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It has been suggested that amplitudes for quantum higher-spin massive particles exchanging gravitons
lead, via a classical limit, to results for scattering of spinning black holes in general relativity, when the
massive particles are in a certain way minimally coupled to gravity. Such limits of such amplitudes suggest,
at least at lower orders in spin, up to second order in the gravitational constant G, that the classical aligned-
spin scattering function for an arbitrary-mass-ratio two-spinning-black hole system can be obtained by a
simple kinematical mapping from that for a spinning test black hole scattering off a stationary background
Kerr black hole. Here we test these suggestions, at orders beyond the reach of the post-Newtonian and post-
Minkowskian results used in their initial partial verifications, by confronting them with results from
general-relativistic “self-force” calculations of the linear perturbations of a Kerr spacetime sourced by a
small orbiting body, here considering only results for circular orbits in the equatorial plane. We translate
between scattering and circular-orbit results by assuming the existence of a local-in-time canonical
Hamiltonian governing the conservative dynamics of generic (bound and unbound) aligned-spin orbits,
while employing the associated first law of spinning binary mechanics. To the extent possible with
available self-force results, we confirm, through linear order in the mass ratio, some previous conjectures
which would begin to fill in the spin-dependent parts of the conservative dynamics for arbitrary-mass-ratio
aligned-spin binary black holes at the fourth-and-a-half and fifth post-Newtonian orders.
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I. INTRODUCTION

The early successes of gravitational-wave astronomy
have relied on highly accurate solutions to the binary black
hole problem in general relativity (GR). These have been
obtained both from intensive numerical-relativity simula-
tions (see e.g., [1]) and, with overlapping domains of
validity, from high-order calculations in the weak-field–
slow-motion post-Newtonian (PN) approximation [2,3],
along with approaches to combining, interpolating and
extrapolating these two crucial sources of information. The
latter include effective-one-body models [4–12], which
have been linked to certain effective-one-body equivalen-
ces: simple maps, from test-body motion in a stationary
black hole background, to arbitrary-mass-ratio two-body

motion, which include and exactly resum infinite series of
certain terms (with gauge-invariant information content) in
the PN expansion, using only the Schwarzschild or Kerr
metric and mappings or identifications motivated by
special-relativistic geometry and kinematics for asymptotic
scattering states [13–16].
A pivotal challenge for future lower-frequency space-

based gravitational-wave observations will be the predic-
tion of waveforms from extreme-mass-ratio binaries, with a
few-solar-mass object spiraling into a supermassive black
hole. These lie in a regime currently inaccessible to both
numerical relativity (due to the mass ratio) and PN treat-
ments (due to the strong field) and require the use of
black-hole perturbation theory within the “self-force”
paradigm [17–20]. In this approach, the binary dynamics
is expanded about the limit of test-body motion in a
stationary background spacetime—most relevantly, the
Kerr spacetime of a spinning black hole [21–24].
A third perturbative approach to relativistic two-body

dynamics, arguably situated somewhere in between the
PN and self-force schemes, is the post-Minkowskian (PM)
approximation. This scheme assumes weak gravitational
fields but places no restrictions on speeds (or on mass
ratios). It is thus most naturally applied to unbound
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scattering orbits, while still relevant for considerations of
bound systems. The PN approximation can be obtained
from a reexpansion in small velocities of the PM approxi-
mation. A recent resurgence of interest in fully PM compu-
tations and results has been associated with the prospect of
applying advanced techniques for calculating relativistic
quantum scattering amplitudes to the classical two-body
problem; see for example references in [16,25,26]. While
traditional classical methods had previously reached the
second post-Minkowskian (2PM) level, i.e., through the
second order in the gravitational constant G, notably
including Westpfahl’s computation of the 2PM scattering-
angle function for two monopolar “point masses” [27], a
recent landmark has been the first calculation yielding
analogous results at 3PM/two-loop order by Bern, et al.
[28,29], using amplitudes computed with on shell unitarity
methods. Whereas these results concern gravitational scat-
tering of nonspinning bodies, our primary interest in this
paper is in the dynamics of spinning bodies—particularly,
spinning black holes (BHs).

A. Spinning black holes from minimally
coupled amplitudes

It was suggested by Vaidya [30] that one can obtain
classical Hamiltonians for the leading-order PN
conservative dynamics of binaryBHs inGR (through zeroth,
first, second and fourth orders in the BHs’ spins) from tree
amplitudes for massive (spin-0, spin-1=2, spin-1 and spin-2)
particles exchanging a graviton (respectively). It had earlier
been shown by Holstein and Ross [31], also at next-to-
leading/one-loop order, that the classical linear-in-spin (or
“spin-orbit”) couplings are universal in the sense that the
same results are obtained from both spin-1=2 and spin-1
massive particles. This was extended to the spin-2 level at
leading order in [30]; see also work by Bjerrum-Bohr et al.
e.g., in [32], by Damgaard et al. [33], and work by Rüdiger
[34] on obtaining the [pole-dipole] Mathisson-Papapetrou-
Dixon (MPD) equations [19,35–39] from theDirac equation
in a curved spacetime. This is consistent with the classical
fact that the dynamics at the pole-dipole level of the
gravitational multipole expansion is universal for suffi-
ciently isolated bodies in general relativity [17,19,35–39].
Vaidya [30] found furthermore that the leading-order spin-
induced quadrupole couplings (which are quadratic in the
spins) resulting from a minimally coupled massive spin-1
particle specifically match those appropriate for a BH. From
the spin-2 case, he obtained theBHs’spin-inducedmultipole
series Il þ iJ l ¼ mðiaÞl [40] up to the hexadecapoles,
l ¼ 4, to quartic order in spin:Oða4Þ. Here, a ¼ S=m is the
ring radius of a BH with mass m and spin (angular
momentum) S ¼ ma, with c ¼ 1.
Such classical-limit amplitude calculations were pushed

to (significantly) higher spins at both tree and one-loop
levels by Guevara [41]. Extending a novel treatment of the
spin-0 case by Cachazo and Guevara [42] by employing the

uniquely minimally coupled 3- and 4-point amplitudes for
spinning massive particles meeting gravitons (or photons)
proposed by Arkani-Hamed, et al. (AHH) [43], Guevara
used on shell methods to compute the fully special-
relativistic classical limits of both (i) the tree-level ampli-
tude for two minimally coupled massive spin-s particles
exchanging a graviton (or a photon) for arbitrary spins s,
and (ii) the corresponding one-loop amplitude for spins
s ≤ 2 (for gravity, and for s ≤ 1 for electromagnetism) [41].
It was shown by Guevara, et al. (GOV) [44] how those
amplitudes can be translated into a classical aligned-spin
scattering-angle function, to all orders in spin [Oða∞Þ] at
OðG1Þ, and throughOða4Þ atOðG2Þ, in such a way that the
result matches that for a binary BH in GR according to all
known PN results {throughOða∞Þ at the leading PN orders
[13,45] and through subsubleading PN orders through
Oða2Þ [2,46–50]} and all known PM results {through
Oða∞Þ at OðG1Þ according to results of [15], and through
Oða1Þ at OðG2Þ according to results of Bini and Damour
[10–12]}, all for arbitrary mass ratios, as collected and
analyzed in [16]. Beyond those orders, GOV [44] provided
conjectural results up to OðG2a4Þ which have not yet been
proven to correspond to binary BHs in general relativity.
The spinning amplitudes of [41,43,44] were also repro-
duced by Chung, et al. [51], who further translated them
into contributions to the classical potential at subleading
post-Newtonian orders, for the generic-spin case (not just
for the aligned-spin case), while also proposing a para-
metrization of the 4-point “Compton amplitude” (two
gravitons, two massive spin-s) for spins s > 2which would
lead to OðG2a>4Þ results; see also [52].
Subsequently, using and extending a formalism for

extracting classical observables from on shell amplitudes
developed by Kosower, et al. [53], the generalization to
spinning particles was considered by Maybee et al. [54]. It
was shown in [54] through Oða2Þ, and then by Ochirov
et al. in [26] through Oða∞Þ for both spins, that the
arbitrary-spin tree amplitudes from [41,43,44] lead (by a
well-motivated procedure) to the covariant scattering hol-
onomy results for generic-spin binary BHs at OðG1a∞Þ
derived by one of the authors in [15], matching at OðG1a1Þ
results of Bini and Damour [10]. A scalar-probe limit of the
same generic-spin scattering holonomy, namely the
OðG1a∞Þ impulse (change in momentum) for a generic
(weakly deflected) unbound geodesic in the Kerr space-
time, has also been produced from an elegant double copy
of the amplitude for the analogous electromagnetic case, a
test charge in the “

ffiffiffiffiffiffiffiffiffi
Kerr

p
” electromagnetic field in flat

spacetime, by Arkani-Hamed, et al. [55]; see also [56].
Further perspectives on higher-spin-multipole effects along
with double-copy constructions have been given by
Johansson and Ochirov [57], as well as by Bautista and
Guevara [58,59] who also discussed the structure of
radiative amplitudes with spin effects. Double copies of
spinning radiative processes have also been investigated by
Goldberger, et al. [60,61].
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B. Overview

In this paper, we scrutinize the apparent duality between
massive higher-spin quantum particles (in a classical limit)
and classical spinning BHs, working through quadratic
order in G (to a second order in the gravitational perturba-
tions away from flat spacetime). We focus on relating
aligned-spin-binary scattering-angle functions—in particu-
lar the conjectural OðG2a4Þ binary-BH scattering function
from GOV [44] constructed from the tree and one-loop
amplitudes of Guevara [41] using the 3- and 4-point
amplitudes of AHH [43]—to information obtained in the
context of gravitational self-force calculations—in particu-
lar the high-order (8.5 and 8) PN expansions of the redshift
[62] and precession-frequency [63] functions for circular
equatorial orbits in a perturbed Kerr spacetime, obtained
through linear order in the mass ratio by Kavanagh, et al.
[62] and Bini, et al. [63].
To that end, we first review in Sec. II A results and

conjectures for the aligned-spin binary-BH scattering
function through OðG2Þ, particularly the conjecture [16]
(suggested by quantum amplitudes and classical-limit
constructions [41,43,44,51,64]) that it is determined, via
a simple mapping, by its spinning test-BH limit—the limit
where the mass ratio goes to zero while keeping the smaller
BH’s mass-rescaled multipole moments finite, in which it
becomes a naked Kerr ring singularity of finite ring radius
but negligible gravitational mass, a “test BH.”
In Sec. II B, we parametrize the conservative dynamics

of a test BH in an arbitrary curved background in terms of
dimensionless, constant “Wilson coefficients” appearing in
its effective MPD equations of motion. These are assumed
to arise from an effective Hamiltonian action principle with
the minimal effective degrees of freedom (translational and
rotational), respecting appropriate general principles and
symmetries. All such coefficients contributing at a linear
order in curvature (or in G) are fixed by the considerations
e.g., of [13,15,45,47] and matching to the stationary Kerr
solution (at linear order). We consider here the yet
undetermined coefficients of conceivably relevant cou-
plings which are quadratic in curvature and quartic in
the test BH’s spin σ ≔ Stest=mtest. We present results for a
scattering function (an antiderivative of the scattering-angle
function) for aligned-spin orbits of a test BH in the
equatorial plane of a background Kerr spacetime, para-
metrized in terms of three dimensionless effective Wilson
coefficients fC4a; C4c; C4eg at OðG2σ4Þ. Further details of
the calculations leading to these results (which can be
accomplished e.g., by brute-force methods in Boyer-
Lindquist coordinates for the Kerr spacetime, using the
definitions and equations of motion given below) will be
given in future work.
Via the conjecture discussed in Sec. II A, the (three-

parameter) family of scattering functions for the test-BH-
in-Kerr case, from Sec. II B, leads to a family of scattering
functions for the arbitrary-mass-ratio two-BH case.

We discuss in Sec. III A the form of a reduced canonical
Hamiltonian governing the local-in-time conservative
dynamics of an aligned-spin binary BH system, for
generic (bound and unbound) orbits, with most of the
Hamiltonian’s gauge freedom fixed by restricting attention
to a certain (quasi-isotropic) class of phase space coordi-
nates. In Sec. III B we discuss how the coefficients in the
PM-PN and spin expansions of a quasi-isotropic aligned-
spin Hamiltonian are related to the gauge-invariant coef-
ficients in the expansions of the aligned-spin scattering
function, and in turn to the coefficients in gauge-invariant
functions characterizing circular aligned-spin orbits,
namely, the energy and angular momentum as functions
of the orbital frequency.
In Sec. IV, we recall consequences of the first law of

spinning binary mechanics, as developed or discussed by
Le Tiec and collaborators e.g., in [65–69], as applied to
aligned-spin circular orbits. This form of the first law
relates changes in the gauge-invariant (center-of-mass-
frame) binary parameters, the energy E, angular momenta
(total J ¼ Lþ S1 þ S2, [canoncial] orbital L, and spins S1,
S2) and masses m1, m2, to the orbital frequency Ω, the
redshift invariants z1, z2, and the spin precession frequen-
cies Ω1, Ω2. We present expressions for the redshift z1 and
precession frequency Ω1 for the smaller body m1, to linear
order in the mass ratio q ¼ m1=m2, and to zeroth order in
the small spin S1, but to all orders in the larger body’s
dimensionless spin â ¼ a2=ðGm2Þ ¼ S2=ðGm2

2Þ, through
the leading and next-to-leading PN orders at each order in
â, through 5PN order—specifically the expressions that
result from matching via a Hamiltonian to anOðG2a4Þ two-
BH scattering function conjecturally determined by a
parametrized consistent test-BH limit, having as a special
case the conjectural result from the minimally coupled
amplitudes.
We review in Sec. V results for the same redshift and

precession-frequency functions (of the orbital frequency,
masses, and spins) through linear order in the mass ratio,
obtained from first-order self-force calculations of the
linear perturbations of a Kerr spacetime sourced by a small
body in a circular orbit in the equatorial plane [62,63].
We compare the findings from Secs. IV and V, draw

conclusions and discuss avenues for further study in
Sec. VI.

II. SPINNING BLACK HOLE SCATTERING

Considering a two-spinning-BH system inGR,we restrict
our attention to the conservative (time-symmetric) part of
the classical dynamics, neglecting radiative or absorptive
processes; this encompasses the complete orbital dynamics
through OðG2Þ, at least at lower orders in spin. We
furthermore consider only the aligned-spin configuration,
in which both BHs’ spins are constant and (anti)alignedwith
the orbital and total angular momenta. We review results
and conjectures concerning aligned-spin scattering of two
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spinning BHs in Sec. II A, and we discuss an effective
description of the motion of a spinning test BH in a general
curved background, and then in the equatorial plane of a
Kerr spacetime (with the test spin aligned with the axial
symmetry direction), in Sec. II B, working through fourth
order in the test spin σ.

A. Elastic aligned-spin scattering functions
for binary black holes: Results and conjectures

It has been argued [15,16], following analogous argu-
ments for the spinless case [11,14], that the complete
gauge-invariant information content of a (perturbative)
Hamiltonian (or Lagrangian, or set of equations of motion)
governing the local-in-time conservative dynamics of an
aligned-spin binary BH is contained in the aligned-spin
scattering-angle function. This function is generally of the
form,

χððm1; a1Þ; ðm2; a2Þ; v; bÞ; ð1Þ

giving the angle χ in the system’s center-of-mass frame by
which both BHs are deflected in a (weak) elastic scattering
process, as a function of their constantmassesm1 andm2 and
(signed) ring radii a1 ¼ S1=m1 and a2 ¼ S2=m2 (positive
if aligned with the orbital angular momentum, negative if
antialigned), the relative speed v at infinity, and the
“proper” or “covariant” impact parameter b orthogonally
separating the two BHs’ asymptotic (both incoming or both
outgoing) centroidworldlines defined by eachBH’s Fokker-
Tulczyjew-Dixon supplementary condition [15,16,44]. It
was argued in [15], using the linearized Einstein equation
and linear-level matching to the Kerr solution, that this
function is well-defined through all orders in both BHs’
spins at linear order in the coupling (and through all orders
in v), and that it is given by

χ ¼ GE
v2

� ð1þ vÞ2
bþ a1 þ a2

þ ð1 − vÞ2
b − a1 − a2

�
þOðG2Þ; ð2Þ

where E is the total energy,

E2 ¼ ðp1 þ p2Þ2 ¼ m2
1 þm2

2 þ 2m1m2γ; ð3Þ

with the relative Lorentz factor

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ p1 · p2

m1m2

ð4Þ

at infinity, in terms of the asymptotic incoming (or outgoing)
4-momenta p1 and p2.
To more efficiently express results and conjectures for

the aligned-spin binary-BH scattering-angle function χ at
OðG2Þ, let us use an aligned-spin “scattering function”
Xððm1; a1Þ; ðm2; a2Þ; v; bÞ such that

χ ¼ ∂X
∂b ; ð5Þ

expanded, with XðkÞ ¼ OðGkÞ, as
X ¼ Xð1Þ þ Xð2Þ þOðG3Þ; ð6Þ

given through linear order by

Xð1Þ ¼ GE
v2

X
�
ð1� vÞ2 log b� a1 � a2

const:
: ð7Þ

According to the OðG2Þ spinless results of Westpfahl
[27] and the OðG2Þ spin-orbit results of Bini and Damour
[10,12], Xð2Þ is given through linear order in the spins by

Xð2Þ ¼ πG2E
b

�
−
3

4
ðm1 þm2Þ

4þ v2

v2

þ 1

2b
ðm1ð4a1 þ 3a2Þ þm2ð4a2 þ 3a1ÞÞ

2þ 3v2

v3

�
þOða2Þ: ð8Þ

This result is universal, applying not only to BHs, but to
any sufficiently isolated bodies. Note that this result also
uniquely determines the generic-spin (not just aligned-spin)
results at OðG2a1Þ [10,12].
Let us consider, from these results, or from results at

higher orders in spin for BHs, taking a spinning-test-body
limit (at fixed v and b). This entails taking the mass of the
smaller body to zero,m1 → 0, while preserving p2

1=m
2
1 ¼ 1

at infinity, and while keeping fixed the test body’s mass-
rescaled spin, a1 → σ, the test spin. We thereby obtain an
aligned-spin scattering function Xt for a spinning test body
of “ring radius” σ in the equatorial plane of a background
Kerr spacetime of mass (E →) m2 → m and ring radius
a2 → a,

Xtðm; a; σ; v; bÞ ¼ Xðð0; σÞ; ðm; aÞ; v; bÞ: ð9Þ
This limit is well-defined (and nontrivial, since the outcome
still depends on σ) for the arbitrary-mass-ratio results (7)
and (8) through OðG2a1Þ. Furthermore, as noted in [16],
the arbitrary-mass-ratio result X is recovered from its
spinning-test-body limit Xt via the mapping,

Xððm1; a1Þ; ðm2; a2Þ; v; bÞ

¼ E
m1 þm2

�
m1

m1 þm2

Xtðm1 þm2; a1; a2; v; bÞ

þ m2

m1 þm2

Xtðm1 þm2; a2; a1; v; bÞ
�

þOðG2alþ1Þ þOðG3Þ; ð10Þ
with l ¼ 1 according to the result (8) from Bini and
Damour [12].
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It was shown in [16] that the extrapolation of the OðG2Þ
binary black hole “effective-one-body aligned-spin scatter-
ing-angle mapping” (10) to l ¼ 2, to quadratic order in the
spins, is fully consistent with the arbitrary-mass-ratio sub-
subleading-PN Oða2Þ results of Levi and Steinhoff
[46,47,49,50] (and fully determines the aligned-spin results
through subleading orders), together with the results of Bini
et al. [70] for the unique (minimal) MPD dynamics for an
effective quadrupolar test-BH [2,48,50,71–74] undergoing
aligned-spin scattering in a background Kerr spacetime. The
results of [70] lead to an OðG2Þ test-BH-in-Kerr scattering
function Xð2Þ

t , to a quadratic order in the test spin σ, but to all
orders in the background Kerr spin a (to all orders in v),
given, modulo the apparent freedom in its definition (5), by

Xð2Þ
t ¼ π

2

ðGmÞ2
v4a2

�
v4b −

ðvb − aÞ4
ðb2 − a2Þ3=2

− σ
∂
∂b

�ðvb − aÞ3ðb − vaÞ
ðb2 − a2Þ3=2

�
−
σ2

2

∂2

∂b2
�ðvb − aÞ2ðb − vaÞ2

ðb2 − a2Þ3=2
��

þOðσ3Þ: ð11Þ

The resulting scattering angle χt ¼ ∂Xt=∂b is finite as
a → 0 in spite of the appearance of a2 in the overall
denominator. The expansion of this result to quadratic order
in either spin, Oða2; aσ; σ2Þ, matches Eq. (5.5) of [16].
The mapping (10) with l ¼ 1, applied to the Oða; σÞ1

truncation of the result (11) for a spinning test BH in Kerr,
correctly yields the OðG2a1v∞Þ arbitrary-mass spin-orbit
results (8) from Bini and Damour [12]. The extrapolation of
the mapping (10) to l ¼ 2, to the quadratic order in spins

(to all orders in v), applied to theOða; σÞ2 truncation of the
quadrupolar test-BH-in-Kerr result (11), yields the first,
simplest and most verified of the conjectural results for the
arbitrary-mass aligned-spin binary black hole scattering
function atOðG2Þ, suggested in [16] or [44], which warrant
scrutiny—and it is the one which our considerations in this
paper will not be able to probe beyond the levels where it
has already been shown to concur with the arbitrary-mass
subsubleading-PN Oða2Þ results [16,46]. We will instead
be able to probe higher PN orders at higher orders in
spin, Oðal>2Þ.
The classical-limit higher-spin amplitude constructions

of GOV [44]—based on the building-block minimal-
coupling amplitudes presented by AHH [43], which were
first stitched by Guevara [41] into one- and two-graviton
exchanges between two massive spinning particles—
suggest that the mapping (10) will continue to hold for
l ¼ 4, through quartic order in spins. See Fig. 1. It is
furthermore suggested [44] that the associated OðG2a∞σ4Þ
hexadecapolar-test-BH-in-Kerr scattering function is given
by the most naive conceivable extrapolation toOðσ4Þ of the
pattern emerging in the expression (11),

Xð2Þ
t;mc ¼

πðGmÞ2
2a2

�
b −

X4
l¼0

σl

l!
∂l

∂bl
ðvb − aÞ4−lðb − vaÞl

v4ðb2 − a2Þ3=2
�

þOðσ5Þ ð12aÞ

¼ πðGmÞ2
2v4

I
Γ

dz
2πi

ð1 − vzÞ4
ðz2 − 1Þ3=2

�
b − za −

z − v
1 − vz

σ
�
−1

þOðσ5Þ; ð12bÞ

FIG. 1. The tree and one-loop level structure of the amplitude for two massive spinning particles exchanging gravitons, decomposed in
the second line into the unitarity cuts relevant for deriving the classical aligned-spin scattering-angle function, following [44], which
extrapolated (in such a way as to match known partial classical results) from treatments of the spinless case as in, e.g., [42,64,75]. As in
Eq. (1.11) of [44], the scattering angle χ, through 2PM/one-loop order, is a linear functional (a 2D Fourier transform, trading the
transverse momentum transfer q for the impact parameter b) of this form of the amplitude. This procedure, along with the forms of the
unitarity cuts [41,44,51], yields the structure χððm1; a1Þ; ðm2; a2Þ; v; bÞ ¼ χtree þ χ⊲ þ χ⊳ þOðG3Þ, where the dependence on
the masses and spins is such that χtree ¼ EFtreeða1 þ a2; v; bÞ, χ⊲ ¼ Em1F⊲ða1; a2; v; bÞ and χ⊳ ¼ Em2F⊳ða1; a2; v; bÞ, where E
is the total energy of Eq. (3). The inherent symmetry under exchange of the particles’ identities then implies that
F⊲ða1; a2; v; bÞ ¼ F⊳ða2; a1; v; bÞ. As a consequence, though we lose the information in F⊲ as m1 → 0 (in the test-body limit),
we can recover it from F⊳ which remains. This is accomplished by the mapping (10), which produces the two-body scattering function
from its test-body limit, to the extent that the aforementioned structure is valid.
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where “mc” stands for “minimal-coupling.” An appropriate
contour Γ in (12b) is discussed in [44]. The extrapolation of
(12a) to l ¼ 5 is likely invalid for our purposes, as the
naive extrapolations to a spin-5=2 particle of the amplitudes
on which it is based are known to be pathological (or at
least nonlocal) [43,44,51,52].

B. Minimal effective test black hole dynamics

We report here that the test-BH limit (12) of the
conjectural OðG2σ4Þ minimal-coupling result from GOV
[44] [which is (12) plugged into (10) with l ¼ 4] coincides
through Oðσ3Þ with the scattering function obtained from
the (seemingly) unique cubic-in-test-spin minimal MPD
effective-test-BH dynamics (consistent with the appropriate
symmetries and limits and the Kerr solution, as discussed
e.g., by Marsat [73]) as applied to aligned-spin scattering in
a Kerr background through OðGmÞ2. Details of the
calculations leading to this and the following results will
be given in future work.
The minimal MPD dynamics to which we are referring is

minimal in the sense that the higher-order relativistic
multipole moments (as defined by Dixon [19,38,39])
depend only on the momentum pμ (the dynamical gravi-
tational monopole) and the spin angular momentum
2-form Sμν (the dynamical gravitational dipole), and on
the location in spacetime (covariantly), with any other
conceivable degrees of freedom having been integrated
out (to the extent that this can be well-defined). The
dynamics can be encoded in an effective action principle
[2,15,48,50,71–74,76],1 leading to equations of motion
equivalent to the MPD equations, transport equations for
pμ and Sμν along a centroid worldline x ¼ zðτÞwith tangent
_zμ ¼ dzμ=dτ,

D
dτ

pμ þ
1

2
Rμνκλ _zνSκλ ¼

p · _z
2

D
Dzμ

logM2;

D
dτ

Sμν − 2p½μ _zν� ¼ p · _z

�
p½μ ∂

∂pν�
þ 2S½μρ

∂
∂Sν�ρ

�
× logM2; ð13Þ

along with the Tulczyjew condition,

pμSμν ¼ 0: ð14Þ

The terms on the right-hand sides of (13), representing
higher-multipole couplings, are given (under the
assumption of the existence of a minimal effective action)
in terms of the “dynamical mass function” Mðp; S; zÞ
determining the magnitude

ffiffiffiffiffi
p2

p
of the momentum pμ as a

function of (i) its direction,

uμ ¼ pμffiffiffiffiffi
p2

p ; ð15Þ

(ii) the spin Sμν, or equivalently the rescaled2 spin vector,

σμ ¼ 1

2m
ϵμνκλuνSκλ ⇔ Sμν ¼ mϵμνκλuκσλ; ð16Þ

and (iii) the spacetime location x ¼ z (only through the
covariant metric and its covariant curvature tensors, the
Riemann tensor and its symmetrized covariant derivatives,
evaluated locally along the worldline),

p2 ¼ M2ðp; S; zÞ
¼ M2ðuμ; σμ; gμνðzÞ; fRμνκλ;ðρ1…ρl−2ÞðzÞgÞ: ð17Þ

Taking this function to be given—presuming to have all
terms that will matter for a consistent spinning-test-BH
limit through OðG2σ4Þ—by3

1One form of an appropriate action functional, one which
directly leads to the form (13) of the minimal MPD equations of
motion,Z

dτ

�
pμ _zμ þ

1

2
SμνΩμν þ βμSμνpν þ α

2
ðp2 −M2ðz; p; SÞÞ

�
;

is discussed e.g., in Appendix B of [15] and in [76]. (See also
[2,48,50,71–74].) The independent dynamical variables to be
varied here are the worldline x ¼ zðτÞ, the momentum pμðτÞ
and the spin (angular momentum) 2-form SμνðτÞ along the
worldline, and auxiliary fields along the worldline, the body-
fixed orthonormal tetrad Λa

μðτÞ [with global internal Lorentz
symmetry Λa

μðτÞ ↔ La
bΛb

μðτÞ] determining the angular veloc-
ity tensor Ωμν ¼ Λa

μ DΛaν

dτ , and the Lagrange multipliers βμ and α
enforcing respectively the Tulczyjew condition (14) and the
dynamical mass shell constraint (17). In (13), D

Dzμ ¼ ∇h
μ is the

horizontal covariant derivative with respect to the worldline
point z, parallelly transporting p and S between neighboring
points.

2The factor m by which the spin is rescaled here is the “bare”
rest mass, which is generally a function mðS2Þ of the conserved
spin length S2 ¼ 1

2
SμνSμν ¼ m2ð−σ2Þ, appearing in (18) as

M2 ¼ m2 þOðRÞ where OðRÞ denotes terms with one or more
powers of the curvature tensors, which are assumed to vanish at
infinity.

3A consistent spinning test BH limit is assumed here to respect
parity and time-reversal, and to be such that the squared
dynamical mass M2 ¼ p2 divided by the squared bare rest mass
m2 is independent of the bare rest mass, with any dimensioned
scale for the test BH dynamics determined only by its ring radiusffiffiffiffiffiffiffiffiffiffiffiffiffi

−σμσμ
p

. The mass should “scale out” for a “test BH.” Note,
�Rμνκλ ¼ 1

2
ϵμν

ρσRρσκλ is the (left or right) dual of the vacuum
Riemann (Weyl) tensor, and �Rμνκλ;ρ is its covariant derivative.
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M2
mc¼m2þ2m2uμuνσρ1σρ2

�
−
1

2!
Rμρ1νρ2þ

1

3!
�Rμρ1νρ2;ρ3σ

ρ3

þ 1

4!
Rμρ1νρ2;ρ3ρ4σ

ρ3σρ4
�
þOðσ5Þ; ð18Þ

leads, in a Kerr background, to an aligned-spin scattering
function which precisely matches the OðG2σ4Þ (spinning-
test-BH-limit-)minimal-coupling result (12)—as well as
precisely matching the OðG1σ∞Þ result (7) matched to
linearized Kerr [15] up to Oðσ4Þ, which already fixes all of
the terms in (18) and their coefficients [15,47,51].
However, (18) does not represent the unique set of

consistent test-BH couplings contributing up to OðG2σ4Þ,
allowed by general principles in a minimal MPD effective-
action approach (in an assumed vacuum background), and
consistent with linear-level matching to the Kerr solution.
Rather, there arise at fourth order in the test spin σ a set of
conceivable relevant couplings with coefficients C4.. not
fixed by the aforementioned considerations. Six of the
seven couplings are quadratic in the curvature R and
contribute at the same orders as the OðG2a4Þ terms already
seen above in (12) [with the latter arising from interactions
among the up-to-linear-in-curvature terms in (18) and (13)].
The possible additional OðR2σ4Þ couplings [and a seventh
OðRσ4Þ coupling] can be organized in terms of the
symmetric-trace-free electric and magnetic parts, with
respect to uμ, of the vacuum Riemann (Weyl) tensor (the
“tidal tensors”),

Eμν ¼ Rμκνλuκuλ; Bμν ¼ �Rμκνλuκuλ; ð19Þ

as follows:

1

m2
δðM2Þ4 ¼C4AðEμνσ

μσνÞ2þC4BEμλEν
λσμσνð−σ2Þ

þC4CEκλEκλð−σ2Þ2þC4DðBμνσ
μσνÞ2

þC4EBμλBν
λσμσνð−σ2ÞþC4FBκλBκλð−σ2Þ2;

þC4G Ëμνσ
μσνð−σ2Þ; ð20Þ

with −σ2 ¼ −σμσμ (not to be confused with the oriented

radius σ ¼ �
ffiffiffiffiffiffiffiffi
−σ2

p
in the arguments of the aligned-spin

scattering functions) and δðM2Þ4 being the additional
OðG2σ4Þ-contribution to (18), containing the parametric
freedom. At least concerning their contributions for
aligned-spin scattering in a Kerr background, these terms
are degenerate; the resultant OðG2σ4Þ scattering function
depends only on the three linear combinations,

C4a¼C4AþC4B; C4c¼C4C; C4e¼C4Eþ
C4F

2
; ð21Þ

of the seven constant dimensionless “Wilson coefficients”
C4.. in (20). The term multiplyingC4D is identically zero for
aligned spins, and the linear-in-curvature C4G term (with
̈ Eμν ≔ Rρ1μρ2ν;ρ3ρ4u

ρ1uρ2uρ3uρ4) contributes zero to the
scattering function at OðG1;2σ4Þ, first yielding nonzero
contributions atOðG2σ5Þ. The possible contributions to the
OðG2σ4Þ test-BH-in-Kerr aligned-spin scattering function

Xð2Þ
t in addition to those in (12), resulting from addingm2×

(20) to (18), are

δðXð2Þ
t Þ4 ¼ σ4

∂4

∂b4
�

πðGmÞ2
28v2ð1 − v2Þa4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2

p

× fC4a½ð8 − 8v2 þ 3v4Þb4 − 4vba½ð4 − v2Þb2 − ð1 − 4v2Þa2� − 2ð4 − 17v2 þ 4v4Þb2a2 þ ð3 − 8v2 þ 8v4Þa4�
þ 2C4c½ð8 − 16v2 þ 11v4Þb4 − 12vbaðv2b2 þ a2Þ − 2ð8 − 25v2 þ 8v4Þb2a2 þ ð11 − 16v2 þ 8v4Þa4�

− C4e½ð8 − 16v2 þ 5v4Þb4 þ 12vbaðv2b2 þ a2Þ − 2ð8 − 7v2 þ 8v4Þb2a2 þ ð5 − 16v2 þ 8v4Þa4�g
�
: ð22Þ

Assuming that we have fully parametrized the freedom
in the conceivable consistent OðG2σ4Þ test-BH-in-Kerr
aligned-spin scattering functions (arising from a minimal
MPD effective action and consistent with linear-level
matching to Kerr), it is notable that this result is still quite
constrained, with only three free (constant, dimensionless)
parameters, while consisting of quartic polynomials in
ðb; aÞ with coefficients being up-to-quadratic polynomials
in v2.
It is also notable that the term multiplying each of the

effective Wilson coefficients C4a, C4c and C4e, individually,
diverges in the ultrarelativistic limit v → 1, due to the

overall factor of 1 − v2 in the denominator in (22); the
contributions to the function X as well as to the angle χ ¼
∂X=∂b diverge as v → 1 (while the χ contribution from
each C4.. term is finite as a → 0). Contrastingly, the
OðG1a∞Þ results (7), the OðG2a1Þ results (8) and the
conjectural OðG2σ4Þ results (12) are all finite as v → 1.
From (22), we have the scattering-angle contribution,

4δðχð2Þt Þ4 ¼ −
315πðGmÞ2ð5b − 4aÞσ4
256ðbþ aÞ4ðb2 − a2Þ3=2

C4a þ 2C4c þ C4e

1 − v2

þOð1 − v2Þ0 ð23Þ

TEST BLACK HOLES, SCATTERING AMPLITUDES, AND … PHYS. REV. D 101, 064066 (2020)

064066-7



at the diverging order in the ultrarelativistic limit. If we
were to demand that the Oðσ4Þ contribution to the scatter-
ing angle be finite as v → 1, we would set

C4a þ 2C4c þ C4e ¼̈ 0 ð24Þ

and be left with a 2-parameter family of test-BH-in-Kerr
scattering functions at OðG2σ4Þ. The conjecture that the

Oðσ4Þ contributions to χð2Þt are finite in the ultrarelativistic
limit is denoted with ¼̈ .
If the thus-constructed test-BH-in-Kerr scattering func-

tion is to describe the spinning-test-body limit of the
OðG2a4Þ aligned-spin binary-black hole scattering function
(assuming for now that such a thing is well defined), how
can the remaining Wilson coefficients be determined? Is
there a general principle from which we should expect the
scattering angle χtðm; a; σ; v; bÞ to be finite as v → 1 at
fixed ðm; a; σ; bÞ? As we have so far encountered con-
straints coming from matching to the Kerr solution only at
the linearized-off-of-flat-spacetime level (as implemented
e.g., in [15]), are there further constraints coming from
matching to the stationary Kerr solution at OðGmÞ2?
While that is possible, it is also possible that a complete
understanding of “the OðGmÞ2 level” (if this is well
defined) will require analysis of perturbations of the
Kerr spacetime.

III. HAMILTONIANS FOR GENERIC
ALIGNED-SPIN ORBITS AND INVARIANTS

FOR CIRCULAR ORBITS

We now turn to translating the scattering functions
discussed above into dynamical information describing
bound (as well as unbound) orbits of aligned-spin
binary BHs. We first discuss a class of aligned-spin reduced
canonical Hamiltonians in quasi-isotropic “gauges”
(choices of phase-space coordinates), which are sufficient
to describe generic (bound and unbound) orbits under
the assumption of the existence of a local-in-time
Hamiltonian or action principle for the aligned-spin
binary-BH conservative dynamics. Secondly, we construct
the total conserved energy E and angular momentum J¼
LþS1þS2 as functions of the masses and spins and the
orbital frequency Ω for circular orbits of aligned-spin
binaries.
We consider the conjecture ( _¼) that the EOB

scattering-angle mapping (10) holds with l ¼ 4, so that
the aligned-spin binary black hole scattering function
Xððm1;a1Þ;ðm2;a2Þ;v;bÞ is determined through OðG2a4Þ
by its (assumed well-defined) spinning-test-BH limit
Xtðm; a; σ; v; bÞ. We further conjecture that this Xt takes
the form discussed in the previous section, unique up to
OðG2a∞σ3Þ and parametrized by the effective Wilson
coefficients C4.. through OðG2a∞σ4Þ.

A. Canonical local-in-time Hamiltonians for spinning
binaries in unbound and bound orbits

More generally, given some scattering-angle function
χðv; b;ma; aaÞ ¼ ∂

∂b Xðv; b;ma; aaÞ, with a ¼ 1, 2, as dis-
cussed in [16], we can compute from it an aligned-spin
canonical Hamiltonian,

HðR; PR; L;ma; SaÞ; ð25Þ

governing the conservative dynamics of both unbound and
bound aligned-spin orbits according to

_R ¼ ∂H
∂PR

; _PR ¼ −
∂H
∂R ;

_ϕ ¼ ∂H
∂L ; _L ¼ −

∂H
∂ϕ ¼ 0; ð26Þ

to whatever levels in a dual PM-PN expansion which
knowledge of the scattering function allows, as follows.
Suppressing the dependence on the masses ma ¼
fm1; m2g ¼ fmg, with sums over a ¼ 1, 2 implied here
for the spins,

Sa ¼ fS1; S2g ¼ fm1a1; m2a2g; ð27Þ

and with P2 ¼ P2
R þ L2

R2, we pose the quasi-isotropic-gauge
canonical Hamiltonian [16] ansatz,

HðR;PR;L;fm;SgÞ

¼H0ðP2Þþ
X1;2
k

Gk

Rk

�X0;2;4
l

Ha1…al
kl ðP2ÞSa1…Sal

Rl

þ
X1;3;5
l

Ha1…al
kl ðP2ÞLSa1…Sal

Rlþ1
þOðS6Þ

�
þOðG3Þ; ð28aÞ

with

Ha1…al
kl ðP2Þ ¼

X∞
n¼0

ðP2ÞnHa1…al
kln ðfmgÞ; ð28bÞ

where we include S5 terms (for our purposes below)
which can be partially determined from the conjectural
OðG2a∞σ4Þ results (in particular the S41S2 and S1S42 terms
but not the S51 and S52 terms).
The scattering angle χ is determined from the

Hamiltonian by solving E¼HðR;PR;LÞ for PRðR;E; LÞ
and integrating [11]

π þ χðE;LÞ ¼ −2
Z

∞

Rmin

dR
∂
∂LPRðR;E; LÞ; ð29Þ

where the turning point Rmin is the largest root of
PRðR;E; LÞ ¼ 0. The change of variables from the
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physical center-of-mass-frame energy E and canonical
orbital angular momentum L to the asymptotic relative
velocity v and “proper” impact parameter b is accom-
plished with special-relativistic kinematics at infinity
[15,16] (see also [10,12]),

E2¼m2
1þm2

2þ
2m1m2ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p ;

L¼ m1m2v

E
ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p b

þE−m1−m2

2

�
a1þa2−

m1−m2

E
ða1−a2Þ

�
; ð30Þ

yielding the scattering-angle function χðv; b; fm; agÞ.
One finds that the result for χ ¼ ∂X=∂b is precisely of a

form (concerning where various orders begin) able to match
(7) plus the OðG2Þ scattering function up to Oða4ðþ1ÞÞ
resulting from the test-BH-GOV result (12) and its para-
metrized OðG2σ4Þ corrections arising from (20)—and
plugging such Xt into the EOB map (10) does not change
the PN/spin order counting. Furthermore, matching the χ
from a general Hamiltonian of the above form with a given
result for χ completely determines the quasi-isotropic
Hamiltonian coefficients—up to the freedom in choosing
the zeroth-order Hamiltonian H0ðP2; fmgÞ. Two choices
are natural: “real gauge,”

Hreal
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2

q
; ð31Þ

corresponding to jPj ¼ m1m2γv=E as R → ∞, or
“quasi-isotropic EOB gauge” [16,77],

HEOB
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1m
2
2 þ P2ðm1 þm2Þ2

q
þm2

1

r
; ð32Þ

corresponding to jPj ¼ m1m2γv=ðm1 þm2Þ as R → ∞.
Once such a choice is made, the scattering-angle coef-
ficients determine all of the quasi-isotropic Hamiltonian
coefficientsHa1…al

n ðP2; fmgÞ in (28). This holds even if the
actual scattering-angle coefficients have a more compli-
cated mass dependence than is conjectured by the OðG2Þ
effective-one-body aligned-spin scattering-angle map (10).

B. From the scattering angle to gauge invariants for
circular orbits through subleading post-Newonian

orders through fifth order in spin

Having determined the aligned-spin Hamiltonian coef-
ficients from the scattering-angle coefficients, the former
encode the dynamics of both a scattering process and a
bound orbit. The Hamiltonian HðR;PR; LÞ can then be
applied to circular orbits, for which the equations of motion
(33) become

0 ¼ _PR ¼ −
∂
∂RHðR; 0; LÞ;

Ω ¼ _ϕ ¼ ∂
∂LHðR; 0; LÞ; ð33Þ

with _R¼0¼PR and _L¼0¼ _Ω. Along with E¼HðR;0;LÞ,
these can be solved (eliminating R) for the energy EðΩÞ and
canonical orbital angular momentum LðΩÞ as functions of
the orbital frequency Ω. The results EðΩ; fm; SgÞ and
LðΩ; fm; SgÞ are gauge-invariant functions, recalling that
the invariant total angular momentum is J ¼ Lþ S1 þ S2.
Under the conjectures ( _¼) of the second paragraph of the

preamble to Sec. III, one finds that the combination of
interest (for reasons below) M ≔ E − ΩL is given, up to
subleading post-Newtonian orders through fourth and
partial fifth orders in spins, as follows. Let us define the
total massM, the reduced mass μ, the symmetric mass ratio
ν and the antisymmetric mass ratio δm,

M ¼ m1 þm2; μ ¼ m1m2

M
;

ν ¼ μ

M
; δm ¼ m1 −m2

M
; ð34Þ

the dimensionless (anti)symmetric spin combinations,

â� ¼ a1 � a2
M

¼ S1=m1 � S2=m2

m1 þm2

; ð35Þ

and the PN order counting parameter,

x ¼ ðGMΩÞ2=3 ∼ v2 ∼
GM
R

: ð36Þ

We can then expressM ¼ E −ΩL as follows, in a PN-spin
expansion [see also the Appendix for the conserved energy
E and orbital angular momentum L to next-to-leading order
(NLO) in the PN expansion and to fourth order in the
spins],

M ¼ Mþμxfe01 þ e02x þ…

þ e11x
1.5 þ e12x

2.5 þ…

þ e21x
2 þ e22x

3 þ…

þ e31x
3.5 þ e32x

4.5 þ…

þ e41x
4 þ e42x

5 þ…

þ e51x
5.5 þ e52x

6.5 þ…

..

. ..
. . .

. g: ð37aÞ

The conjectures reproduce the known leading-PN coeffi-
cients el1 at lth order in spins (to all orders in spins), as
found by the authors and Steinhoff [45],
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e01 ¼ −
3

2
; e11 ¼

7âþ þ δmâ−
4

; e21 ¼ −
â2þ
2
;

e31 ¼ −
â2þ
4
ðâþ − δmâ−Þ; el≥41 ¼ 0; ð37bÞ

and the known subleading-PN coefficients el2 [2,49,78,79],

8e02¼−9−ν;

48e12¼ð99−61νÞâþþð45−νÞδmâ−;
24e22¼ð−5þ6νÞâ2þþ−22âþδmâ−þð1þ8νÞâ2−; ð37cÞ

finally producing the conjectural subleading coefficients,

432e32 ≐ ð149 − 666νÞâ3þ þ 3ð11 − 78νÞâ2þδmâ−
þ 3ð71 − 296νÞâþâ2− þ ð5 − 56νÞδmâ3−;

32e42 ≐ 2â2þ½2ð−2þ 3νÞâ2þ þ 4âþδmâ− þ ð−2þ 8νÞâ2−�
þ ðC4a þ 6C4cÞðâ2þ þ â2−Þðâ2þ − 4âþδmâ− þ â2−Þ;

ð37dÞ

and the conjectural partial e52, modulo OðG2a51Þ and
OðG2a52Þ corrections not considered here, arising from
adding − 1

5!
�Rμρ1νρ2;ρ3ρ4ρ5σ

ρ1…σρ5 to (18)=m2 and (20), with
no extra OðR2σ5Þ terms,

e52 ≐
1

1280
ðð−347þ 720νÞâ5þ þ 5ð123 − 176νÞâ4þδmâ− þ 30ð−17þ 32νÞâ3þâ2−

þ 10ð35 − 32νÞâ2þδmâ3− − 135âþâ4− þ 27δmâ5−Þ

þ 1

32
C4aðâ5þ þ 3â4þδmâ− þ 3ð−11þ 8νÞâ3þâ2− þ 38ð−35þ 32νÞâ2þδmâ3− þ ð−27þ 16νÞâþâ4− þ 7δmâ5−Þ

þ 3

8
C4cðâ5þ − 6â4þδmâ− þ 2ð7 − 4νÞâ3þâ2− − 16â2þδmâ3− þ ð9 − 8νÞâþâ4− − 2âþδmâ5−Þ

þ 9

32
C4eðâ2− − â2þÞðâ3þ − 3â2þδmâ− þ 3âþâ2− − δmâ3−Þ þOða51Þ þOða52Þ:

Note that LðΩÞ can be easily recovered from MðΩÞ, via

L ¼ −
∂M
∂Ω ; ð38Þ

at fixed masses and spins, and then we also have EðΩÞ ¼
Mþ ΩL. This relation, satisfied by the results of the cal-
culation described above, follows from M ¼ E −ΩL and
Eq. (4.9a) of [66], ð∂E=∂ΩÞ − Ωð∂L=∂ΩÞ ¼ 0, which is a
consequence of the first law discussed in the following
section.

IV. THE FIRST LAW OF ALIGNED-SPIN
CIRCULAR-ORBIT BINARY MECHANICS

According to the first law(s) of spinning binary (conser-
vative) mechanics, as developed by Le Tiec and collabo-
rators e.g., in [66,68], for a circular orbit, “on shell,” we
should have

dE ¼ ΩdLþ
X
a

ðzadma þ ΩadSaÞ; ð39Þ

where

za ¼
∂H
∂ma

; Ωa ¼
∂H
∂Sa ð40Þ

are the redshifts and precession frequencies, respectively,
recalling Ω ¼ ∂H=∂L. It follows that the redshifts are
given by

zaðΩ; fm; SgÞ ¼
� ∂E
∂ma

�
Ω;fm;Sg

−Ω
� ∂L
∂ma

�
Ω;fm;Sg

;

and the precession frequencies are given by

ΩaðΩ; fm; SgÞ ¼
� ∂E
∂Sa

�
Ω;fm;Sg

−Ω
� ∂L
∂Sa

�
Ω;fm;Sg

:

Equivalently, in terms of the free-energy-like combination
presented in the previous section,

MðΩ; fm; SgÞ ¼ EðΩ; fm; SgÞ −ΩLðΩ; fm; SgÞ;

or M ¼ E −ΩL, the redshifts and the precession frequen-
cies are found from

za ¼ ∂M
∂ma

; Ωa ¼ ∂M
∂Sa ; ð41Þ

at fixed Ω (and fixed the other three of fm; Sg ¼
fm1; m2; S1; S2g). According to the first law, these are
the physical redshifts and precession frequencies which
would be computed from an appropriately regularized/
renormalized spacetime metric.

A. Redshift and precession frequency through linear
deviations from the test-body limit

From our conjectural MðΩÞ for arbitrary masses and
spins from Sec. III B, we can evaluate the redshift z1 and
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the precession frequencyΩ1 for the smaller body with mass
m1 and spin S1, and then consider up to linear deviations
from the test-body limit m1 → 0, working to first order in
the small (asymmetric) mass ratio,

q ¼ m1

m2

; ð42Þ

while working to zeroth (or leading) order in the small
body’s spin S1. Defining a new PN parameter in terms of
the larger mass and the orbital frequency Ω [cf. (36)],

y ¼ ðGm2ΩÞ2=3 ¼
�
m2

M

�
2=3

x; ð43Þ

and the dimensionless spin of the larger mass,

â ¼ a2
m2

; ð44Þ

we find the inverse redshift to be

1

z1
¼ 1

zð0Þ
þ qδU þOðq2Þ; ð45Þ

where

zð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ây3=2Þ½1þ ây3=2 − 3yð1 − ây3=2Þ1=3�

q
ð46Þ

is the exact redshift for circular geodesics in the equatorial
plane of the Kerr spacetime, recovered up to the same
orders as the following first-order self-force correction:

y−1δU ¼ u01 þ u02yþ u11ây
1.5 þ u21â

2y2

…þ u12ây
2.5 þ u22â

2y3 þ u31â
3y3.5 þ u41â

4y4

…þ u32â
3y4.5 þ u42â

4y5 þ u51â
5y5.5

…þOðy6Þ; ð47aÞ

with coefficients,

u01 ¼ −1; u11 ¼
7

3
; u21 ¼ −1;

u02 ¼ −2; u12 ¼
46

3
; u22 ¼ −

86

9
; ð47bÞ

and

u31 ¼ 1; u32 ≐
1526

81
;

u41 ¼ 0; u42 ≐ −ð2þ C4a þ 6C4cÞ;
u51 ¼ 0: ð47cÞ

For the precession frequency of the small body, we find

Ω1 ¼ Ωðψ ð0Þ þ qδψ þOðq2ÞÞ; ð48Þ

where

ψ ð0Þ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ây3=2 − 3yð1 − ây3=2Þ1=3

1 − ây3=2

s
ð49Þ

gives the unperturbed-Kerr result, and the first-order self-
force correction is

δψ ¼ 0yþ ây1.5

…þ y2 þ 0ây2.5 þ 0â2y3 þ 0â3y3.5

… − 3â2y4 þ ψ3
2â

3y4.5 þ 0â4y5 þ 0â5y5.5

…þ ψ4
2â

4y6 þOðy6.5Þ; ð50aÞ

with coefficients,

ψ3
2 ≐ 1; ψ4

2 ≐ −3ðC4a þ 3C4eÞ: ð50bÞ

V. SELF-FORCE RESULTS FROM THE
TEUKOLSKY EQUATION

Kavanagh, et al. [62] have computed the linear-in-mass-
ratio corrections δU to the Kerr-geodesic result zð0ÞðΩÞ for
Detweiler’s [80] redshift invariant for circular equatorial
orbits in a perturbed Kerr background, via methods of
solving the Teukolsky equation [81] due to Mano, et al.
[82,83]. For a Kerr background with mass m and spin
S ¼ m2â, in terms of the orbital frequency Ω with
y ¼ ðGmΩÞ2=3, they find

δU
y

¼ −1

− 2y

þ 7

3
ây1.5

− 5y2 − â2y2

þ 46

3
ây2.5

… −
86

9
â2y3

þ 77ây3.5 þ â3y3.5

… −
577

9
â2y4 þ 0â4y4

… þ 1526

81
â3y4.5

… … −2â4y5

þOðy5.5Þ: ð51aÞ
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In the rearrangement of terms fðnÞ as suggested by the
colors of Fig. 1 in [13], coinciding with rows in (47a) and
diagonals in (51), the purple, blue and green terms are

1

y
δU

˜ð0Þ ¼−1;

1

y
δU

˜ð1Þ ¼−2yþ7

3
ây1.5− â2y2;

1

y
δU

˜ð2Þ ¼−5y2þ46

3
ây2.5−

86

9
â2y3þ â3y3.5þ0â4y4; ð51bÞ

and the yellow terms are

1

y
δU

˜ð3Þ ¼
�
−
121

3
þ41

32
π2
�
y3þ77ây3.5−

577

9
â2y4

þ1526

81
â3y4.5−2â4y5 þ0â5y5.5þ0â6y6; ð51cÞ

according to [62].
Bini, et al. [63] have computed the first-order self-force

correction δψ to the precession frequency for circular
equatorial Kerr geodesics to be given by (50) with

ψ3
2 ¼ 1; ψ4

2 ¼ 0: ð52Þ

VI. DISCUSSION

We have given in Sec. IV the redshift and precession-
frequency functions, through linear order in the mass ratio
and zeroth order in the smaller body’s spin, resulting from
(i) the assumption of the existence of a local-in-time
canonical Hamiltonian and the validity of the associated
first law for aligned-spin circular orbits, (ii) the conjecture
that the mapping (10) holds with l ¼ 4, through fourth
order in spins, producing the arbitrary-mass-ratio binary-
BH scattering function from its test-BH limit, and (iii) the
conjecture that the test-BH-in-Kerr scattering function must
be of the form constructed in Sec. II B, unique up to cubic
order in spins, and parametrized by the effective Wilson
coefficients C4a, C4c and C4e at order OðG2a4Þ. These
conjectures together were indicated by _¼, and the resultant
redshift and precession-frequency functions (depending on
the Wilson coefficients) have been given in (47) and (50).
Now we compare (47) and (50) to the self-force results

obtained for a small body in a circular orbit in the equatorial
plane of a Kerr black hole spacetime [62,63], given in (51)
and (52).
Firstly, at OðG2a3Þ [and all lower orders], there is a

perfect match. With no free coefficients up toOðG2a3Þ, the
≐ conjectures precisely reproduce the nontrivial rational
coefficient u32 ¼ 1526

81
, as well as ψ3

2 ¼ 1. This is a signifi-
cant test of the _¼ conjectures against the self-force
calculations.

At OðG2a4Þ, from comparing values for u42 and ψ4
2, we

find two new constraints on the effective Wilson coeffi-
cients,

C4a þ 6C4c ≐ 0; C4a þ 3C4e ≐ 0: ð53Þ

Additionally, recall from (24) that the OðG2σ4Þ contribu-
tion to the scattering-angle function will be finite in the
ultrarelativistic limit (denoted by ¼̈ ) only if

C4a þ 2C4c þ C4e ¼̈ 0: ð54Þ

These three equations together (≐ and ¼̈ ) have a unique
solution,

C4a ¼ C4c ¼ C4e ¼ 0; ð55Þ

which coincides with the values corresponding to the
minimal-coupling amplitudes result (12) from GOV [44].
This shows that the ≐ conjectures together with the self-
force calculations are fully consistent with the GOV result,
and that they uniquely determine it if we furthermore
conjecture that the OðG2a4Þ contribution to the scattering
angle is finite ( ¼̈ ). More constraints, leading to an over-
determined system of equations (and eliminating the need
to assume ¼̈ ), could be obtained from new first-order
self-force results for eccentric (not just circular) orbits in
the equatorial plane of a Kerr spacetime, at higher orders in
spin. Clearly, these exercises can also be continued
at OðG2a>4Þ.
The quantities C4a, C4c and C4e are coefficients of

quadratic-in-curvature couplings, as seen in (20) and
(21), and would thus seem to correspond in some way
to tidal deformation response coefficients, i.e., Love num-
bers, at quartic order in spin. Our analysis suggests (at least
in the particular parametrization used here) that these
coefficients should all vanish. However, more work would
be needed to directly connect these coefficients, para-
metrizing effective equations of motion, to Love numbers
and related quantities defined and computed within black
hole perturbation theory, where relevant analyses have thus
far been carried to linear or quadratic order in spin; see for
example [84,85].
With the caveats of the (significantly but not fully

confirmed) conjectures involved, our results provide further
positive evidence for the apparent duality between classical
spinning black holes and minimally coupled massive
higher-spin particles. Via the translation into a canonical
Hamiltonian governing both unbound and bound orbits, as
specified in Sec. III, the scattering-angle function in (12)
above, from [44], provides new spin-dependent parts of the
conservative dynamics for arbitrary-mass-ratio aligned-
spin binary black holes at the fourth-and-a-half and fifth
post-Newtonian orders, in particular the subleading
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post-Newtonian terms at third and fourth orders in the black
holes’ spins.
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