history of the jet mergers or even the neutrino mass. Neutrinos would take up to ∼ 1000 sec longer
to arrive than photons. If much better knowledge of the neutrino mass is available pre-launch, the
difference in flight time between photons and neutrinos is an additional diagnostic.

Another prime candidate for neutrino-GW co-observation are tidal disruption events (TDE).
A TDE may occur when a main sequence star or white dwarf is disrupted when it passes a MBH
within a critical distance in a highly eccentric orbit. TDE candidate events have been observed in the
optical/UV/X-ray spectrum [18, 84]. Single and quiet MBHs may be detected through high luminosity
flares during a TDE. These flares may form a neutrino source, but perhaps more interesting events
occur when the disrupted star is found in a binary system of MBHs (or IMBHs). These phenomena,
which are expected to occur at a much higher rate, would provide a source of neutrinos in the high
energy or even ultra-high energy (TeV - EeV) range [94].

3.4 Tests of General Relativity

Theories aiming to explain the late-time acceleration of the Universe typically introduce new fields
beyond the Standard Model of particle physics, whose interactions are predominantly gravitational.
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Their impact on the dynamics of GWs has observable effects which can be broadly divided into two
distinct kinds: i) modifications of the GW waveform as a result of the modified dynamics of the
merger, and ii) subsequent effects due to propagation through a (modified) cosmological environment.
Constraints on gravity from the production and/or propagation of GWs are complementary to those
obtained from studies of the large-scale structure of the Universe. Whilst the propagation of GWs
over cosmological distances can yield relatively clean tests of modifications to GR, the dynamics of
merging events is substantially more difficult to analyse. For example, in some systems, ‘screening
mechanisms’ act to suppress the effects of additional degrees of freedom near to GW sources [19, 31] ,
potentially resulting in GW waveforms at emission that are indistinguishable from those of GR.

Below we shall first discuss the distinctive signals of alternative gravity models upon GW propa-
gation over cosmological distances; then we will comment on some of their other effects on the emitted
waveform. We shall find a common pattern that identification of host galaxies or electromagnetic
counterparts is key to many of these tests, and hence a high-angular resolution GW detector will
facilitate this science.

3.4.1 Tests using cosmological propagation of GWs

If we assume that GWs travel away from the source as plane waves, their propagation on a homogeneous
and isotropic background can be generically described through the following equation (in conformal
time t) [121, 108, 63, 29]:

h′′ij +
[
2 +ν(t)

]
H(t)h′ij + [1 +αT(t)]k2hij +a2µ2hij = a2Γ(t)γij(t) , (2)

with the case of GR corresponding to ν(t),α(t),µ2,Γ(t) = 0. This simple equation captures essential
features of generic theories which modify GR through a new dynamical scalar, vector or tensor field.
In particular, the modification to the friction term, through ν(t)≡H(t)−1d lnM(t)2/dt, where H(t) is
the Hubble parameter, signifies a running of the Planck mass M with time. This is a typical feature
of conformal couplings between scalar fields and curvature, as predicted within general scalar-tensor
theories [73, 70, 88, 41, 27, 89]). In addition, the existence of non-trivial interactions between the
metric and the new field modifying the causal structure of gravitons will affect the propagation speed
αT(t) 6= 0. Finally, a new tensor field interacting with the spacetime metric acts as a source for the GW
propagation equation through the coupling Γ(t). This effect occurs in massive gravity and bigravity
[51], and will lead to a modified dispersion relation [72] and GW oscillations [99] (see sections 3.4.2
and 3.4.4).

The α functions appearing in (2) can be mapped onto model-independent cosmological observ-
ables, e.g., the gravitational slip parameter η [121]. This connection establishes a way to combine
GW measurements with future high-precision cosmological surveys such as the Euclid satellite and
the LSST.

As a representative, well-studied class of models, let us now discuss the theoretical structure
of scalar-tensor theories in more detail. We focus on theories in the Horndeski class [73, 53, 81],
characterized by second order equations of motion, and including Brans-Dicke, covariant Galileons
and many others. For brevity, we discuss here theories with αT = 0 (in order to be in agreement with
constraints from GW170817, but see the comment at the end of this section). They are described by
the action:

ScT =1
Horndeski =

∫
d4x
√
−g [G2(φ, X) +G3(φ, X) (∇µ∂µφ) +G4(φ)R] , (3)

with G2,3,4 arbitrary functions, φ the scalar field, and X ≡ ∇µφ∇µφ. These theories predict vanishing
µ and Γ in equation (2), but the function G4(φ) leads to a non-vanishing form for the function ν(t)
in equation (2), which can be probed via the GW luminosity distance [52, 33, 108, 23, 16, 109, 24]
(see section 3.4.3). The scalar derivative self-interactions in equation (3), controlled by the functions
G2,3, automatically provide Horndeski theories with a Vainsthein screening mechanism, allowing for
consistency with Solar System tests (see [19] for a review). There have been only a few studies so far
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analyzing the (complex) problem of GW emission from merging binaries in theories which screen [50,
26].

A final comment on our assumption αT = 0 (equivalently, cT = 1). The scalar-tensor theories
described above have a low UV cut-off, of order Λ =

(
H2

0 MPl
)1/3 ∼ 102 Hz. This value of Λ is

precisely within the frequency range probed by the LIGO-Virgo detectors. Hence it may be that
new physics near the cut-off changes theoretical predictions, possibly making the restriction to cT = 1
unnecessary at GW frequencies probed by ground based detectors [116]. On the other hand, space-
based experiments like LISA will probe GW frequencies in ranges well below the cut-off, and will be
able to test theoretical predictions of scalar tensor theories well within the range of validity of eq.(3).
These and related theoretical considerations suggest that there may be a dependence on frequency of
some of the time-dependent parameters of equation (2). We shall discuss this possibility further in
the following section.

3.4.2 GW propagation speed and dispersion tests

Modified gravity theories can alter the dispersion relation of GWs; we can write these changes in a
parameterised format as:

E2 = p2c2 +Aqp
qcq (4)

where p is the magnitude of the three-momentum, the index q (not to be confused with a spacetime
index) runs over possible power law dependencies of the MG corrections (q= 0,1,2,3, . . .), and Aq is an
amplitude with the appropriate dimensions for consistency (equivalent to m2−qc4−2q). For q = 2 these
corrections reduce to a straightforward modification of the GW speed, as present in eq.(2). Other
values of q arise in, for example, bigravity (q = 0 represents a massive graviton) [51] , doubly special
relativity (q = 3) [15] and Horăva-Liftschitz gravity (q = 4) [74]. Constraints on the set of parameters
Aq from the LIGO-Virgo detectors are presented in [9].

For the case q = 2, we can write the deviation of cT from the speed of light as:

c2
T = c2[1 +αT (z,f)] (5)

The notation here is inherited from Horndeski theory, but promoting αT to a function of both frequency
and redshift, as discussed at the end of the previous section. By measuring the delay in arrival time
between GWs from a merger event and the photons associated to its electromagnetic counterpart, we
can place a bound on αT [92, 29]. In some cases one may need to account for a sizeable delay (up to
a few hundred seconds) between the emission of GWs and photons.

The detection of a gamma-ray counterpart to event GW170817, arriving 1.74 seconds after the
GW merger, yielded the exceptionally strong bound |αT | ≤ 10−15 at z ∼ 0 and f ∼ 250 Hz [9, 20, 62,
120, 40] (assuming no intrinsic emission delay between GWs and photons). This is comparable to the
one-sided bound obtained at very high energies from the lack of observed gravi-Cherenkov radiation
by cosmic rays [106]. As yet, no such comparable bounds have been obtained at low (millihertz)
frequencies or higher redshifts. LISA will offer the first opportunity to do this [29], generally resolving
the sky localisation of massive black hole binaries to 10 deg2 hours or weeks prior to merger, and down
to 1 deg2 for low-redshift sources [14, 87, 82] 1. Although wide-field survey telescopes like LSST [93]
can cover a field of view of 10 deg2, due to the high galaxy density, multiple varying sources in the
field could confuse the host identification process. Furthermore, other observatories have considerably
smaller fields of view. For the counterpart of GW170817, having a multitude of observatories at
different wavelengths was crucial to pinning down properties of the source [5].

Therefore, identifying the potential host galaxies of a larger number of GW sources at an earlier
stage would strongly benefit tests of gravity. A low frequency GW detector with roughly arcminute

1Sky localization for LISA can improve significantly in the final moments before merger, but this extra information
may often come too late to slew additional electromagnetic facilities. Likewise adding ringdown and merger information
can boost localization a posteriori [135].
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angular resolution can assist with this, and hence boost the likelihood of observing a prompt coun-
terpart across the electromagnetic spectrum. Just as the LIGO-band constraints on αT have had
a profound effect on theories of modified gravity, millihertz bounds on the propagation speed and
dispersion relation of GWs will enable us to rule out or validate other remaining families of models.
Identification of hosts at higher redshifts, where LISA’s localisation worsens, will also confirm that
the bounds from GW170817 hold true at all redshifts.

In addition, as argued above, a high-resolution GW detector will be able to localise a massive
binary BH event on the sky well in advance of the merger (up to several months). This will allow
to point an X-ray or UV telescope at the source, and monitor it during its final O(1000) inspiral
cycles. As discussed in Section 3.3.1, both BH components will likely have their own separate compact
photospheres during these final months, and therefore the binary is expected to be producing a bright
EM chirp signal, in X-ray and possibly also in UV and optical bands. Relativistic Doppler modulations
and lensing effects will inevitably imprint periodic variability on the EM light-curve, which will track
the phase of the GWs, since both the EM and GW chirp are caused by the same orbital motion,
and will therefore serve as a template for the GW inspiral waveform [71]. Note that these kinematic
effects can be utilised without modeling the EM source engine itself (this modeling is otherwise a
major uncertainty in comparing arrival times of photons vs gravitons, and, in the case of GW170817,
weakened the limit on the graviton mass by orders of magnitude). A comparison of the phases of
the GW and EM chirp signals will help break degeneracies between system parameters, and probe
a fractional difference difference ∆v in the propagation speed of photons and gravitons as low as
∆v/c≈ 10−17 at LISA-like sensitivities.

3.4.3 GW luminosity distance tests.

Another effect of modified gravity on cosmologically propagating GWs arises due to the modified
damping term ν in eq.(2). In GR, the amplitude of a GW is inversely proportional to the luminosity
distance of the source, hGR ∝ 1/dL(z) (modulo factors involving the mass, frequency and inclination
angle of the source). Modifications to the damping term alter this relation to be:

hMG ∝
e−D(z)

dL(z) ≡
1

dGW (z) where D(z) = 1
2

∫ z

0

ν(z̃)
(1 + z̃)dz̃ . (6)

The effective luminosity distance of the GW source, dGW , now differs from the luminosity distance
of its electromagnetic counterpart, dL. Like the anomalous speed tests of section 3.4.2, this modified
damping test requires the identification of the source redshift, such that dGW and dL can be indepen-
dently measured and bounds placed on ν. This test can be directly performed if an electromagnetic
counterpart is identified, but it can also be statistically applied by cross-correlating GW events with
galaxy catalogs. LISA can perform this test with multi-messenger GW events [25]; however, the need
for a clear EM counterpart limits the number of standard sirens available and uncertainties in the iden-
tification translate into larger error bars in the luminosity distance. By using a high angular resolution
detector to narrow down the host galaxy candidates, more events can be confidently assigned a red-
shift, thus increasing the precision of our constraints on dark energy and modified gravity [63, 25] (see
also Section 3.1). Moreover, an improved sky localization will help in breaking the distance-inclination
degeneracy, which accounts for a large fraction of the error in dGW .

3.4.4 GW oscillations

Another propagation effect of interest is the phenomenon of GW oscillation. This can arise in gravity
theories with additional fields, if the interaction and propagation eigenstates differ. For example, in
massive bigravity there is an interaction with the second tensor field [99] that behaves similarly to
neutrino flavour oscillations. Oscillations modulate the strain as a function of the distance to the
source and the GW frequency, leading to an interference pattern that can be detected/constrained
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by GW observations alone. The interference pattern is lost [98] when the wavepackets of the two
eigenstates do not overlap, if the graviton mass and distance to the source are large. This decoherence
limit can be tested by using either multiple signals (two GW packets arriving from the same source)
or standard sirens, through the decrease in GW amplitude. In both cases an identification of the
counterpart through improved sky localization is highly desirable, either to conclude that two signals
have the same origin, or to provide a redshift for the luminosity distance.

3.4.5 Additional polarizations

Multiple detectors are necessary to fully measure all possible gravitational polarizations for a given
signal. Metric theories of gravity predict at most six gravitational polarizations: two tensors, two
vector and two scalar helicities. Separation of all the components is an under-determined problem
since only six observables exist (the independent components of the Riemann tensor R0i0j), yet eight
unknowns need to be determined: six polarization amplitudes, plus two angles for the GW incidence
direction [69]. (Note that different polarizations have different sensitivity patterns [111, 139], and
that for differential-arm detectors the two scalar modes are degenerate, so only five polarisations are
measurable [10].) Only by incorporating the time-of-flight information between the different detectors
is it possible to optimally characterize all possible components of a signal. Further improvements
might be achieved by optimizing the location and orientation of the two detectors (e.g., coplanar vs.
orthogonal).

In the case of ground-based detectors, the advantage of using precise localization of the GW
events to improve the polarization tests was demonstrated explicitly using the BNS merger event
GW170817. When the position of the electromagnetically identified counterpart of GW170817 was
used, the Bayes factors in the polarization tests improved by almost ∼ 20 orders of magnitude [9].
Roughly speaking, the position information breaks a large portion of degeneracy by reducing the
parameter space contained in the pattern functions, which is expected to be true for space-based
detectors with high angular resolution as well.

3.4.6 Modified waveforms

Modifications to GR that persist in the strong-field regime – i.e., are not screened by a host galaxy as
discussed above – can alter the waveform emitted by a binary. To avoid inefficiently testing theories
on a case-by-case basis, the authors of [146] have developed a model-independent formalism called
the Parameterized Post-Einsteinian framework (PPE). PPE provides a ‘template’ modified waveform
onto which many different theories of gravity can be mapped, see table 1 of [39]. A simplified limit of
PPE models the waveform as:

hMG = hGR [1 +αua]e−βub (7)

where hGR is the GR inspiral waveform, u = πMf (M is the chirp mass), and the modifications
are encapsulated in the four parameters {α,β,a,b}. Forecasts for how well these parameters can be
constrained using LIGO and LISA data are given in [39].

Improved identification of GW host galaxies adds an interesting new layer to this investigation,
as it allows the onset of screening to be studied. For example, if we were to hypothetically detect
non-GR values of {α,β,a,b} in some systems, we could assess whether these systems all live in (say)
low-mass galaxies. This would fit with a model in which screening efficiency scales with the depth
of the gravitational potential, as occurs in chameleon screening [31]. In this way, a high-angular
resolution GW detector could enable a direct linking of strong-field and cosmological tests of modified
gravity.
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3.4.7 Dipole radiation and multiband GW detection

Dipole radiation exists in a variety of alternative gravity theories, the canonical example being Jordan-
Fierz-Brans-Dicke (JFBD) theory [142] which is now tightly constrained by Solar System observa-
tions [141]. However, in extended variants of JFBD theories, the possibility of a large dipole radiation
component still exists, especially when strongly self-gravitating neutron stars undergo the so-called
“spontaneous scalarization” and “dynamical scalarization” phenomena [48, 22, 129]. Recently, black
holes are also found to be scalarized in some classes of scalar-tensor theories [144]. Therefore, all three
kinds of compact binaries — BNSs, BBHs, and NS-BH binaries — can in principle possess extra dipole
emission with respect to the quadrupole radiation predicted in GR.

Because dipole radiation enters a binary system at the −1 post-Newtonian order, it can be con-
strained by low-frequency observations from space-based detectors [35], or even by multi-band GW
observations from both space-based and ground-based detectors [127, 21]. A high angular resolution
detector would assist with host galaxy identification of the source at early stages, and hence informa-
tion about source environments can be factored into our bounds on dipole radiation (similar to the
discussion in the second paragraph of section 3.4.6). Dipole radiation is usually accompanied by extra
polarization mode(s), for example, an extra scalar mode in scalar-tensor gravity [141]. As discussed in
section 3.4.5, high angular resolution helps to distinguish between different polarization modes, thus
also boosts sensitivity to additional channels of gravitational radiation.

4 Summary

Gravitational wave astronomy is an observational discipline in its infancy, but it has already provided
many new insights into our Universe. Many more exciting discoveries lie ahead, but realisation of the
full scientific potential will require major improvements to our observational capabilities, in particular
angular resolution, which is the focus of this White Paper. The accuracy of source localisation by the
current gravitational wave detectors and even those currently under development is far inferior to that
of electromagnetic telescopes, ranging from O(10) to O(1) degrees in the best cases. High angular res-
olution is nevertheless paramount for multi-messenger observations, identification of the host galaxies
of gravitational wave sources and observation of the stochastic background and its anisotropies.

High angular resolution can be obtained by increasing the effective aperture of the gravitational
wave telescope. As outlined in Section 2, this can be achieved by having more than one detector with
a baseline of ∼AU. This setup would most probably necessitate a collaboration with an international
partner, but is in principle possible for an L-class mission on the Voyage 2050 timescale.

High angular resolution gravitational wave observations will provide us with unique tools to
answer fundamental open questions in cosmology and astrophysics. As discussed in Section 3.1,
arcmin resolution of astrometric positions will ensure the identification of the host galaxy for the vast
majority of detected sources (with a virtually guaranteed electromagnetic counterpart for all the BNS
detections), increasing the number of standard sirens to 105−106 and allowing precision measurement
of cosmological parameters. Moreover, since the population of gravitational wave sources is a biased
tracer of the underlying dark matter distribution, cross-correlations with galaxy surveys will provide
a new handle on cosmological structure formation. Much is to be learnt from the as yet undetected
stochastic gravitational wave background, which can be produced by astrophysical sources, as well
as by processes in the early Universe, such as inflation and phase transitions. As we showed in
Section 3.2, a gravitational wave telescope with a ∼AU effective baseline is the optimal instrument
for resolving the angular features of the stochastic background. High resolution gravitational wave
observations will also vastly facilitate multi-messenger astronomy. As discussed in Section 3.3, the
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ability to localise a massive black hole binary months before the merger will allow the observation
of features in the electromagnetic spectrum related to the structure of the accretion disk. Moreover,
coincident neutrino-gravitational wave observations may elucidate the origin of high-energy neutrinos
and the diffuse neutrino flux, at present unknown. Finally, the ability to localise gravitational wave
sources is also fundamental for studying modified gravity and physics beyond the Standard Model
by testing the propagation speed, dispersion and polarization of gravitational waves, as described in
Section 3.4.
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