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Abstract

In conventional gauge theories, any local gauge symmetry generator is accompanied by a corre-
sponding gauge boson in order to compensate the transformation of the gauge-covariant derivation
against the local gauge transformations as acting on the matter fields. Indeed, whenever the gauge
group is purely compact, as in usual gauge theories, the invocation of corresponding gauge bosons
as compensating fields is unavoidable. That is because of there exist no nontrivial forgetful ho-
momorphisms onto some smaller Lie groups from the full gauge group. In this paper we show
a mechanism that at the price of allowing some non-semisimple component of the gauge group
besides the compact part, it is possible to construct such Lagrangians that the non-semisimple
part of the local gauge group only acts on the matter fields, without invoking corresponding gauge
bosons. It shall be shown that already the ordinary Dirac equation admits such a hidden symmetry
related to the dilatation group, thus this mechanism cannot be called unphysical. Then, we give
our more complicated example Lagrangian, in which the gauge group is an indecomposable Lie
group built up of a nilpotent part and of a compact part. Since the nilpotent part does carry
also Lorentz charges in our example, the first order symmetries of the pertinent theory give rise
to a unified gauge–Poincaré group, bypassing Coleman–Mandula and related no-go theorems in a
different way in comparison to SUSY. The existence of a local symmetry without a gauge boson is
already mathematically very striking, but this new mechanism might even be useful to eventually
try to substitute SUSY for a unification concept of symmetries.
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1 Introduction

It is very well known in field theory that the first order symmetry group of a Lagrangian quite
substantially restricts its possible structure. The ensemble of symmetries become the most restrictive
whenever they belong to a non-direct product (unified) group. This simple principle motivated the
gauge–gauge and gauge–spacetime symmetry unification strategies. A rather well-known set of no-
go theorems by McGlinn [1], O’Raifeartaigh [2], Coleman and Mandula [3] strongly restricts the
possibilities for the latter kind of unification. Actually, it turns out that the core of these restrictive
arguments derive from the general structure theory of finite dimensional real Lie algebras [4], for any
kind of symmetry unification attempts.

Detailed studies [5] of the proof of the pertinent no-go theorems [1, 2, 3] uncover that in order
to obtain these prohibitive results, the assumption of the presence of a positive definite invariant
scalar product on the Lie algebra of the internal symmetry group is very essential. This happens
to be equivalent to the property that the group of internal symmetries can only be chosen to be
purely compact. In a previous paper [4] it was demonstrated that whenever the assumption on this
scalar product is somewhat weakened, namely e.g. merely positive semidefiniteness is required, then a
loophole opens, and even a gauge–spacetime type symmetry unification can occur. Whenever indeed
this is the case, it was shown that the internal symmetry group needs to be a semidirect product of
a non-semisimple (solvable or nilpotent) and of a compact Lie group, i.e. it necessarily needs to be
somewhat more general than being purely compact.

The requirement on the purely compactness of the internal symmetry group in conventional gauge
theories has several motivations: (i) the classification of compact Lie groups is well understood, (ii)
Standard Model with its gauge group U(1)×SU(2)×SU(3) satisfies the pertinent property, and (iii)
Yang-Mills fields with compact gauge group admit strictly positive definite energy functional. So,
if one allows for an internal Lie algebra with merely positive semidefinite invariant scalar product,
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then it is implied that the non-compact gauge field directions shall have vanishing Yang-Mills kinetic
Lagrangian and correspondingly shall have zero Yang-Mills kinetic energy term. This poses a clear
question on the physical or unphysical nature of the pertinent non-compact gauge fields: what does it
mean that in a gauge-theory-like setting if we have some gauge fields, which although do not disturb
the non-negativity of the energy density of the usual compact part of Yang-Mills fields, but they do
not possess a Yang-Mills kinetic term themselves? Surely these “exotic” (non-compact) part of the
gauge fields shall not obey a conventional Yang-Mills equation-like Euler-Lagrange equation, since
they do not have kinetic term. In this paper we shall show examples when actually the corresponding
gauge fields do not even contribute to the Lagrangians of the matter fields, and thus can be completely
transformed out of the theory. As such, in these kinds of theories one has an internal symmetry group
acting faithfully on the matter fields, but only the compact part of this group has corresponding
gauge fields. Thus, the question of physicality or unphysicality of such “exotic” (non-compact) gauge
fields is naturally resolved: they do not contribute to the Lagrangian at all in such theories. The
mathematical fact of the existence of a Lagrangian with some local symmetry without corresponding
gauge field is already quite striking. Before one would think that such a theory must be very artificial,
let us remark that e.g. the ordinary Dirac kinetic term if viewed in appropriate field variables, does
admit an extremely simplified version of the above mechanism, related to the dilatation group, as shall
be shown.

The structure of the paper is as follows. In Section 2 an interesting property of the ordinary
Dirac kinetic Lagrangian is outlined: it shall be shown that it is invariant to the choice of a D(1)
gauge connection, which is a bit stronger additional symmetry on top of its well-known conformal
invariance. That shall serve as an oversimplified prototype example for our mechanism of elimination
of non-compact gauge bosons. In Section 3 we recall some known results on the structure of generic
(not necessarily semisimple) Lie groups and Lie algebras, and also SUSY shall be mentioned in the
framework of these general structural theorems. In Section 4 we shall show an indecomposable (unified)
finite dimensional real Lie group, containing the U(1) as compact part, the SL(2,C) encoding Lorentz
symmetries, and a nilpotent part which makes the pertinent unification possible. Then, in Section 5 we
begin to construct a Lagrangian admitting the above local symmetries acting faithfully and pointwise
on the matter fields, but not having gauge fields corresponding to the “exotic” nilpotent part. Finally,
in Section 6 we conclude. We already note here that the mathematical existence of the pertinent
kind of toy models is a warning: it is not mathematically automatic that all kind of local continuous
symmetries of the matter field sector manifest themselves by a corresponding gauge boson. This is only
automatic for the compact or eventually for the semisimple part of the group of internal symmetries.

2 A hidden symmetry of the Dirac kinetic Lagrangian

The Lagrangian of the Dirac kinetic term can be viewed as a pointwise map taking a Clifford map
γa, Dirac matter field Ψ, and the Dirac matter field gauge-covariant gradient ∇aΨ into a real volume
form field over spacetime, according to the formula:

LDirac(γ,Ψ,∇Ψ) = vγ Re
(
Ψ γa i∇aΨ

)
. (1)

Here, vγ is the volume form uniquely associated to the spacetime metric subordinate to the Clifford
map γa and to a chosen fixed spacetime orientation. The covariant derivation ∇a is understood to
be the sum of the natural metric spinorial covariant derivation associated to γa and of a U(1) gauge
potential. In addition to this, one could assign D(1) gauge charges to the fields γa and Ψ in the
following way.1 Assign a D(1) gauge charge (physical dimension in terms of length powers) to γa of

1The D(1) is nothing but R+ with the real multiplication, i.e. the dilatation group.
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−1 and to Ψ of −3
2 . Then, the Dirac Lagrangian Eq.(1) turns out to be invariant to global D(1) gauge

transformations





Ψ
γa

∇b




Ω∈R

+

7−→






Ω
−

3
2 Ψ

Ω
−1
γa

∇b




 , (2)

i.e. to a scaling transformation with a constant Ω throughout spacetime. Moreover, the Dirac La-
grangian Eq.(1) turns out to be invariant to local D(1) gauge transformations





Ψ
γa

∇b




Ω>07−→






Ω
−

3
2 Ψ

Ω
−1
γa

Ω
− 3

2 ∇b Ω
3
2 = ∇b +Ω

− 3
2 dbΩ

3
2




 , (3)

in which situation the positive scaling field Ω is not required to be constant. Note, however, that this
assumes also a D(1) gauge field to be implicitly understood within the gauge-covariant derivation ∇a

in order to absorb the compensating gradient term Ω
−

3
2 daΩ

3
2 . Whenever, this scenario is allowed,

the Dirac Lagrangian is locally D(1) gauge invariant, meaning that it is invariant to the pointwise
rescaling of measurement units, provided that this is compensated accordingly in the D(1) gauge
connection understood within ∇a. An interesting observation, not yet described in the literature,
is that the Dirac Lagrangian Eq.(1) as understood in such variables, has a further symmetry: it is
invariant to the choice of the D(1) gauge connection. Quite naturally, a change in the D(1) gauge
connection is uniquely described by a shift transformation ∇a 7→ ∇a+Ca with Ca being a smooth real
valued covector field over the spacetime. Direct evaluation shows that the Dirac Lagrangian Eq.(1) is
invariant to such a shift transformation





Ψ
γa

∇b




Cd7−→





Ψ
γa

∇b + Cb



 (4)

and therefore is indeed invariant to a choice of the D(1) gauge connection. Consequently, it is invariant
to any local D(1) gauge transformation where it is only prescribed to act on the matter fields canoni-
cally and faithfully, but it is required to stay uncompensated for in the D(1) part of the gauge-covariant
derivation:





Ψ
γa

∇b




Ω>07−→






Ω
−

3
2 Ψ

Ω
−1
γa

∇b




 , (5)

where Ω is a positive scaling field, not necessarily constant. In summary: due to this extra ∇a 7→ ∇a + Ca

shift symmetry, one can disregard the presence of the corresponding D(1) gauge connection in ∇a (it
does not give any contribution to the theory), while the local D(1) gauge transformations still act
faithfully on the matter field sector — which are encoded by γa and Ψ.

The physical meaning of the insensitiveness to the D(1) gauge connection is that the pertinent
Lagrangian is insensitive to any kind of parallel transport rule of measurement units throughout
spacetime. If one uses the appropriate dynamical variables, all the Standard Model kinetic terms
can be seen to admit such a symmetry. This is related to their conformal invariance, but happens
to be a slightly stronger symmetry property than that. The precise geometric meaning of the above
property is formulated in [6] and reviewed in Appendix A using more formal differential geometry, for
completeness.
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It is seen that due to this ∇a 7→ ∇a+Ca shift symmetry of the Lagrangian, the original D(1)×U(1)
internal symmetry group, acting locally and faithfully on the matter fields, only gives rise to gauge
bosons in the compact direction, i.e. with U(1) degrees of freedom only. In our more elaborate
example in this paper, we will show that such a forgetting mechanism can also be invoked for more
complicated internal group structure, and even with non-direct product (unified) internal group. It
follows, however, that the generators of the local symmetries whose gauge fields can be eliminated
in such a manner, must sit in a normal sub-Lie algebra. Because of that and the general structural
theorem on Lie algebras (Levi decomposition), those generators can only sit in the so-called solvable
part of the Lie algebra, and can accompany the usual compact internal symmetry generators without
revealing themselves through corresponding gauge bosons.

3 Structural theorems for generic Lie groups

In the followings we shall recall some general structural properties of Lie groups, only using some very
elementary notions and notations.

Let G be a group. A normal subgroup of G is a subgroup which is Ad-invariant. That is: a
subgroup N of G is called normal subgroup whenever for all elements g of the entire group G one has
that g N g−1 ⊂ N . Whenever one has a normal subgroup N in a group G, the alternative notation
G = N .H is sometimes used where H is some complementing set to N within G, i.e. such a set that
N ∩H = {identity} and G = N H. This kind of structure, i.e. when a normal subgroup exists, can
eventually be called semi-semidirect product.

Whenever one has the above semi-semidirect product situation, but one can find a complementing
set H to N such that H closes as a subgroup, then we call G a semidirect product of N and H, and
the usual notation is G = N ⋊H.

Whenever one has the above semidirect product situation, but the complementing subgroup H can
be chosen to be normal also, then we call G a direct product of N and H, and the usual notation is
G = N×H. In this case it follows thatN andH do commute, i.e. they are completely independent, and
G is called decomposable. The symmetry unification strategies try to avoid theories with decomposable
symmetry groups.

Of course, on the infinitesimal level, i.e. at the level of the Lie algebra of a Lie group, corresponding
notions exist as well: sub-Lie algebra, normal sub-Lie algebra (semi-semidirect sum), and the notions
of semidirect sum and direct sum of two Lie algebras are defined accordingly.

3.1 On the structure of global topology

It is well-known that a finite dimensional real Lie group may be written in the following form

E =



 Ẽ0
︸︷︷︸

universal covering group

. I
︸︷︷︸

some discrete symmetries





/

J
︸︷︷︸

some discrete symmetry group

(6)

Here, Ẽ0 is the universal covering group of the unital connected component. I is a discrete set of outer
automorphisms of Ẽ0, such that Ẽ0 . I closes as a group, and it is responsible for enumerating the
connected components of Ẽ0 . I. Generally, I may or may not close as a standalone group. Finally, J
is some discrete normal subgroup of Ẽ0 . I, responsible for a possible non-simply connectedness of E.
As it is well-known, by Ado’s theorem, the structure of Ẽ0 is uniquely determined by the Lie algebra
of E. In this paper, we will not address general issues with discrete symmetries, and therefore when
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not otherwise mentioned, by Lie group we will only mean connected and simply connected Lie groups
(universal covering groups), and eventually we will use the Lie group / algebra interchangeably when
their distinction is not particularly relevant.

3.2 On the infinitesimal structure: general structure of Lie algebras

As it is well-known, modulo the global topology, finite dimensional real Lie groups are in one-to-
one correspondence with their universal covering groups, and by Ado’s theorem these are uniquely
characterized by their Lie algebras. Any finite dimensional real Lie algebra, by construction, admits
a natural real valued invariant symmetric bilinear form, the Killing form. For any element x of the
Lie algebra introduce the notation adx := [x, ]. Then, the Killing form is defined to be the mapping
(x, y) 7→ Tr (adx ady). Generally, the Killing form of a Lie algebra may be indefinite and even may be
degenerate. The general structure of all possible Lie algebras is constrained by the Levi decomposition
theorem [7, 8] using the properties of the Killing form. It states that the entire Lie algebra consists of a
semidirect sum of the degenerate directions of the Killing form, called to be the radical or solvable part,
and of the non degenerate directions of the Killing form, called to be the Levi factor or semisimple
part. Due to the non-degeneracy of the Killing form inside the semisimple part, that can consist
merely of direct sums of components which contain no nontrivial normal sub-Lie algebras, and are
called simple components. In summary, for the general structure of Lie algebras, or equivalently, for
connected and simply connected Lie groups, one can draw the following summary picture:

E
︸︷︷︸

any connected and
simply connected

Lie group

= R
︸︷︷︸

degenerate directions of Killing form
(radical or solvable part)

⋊

(simple)
︷︸︸︷

L1 × · · · ×

(simple)
︷︸︸︷

Ln
︸ ︷︷ ︸

non-degenerate directions of Killing form
(Levi factor or semisimple part)

(7)

In conventional gauge theories usually only semisimple or simple groups are used, i.e. Lie groups with
vanishing radical, like SU(N) or so. However, already e.g. the Poincaré group gives an example for a
Lie group where a nonvanishing radical is present:

P
︸︷︷︸

Poincaré group

= T
︸︷︷︸

translations
(radical or solvable part)

⋊

(simple)
︷︸︸︷

L
︸ ︷︷ ︸

Lorentz group
(Levi factor or semisimple part)

(8)

As it was discussed in [4], the super-Poincaré group is an even less trivial example with a nonvanishing
radical, in particular, with a nonabelian radical. For compact Lie groups the Levi decomposition is as
follows:

G
︸︷︷︸

any connected and
simply connected
compact Lie group

= U(1)× · · · ×U(1)
︸ ︷︷ ︸

degenerate directions of Killing form
(radical or solvable part)

×

(compact simple)
︷︸︸︷

G1 × · · · ×

(compact simple)
︷︸︸︷

Gm
︸ ︷︷ ︸

non-degenerate directions of Killing form
(Levi factor or semisimple part)

(9)

Note that in the compact case the radical can merely consist of copies of U(1) (compact abelian part),
and it can only be in direct product relation with its Levi factor (compact nonabelian, or equivalently,
compact semisimple part). The Levi decomposition is useful when trying to construct Lie group
embeddings, since that must be compatible with the Levi structure of the underlying Lie algebras.
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Moreover, it also restricts nontrivial forgetful homomorphisms onto a smaller Lie algebra: the kernel
of a homomorphism always must be normal, so in absence of normal sub-Lie algebras, no nontrivial
forgetful homomorphism exists. As such, e.g. simple Lie algebras do not have nontrivial forgetful
homomorphisms onto any smaller Lie algebra at all. It is seen from the general Levi decomposition
Eq.(7), that for a non-direct product (unified) Lie algebra, one can only have nontrivial normal sub-
Lie algebras within, whenever one allows for a nonvanishing radical. In conventional gauge theory,
since usually the simpleness or semisimpleness of the internal symmetry group is assumed, nontrivial
normal sub-Lie algebras are not present, and this whole issue with nontrivial normal sub-Lie algebras
was not yet studied for a model building purpose.

As a closing remark to the Levi decomposition, we recall that the solvability of a subgroup, i.e.
that the Killing form degenerates there, can be also tested without explicitly constructing the Killing
form. It is well-known [7, 8] that a Lie group R is solvable if and only if its Lie algebra r has the
following properties: with the definition r0 := r, r1 := [r0, r0], r2 := [r1, r1], . . . , rk := [rk−1, rk−1],
. . . , one has that rk = {0} for finite k. A special case is when the radical R is said to be nilpotent :
there exists a finite k for which for all x1, . . . , xk ∈ r one has adx1 . . . adxk

= 0, which also happens to
be equivalent to the property that for all x ∈ r the linear map adx is nilpotent, hence the name. An
even more special case is when the radical R is abelian: for all x ∈ r, one has adx = 0. For instance,
the Poincaré group happens to have a nonvanishing but abelian radical. The super-Poincaré group
happens to have a non-abelian, namely a two-step nilpotent radical. In conventional gauge theory,
like theories involving SU(N), traditionally no nonvanishing radical is allowed, i.e. the gauge groups
are purely semisimple.

3.3 Constraints on unification patterns by the Levi decomposition

If one studies the possible enlargements of Lie groups, the Levi decomposition theorem Eq.(7) gives
important constraints. Namely, their Lie algebras must obey the following rule: the Levi factor of
the smaller Lie algebra cannot be injected to the radical of the larger Lie algebra, since the Killing
form degenerates there. Moreover, if the smaller Lie algebra has some direct product structure,
its indecomposable components must end up in some indecomposable components of the larger Lie
algebra. From this simple observation, O’Raifeartaigh developed its classification theorem [2] of the
Lie algebra extensions of the Poincaré Lie algebra. The theorem states that if one injects the Poincaré
Lie algebra Eq.(8) into a larger Lie algebra Eq.(7), then one can have the following disjoint cases:

(A) Trivial extension, i.e. E = P×{some other symmetry group}. (This case is the usual conclusion
of the Coleman-Mandula-like no-go theorems.)

(B) Not (A), and the translation group T is embedded into the radical R of the enlarged group,
whereas the Lorentz group L is embedded into one of the simple components of the Levi factor
of the enlarged group. (For instance, super-Poincaré group [9, 10, 11], and our new example in
this paper and also in [4, 12] falls into this case.)

(C) The entire Poincaré group T ⋊L is embedded into one of the simple components of the enlarged
group. (For instance, conformal Poincaré group, being isomorphic to SO(2, 4), falls into this
case, but there are also many other models of this kind, see a detailed review in [13]. One should
note that for models built on this case, a heavy symmetry breaking mechanism needs to be
invoked in order to identify the spacetime degrees of freedom.)
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The above O’Raifeartaigh theorem on the classification of finite dimensional real Lie group extensions
of the Poincaré group can be summarized in the following diagram:

case (A) and (B): case (C):

E = R ⋊ L1×...×Ln

P = T ⋊ L

E = R ⋊ L1×...×Ln

P = T ⋊ L

(10)

where the thick arrows indicate homomorphic injection. Similar enlargement theorem also applies to
the internal symmetry group, which has not yet been discussed in the literature.

As a closing remark, it is useful to note that via the O’Raifeartaigh theorem it is easy to understand
the principle of the Coleman-Mandula no-go theorem, without deeply invoking field theoretical notions
and arguments. As a starting point, O’Raifeartaigh theorem states that all the finite dimensional real
Lie algebras containing the Poincaré Lie algebra must fall into one of the cases (A) or (B) or (C).
Then, Coleman-Mandula theorem has a number of explicit and implicit assumptions. For instance,
it explicitly assumes that there exists a positive definite scalar product on the generators of the non-
Poincaré part of the extended Lie algebra, which in finite dimensions implies that the extended part
is purely compact. This, rules out case (B). Finally, Coleman-Mandula theorem also assumes that no
symmetry breaking is present, which rules out case (C).

3.4 Conservative extensions of the Poincaré group

As mentioned in [4, 12], the super-Poincaré group is one of the possibilities for extending the Poincaré
group with the mechanism of O’Raifeartaigh theorem case (B), i.e. via allowing for the extension of
the radical. However, it was also discussed that the super-Poincaré group cannot be cast in the form
of a vector bundle automorphism group over the four dimensional Lorentz spacetime: some of the
non-Poincaré symmetries (the pure supertranslations) do not act spacetime pointwise, and therefore
they cannot be put into the structure group of a vector bundle over the spacetime. This is a curious
property of the super-Poincaré group: some of the strictly non-spacetime transformations do not
preserve the spacetime points, and therefore they cannot really be considered as part of an internal
group. In order to overcome this, but to still have a unified gauge–Poincaré group, in [4] a special
kind of enlargement of the Poincaré group was proposed: the conservative extensions of the Poincaré
group. These can be defined in three equivalent ways. Namely, we are looking for a non-direct product
(unified) extension of the Poincaré Lie algebra which satisfies any of the below criteria:

(i) The non-Poincaré generators do not act on the spacetime, i.e. they are really internal.

(ii) There exists P
i

−→ E
o

−→ P homomorphisms such that o ◦ i = identity.

(iii) E is part of a vector bundle automorphism group over spacetime.

The intuitive meaning of these equivalent conditions, most transparently seen from condition (iii), is
that the pertinent extended group E is compatible with a gauge theory-like setting: no symmetry
breaking is necessary in order to identify the spacetime degrees of freedom on which merely the
Poincaré part acts. Instead, there exists a forgetful homomorphism from the extended group onto
the Poincaré group. One could call such a mechanism symmetry hiding. Such mechanism is usually
not employed in conventional field theories as mostly some kind of symmetry breaking is assumed.
Note however, that the above mechanism can host the necessary “exotic” symmetries in a way that
they can remain unbroken, while respecting the gauge theory-like structure (vector bundle of matter
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fields) of a model, while being indecomposable (unified) group. As was mentioned: due to the Levi
decomposition theorem, such a mechanism is only possible if one leaves the realm of semisimple Lie
algebras.

As was discussed in [4, 12], assuming that an energy non-negativity condition is required to hold
for the gauge fields in a theory, the structure of conservative extensions of the Poincaré group is as
follows:

(arrows: nonvanishing adjoint subgroup action)

(

T
︸︷︷︸

translations

× N
︸︷︷︸

solvable internal symmetries

)

⋊

(

G1×...×Gm
︸ ︷︷ ︸

compact internal symmetries
︸ ︷︷ ︸

all internal (gauge) symmetries

× L
︸︷︷︸

Lorentz group

)

︸ ︷︷ ︸

unified global symmetries of matter fields

(11)

The arrows here indicate that which of the subgroups has to have a nonvanishing adjoint action on
which of the normal subgroups for achieving indecomposability (unifiedness). Since the Killing form
degenerates on the noncompact (solvable) internal Lie algebra, in a theory with corresponding gauge
fields, these “exotic” gauge field degrees of freedom shall have zero Yang-Mills kinetic Lagrangian and
shall have vanishing Yang-Mills kinetic energy. Thus, physicswise it is a natural question to consider:
what kind of Euler-Lagrange equations these “exotic” gauge field degrees of freedom will obey? In our
example we shall show, that it is possible to build models, where these “exotic” gauge fields can be
completely transformed out from the Lagrangian, and thus can be eliminated from all the observables
in a way as introduced in Section 2. In such a construction, they only manifest themselves as acting
faithfully on the matter field sector without being accompanied by corresponding gauge bosons.

The main idea behind the conservative unification pattern is that despite of the indecomposable
(unified) group structure, there is a forgetful homomorphism back onto the usual product of the
compact internal group × Poincaré group:

N
︸︷︷︸

solvable
internal symmetries

⋊

(

G1×. . .×Gm
︸ ︷︷ ︸

compact
internal symmetries

× P
︸︷︷︸

Poincaré
symmetries

)

︸ ︷︷ ︸

direct-indecomposable conservative extension of the Poincaré group,
acting on fundamental field degrees of freedom

−→ G1×. . .×Gm
︸ ︷︷ ︸

compact
internal symmetries

× P
︸︷︷︸

Poincaré
symmetries

︸ ︷︷ ︸

observed direct-decomposable symmetries,
acting on some derived field quantities

which are function of fundamental degrees of freedom

(12)

and potentially can explain a Standard Model-like gauge theory setting from a direct-indecomposable
fundamental symmetry, without symmetry breaking. As it was shown in [4, 12] this definition is not
empty: there are nontrivial conservative extensions of the Poincaré group. In this paper we shall show
that there exist Lagrangians which admit such a group as their symmetry.

Since in the presented arguments we were reflecting on the Coleman-Mandula theorem, the above
arguments were given in the global symmetries limit: at special relativistic limit, and with globally
acting gauge symmetries, constant throughout the spacetime. As a closing remark of this section we
recall [4] that in order to make a theory with the local version of the above symmetry requirements,
one merely needs to construct a vector bundle with its structure group being a conservative extension
of the Lorentz group, i.e. like Eq.(11) but without the translations being counted into the structure
group. In the remaining part of the paper, such a construction will be given.
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4 The example structure group of the proposed toy model

The mathematically simplest, i.e. lowest dimensional nonabelian nilpotent Lie group is the so-called
Heisenberg Lie group with 3 generators. Its name comes from the formal resemblance of its Lie
algebra relations to the Heisenberg exchange relations: the Lie algebra of the lowest dimensional
Heisenberg group is spanned by three elements q, p and e, the only nonvanishing bracket relation
being [p, q] = K e where K is some nonzero real number. Since for different values of K they are
naturally isomorphic, one can fix the value of the constant K to an arbitrary preferred nonzero real
number. Take the complexified 3 generator Heisenberg Lie group H3(C). It is well known that the Lie
algebra of its outer derivations is isomorphic to gl(2,C), which mixes the first two generators q and p,
while it acts by a scaling with the trace on the third generator e. Thus, one can rightaway construct
an indecomposable conservative Lorentz group extension with the smallest possible nilpotent part:
H3(C) ⋊ GL(2,C) ≡ H3(C) ⋊

(
U(1)×D(1)×SL(2,C)

)
. Note that this group also contains a compact

part, U(1). The key ingredient for the structure group of our toy model shall be the above group. In
order to continue, we first show that the above is a matrix group, and will find an elegant defining
representation, in order to see a possible field theoretical meaning of such symmetries.

In the followings, we shall use the ordinary two-spinor calculus [14, 15], and in particular its variant
which is most wide spread in the general relativity (GR) literature. Take any two dimensional complex
vector space S (“two-spinor space”), and take its corresponding dual, complex conjugate and complex
conjugate dual vector spaces, denoted by S∗, S̄ and S̄∗, respectively. In the Penrose abstract index
notation [14, 15], elements of S, S∗, S̄, S̄∗ are denoted by upper index, lower index, primed upper
index and primed lower index spinors, respectively, with the spinor indices being based on upper case
latin letters. The symbol T shall denote a four dimensional real vector space (“tangent space”), with
T ∗ being its dual. As usually in the GR literature, Penrose abstract indices of elements of T and T ∗

shall be denoted by lower case latin letter upper and lower indices, respectively.

Take a Grassmann algebra A with 2 generators, i.e. an exterior algebra of a two-dimensional vector
space without a fixed preferred Z-grading. Whenever a preferred Z-grading is fixed, then A may be
identified as A ≡ Λ(S∗), i.e. a spinorial representation of it can be given. A, being a four dimensional
complex unital associative algebra, can act on itself via left multiplication by its invertible elements.2

Clearly, this defines a Lie group action on A ≡ Λ(S∗), and the acting Lie group can be seen to be
isomorphic to C

×

×H3(C), here C
×

denoting the group of complex numbers without the zero element
and with the complex multiplication. To put it short: expLA ≡ C

×

× H3(C), where L(·) denotes
left multiplication within A. Moreover, it is not difficult to see that expLM(A) ≡ H3(C), where
M(A) ⊂ A denotes the maximal ideal (invariant subalgebra of at-least-1-forms) within A. Thus, one
can describe H3(C) with a handy defining representation on A, using ordinary two-spinors. Since
GL(S∗) ≡ GL(Λ1) ≡ GL(M(A)/M2(A)) describes the Z-grading preserving algebra automorphisms
of A [16], the group

(
C

×

× H3(C)
)
⋊

(
U(1)×D(1)×SL(2,C)

)
≡ exp(LA) ⋊ GL(Λ1) indeed has a

natural faithful defining complex-linear representation on A. The structure of the algebra A along
with the natural action of the group exp(LA)⋊GL(Λ1) on it is illustrated in Figure 1. A convenient
basis of the algebra A is spanned by the unit element 1 ∈ Λ0, two linearly independent elements
(generators) a1, a2 ∈ Λ1, and a corresponding two-form a1a2 ∈ Λ2. Using this, the Lie algebra of
expLA ≡ C

×

×H3(C) can be conveniently parameterized by the basis {L1, La1 , La2 , La1a2}, and indeed
one may evaluate that the Lie algebra spanned by La1 , La2 , La1a2 is isomorphic to the Lie algebra of
H3(C), and of course the Lie algebra spanned by L1 alone is isomorphic to the Lie algebra of C

×

.
Clearly, the defining representation over A induces a canonical faithful representation on the complex

2It is well known that the invertible elements of Grassmann algebra are those which have nonzero scalar (zero-form)
component. To put it differently: invertible elements are those which are exponentials of any elements.
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conjugate space Ā via the requirement of being compatible with the A → Ā complex conjugation
map.

(a)

Λ 0

Λ 1

Λ 2

A

(b)
ξ A

ε [CD]

φ

ψ

(c)

(d)

AB( )

(e)

A)M(

(f)

A)M(
2

(g)

A)Z(

(h) (i) (j)

A)M(

(k)

A)M(
2

Figure 1: Illustration of the structure of the complex unital associative algebra A ≡ Λ(S∗) and the
natural group action of the conservative Lorentz group extension exp(LA)⋊GL(Λ1) over it. Panel (a):

the algebra A with a fixed Z-grading (Λk ≡
k
∧S∗). Panel (b): whenever a fixed Z-grading is taken, an

element ψ of A can be represented by a tuple of spinors. Panel (c): heuristically speaking, the algebra
A can be considered as a creation operator algebra of fermions with 2 degrees of freedom. Panels (d)–
(e)–(f)–(g): important subspaces of the algebra A, namely the scalar sector B(A), the maximal ideal
M(A), and its second power M2(A), moreover its center Z(A). Panels (h)–(i): illustration of the
group action of the grading preserving part (GL(Λ1)) and of the grading non-preserving part (expLA)
of the full symmetry group exp(LA) ⋊GL(Λ1). The grading preserving part, by definition conserves
the k-form subspaces, whereas the grading non-preserving part mixes higher forms to lower forms.
Panels (j)–(k): list of all the invariant subspaces, which are invariant to the group action of the full
symmetry group exp(LA)⋊GL(Λ1). It is seen that none of the invariant subspaces possess an invariant
complementing subspace, and thus the defining representation on A is not totally reducible. In other
words: the pertinent group action puts A into a single multiplet. Note that in the representation
space of a non-semisimple Lie group an invariant subspace might not have invariant complement, i.e.
a reducible representation might still be an indecomposable (non-direct sum) multiplet.
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Our actual representation space shall be A := Ā ⊗ A, where Ā denotes the complex conjugate
vector space of A and ⊗ denotes ordinary, i.e. vector space sense tensor product (and not a graded
tensor product, for instance). Clearly, A and Ā may be naturally embedded into A as the subspaces
1̄ ⊗ A and Ā ⊗ 1, respectively. The algebra A is a kind of doubled exterior algebra, which we
named spin algebra, being a 16 dimensional complex unital associative algebra, along with a natural
conjugate-linear (·) : A → A involution on it, which we call charge conjugation, and which has the
property x y = x y. The charge conjugation map is simply defined by the composition of the complex
conjugation as a Ā ⊗ A → A ⊗ Ā map and of the tensor product swapping as a A ⊗ Ā → Ā ⊗ A
map, hence giving rise to a Ā ⊗ A → Ā ⊗ A conjugate-linear involution on A. Clearly, our pertinent
conservative Lorentz group extension has a canonical action on A = Ā⊗A, inherited from the defining
action on A. It is easy to observe that by construction, the complex phase of the group action of the
expLB(A) ≡ C

×

part will only act trivially on the representation space A, but the other parts act
faithfully there. That is, the invariant subgroup expLB(A) shall act merely as expLRe(B(A)) ≡ D(1)
on A, while the other parts act faithfully. The matter fields in our model will take their values in A,
and our Lorentz group extension

G0 := exp
(
LRe(B(A))+M(A)

)
⋊ GL(Λ1)

≡
(
D(1)

Z
×H3(C)

)
⋊

(
U(1)×D(1)×SL(2,C)

)

≡ D(1)
Z

×
(

H3(C) ⋊
(
U(1)×D(1)×SL(2,C)

))

(13)

acts faithfully and real-linearly on it, while also preserving the charge conjugation map (·). It is seen
from Eq.(13) that one has two copies of D(1) within G0: one of them originates from the subgroup
expLRe(B(A)), and is direct decomposable from the other parts of G0, and we structurally denoted it
by D(1)

Z
. The other D(1) part sits in the remaining, direct indecomposable part of G0. A further

observation is that, by construction, the conjugate-linear involution (·) of charge conjugation leaves G0

invariant, thus, one can form the semidirect product group G := G0⋊{I, (·)}, which is G0 together with
the charge conjugation operation. The structure of the spin algebra A along with the natural action
of the group G on it is illustrated in Figure 2. It is seen that although G-invariant subspaces within
A do exist, but none of them has an invariant complement, and thus the representation space of A is
direct indecomposable. One should note that due to the presence of the nilpotent part of G the usual
behavior of semisimple group representations does not apply: the presence of an invariant subspace
does not imply the presence of an invariant complement, i.e. it does not imply total reducibility.

Before we continue, we briefly mention the heuristic meaning of the representation space A and
the group action of G on it. Since A = Ā ⊗ A, the algebra A can be heuristically considered as a
creation operator algebra of two kinds of fermions, each having 2 degrees of freedom, and the two kinds
being related to each-other via the charge conjugation operation (·). The finite dimensional real Lie
group G, defined above, acts naturally on A, and the meaning of grading preserving transformations
of G is clear: they generate U(1) and D(1)×SL(2,C) transformations on the generating sector Λ0̄1

and corresponding natural action on all of the sectors Λp̄q, and thus on the entire A ≡
2⊕

p,q=0
Λp̄q. The

grading non-preserving transformations mix higher forms to lower forms, deforming the original Z×Z-
grading of A to an other equivalent one. In the heuristic picture of creation operator algebras, the
corresponding grading non-preserving group action of G on an element Ψ ∈ A would mean insertion
of equal amount of particles and corresponding charge conjugate particles into Ψ. In the following
part we investigate important G-invariant functions on the representations A and A in order to cast
further light on the meaning of these grading deforming nilpotent transformations.
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(a)

Λ 00

Λ 22

Λ 11

Λ 10 Λ 01

Λ 21 Λ 12

Λ 20 Λ 02

A

(b)

ω[A’B’][CD]

χ
(+)[C’D’]A

χ
(−)A’[CD]

ε (+)[A’B’] ε (−)[AB]v A’B

ξ
(+)A’

ξ
(−)A

φ

Ψ

(c)

(d)

B(A)

(e)

M(A)

(f)

Z(A)

(g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 2: Illustration of the structure of the spin algebra A ≡ Λ(S̄∗) ⊗ Λ(S∗) and the natural group
action of the conservative Lorentz group extension G from over it. Panel (a): the algebra A with

a fixed Z×Z-grading (Λp̄q ≡
p
∧ S̄∗ ⊗

q
∧S∗). Panel (b): whenever a fixed Z×Z-grading is taken, an

element Ψ of A can be represented by a tuple of spinors. Panel (c): heuristically speaking, the algebra
A can be considered as a creation operator algebra of two distinct kind of fermions with 2 degrees of
freedom each, and the two kinds being charge conjugate to each-other. Panels (d)–(e)–(f): important
subspaces of the algebra A, namely the scalar sector B(A), the maximal ideal M(A), moreover its
center Z(A). Panels (g)–(h): illustration of the group action of the grading preserving part and of
the grading non-preserving part of the symmetry group G. Panels (i)–(n): list of all the subspaces of
A, which are invariant under the group action of the symmetry group G. It is seen that no invariant
complementing subspaces exist, i.e. A is an indecomposable multiplet.
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4.1 Important invariant functions on representations of the example group

For convenience, introduce an important subgroup SG0 of G0 which acts trivially on the scalars
A/M(A) and on the maximal forms M4(A) of the spin algebra A. It is nothing but G0 without
the D(1) and D(1)

Z
parts, i.e. it is the “special” subgroup of G0, and is seen to be isomorphic to

H3(C) ⋊
(
U(1)×SL(2,C)

)
, being the smallest dimensional conservative unification of a compact Lie

group and of the Lorentz symmetries. The invariant theory of G is most easily studied via the invariant
theory of its special subgroup SG0, and subsequent study of the action of the dilatation groups D(1)
and D(1)

Z
. We will need to introduce one even smaller subgroup S

×

G0 which is the subgroup of SG0

acting also trivially on M2(A), i.e. on the maximal forms of A. That is, S
×

G0 is SG0 without the U(1)
component, and thus it is isomorphic to H3(C)⋊SL(2,C), being the smallest dimensional conservative
extension of the Lorentz symmetries.

Using the LieAlgebrasMaple package [17], one can search for invariant functions of the pertinent
group. For instance, one can show that there is a single functionally independent A → C map,
which is invariant to the group action of S

×

G0, and is nothing but the scalar component function
b : A → C, ψ 7→ bψ, where b picks out the scalar component (zero-form) of an element of A. In a two-
spinor representation ψ ≡ (φ, ξ

A
, ε

[BC]
) of an element ψ ∈ A, one has that bψ = φ. Similarly, one can

search for A×A → C functions, invariant to S
×

G0, and these turn out to be functional combinations
of these three invariants:

(ψ,ψ′) 7→ bψ,
(ψ,ψ′) 7→ bψ′,
(ψ,ψ′) 7→ λ(ψ,ψ

′) := (b∂1ψ)(b∂2ψ
′)− (b∂2ψ)(b∂1ψ

′)
−(bψ)(b∂2∂1ψ

′) + (b∂2∂1ψ)(bψ
′) (14)

where ∂1, ∂2 are stepping down operators associated to some arbitrarily chosen generators a1, a2 ∈ Λ1.
The invariance of the A × A → C bilinear function λ is most easily understood via verifying the
identity λ(ψ,ψ′) = (bψ)2

(
b∂2∂1(ψ

−1ψ′)
)
for any element ψ′ ∈ A and any invertible element ψ ∈ A.

It is clear that the function b : A → C is invariant, moreover, by construction of S
×

G0, the map
A × A → A, (ψ,ψ′) → ψ−1ψ′ is invariant, thus the bilinear form λ indeed has to be invariant. In
two-spinor representation by setting ψ ≡ (φ, ξ

A
, ε

[BC]
) and ψ′ ≡ (φ′, ξ′

A
, ε′

[BC]
) one has that λ(ψ,ψ′) =

−1
2ǫ

[AB]
(

ξ
A
ξ′

B
− ξ′

A
ξ
B
+ φ ε′

[AB]
− φ′ ε

[AB]

)

, where ǫ
[AB]

∈
2
∧S∗ ≡ M2(A) is an arbitrary but fixed

nonzero maximal form in A, and ǫ

[AB]
is its corresponding inverse maximal form satisfying ǫ

[AB]
ǫ

[BC]
=

δ
A

C

. It is seen that λ is a nondegenerate symplectic form, and that its choice is unique up to a complex

multiplier, i.e. up to the choice of ǫ
[AB]

. With this, we have also shown that S
×

G0 is a subgroup of
Sp(4). One could say that the symplectic form λ is a natural generalization of the spinor symplectic

form ǫ

[AB]
, from the lower index two-spinor space S∗ to the exterior algebra A ≡ Λ(S∗) of that.

The ambiguous complex normalization of λ can be made more explicit by introducing the notation
λ 1

ǫ

, where one requires λ 1
ǫ

(1, ǫ) = 1 to hold for a fixed nonzero maximal form ǫ ∈ M2(A). Here, 1
ǫ

symbolically denotes the unique dual maximal form in M2∗(A) which satisfies (1
ǫ
|ǫ) = 1, the symbol

(·|·) denoting duality pairing form.

Using again the LieAlgebras Maple package [17], one can search for SG0-invariant functions of A.
For instance, one can show that there is a single functionally independent invariant A→ C function,
namely b̄⊗b, picking out the scalar component (zero-form) of an element in A. In the followings we
shall use the abbreviation b for b̄⊗b, since their distinction is not relevant. Similarly, one can search
for A×A→ C functions, invariant to SG0, and these turn out to be functional combinations of these
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three invariants:

(Ψ,Ψ′) 7→ bΨ,
(Ψ,Ψ′) 7→ bΨ′,
(Ψ,Ψ′) 7→ L(Ψ,Ψ

′) :=
(
λ̄⊗λ

)
◦ (IĀ⊗J⊗IA) (Ψ⊗Ψ′) (15)

where J denotes the A⊗ Ā → Ā ⊗ A swapping map, whereas IĀ and IA denote the identity map of
Ā and A, respectively. If a preferred Z×Z-grading is taken along with generators a1, a2 ∈ Λ0̄1, and
corresponding stepping down operators ∂1, ∂2, then the concrete expression

L(Ψ,Ψ′) = b∂̄2∂̄1∂2∂1
(
(Ψ0̄0 −Ψ1̄0 −Ψ0̄1 +Ψ1̄1 −Ψ2̄0 −Ψ0̄2 +Ψ2̄1 +Ψ1̄2 +Ψ2̄2)Ψ

′)

holds for all Ψ,Ψ′ ∈ A. By construction, L is a nondegenerate symmetric bilinear form with alternating
signature (+1,−1,+1,−1, . . . ). The invariant bilinear map L shall play a key role in the construction
of G-invariant Lagrangians. When expressed in terms of two-spinor representation A ≡ Λ(S̄∗)⊗Λ(S∗),
then for two elements

Ψ ≡
(

φ, ξ̄
(+)A′ , ξ(−)A

, ε̄
(+)[A′B′]

, v
[A′B]

, ε
(−)[AB]

, χ̄
(+)[A′B′]C

, χ
(−)C′[AB]

, ω
[A′B′][AB]

)

and
Ψ′ ≡

(

φ′, ξ̄′
(+)A′

, ξ′
(−)A

, ε̄′
(+)[A′B′]

, v′
[A′B]

, ε′
(−)[AB]

, χ̄′
(+)[A′B′]C

, χ′
(−)C′[AB]

, ω′
[A′B′][AB]

)

one has the identity

L(Ψ,Ψ′) =
1

4
ω

[A′B′][CD]
(

φω′
[A′B′][CD]

− 2ξ̄
(+)[A′ χ

′
(−)B′][CD]

− 2ξ
(−)[C

χ̄′
(+)[A′B′]D]

+ 4v
[A′[C

v′
B′]D]

−ε̄
(+)[A′B′]

ε′
(−)[CD]

− ε
(−)[CD]

ε̄′
(+)[A′B′]

+2χ̄
(+)[A′B′][C

ξ′
(−)D]

+ 2χ
(−)[A′[CD]

ξ̄′
(+)B′]

+ ω
[A′B′][CD]

φ′
)

,

where ω
[A′B′][CD]

∈
2
∧ S̄∗⊗

2
∧S∗ ≡M4(A) is an arbitrary but fixed nonzero positive maximal form of A,

and ω

[A′
B
′][CD]

is its inverse maximal form with the normalization convention ω
[A′B′][DE]

ω

[B′
C
′][EF ]

=

δ̄A′
C′

δD
F . Due to the invariance of the nondegenerate symmetric bilinear form L, the nondegenerate

hermitian sesquilinear form L((·), ·) is also invariant, and shall be shown to be a generalization of
the sesquilinear form defined by the Dirac adjoint operation, in conventional Dirac theory.3 The
ambiguous real normalization of L can be made more explicit by introducing the notation L 1

ω

, where

one requires L 1
ω

(1,ω) = 1 to hold for a fixed nonzero real maximal form ω ∈ Re(M4(A)). Here, 1
ω

symbolically denotes the unique dual maximal form in M4∗(A) which satisfies ( 1
ω
|ω) = 1, the symbol

(·|·) denoting duality pairing form.

Before we can go on to the formulation of G-invariant theories, invocation of a further invari-
ant object needs to be introduced. As it is well-known [14, 15], the ordinary two-spinor formal-
ism is based on the fact that the vector space Re

(
S̄⊗S

)
is four real dimensional, moreover for any

nonzero maximal form ǫ
[AB]

∈
2
∧S∗ one has that the form ω

[A′B′][AB]
:= ǭ

[A′B′]
⊗ ǫ

[AB]
defines a

nondegenerate, symmetric, Lorentz signature (+,-,-,-) real-bilinear form on Re
(
S̄⊗S

)
. Moreover, if

3 Also, let us also remark that the formal resemblance of the structure of the spin algebra A ≡ Λ(S̄∗)⊗Λ(S∗) to the
algebra of superfields in SUSY theories is only superficial: when represented by two-spinors, the superfields take their
values in Λ(S̄∗⊕S

∗) which has very different algebraic structure in comparison to Λ(S̄∗)⊗Λ(S∗).
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T is any four dimensional real vector space (“tangent space”), then one may fix a linear injection

σ
A
′
A

a : T → Re
(
S̄⊗S

)
(called soldering form or Pauli map or Infeld–Van der Waerden symbol), and

with that one induces a Lorentz metric g(σ,ω)ab := σ
A
′
A

a σ
B
′
B

b ω
[A′B′][AB]

over T . This philosophy
naturally generalizes to the spin algebra case: the soldering form can be taken instead to be a lin-

ear injection σ
A
′
A

a : T → Re
((
M(Ā)/M2(Ā)

)∗
⊗

(
M(A)/M2(A)

)∗
)

, since the natural identification

M(A)/M2(A) ≡ S∗ holds in any spinorial realization. Clearly, this induces a natural real-linear rep-

resentation of G on T , by requiring the soldering form σ
A
′
A

a to be constant under the simultaneous
group action on A and T . This linear action on T is nothing but the Weyl group: the Lorentz group
together with the metric rescalings. Having this, one can construct a further equivalent realization of
the soldering form. Using again the LieAlgebrasMaple package [17], one can show that the subspace
of elements of Lin(A) which are invariant to the Heisenberg (nilpotent) group action of exp LM(A), is
nothing but RA, i.e. the image of the spin algebra A in Lin(A) by the right multiplication. Of course,
the Heisenberg-invariance of the elements of RA ⊂ Lin(A) follows from the construction of G, but the
pertinent check is needed in order to prove that the subspace of Heisenberg-invariant operators is not
larger. After verifying this, it follows that, up to a real multiplier, the only G-invariant T ∗ → Lin(A)
real-linear injective map is σa

A′A
where the lower spinorial indices here are to be understood as right

multiplication operations in A, in any spinorial representation of A. In order to avoid confusion, from
now on we denote that map by σ

a, when suppressing the (lower) spinor indices, i.e. when not referring
to an explicit spinorial representation of A. Several identities inherit, by construction, from ordinary
two-spinor calculus, for instance σ

a
σ
b is a Re+(M

4(A)) valued Lorentz signature metric on T ∗, or
equivalently, it is a real valued Lorentz signature metric conformal equivalence class on T ∗. As in

ordinary two-spinor calculus, σa
A′A

simply denotes the inverse of the linear map σ
A
′
A

a : T → Re(S̄⊗S),

i.e. it is uniquely determined via the relation σa
A′A

σ
A
′
A

b = δab. Due to the Heisenberg-invariance of RA
and RA, one has that the natural injection of S → RA is G-invariant, which shall be denoted by the
symbol R

δ
A , and that takes an element of S into a corresponding right multiplication by a one-form.

Using this notation, one has the expression σ
a = σa

A′A
R

δ̄
A′⊗R

δ
A , which will be needed later.

As mentioned in the above paragraph, given a soldering form σ
A
′
A

a and a real maximal form
ω ∈ Re(M4(A)), the Lorentz metric g(σ,ω)ab is naturally defined, and therefore also its corresponding

inverse metric. The formula for the inverse metric, as usually, can be expressed as σa
A′A

σb
B′B

ω

[A′
B
′][AB]

in the two-spinor calculus, and will be symbolically denoted by g(σ, 1
ω
)ab, emphasizing the inverse

behavior with the scaling of its ω argument. Associated to the metric g(σ,ω)ab, also a unique volume

form in
4
∧T ∗ exists (up to orientation sign), and that can be expressed in the form

v(o, σ,ω)[abcd] := o
(
iσ

E
′
E

a σ
F
′
F

b σ
B
′
A

c σ
A
′
B

d ω
[E′A′][EA]

ω
[F ′B′][FB]

−iσ
E
′
E

a σ
F
′
F

b σ
B
′
A

d σ
A
′
B

c ω
[E′A′][EA]

ω
[F ′B′][FB]

)

[14, 15], where o = ±1 describes the chosen orientation sign. The spin tensor is a further function of

σ
A
′
A

a according to the definition

Σ(σ)a
b
C

D

:= iσ
A
′
D

a σb
A′C

− i g(σ, 1
ω
)cb g(σ,ω)ad σ

A
′
D

c σd
A′C

which is a tensor of T ∗⊗T ⊗ S∗⊗S, with S∗ denoting the factor space M(A)
/
M2(A) in the analogy

of the dual two-spinor space. This is all as usual in the ordinary two-spinor calculus [14, 15], with the
slight generalization of providing representation space for the nilpotent H3(C) Lie group component
of our symmetry group G.
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5 The example Lagrangian

In order to define our Lagrangian, we assume that our matter fields are sections of an A-valued vector
bundle over a four dimensional spacetime, as illustrated in Figure 3. A distantly similar construction
was tried by Anco and Wald [18], but the algebra they employed was too small in order to accommodate
representation space for any symmetries larger than the conventional ones. In our construction, we
take a four dimensional real manifold M, and a spin algebra valued vector bundle A(M) over it, being
of the form A(M) = Ā(M)⊗A(M) with A(M) being a two generator Grassmann algebra bundle
over M. The vector bundle A(M) is considered to be associated to the principal bundle G(M) with a

structure group G. In the analogy of ordinary two-spinor calculus [14, 15], we assume a σ
A
′
A

a pointwise
T (M) → Re

(
S̄(M)⊗S(M)

)
soldering form to be present, where S∗(M) :=M(A)(M)

/
M2(A)(M).

Taking into account the findings in the previous section, one has a σ
a alternative realization of the

soldering, being a pointwise intertwining map T ∗(M) → Lin(A)(M). The fields σ
A
′
A

a and σ
a are

in one-to-one correspondence as mentioned in the previous section. If one takes a nowhere zero
maximal form field ω being a section of M4(A)(M), then one has the Lorentz metric field g(σ,ω)ab
as mentioned in the previous section, with its corresponding inverse metric tensor field g(σ, 1

ω
)ab,

corresponding volume form field v(o, σ,ω)[abcd] (with o = ±1 being the chosen spacetime orientation

sign), and corresponding field of spin tensor Σ(σ)a
b
C

D

. These will be the auxiliary quantities with
which it is most transparent to express our invariant Lagrangian.

spin algebra valued fields

4d spacetime manifold

Figure 3: Illustration of the concept of spin algebra valued fields. The structure group of such a theory
can be set to be a conservative unification G of the Lorentz and of the compact U(1) symmetries.

Our action principle shall be Palatini-like, i.e. the metric will not be a distinguished field. In fact, it

will be a function of other fundamental fields (the soldering form σ
A
′
A

a etc). The matter field sector of

the theory will consist of the soldering form σ
A
′
A

a and of a section Ψ of the spin algebra bundle A(M).
Moreover, as in the Palatini formalism, the G-gauge-covariant derivation ∇a is independently varied
from the matter field sector. The actual Lagrangian shall be a real volume form valued pointwise
vector bundle mapping

(o, σ
A′A

a , Ψ, ∇aΨ, P (∇)ab) 7−→ L(o, σ
A′A

a , Ψ, ∇aΨ, P (∇)ab) (16)

with the requirement of being G-gauge-covariant in the internal and tangent indices, and being diffeo-
morphism covariant in the tangent indices. Here P (∇)ab denotes the curvature tensor of a G-gauge-
covariant derivation ∇a. The action functional is, as usually, defined as local integrals of the pertinent
volume form over compact regions of the spacetime M. Besides the G-gauge-covariance and diffeo-
morphism covariance, we require further symmetry properties. Namely, we require that the theory is
chiral, i.e. that the Lagrangian changes sign when changing the orientation o to opposite. Moreover

17



we require the theory to be CPT covariant in the sense that a pointwise charge conjugation (·) on

A(M) shall have a representation (Ψ, σ
A
′
A

a ) 7→ (Ψ,−σ
A
′
A

a ), i.e. a sign reversal of spacetime vectors.
We also require that the Lagrangian does not depend on an overall complex phase of Ψ. In addition,
we require that the Lagrangian is invariant to a shift transformation of the gauge-covariant derivation
according to ∇a 7→ ∇a+Ca in the manner of Section 2, where now Ca denotes a smooth covector field
taking its values in the normal sub-Lie algebra of G, corresponding to the D(1)

Z
×

(
H3(C) ⋊ D(1)

)

part, i.e. to the noncompact part of the radical of G. The search for all such invariant volume form
valued expressions in principle can be addressed by the LieAlgebras Maple package [17]. However,
due to the relative large dimension of the total pointwise degrees of freedom, the pertinent library was
not able to answer this question in its full generality. We were able to find, though, several invariant
terms, and there is strong evidence that these are all. The pertinent invariant terms assuming fixed
polynomial order in either P (∇)ab or in ∇aΨ are enumerated in the followings.

Yang–Mills-like term. Clearly, the tensor field v(o, σ,ω) g(σ, 1
ω
)ab g(σ, 1

ω
)cd only depends on the

orientation o and the soldering form σ, in particular it does not depend on ω. It therefore does not
come as a surprise that the only invariant Lagrangian bilinear in the curvature P (∇)ab and satisfying
positive energy density condition for gauge fields is:

L
YM

(o, σ
A
′
A

a , Ψ, ∇aΨ, P (∇)ab) =

v(o, σ,ω) g(σ, 1
ω
)ac g(σ, 1

ω
)bd Im

(
Tr|Λ0̄1

P (∇)ab
)
Im

(
Tr|Λ0̄1

P (∇)cd
)
. (17)

This is nothing but literally the Maxwell Lagrangian, as expressed in our field variables. It is remark-
able that only the U(1) part of the connection gives contribution, while being G-covariant.

Einstein–Hilbert-like term. The tensor field v(o, σ,ω) g(σ, 1
ω
)ab L 1

ω

(Ψ,Ψ) does not depend

on the maximal form ω. Thus, it is not surprising that the only invariant Lagrangian linear in the
curvature P (∇)ab is:

L
EH

(o, σ
A
′
A

a , Ψ, ∇aΨ, P (∇)ab) =

v(o, σ,ω) g(σ, 1
ω
)ab L 1

ω

(Ψ,Ψ) Re
(
Tr|Λ0̄1

(
iΣ(σ)a

c P (∇)cb
))
. (18)

This is nothing but a rather straightforward generalization of the Einstein–Hilbert Lagrangian, as
expressed in spinorial variables. The only difference is that the prefactor of the scalar curvature is
the field L 1

ω

(Ψ,Ψ) instead of the constant 1/(Planck length)2. It is remarkable that only the SL(2,C)

part of the connection gives contribution while the full expression being G-covariant.

Klein–Gordon-like term is not allowed. That is because although the form field field
v(o, σ,ω) g(σ, 1

ω
)ab L 1

ω

((·), ·) does not depend on ω, and therefore the expression

L
KG

(o, σ
A
′
A

a , Ψ, ∇aΨ, P (∇)ab) =

v(o, σ,ω) g(σ, 1
ω
)ab L 1

ω

(
i∇a(Ψ), i∇b(Ψ)

)
(19)

is an invariant of the aimed kind, except that it is not invariant to the shift symmetry ∇a 7→ ∇a +Ca

with Ca being smooth covector field taking its values in the normal sub-Lie algebra of G, corresponding
to the D(1)Z ×

(
H3(C) ⋊ D(1)

)
. Thus, a Klein–Gordon-like second order term in ∇aΨ is disallowed

by the pertinent shift symmetry.

Dirac-like term. Here the calculations have to rely more intensively on the symbolic Maple
calculation. It turns out that the G-gauge-covariance, the diffeomorphism covariance, along with
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the CPT covariance, and the independence from the phase of Ψ singles out 13 linearly independent
Lagrangians, which are first order in ∇aΨ. However, the connection shift invariance singles out 1
unique invariant, resembling to a generalization of a Dirac term. It reads:

L
D
(o, σ

A
′
A

a , Ψ, ∇aΨ, P (∇)ab) =

v(o, σ,ω) 1√
2
Re

(

L 1
ω

(
Ψ, γ(Ψ,Ψ, 1

ω
)a i∇a(Ψ)

) )

(20)

where γ(Ψ,Ψ, 1
ω
)a is a T ∗(M) → Lin(A)(M) pointwise linear map, defined as

γ(Ψ,Ψ′, 1
ω
)a(·) :=

1√
2
σa

A′A

(

(R
δ
A Ψ) L 1

ω

(
R

δ̄
A′ Ψ′, ·

)
+ (R

δ̄
A′ Ψ) L 1

ω

(
R

δ
A Ψ′, ·

) )

.

Here, the notation R
δ
A and R

δ̄
A′ denote the pointwise injections S∗ → RA and S̄∗ → RĀ, which are

well defined (one has the identity σ
a = σa

A′A
R

δ̄
A′ ⊗R

δ
A). This Lagrangian is a kind of generalization

of the Dirac kinetic term in the following sense. Introduce a fixed Z×Z-grading of A, then one can
realize that when restricted to the ±1 U(1) charge subspaces D+ := Λ1̄0⊕Λ2̄1 and D− := Λ0̄1⊕Λ1̄2,
then γ(Ψ0,Ψ0,

1
ω
)a admits the Clifford property against a metric proportional to g(σ, 1

ω
)ab, whenever

the background field Ψ0 takes its value in the spin-free subspace, i.e. in the center Z(A) of the
spin algebra A. Moreover, also when the sesquilinear map L 1

ω

(
(·), ·

)
is restricted to D+ or D−, it

corresponds to the one generated by the Dirac adjoint in ordinary Dirac bispinor formalism. This is
illustrated in Figure 4.
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Figure 4: Illustration of the fact that whenever a fixed Z×Z-grading of the spin algebra A is taken, then
the ±1 U(1) charge subspaces D+ := Λ1̄0⊕Λ2̄1 and D− := Λ0̄1⊕Λ1̄2 can be considered as embedded
Dirac bispinor spaces in A.

Fourth order self-interaction potential. The volume form valued fourth order form field
v(o, σ,ω)L 1

ω

(·, ·)L 1
ω

(·, ·) does not depend on ω, thus one expects invariant Lagrangians based on it.

Relying on the symbolic Maple calculation it turns out that there are 5 independent self-interaction

terms, merely dependent on Ψ and σ
A
′
A

a . These all happen to be all fourth order in Ψ. Moreover, only
2 of these satisfy the condition of having definite sign (non-negativity condition). The most general
form of the self-interaction potential is thus:

L
V
(o, σ

A
′
A

a , Ψ, ∇aΨ, P (∇)ab) =

v(o, σ,ω)
(

α1 L 1
ω

(
Ψ,Ψ

)
L 1

ω

(
Ψ,Ψ

)
+ α2 L 1

ω

(
Ψ,Ψ

)
L 1

ω

(
Ψ,Ψ

) )

(21)

with real constants α1 and α2.

As mentioned, due to the high dimensionality of the problem we were not able to formally prove
that the above exhaust the set of linearly independent invariant Lagrangians, but there is strong
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evidence that these are all. In any case, their linear combination

LAYM, AEH, AD, AV
:= AYM L

YM
+ AEH L

EH
+ AD L

D
+ AV L

V
(22)

also satisfy the pertinent invariance properties, with real coupling constants AYM, AEH, AD, AV. The
question naturally arises: to what degree the behavior of the theory depends on these coupling con-
stants. In order to address this question, the equivalence of two instances of such theory needs to be
defined first. An instance

(

M, A(M), G(M), (AYM, AEH, AD, AV), LAYM, AEH, AD, AV

)

of the theory is said to be equivalent to an other instance

(

M′, A′(M′), G′(M′), (A′
YM, A

′
EH, A

′
D, A

′
V), L

′
A′

YM, A′
EH, A′

D, A′
V

)

whenever there exists a principal bundle isomorphism G(M) → G′(M′) with underlying vector bundle
isomorphism A(M) → A′(M′) and underlying diffeomorphism M → M′, such that LAYM,AEH,AD,AV

is mapped to L′
A′

YM,A′
EH,A′

D,A′
V
, up to a nonzero real multiplier. The overall normalization can be dis-

regarded for a classical field theory, since the Euler-Lagrange equations do not depend on the absolute
normalization of the Lagrange form. Assume that we have one instance of the theory with all the
coupling constants being nonzero. Then, all such theories are equivalent to an instance with coupling
factors 1, AEH, AD, AV, i.e. when the Yang–Mills coupling factor is fixed to 1, by convention. More-
over, due to the different homogeneity degree of the terms L

YM
, L

EH
, L

D
, L

V
, with global rescaling of

the fields σ
A
′
A

a and Ψ, one can find equivalent instances of the theory with coupling factors 1, 1, 1, AV .
The remaining coupling factor AV can then be merged with the coupling factors α1, α2 within L

V
. In

the end, after such equivalence factorization, thus the theory has two coupling factors α1 and α2.

The heuristical meaning of the theory can be deduced from the picture outlined in Figure 3. Ac-
cording to that, such a model describes the field equations of a classical field, which spacetime pointwise
has degrees of freedom similar to a second quantized fermionic theory, i.e. with pointwise degrees of
freedom obeying Pauli principle. As such, it may be a kind of semiclassical limit of a QFT-like model.
In this QFT heuristic picture, besides the usual compact gauge, Lorentz and dilatation symmetries,
the theory is symmetric to the transformation when equal amount of fermions and antifermions are
injected into a configuration spacetime pointwise, and this happens to be isomorphic to a pointwise
H3(C) Heisenberg group action. It also turns out that the “exotic” gauge fields can be completely
transformed out from the theory due to an extra affine shift symmetry on the connection, which is
similar to that of Section 2.

6 Concluding remarks

In this paper we showed an example toy model which exhibits a curious behavior: not all its local
symmetry generators are accompanied by corresponding gauge bosons. As an introductory example
we showed that already the Dirac kinetic Lagrangian shows an extremely simplified version for such
behavior: the gauge boson fields corresponding to the dilatation symmetry do not give contribution
to the theory. In other words: the Lagrangian has a hidden affine symmetry, namely it is invariant
to an affine shift of the dilatation gauge connection. We showed that such behavior can eventually be
also exhibited by more complicated internal symmetry groups, and even by indecomposable (unified)
ones. The necessary condition, however, is that these “exotic” symmetry generators, whose gauge
bosons can be transformed out, do span a normal sub-Lie algebra of the internal symmetries. Due
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to the general structural theorem of Lie algebras (Levi decomposition) this implies that only theories
having nilpotent and compact gauge symmetry generators can eventually show such behavior. We
have shown a constructive example Lagrangian for such a case, with indecomposable (unified) internal
symmetry group.
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A Geometric picture behind the D(1) invariance

The notion of D(1) gauge charge mentioned in Section 2 can be reformulated in a geometrically even
more elegant setting. The key idea is motivated by a work of Matolcsi [19] and of Janys̆ka, Modugno,
Vitolo [20], in which they proposed a simple mathematical framework for formal mathematical han-
dling of physical units. In their concept, the mathematical model of special relativistic spacetime is
considered to be a triplet (M, L, η), where M is a four dimensional real affine space (modeling the
flat spacetime), L is a one dimensional oriented vector space (modeling the one dimensional vector

space of length values), and η :
2
∨T →

2
⊗L is the flat Lorentz signature metric (constant throughout

the spacetime), where T is the underlying vector space of M (“tangent space”). The important idea
in that construction is: the field quantities, such as the metric tensor η, are not simply real valued,
but they take their values in the tensor powers of the measure line L.4 Due to the one-dimensionality
of L, it can be shown that all rational tensor powers of it makes sense as a distinct vector space.5

Such a setting formalizes the physical expectation that quantities actually have physical dimensions
(the metric carries length-square dimension in this case), and that quantities with different physical
dimensions cannot be added since they reside in different vector spaces. It is seen that the technique
of measure lines is nothing but the precise mathematical formulation of ordinary dimensional analysis
in physics.

Such mathematically precise formulation of dimensional analysis, although may seem to be a
relatively innocent, almost tautological idea at a first glance, it becomes quite a powerful tool when
carried over to a general relativistic framework. Namely, let our spacetime manifold M be some
four dimensional real manifold, and let L(M) be a real oriented vector bundle over M, with one
dimensional fiber. The fiber of L(M) over each point of M shall model the oriented vector space of
length values, and the pertinent line bundle shall be called the measure line bundle, or line bundle of
lengths. We do not assume anything more about the line bundle L(M), and in particular, we do not
assume that a preferred trivialization is given. Just like proposed in [19, 20], the field quantities shall
carry certain tensor powers of L(M). For instance, reflecting on the example of Section 2, we assume

that a Dirac field Ψ is a section of the vector bundle L
−

3
2 (M)⊗D(M), where D(M) is an ordinary

(dimension-free) Dirac bispinor vector bundle. Similarly, one can assume that the spacetime metric
gab is a section of the vector bundle L2(M)⊗∨2 T ∗(M), and that the Clifford map γa is a section of

4The term measure line was introduced by [19], whereas the same concept is called scale space by [20]. Apparently,
these two group of authors discovered the pertinent rather useful notion independently.

5Indeed, L∗ denoting the dual vector space of L, for any non-negative integer n one can set Ln :=
n

⊗L and L
−n :=

n

⊗L
∗

in order to make sense of any signed integer tensor powers of L. Moreover, due to the one-dimensionality of L, the n-th

tensorial root n
√
L of L also can be shown to make sense uniquely [19, 20], via requiring the defining property

n

⊗
(

n
√
L
)

= L.
As such, all rational tensor powers of a one dimensional oriented vector space L makes sense, and that is a key ingredient
for encoding dimensional analysis.
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the vector bundle L−1(M)⊗ T (M) ⊗D(M) ⊗D∗(M), accordingly. All this differential geometrical
formalism encodes the physical idea that the quantities are tagged by physical dimensions, and that
the units of measurements can only be a priori defined spacetime pointwise: in order to transport the
unit length to different spacetime points, a connection on L(M) must be specified. As such, in order
to make sense of the field gauge-covariant gradient ∇aΨ, besides the usual gauge-covariant derivation
on D(M), a covariant derivation on the line bundle of lengths L(M) must be implicitly assumed
within ∇a, and these two joined canonically on the tensor product space via the usual Leibniz rule.
When constructing the Lagrangian as a volume form valued mapping, one should keep in mind that
it must be dimension-free (carrying zero tensor powers of L(M)), since only pure volume forms may
be integrated over a manifold without any further assumptions, so that the action functional can be
defined. As such, with the above assignment of dimensions, our example Lagrangian for the Dirac

kinetic term Eq.(1) indeed takes its values purely as section of
dim(M)

∧ T ∗(M), i.e. as a pure volume
form.

First of all, on the above example of the Dirac kinetic term, one may see that an L(M) → L(M)
pointwise vector bundle automorphism is uniquely described by a smooth positive real valued field Ω
over the spacetime manifold M, i.e. via a local D(1) gauge transformation. As trivially seen, Eq.(1)
is invariant to these, when it acts canonically on all the fields Ψ, γa and ∇a. This means that the
Lagrangian is invariant to the pointwise rescaling of the measurement unit of lengths. Moreover, it
is also seen in this formulation, that Eq.(1) is in fact invariant to the choice of the connection over
L(M). This latter fact means that the Lagrangian is invariant to the choice of any parallel transport
rule of measurement units throughout spacetime. This is a slightly stronger symmetry on top of the
previous rescaling invariance property. It can be shown, that all the Standard Model kinetic terms,
when viewed in such variables, admit these symmetries.
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