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We study the statistics of large deviations of the intensive work done in an interaction quench of
a one-dimensional Bose gas with a large number N of particles, system size L and fixed density. We
consider the case in which the system is initially prepared in the non-interacting ground state and a
repulsive interaction is suddenly turned on. For large deviations of the work below its mean value,
we show that the large deviation principle holds by means of the quench action approach. Using
the latter, we compute exactly the so-called rate function, and study its properties analytically. In
particular, we find that fluctuations close to the mean value of the work exhibit a marked non-
Gaussian behavior, even though their probability is always exponentially suppressed below it as
L increases. Deviations larger than the mean value, instead, exhibit an algebraic decay, whose
exponent can not be determined directly by large-deviation theory. Exploiting the exact Bethe
ansatz representation of the eigenstates of the Hamiltonian, we calculate this exponent for vanishing
particle density. Our approach can be straightforwardly generalized to quantum quenches in other
interacting integrable systems.

I. Introduction

A defining feature of the quantum theory is the pres-
ence of statistical fluctuations in the outcome of the mea-
surement of any physical observable: given a collection
of systems prepared in the same quantum state, the re-
sult of identical measurements will be generally different,
leading to a non-trivial probability distribution function
for the outcomes. For many-body systems, it is often very
difficult to determine the latter and to give predictions
beyond the corresponding mean value. This is especially
true out of equilibrium, where exceptional computational
challenges arise, even in prototypical solvable models [1].
On the other hand, old atomic experiments have recently
proven that the full probability distribution of certain ob-
servables can be probed in mesoscopic systems [2–6], mo-
tivating new efforts in the theoretical study of the fluctu-
ations of quantum measurements in many-body physics,
both in [7–17] and out [18–25] of equilibrium.

In this respect, a natural quantity which can be inves-
tigated is the work done upon changing some of the sys-
tem’s parameters [26–29], as, e.g., in a quantum quench
[30, 31]. Crucially, its statistics has now proven to en-
code important information on the internal dynamics of
the system [28, 32–37] and to display interesting features
such as, most prominently, an emergent universal behav-
ior [38], in quenches near a critical point [39–41]. Fur-
thermore, the statistics of the work is a valuable tool
for studying dynamical phase transitions [42–44] and for
detecting them [42, 43, 45].

Despite its importance, the explicit calculation of the
statistics of the work remain a difficult task even in sim-
plified protocols such as quenches [30, 31] and analytic
results in the presence of interactions exist only in a few
special cases [36, 37, 46]. Yet, some of its features can be
understood based on general arguments and on the anal-
ysis of non-interacting models [28]. For instance, several
studies have shown the existence of a universal edge sin-

gularity at the lowest threshold of the probability dis-
tribution P (W ) of the extensive work W [28, 41], and
its robustness against different non-equilibrium protocols
[33]. These features have been also verified in integrable
quantum field theories [36, 37, 46], by exploiting the fact
that P (W ) can be obtained as the Fourier transform of
the so-called post-quench Loschmidt amplitude [28, 42].

In addition to W , one could also study the probability
distribution of the intensive work w = W/L, where L
is the system size. As W is an extensive variable, one
generically expects that both its mean value 〈W 〉 and its
fluctuations 〈(∆W )2〉 = 〈W 2〉 − 〈W 〉2 grow proportion-
ally to L as L increases, the latter statement being true
whenever W can be seen as resulting from the sum of
a number proportional to L of almost independent con-
tributions. This implies that the typical fluctuations in
the value of W are of order

√
L, i.e., those in w, of order

1/
√
L, vanish as L → ∞. Correspondingly, the distri-

bution function p(w) of w approaches a delta function
δ(w − w̄) which selects the average value w̄ = 〈W 〉/L.
On the other hand, fluctuations of the value of w away
from w̄ corresponds to fluctuations of order L in W , i.e.,
to large and atypical fluctuations, which are increasingly
rare as L grows. For free Bosonic and Fermionic models
it was found [40] that p(w) ∼ exp[−LI(w)] where I(w)
is the so-called rate function of large deviation theory
[47], a non-negative function which vanishes for w = w̄
and which controls the rate of exponential suppression of
large deviations. Importantly, it was shown in Ref. [40]
that I(w) provides insight into the universal properties
of the system for w � w̄. Furthermore, it was argued
that its qualitative behavior can be inferred based on the
knowledge of a few parameters of the quench. The analy-
sis of Ref. [40] also revealed that, for free bosonic models
starting from a critical initial state, a further universal
behavior appears in the regime w > w̄, where p(w) dis-
plays a transition from the aforementioned exponential
decay to an algebraic decay. This transition is analogous
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to well-known phenomenon of Bose-Einstein condensa-
tion in quantum statistical mechanics [48].

In the presence of interactions, the picture presented in
Ref. [40] remains qualitatively correct but the rate func-
tion I(w) is very hard to compute in practice. However,
accounting for interactions is obviously important, for in-
stance for quantitative comparisons between theoretical
predictions and experiments, in which the interactions
are usually non-negligible. In this paper, we show that
the statistics of the large deviations of the work done
during a global quench can be determined quite generi-
cally for any interacting integrable system by means of
the recently introduced quench action method [49–51]. In
order to exemplify this approach, we study a prototypi-
cal example, namely an interaction quench in the Lieb-
Liniger model [52, 53] describing a one-dimensional gas of
N Bosons with point-wise repulsive interaction. Specif-
ically, we consider the protocol [50] where the system,
initially prepared in its non-interacting ground state, is
brought out of equilibrium by suddenly turning on a re-
pulsive interaction between the particles.

The aim of this paper is threefold. First, by means of a
case study, we show that the quench action method pre-
dicts a statistics p(w) of the large deviations of the inten-
sive variable w which takes the exponential form p(w) ∼
exp[−LI(w)] for L→∞ at fixed density D = N/L, i.e.,
p(w) naturally satisfies the so-called large deviation prin-
ciple [47]. In addition, the quench action method allows
the calculation of I(w). Second, from this result we carry
out a quantitative analysis of the interaction quench de-
scribed above, pointing out its most interesting features
(strongly depending on the presence of the interactions)
which cannot be captured by the qualitative picture pre-
sented in Ref. [40]. Third, going beyond large deviation
theory, we analyze the region w > w̄ where I(w) van-
ishes identically and p(w) has an algebraic decay upon
increasing w. Although, in this case, the quench action
method is not sufficient to quantitatively describe p(w),
we are able to determine the exponent of this algebraic
tail by performing a finite-size calculation in the limit of
vanishing densities D of the Bosons. To the best of our
knowledge, this provides the first quantitative description
of the “condensed regime” characterizing the work statis-
tics of interacting Bosonic systems for quenches starting
from a critical initial state. Our results are expected to be
relevant for experimental realizations of one-dimensional
Bose gases in cold-atomic settings [54–62] and for mea-
surements of the work statistics in non-equilibrium pro-
tocols [63–68].

The rest of this paper is organized as follows. In
Sec. II we introduce the Lieb-Liniger Hamiltonian and
its solution via the Bethe ansatz (Subsecs. II A and
II B), together with details on the quench protocol and
the quench action approach (Subsecs. II C and II D).
In Sec. III, we recall known results on the statistics of
the work done in a quantum quench. In Sec. IV we
show that the quench action method naturally leads to a
probability distribution p(w) of the intensive work which

takes the typical form of the large deviation principle,
i.e., p(w) ∼ exp[−LI(w)], where I(w) can be computed
within this formalism. Section V contains all the results
regarding the rate function obtained via the quench ac-
tion approach, while in Sec. VI we determine the power-
law decay characterizing the fluctuations exceeding the
mean value w̄ in the limit of vanishing densities of the
Bosons. Finally, we report our conclusions in Sec. VII,
while the most technical aspects of our work are pre-
sented in several appendices.

II. The model and the quench protocol

A. The Hamiltonian

We consider the Lieb-Liniger model [52, 53] describing
a gas of N Bosons at positions {x1, ..., xN} with mass m
and point-wise repulsive interactions, with Hamiltonian

H(c) = − ~2

2m

N∑
j=1

∂2

∂x2j
+ 2c

∑
j<k

δ(xj − xk). (1)

The interaction strength c is related to the scattering
length a1D in one dimension through c = −~2/ma1D [69]
and it can be varied via Feshbach resonances [70]. In
the following we set ~ = 2m = 1 and assume that the
N Bosons are confined within a one-dimensional ring of
length L, realizing periodic boundary conditions.

The Hamiltonian in Eq. (1) is integrable and, as a con-
sequence, it can be diagonalized exactly by means of the
Bethe ansatz [53]. In particular, the N -particle eigen-
functions can be written as

ψN (x1, . . . , xN ) =
∑
P

N∏
`>k

[
1− ic sgn(x` − xk)

λP`
− λPk

]

×
N∏
j=1

eiλPj
xj , (2)

where the sum runs over the N ! permutations P of N
elements. The parameters {λj}Nj=1 are the so-called ra-
pidities and, in analogy with the quasi-momenta which
are relevant in the case of free quantum gases, they
parametrize the different eigenstates of the Hamiltonian.
When the system has a finite extension L, the rapidities
have to satisfy a set of quantization conditions which are
known as Bethe equations [52]

e−iλjL =

N∏
k 6=j

λk − λj + ic

λk − λj − ic
, with j = 1, . . . , N . (3)

For repulsive interactions c > 0, it can be shown that all
λj ’s are real; accordingly, it is convenient to consider the
logarithm of Eq. (3), i.e.,

λj =
2πIj
L
− 2

L

N∑
k=1

arctan

(
λj − λk

c

)
, (4)
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where we introduced the quantum numbers Ij . These
numbers parametrize the sets of rapidities {λj} and are
integers (half-integers) for odd (even) N ; note that they
have to be chosen in such a way that Ij 6= Ik for j 6= k
[71]. The knowledge of the rapidities {λj}Nj=1 completely
specifies the eigenstates ψN of H(c) and their properties.
For example, the corresponding energy eigenvalue can be
written as

E
[
{λj}Nj=1

]
=

N∑
j=1

λ2j . (5)

In the following, we will denote the normalized eigenstate
ofH(c) corresponding to a set of rapidities {λj} as |{λj}〉.

B. The thermodynamic description

When the number N of particles is very large, the ex-
plicit form of the wave function in Eq. (2) becomes diffi-
cult to deal with, and the Bethe equations (4) harder to
solve numerically. For these reasons, in order to study
the thermodynamic limit of the model, it is necessary to
employ an appropriate “thermodynamic Bethe ansatz”
formalism [72], which we briefly review in this section.
Here we only report the aspects that are directly rele-
vant to the present study, while the interested reader is
referred to Ref. [73] for a thorough treatment.

In the thermodynamic limit L,N →∞ with fixed den-
sity D = N/L, it can be seen that the rapidities λj of
a given eigenstate, whose number also grows to infinity,
arrange themselves on the real line according to a smooth
distribution function ρ(λ), with λ ∈ (−∞,+∞). Com-
plementary to the latter, one can also introduce a dis-
tribution of “holes” ρh(λ), namely of unoccupied states.
The functions ρ(λ) and ρh(λ) are analogous to the distri-
butions of momenta and vacancies for free Fermi gases.
However, contrary to the non-interacting case, ρ and ρh

are related in a non-trivial way. In particular, they sat-
isfy the following integral equation

ρt(λ) =
1

2π
+

1

2π

∫ ∞
−∞

dµK(λ− µ)ρ(µ) , (6)

where we defined the total distribution function

ρt(λ) = ρ(λ) + ρh(λ) , (7)

and the kernel

K(λ) =
2c

λ2 + c2
. (8)

Equation (6) can actually be derived by taking the ther-
modynamic limit of the Bethe equations (4) [73]. For
future use, we also introduce the following standard def-
inition

η(λ) =
ρh(λ)

ρ(λ)
. (9)

It is widely believed that the knowledge of the rapid-
ity distribution function ρ(λ) is sufficient to compute all
of the thermodynamic properties of the corresponding
eigenstate. For example, in the thermodynamic limit,
the densities D[ρ] and e[ρ] of particles and energy per
unit length can be obtained, respectively, as

D[ρ] = lim
N,L→∞

N

L
=

∫ +∞

−∞
dλ ρ(λ) , (10)

e[ρ] = lim
N,L→∞

E

L
=

∫ +∞

−∞
dλ ρ(λ)λ2 . (11)

One of the advantages of the thermodynamic descrip-
tion introduced above is the possibility to replace dis-
crete sums over eigenstates with functional integrals over
rapidity distribution functions. This is best illustrated
by the computation of the thermal partition function at
temperature T = β−1 with kB = 1, i.e.,

Z(β) = tr
[
e−βH

]
=
∑
{λj}

e−βE[{λj}] . (12)

Note that, while each term on the right-hand side is
known, the sum runs over all the possible sets of rapidities
{λj} and hence it is very difficult to evaluate in practice
for large N . In the thermodynamic limit, however, one
can rewrite Eq. (12) as a functional integral [73]

Z(β) =

∫
Dρ e−LSth[β,ρ] , (13)

where the functional

Sth[β, ρ] = βe[ρ]− SYY[ρ]

=

∫ +∞

−∞
dλ
{
βρ(λ)λ2 − sY Y [ρ](λ)

}
, (14)

plays the role of a thermal free energy. Here the first
term on the right-hand side is derived using Eq. (11) for
the thermodynamic limit of the energy in Eq. (5) and
corresponds to the exponential in Eq. (12). The second
term, instead, is the so-called Yang-Yang entropy [72]
SYY =

∫
dλ sY Y (λ) with density

sY Y [ρ](λ) = ρt(λ) ln ρt(λ)− ρ(λ) ln ρ(λ)

− ρh(λ) ln ρh(λ) , (15)

which accounts for the fact that each rapidity distribu-
tion function ρ(λ) emerges from several “microscopic re-
alizations”, i.e., that there are many sets of rapidities
{λj} associated with the same function ρ(λ) [73]. For
L → ∞ the functional integral in Eq. (13) can be com-
puted by a saddle-point evaluation, yielding the following
expression for the free energy density f associated with
the thermal partition function in Eq. (12) [71, 73]

f = −T lnZ
L

= Dh− T

2π

∫ ∞
−∞

dλ ln
(

1 + e−ε(λ)/T
)
.

(16)
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Here ε(λ) is the solution to the integral equation

ε(λ) = λ2 − h

− T

2π

∫ +∞

−∞
dµK(λ− µ)ln

(
1 + e−ε(λ)/T

)
,(17)

and h is a Lagrange multiplier introduced in order to
enforce the assigned density of particles, according to
Eq. (10). As we will see in Sec. II D, the formalism dis-
cussed above will also be essential for introducing the
quench action approach.

C. The quench protocol

As anticipated, in this work we consider an interaction
quench in which the system is initially prepared in the
ground state of the non-interacting Hamiltonian H(c0 =
0), usually denoted by |BEC〉. The corresponding wave-

function ψ
(0)
N (x1, x2 . . . , xN ) = 〈x1, x2, . . . , xN |BEC〉

reads

ψ
(0)
N (x1, x2...xN ) =

1

LN/2
. (18)

At time t = 0, a finite inter-particle repulsive interaction
c > 0 is turned on and the gas is subsequently left to
evolve unitarily. Our motivation to investigate the above
quench is twofold: first, the simplicity of the initial state
allows one to derive analytic predictions which would be
difficult to obtain in general; second, we will see that this
kind of quench leads to interesting features in the work
statistics.

The non-equilibrium dynamics arising from the inter-
action quench c0 → c described above has been exten-
sively investigated in the literature [74–80]. From the
analytical point of view, an important result has been the
discovery in Ref. [50] of an exact formula (later proven
in Ref. [81]) for the overlaps between the initial state
in Eq. (18) and the eigenstates of the Hamiltonian in
Eq. (2). This formula, which is an essential ingredient for
the application of the quench action approach described
in Sec. II D, will be used several times in this work, and
is hence reviewed in what follows.

It was first shown in Refs. [50, 81] that the initial state
in Eq. (18) has a non-vanishing overlap only with eigen-
states corresponding to sets {λj} of rapidities which are
parity invariant, i.e., such that {λj} = {−λj}. This im-
plies that the set {λj} can be decomposed as

{λj}Nj=1 = {λ+j }
N/2
j=1 ∪ {−λ+j }

N/2
j=1 , (19)

if N is even and

{λj}Nj=1 = {λ+j }
(N−1)/2
j=1 ∪ {−λ+j }

(N−1)/2
j=1 ∪ {0} , (20)

if N is odd, where λ+j > 0. For these states, the overlap
formula is extremely simple. Explicitly, for even N , it

reads

〈{λj}|BEC〉 =

√
(cL)−NN !

detNj,k=1Gjk

det
N/2
j,k=1G

Q
jk

N/2∏
j=1

λj
c

√
λ2j
c2

+
1

4

. (21)

Here we introduced the matrices Gjk and GQjk, with ele-
ments

Gjk = δjk

[
L+

N/2∑
l=1

K(λj − λl)
]
−K(λj − λk) , (22)

GQjk = δjk

[
L+

N/2∑
l=1

KQ(λj , λl)
]
−KQ(λj , λk) , (23)

where KQ(λ, µ) = K(λ − µ) + K(λ + µ), and K(λ) is
defined in Eq. (8). An analogous result holds for the
case of odd N [82]. As we will see further below, our
analytic study ultimately hinges on the existence of the
exact formula (21).

D. The quench action method

In this section we discuss the quench action approach,
which is the last piece of technical background needed
in order to carry out our analysis of the statistics of the
work. In the following, we only review some relevant
aspects, referring the reader to the literature for a more
comprehensive treatment [51].

This integrability-based method has been introduced
in Ref. [49] to tackle the difficult problem of computing
the thermodynamic limit of time averages

〈ψ0|O(t)|ψ0〉 =
∑
n,m

〈n|O|m〉〈ψ0|n〉〈m|ψ0〉ei(En−Em)t ,

(24)
after a global quench, where |ψ0〉 is the initial state and
O a generic local observable. Here we denoted by |n〉
and |m〉 the eigenstates of the Hamiltonian with energies
En and Em, respectively. While, in principle, the quench
action approach can be used to compute the full evolu-
tion of the expectation value in Eq. (24) [77, 78, 83, 84],
it is particularly effective if one is interested only in its
infinite-time limit [51]

lim
t→∞
〈ψ0|O(t)|ψ0〉 =

∑
n

|〈n|ψ0〉|2〈n|O|n〉

=
∑
{λj}

|〈{λj}|ψ0〉|2〈{λj}|O|{λj}〉 , (25)

where we used the fact that for the Lieb-Liniger model
the eigenstates are parametrized by sets of rapidities
{λj}. Indeed, the quench action approach provides a
simple prescription to evaluate the thermodynamic limit
of Eq. (25), which is based on replacing the spectral sum∑

{λj}

|〈{λj}|ψ0〉|2 (26)
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in Eq. (25) with a functional integration, in analogy with
what we did in Eq. (13). By doing so, one arrives at the
formal expression

lim
t→∞
〈ψ0|O(t)|ψ0〉 =

∫
Dρ 〈ρ|O|ρ〉e−LSQA[ρ] , (27)

where we denoted by |ρ〉 an eigenstate whose rapidities
{λj} approach the distribution ρ(λ) in the thermody-
namic limit. Here, the functional SQA[ρ], usually called
the quench action (QA), plays a role analogous to the
thermal free energy in Eq. (14). Explicitly, it reads [51]

SQA[ρ] = 2SO[ρ]− 1

2
SYY[ρ] + SN [ρ]

= 2SO[ρ]− 1

2

∫ +∞

−∞
dλ sY Y [ρ](λ)

+
h

2

[∫ +∞

−∞
dλ ρ(λ)−D

]
, (28)

where SO[ρ] is the functional associated with the overlap
term in the spectral sum in Eq. (26), i.e.,

|〈{λj}|ψ0〉| ' e−LSO[ρ] . (29)

Note that, since the Hamiltonian in Eq. (1) conserves the
particle number which is well-defined in the initial state,
a Lagrange multiplier h has been introduced in Eq. (28)
(where the prefactor 1/2 is for later convenience): this
allows us to extend the functional integration over the
whole space of rapidity distribution functions. Note also
that the Yang-Yang entropy appearing in Eq. (28) bears
an additional prefactor 1/2, which is due to the fact that
only parity-invariant eigenstates contribute to the spec-
tral sum in Eq. (26) [50]. The integral in Eq. (27) can
now be computed via the saddle-point method, yielding
an exact result for the infinite-time average of the expec-
tation value of local observables in the thermodynamic
limit.

A crucial point in the procedure outlined above is the
availability of an analytic expression for the functional
SO[ρ] in Eq. (29). If an analytic expression of the form
(21) is known for the overlaps, that for SO[ρ] can be easily
derived as shown explicitly in Ref. [50]; in particular, for
the case of the initial state in Eq. (18) one has

SO[ρ] =
D

2
[1 + ln γ]

+
1

4

∫ +∞

−∞
dλ ρ(λ) ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
, (30)

where we introduced the normalized interaction strength

γ =
c

D
. (31)

Unfortunately, for arbitrary initial states it remains an
open problem whether formulas analogous to Eq. (21)
can be derived, so that, in general, the explicit expression
for SO[ρ] is unknown [85–92]. Note, however, that it was

recently shown that for any integrable model it is always
possible to find a class of “integrable initial states” for
which this can be done [93, 94]. As we will comment
on later, the results derived in this work can thus be
generalized straightforwardly to other integrable systems,
at least for quenches from the latter class of initial states.

III. The statistics of the work

Before presenting our results, we review some generic
features of the work statistics obtained in free models
[27, 28, 33, 39–41]. The following discussion will be useful
for a comparison with the interacting case analyzed in
this paper.

Consider a quantum system with N degrees of free-
dom, initially in the ground state |ψ0〉 of its Hamilto-
nian H(c0). In the following, we denote its ground-state
energy eigenvalue with Ec00 . The probability distribu-
tion P (W ) of the extensive work W done in quenching a
global parameter c0 → c is defined as [27]

P (W ) =
∑
n≥0

|〈ψcn|ψ0〉|2δ(W − (Ecn − Ec00 )), (32)

where |ψcn〉 are the eigenstates of the post-quench Hamil-
tonian H(c) with corresponding energies Ecn. One imme-
diately notices from Eq. (32) that the work has a min-
imum threshold value Wrev = Ec0 − Ec00 . This has the
meaning of reversible work, i.e., the work performed at
zero temperature when the transformation c0 → c is done
in a reversible way. As a consequence, we will refer the
work to this threshold, focussing on the irreversible con-
tribution Wirr = W −Wrev ≥ 0, which is related to the
irreversible entropy production [31, 95]. For convenience,
we will henceforth indicate Wirr by W , dropping the sub-
script.

In the following, we will be interested in the moment
generating function G(s) of the extensive work W > 0

G(s) = 〈e−sW 〉 = 〈ψ0|e−s(H(c)−Ec
0)|ψ0〉, (33)

and in the corresponding scaled cumulant generating
function (SCGF) f(s), defined by [47]

G(s) = e−Nf(s) . (34)

Note that, from Eq. (33), 〈W 〉 = 〈ψ0|H(c)|ψ0〉 − Ec0 ,
which motivates the expectation that 〈W 〉 ∝ N . As
anticipated in the introduction, in order to investigate
the large deviations of the random variable W , it is
convenient to focus on the intensive irreversible work
w = W/N , with probability density p(w). Upon in-
creasing N one generically expects that p(w) satisfies
the so-called large deviation principle [47], i.e., that
p(w) ∼ exp[−NI(w)], where I(w) is referred to as the
rate function. This function is non-negative, convex and,
in general, displays a unique zero at the average and
most probable value w̄: upon increasing N the function
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p(w) becomes peaked around w̄, being exponentially sup-
pressed for w 6= w̄. Importantly, I(w) can be computed
by means of the Gärtner-Ellis theorem, which states that
I(w) is given by the Legendre-Fenchel transform of f(s)
in Eq. (34), namely

I(w) = −infs{sw − f(s)} , (35)

where the infimum has to be taken within the domain in
which f(s) is defined. Note that, once the large deviation
principle p(w) ∼ exp[−NI(w)] is satisfied, the Gärtner-
Ellis theorem can be heuristically derived by a saddle-
point approximation of the inverse Laplace transform of
G(s) [40, 47]. However, it might be difficult to prove this
principle a priori in specific cases, and thus this is usually
done a posteriori.

In the case of free (Fermionic and Bosonic) models, the
rate function is quadratic in a neighborhood of w̄, so that
small deviations from the average intensive work have a
Gaussian distribution [40]: this is what one would expect
from a naive application of the central limit theorem. On
the contrary, for large deviations from w̄, I(w) might dif-
fer significantly from its quadratic approximation, dis-
playing interesting features. Most prominently, as shown
in Refs. [40, 41], the behavior of I(w) for w � w̄ becomes
universal if the post-quench Hamiltonian is close to crit-
icality, a fact which can be rationalized via a quantum-
to-classical correspondence.

In the case of systems composed by free Bosonic excita-
tions, it has been shown in Ref. [40] that p(w) may feature
a different kind of universal behavior also for w > w̄. In
particular, as the pre-quench initial state is varied from
being non-critical to critical, a transition in the form of
p(w) takes place such that I(w) vanishes identically for
w ≥ w̄ when the pre-quench initial state becomes critical.
This has been identified as a “condensation” transition,
in analogy to the Bose-Einstein condensation in equilib-
rium statistical mechanics [48] and it implies that p(w)
displays an algebraic decay upon increasing w. Although
no general expression has been reported so far for such
a power-law tail of p(w) in this condensation regime, the
latter has been shown to appear also in different non-
equilibrium protocols [33]. In this work we will provide
a quantitative prediction for the corresponding exponent
in the interaction quench introduced in Sec. II C.

IV. From the quench action approach to large
deviation theory: the rate function

We now present our analysis and predictions for the
statistics of the work done by the quench introduced in
Sec. II C. We begin by showing that the quench action ap-
proach allows us to demonstrate, directly and rather gen-
erally, that the large deviation principle p(w) ∼ e−LI(w)

holds and then compute the rate function I(w).
We start from the expression of the moment generating

functionG(s) in Eq. (33) in which we insert the resolution
of the identity operator I in terms of the post-quench

Bethe eigenstates |{λj}〉

I =
∑
{λj}

|{λj}〉〈{λj}|, (36)

obtaining

G(s) =
∑
{λj}

|〈{λj}|BEC〉|2e−s(E[{λj}]−Ec
0). (37)

One then notices that Eq. (37) has a structure analogous
to that of Eq. (25). Accordingly, it can be expressed as
the r.h.s of Eq. (27) which involves the quench action
SQA[ρ], namely

G(s) =

∫
Dρ exp[−LSQA[ρ]− s(E[{λj}]− Ec0)]

=

∫
Dρ exp[−L(SQA[s, ρ]− se0(c))] , (38)

where we introduced the ground-state energy density
e0(c) = Ec0/L, and the modified quench action

SQA[s, ρ] = SQA[ρ] + s e[ρ], (39)

with SQA[ρ] given in Eq. (28), and e[ρ] in Eq. (11). In the
thermodynamic limit, the functional integral in Eq. (38)
can be evaluated via the saddle-point method, leading to

G(s) ∼ exp[−L(SQA[s, ρ∗s]− se0(c))] . (40)

Here the function ρ∗s is determined by the saddle-point
condition

δSQA[s, ρ]

δρ

∣∣∣
ρ=ρ∗s

≡ 0 . (41)

Note that by straightforward manipulations, Eq. (41) can
be cast into the explicit form [see also Eqs. (28), (30), and
(15)]

ε∗s(λ) = 2λ2 +
1

s
ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
− h

s
− 1

s

∫ ∞
−∞

dµ

2π
K(λ− µ) ln

(
1 + e−sε

∗
s(µ)
)
,

(42)

involving, instead of ρ∗s,

ε∗s(λ) =
1

s
ln η∗s (λ) , (43)

where η(λ) is defined in Eq. (9). Equation (42) has to
be interpreted as follows. For each value of s, one finds
a unique solution for the function ε∗s(λ), and hence for
η∗s (λ). Then, by recalling that ρt(λ) = ρ(λ)(1 + η(λ)),
one plugs the latter function into Eq. (6), in order to ob-
tain a final prediction for ρ∗s(λ). Note that the Lagrange
multiplier h(s) in Eq. (42) has to be chosen such that the
prescribed density D is obtained after using Eq. (10).
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Within the saddle-point approximation in Eq. (40) one
finds that, from Eq. (34),

f(s) = − 1

L
lnG(s) = SQA[s, ρ∗s]− se0(c) (44)

and therefore, in order to calculate I(w) according to
Eq. (35) one has to find the infimum, as a function of s,
of sw − f(s). When this is attained in a differentiable
point sw, it is determined by the condition

d

ds
(f(s)− sw)

∣∣∣
s=sw

= 0 . (45)

Due to the concavity of f(s) [47], the stationary point
s = sw can only correspond to a minimum. Using now
(d/ds) = (dρ/ds)(δ/δρ), and exploiting Eq. (41), one
can easily show that this condition is in fact equivalent
to requiring ∫ +∞

−∞
dλ ρ∗sw(λ)λ2 − e0(c) = w . (46)

As a consequence, if f(s) is in addition strictly concave,
the expression in Eq. (35) simplifies as

I(w) = −sww + f(sw) . (47)

Importantly, in this derivation, we never had to evalu-
ate the quench action SQA[s, ρ] at complex values of s,
where it has been shown that it might display singular
points [96]. Note also that the specific form of the overlap
term SO[ρ], entering only in Eq. (42), does not play any
role in this derivation. As a consequence, the latter can
be generalized straightforwardly to any integrable model
where the quench action approach can be applied. We
note that the function f(s) in Eq. (44) has been defined
with a rescaling by the system size L and not by the
number of Bosons N as in Eq. (34). The two definitions
are clearly equivalent since N = DL and the density D
is assumed to be fixed.

We can now proceed towards the explicit evaluation of
the rate function I(w), using Eq. (35). First, note that
exploiting Eqs. (6) and (42), the action in Eq. (39) can
be rewritten in the compact form

SQA[s, ρ∗s] = D (lnγ + 1)

+
hD

2
− 1

2

∫ ∞
−∞

dλ

2π
ln
(

1 + e−sε
∗
s(λ)
)
.(48)

Next, one needs to solve Eqs. (42) and (6) with the con-
straint in Eq. (10). This can be easily done numerically
by standard iterative procedures. The resulting solution
for ε∗s(λ) can then be plugged into Eq. (48) and integrated
numerically. Finally, in order to obtain f(s) in Eq. (44),
one also needs to compute the ground-state energy e0(c).
In fact, this can be written in terms of the solution of an
integral equation (see, e.g., Ref. [73]). In particular, we
have

e0(c) =

∫ Q

−Q
dλ ρGS(λ)λ2 , (49)

where ρGS(λ) satisfies the Lieb equation

ρGS(λ) =
1

2π
+

1

2π

∫ Q

−Q
dµK(λ− µ)ρGS(µ) , |λ| < Q ,

(50)
and where the real number Q is determined self-
consistently by requiring∫ Q

−Q
dλ ρGS(λ) = D . (51)

We have now all the necessary ingredients to evaluate the
rate function I(w), which is obtained by numerically per-
forming the Legendre-Fenchel transform in Eq. (35). The
latter expression is indeed better suited for a numerical
evaluation of I(w) than Eq. (47) since f(s) is in general
known only numerically from Eq. (44). The Legendre
transform in Eq. (47) will be instead used in order to
determine analytically the asymptotic behavior of I(w)
both close to w̄ and for low values of w. We have imple-
mented the numerical procedure outlined above, which
presents no difficulty, and we have worked out analyti-
cally the asymptotic of I(w); our results are summarized
and discussed in the next section.

V. Results

In this section we present our results for the scaled cu-
mulant generating function in Eq. (44) and for the rate
function I(w). We begin by reporting in Sec. V A their
numerical evaluation based on the exact formulas pre-
sented in the previous section, and then work out ana-
lytically their asymptotic behavior in Sec. V B. Finally,
we devote Sec. V C to a detailed analysis of the so-called
Tonks-Girardeau (TG) limit c → ∞ , which lends itself
to a fully analytical treatment.

A. The exact rate function: numerical results

We start by presenting our numerical predictions for
the scaled cumulant generating function f(s), which are
reported in Fig. 1(a). The data are obtained using
Eq. (44), after numerical solution of Eqs. (42), (6), and
(50), which is done by standard iterative procedures [97].

We see from Fig. 1(a), that f(s) displays many of the
generic features predicted in Ref. [40]. In particular, it
is a concave function defined in a semi-infinite interval
[s̄,∞) of the real line. In this case s̄ = 0, since the
function f(s) diverges for s < 0. This is also consistent
with the fact that f(s) has a singular point in its second
derivative at s = 0. To see this, one can compute the
second derivative of f(s), yielding

d2

ds2
f(s)

∣∣∣
s=0

= 〈BEC| [H(c)− E0(c)]
2 |BEC〉 → ∞ ,

(52)
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FIG. 1. (a) Numerical determination of the function f(s) for various values of the interaction c = 5, 10 (from bottom to top)
and fixed density D = 1. Solid lines correspond to the exact numerical values obtained by solving Eq. (42), while dashed lines
indicate the asymptotic value 2f0 determined from, c.f., Eq. (75) in Sec. V B. (b) Large deviation function I(w) for various
values of the post-quench interaction c. In black we show, for comparison, I(w) in the Tonks-Girardeau limit c→∞, evaluated
in Sec. V C. The latter is never identically zero, in contrast to the curves corresponding to c = 5, 10, 25 (from bottom to top)
which vanish identically for w ≥ w̄ = cD2 − e0(c).

as it can be verified by using the Wick theorem and
by noticing that divergent terms arise on the r.h.s. of
Eq. (52). On the contrary, the first derivative of f(s) is
finite in s = 0 and it gives the average intensive work w̄
performed in the quench. In particular, from Eq. (44),
we have

w̄ = −G
′(0)

L
= f ′(0) =

1

L
〈BEC|H(c)− E0(c)|BEC〉

= cD2 − e0(c) . (53)

As s approaches zero, f(s) displays a non-analytic behav-
ior, which will be characterized in Sec. V B and which is
responsible for the divergence of the higher-order cumu-
lants. We also note that the qualitative features of f(s)
do not change upon varying c. However, the average work
w̄, and hence the first derivative in s = 0, increases upon
increasing the interaction c. This is expected because
as the repulsion among the Bosons increases, a larger
energy is present in the initial BEC state where all the
Bosons have zero momentum according to Eq. (18). In
particular, in the Tonks-Girardeau limit c→∞ the mean
intensive work w̄ diverges.

From Fig. 1(a) one also sees f(s) slowly approaches
its asymptotic value for s→∞, which increases upon in-
creasing c. This asymptotic behavior, however, is difficult
to analyze numerically and we postpone its discussion to
Sec. V B, where it will be determined analytically.

In Fig. 1(b) we report our predictions for the rate func-
tion I(w) corresponding to f(s) in panel (a), which can
be obtained after numerical Legendre-Fenchel transform
of f(s), as explained in the previous section. As we dis-
cussed above, the rate function I(w) vanishes at w = w̄,
while it is identically zero for w > w̄. This means that
fluctuations for w > w̄ must have a sub-exponential de-
pendence C(L, c) on the system size L. In fact, assuming

a power-law decay

p(w) ∼ C(L, c)w−β for w � w̄ , (54)

one can constrain the value of β by taking into account
the divergence of cumulants beyond the first one, see
Eqs. (52) and (53). In particular, it must be 2 < β < 3.
While the pre-factor C(L, c) and the exponent β can not
be determined from large deviation theory, we will show
that they can be calculated from the Bethe ansatz in
Sec. VI, at least in the limit of vanishing densities of
Bosons.

Finally, from Fig. 1(b) we see that I(w) rapidly ap-
proaches zero as w → w̄−. In fact, due to the limitations
in the accuracy of the numerical solutions, it is difficult
to characterize this decay numerically, as I(w) becomes
very small when w ' w̄. However, as we show in the
next section, this regime can be successfully tackled an-
alytically, so that the behavior of I(w) near w̄ can be
determined exactly.

B. Asymptotic behavior of the rate function:
analytic results

As we mentioned in Sec. III, whenever the central
limit theorem applies [47] because w can be seen as the
sum of a large number of microscopic works done sepa-
rately on the single particles, the rate function I(w) has a
quadratic expansion around w = w̄. This is, for instance,
the case for free fermionic models [28, 33, 39–41], where
a Gaussian distribution describes p(w) for small devia-
tions from its mean value w̄. In the case under study,
however, we show in the following that the behavior of
I(w) near w̄ is not Gaussian, meaning that the central
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limit theorem does not apply.
In order to study the behavior of I(w) for w → w̄−, we

exploit Eq. (47) which applies to our case since f(s) is
strictly concave and therefore f ′(s) is invertible. Due to
the concavity of f(s), it is easy to show that the behavior
of I(w) near w̄ is determined by the expansion of f(s) in
a neighborhood of s = 0. In other words, we are left with
the problem of determining the form of f(s) for small s.
To this end, we start from Eq. (44) and define

as(λ) =
1

η∗s (λ)
. (55)

Differentiating Eq. (44) with respect to s, we obtain

d

ds
f(s) =

h′(s)D

2
− 1

2

∫ +∞

−∞

dλ

2π

a′s(λ)

1 + as(λ)
− e0(c) . (56)

Next, differentiating Eq. (42) with respect to s, multi-
plying each side of the resulting equation by ρ∗s(λ) and
finally integrating in λ we obtain

h′(s)D

2
− 1

2

∫ +∞

−∞

dλ

2π

a′s(λ)

1 + as(λ)
=

∫ +∞

−∞
dλ ρ∗s(λ)λ2 ,

(57)
where the Bethe equations (6) have been used. Putting
everything together, we obtain the important relation

d

ds
f(s) =

∫ +∞

−∞
dλ ρ∗s(λ)λ2 − e0(c) . (58)

Accordingly, the small-s behavior of f(s) is determined

by that of
∫ +∞
−∞ dλ ρ∗s(λ)λ2. Note that for s = 0 we obtain

that the derivative of f(s) is the energy of the initial
state, as it should. In Appendix A we show that∫ +∞

−∞
dλ ρ∗s(λ)λ2 = cD2 − c2D2

√
2s

π
+O(s) , (59)

so that we finally obtain

f(s) = [cD2 − e0(c)]s− 2

3
c2D2

√
2

π
s3/2 +O(s2) . (60)

We can now plug this expression into Eq. (47) and com-
pute the first term in the expansion of I(w) for w ' w̄−.
By doing so, we obtain that

I(w → w̄−) =
π

6c4D4
(w̄−w)3 +O((w̄−w)4) for w ≤ w̄ ,

(61)
i.e., the first term of the expansion around w̄ is cubic
instead of quadratic. As anticipated, we therefore find
that small fluctuations have not a Gaussian distribution,
in stark contrast with the free case.

Next, we proceed to studying the limit of I(w) for small
values of w. From Eq. (47), we see that the latter is de-
termined by the behavior of f(s) at s → ∞, which we
now work out analytically. This can be done by following

the derivation of Refs. [98, 99], where analogous calcula-
tions were done in the context of thermal equilibrium.
We start by rewriting Eq. (48) as

SQA[s, ρ∗s] = D(lnγ + 1) +
hD

2
− P (s) , (62)

where

P (s) =
1

2

∫ +∞

−∞

dλ

2π
ln(1 + e−sε

∗
s(λ)). (63)

For large s, the function ε∗s(λ) has two symmetric zeros
which we call Q′ (−Q′), while we name Q (−Q) the zeros
of ε∞(λ), defined as the solution of the limit s → ∞ of
Eq. (42), namely by

ε∞(λ) = 2λ2 − h′ +
∫ Q

−Q

dµ

2π
K(λ− µ)ε∞(µ) , (64)

where we made the assumption that

0 < h′ = lim
s→∞

1

s
h(s) <∞ . (65)

Assuming the validity of the latter equation we write the
following expansion for h(s) at large s

h(s) = h′s+ h0 +
h−1
s

+O(s−2) . (66)

We computed h′, h0 and h−1 by performing a fit against
the numerical data for h(s). The expansion in Eq. (66)
has been numerically checked. Next, we write Eq. (63)
as

P (s) =
1

2

∫ +∞

−∞

dλ

2π
ln
(

1 + e−s|ε
∗
s(λ)|

)
− s

2

∫ −Q
−Q′

dλ

2π
ε∗s(λ)

− s

2

∫ Q′

Q

dλ

2π
ε∗s(λ)− s

2

∫ Q

−Q

dλ

2π
ε∗s(λ).

(67)

The first term in Eq. (67) can be studied by expanding
the integrand around the points Q′(−Q′)
1

2

∫ +∞

−∞

dλ

2π
ln
(

1 + e−s|ε
∗
s(λ)|

)
=

π

12|ε∗′s (Q′)|s +O(s−2).

(68)
Note that the second and third term in Eq. (67) vanish
as O

(
(Q−Q′)2

)
, i.e.,∫ Q′

Q

dλ

2π
ε∗s(λ) = −

∫ Q′+(Q−Q′)

Q′

dλ

2π
ε∗s(λ)

= − 1

4π
(Q−Q′)2ε∗′s (Q′) +O

(
(Q−Q′)3

)
.

(69)

We now make use of the following identities, which are
proven in Appendix B:

δε∗s(λ) = ε∗s(λ)− ε∞(λ) =
U1(λ)

s
+
U2(λ)

s2

+O(s−3), (70)

Q′ −Q = − U1(Q)

sε′∞(Q)
+O(s−2) (71)
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where U1(λ) and U2(λ) are obtained as the solution to
the following integral equations:

U1(λ) = −h0 + ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
+

∫ Q

−Q

dµ

2π
K(λ− µ)U1(µ) ,

(72)

U2(λ) =
[K(λ−Q) +K(λ+Q)]

ε′∞(Q)

(
−U

2
1 (Q)

4π
− π

12

)
−h−1 +

∫ Q

−Q

dµ

2π
K(λ− µ)U2(µ) .

(73)

Plugging the identities in Eqs. (70)–(73) into Eqs. (68)
and (69) and then into Eq. (67), straightforward manip-
ulations finally yield, for s→∞,

f(s) = 2f0 +
f1
s

+O(s−2), (74)

with

f0 =
D

2
(lnγ + 1) +

1

4

∫ Q

−Q
dλ ρGS(λ) ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
,

f1 = − 1

vs

(
U2
1 (Q)

4π
+

π

12

)
. (75)

Here vs is the sound velocity of the system defined by

vs =
ε′∞(Q)

2πρGS(Q)
. (76)

The expression of f0 in Eq. (75) coincides with the pre-
diction of Ref. [40], since f0 can be actually rewritten
as

f0 = − ln |〈BEC|ψc0〉|
L

, (77)

where |ψc0〉 is the ground state of the post-quench Hamil-
tonian H(c) in Eq. (1).

The expression in Eq. (74) finally provides access to
the behavior of I(w) for small values of w. Indeed, by
plugging Eq. (74) into Eq. (47) we obtain

I(w) = 2f0 − 2
√
−f1w1/2 +O(w) . (78)

We compare this expansion with the exact rate function
I(w) obtained by the numerical evaluation of the formu-
las derived in the previous section for several values of the
interaction c. An example is displayed in Fig. 2, where a
good agreement between the two curves is manifest. Note
that the leading behavior in the expansion in Eq. (78) is
in agreement with the predictions of Ref. [40]. Indeed,
based on a quantum-to-classical correspondence, it was
argued in Ref. [40] that when the post-quench Hamil-
tonian is critical, the rate function displays the generic
behavior

I(w)− 2f0 ∝ wd/(d+1) , (79)

0.2
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0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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I
(w

)

w

exact
asymptotics

FIG. 2. Rate function I(w) after quenching the interaction
parameter to c = 25. The density of the particles is fixed
to D = 1. The blue solid and red dashed lines correspond,
respectively, to the exact numerical value of I(w) [obtained
using Eq. (35)], and to the analytic expansion in Eq. (78).

where d is the dimensionality of the system. In our case,
the criticality condition is verified since the Lieb-Liniger
spectrum is gapless. Accordingly, large deviations for
small values of the work encode signatures of universality
as predicted by the quantum-to-classical correspondence
[40]. A precise determination of the classical counterpart
of the quantum quench analyzed here, however, goes be-
yond the scope of the present paper, and will not be
discussed further.

C. The Tonks-Girardeau limit

In this section we focus on the Tonks-Girardeau limit
[100], corresponding to the quench where the final in-
teractions are taken to be infinitely large. In fact, on
the one hand, in this regime the formulas derived in the
previous sections simplify, so that one can push the an-
alytical control even further. On the other hand, in this
limit, qualitative differences emerge in the statistics of
the work, which are worth exploring per se, especially
given the great relevance of this regime for cold-atomic
experiments [54, 57].

From the computational point of view, in the limit
c→∞, the kernel K(λ) in Eq. (8), entering the integral
equations which characterize the quench action formal-
ism, vanishes identically, largely simplifying the analysis.
In particular, from Eq. (42), the solution for η∗s (λ) can
be explicitly written as

η∗s (λ) =
λ2

4c2
e2sλ

2−h(s) =
λ2

4D2
e2sλ

2−h∗(s,D) . (80)

Here we have introduced the following parametrization
of the Lagrange multiplier h(s)

h(s) = h∗(s,D)− ln(c2) + ln(D2) , (81)
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FIG. 3. Lagrange multiplier h∗(s̃) as a function of s̃ = sD2.
We note that h∗(s̃) is nearly linear, except for small values
of s̃. Inset: behavior of h∗(s̃) close to s̃ = 0. Together with
the exact curve h∗(s̃) (blue solid line) we report the analytic
expansion in Eq. (87) (red dashed line).

which is particularly convenient because, as shown in
Ref. [50], for the quench action equations corresponding
to s = 0 in the present discussion,

h(0) = −ln(c2) + ln(D2) , (82)

and therefore h∗(0, D) = 0.
Next, from Eq. (6) one finds, in the TG limit, ρt(λ) =

1/(2π) and thus from ρt(λ) = ρ(λ)(1 + η(λ))

ρ∗s(λ) =
1

2π

1

1 + λ2

4D2 e2sλ
2−h∗(s,D)

. (83)

Accordingly, the density constraint in Eq. (10), which
determines the parameter h∗(s,D), can be written as∫ +∞

−∞

dy

2π

1

1 + y2

4 e2y2D2s−h∗(s,D)
= 1 . (84)

The function h∗(s,D) determined by this condition
does not depend on c, since the latter does not appear
in Eq. (84), and it actually depends on s and D via the
combination s̃ = sD2. Equation (84) can be easily solved
numerically: we report the corresponding result for h∗(s̃)
in Fig. 3. Interestingly, the function h∗(s̃) appears to be
almost linear in s̃. In fact, it is not difficult to compute
the asymptotic behavior of h∗(s̃) for s̃ → ∞. Inserting
Eq. (66) written up to order O(s−1), h′0 = h0−h(0) with
h0 and h(0) defined in Eqs. (66) and Eq. (82), respec-
tively,

h∗(s̃) = s̃h′ + h′0 +O(s̃−1) (85)

into Eq. (83), in the large-s limit ρ∗s(λ) becomes a step
function; in particular, imposing the correct density, we
find

lim
s→∞

ρ∗s(λ) =

{
1
2π |λ| < Dπ

0 |λ| > Dπ
(86)
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FIG. 4. Scaled cumulant generating function divided by the
density of Bosons f(s)/D as a function of s̃ = sD2 > 0 for
quenches to infinitely repulsive interactions c → ∞ (Tonks-
Girardeau limit). The function approaches the origin s̃ → 0
with infinite slope, according to Eq. (89).

and therefore the simple relation h′ = 2π2 in the TG
limit. The behavior of h∗(s̃) can be analytically studied
also for s̃ → 0, although the computations are more in-
volved. For this reason, we present them in Appendix D,
and we report here the final result, which reads

h∗(s̃) =
16√
2π

√
s̃+O(s̃) . (87)

The expressions in Eqs. (85) and (87) allow us to ob-
tain directly the corresponding expansions for the scaled
cumulant generating function f(s). First, note that in
the TG limit the latter can be expressed explicitly by
plugging Eq. (80) into Eqs. (44) and (48), finding

f(s) = D +
D

2
h∗(sD2)− D3π2

3
s

− 1

2

∫ ∞
−∞

dλ

2π
ln

(
1 +

4D2

λ2
e−2sλ

2+h∗(s,D)

)
.

(88)

This expression can be easily evaluated numerically, as it
amounts to a simple integral, once the function h∗(sD2)
is known. Notice that, rescaling λ = Dy in the integral of
Eq. (88), it turns out that f(s)/D is actually a function
of s̃ = sD2 only, as it has been already noticed also
for h∗(s,D2). We report the resulting data for f(s)/D
in Fig. 4. The same rescaling in terms of D does not
apply to the case at finite c of Secs. V A and V B as
one realizes by looking, e.g., at the small-s expansion in
Eq. (60). Note also that, differently from the case of finite
interactions c, the average value of the work is infinite
in the Tonks-Girardeau limit. Indeed, the expansion of
f(s)/D near s = 0 differs from Eq. (60), as one realizes
by plugging Eq. (87) into Eq. (88). The details of this
calculation are reported in Appendix C, where we find

f(s)

D
= α1/2 s̃

1/2 +O (s̃) , (89)
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with

α1/2 = 2

√
2

π
. (90)

Analogously, the asymptotic behavior of f(s) for s →
∞ can be derived by plugging in Eq. (88) the expression
in Eq. (85) for h∗(s̃). The intermediate steps are reported
in Appendix D, while the final result reads

f(s)

D
= 2f0 +

f1
s̃

+O(s̃−2) , (91)

with

f0 =
1

2
ln
π

2
, (92)

f1 =
1

8π2

[
−π

2

6
− 1

2
ln2

(
π2

4
e−h

′
0

)]
. (93)

Note that the expression for f1 in Eq. (93) is equal to the
limit c→∞ of Eq. (75), as it should.

Finally, we discuss the rate function I(w) in the TG
limit which can be computed by numerically performing
the Legendre-Fenchel transform of Eq. (88), displayed in
Fig. 1(b). Given the scaling form of f(s)/D as a func-
tion of sD2, one readily obtains from Eq. (35) a scaling
form for I(w)/D as a function of the variable w̃ = w/D3

only. Contrary to the case of finite interactions, I(w)/D
never vanishes, as the average work w̄ grows to infinity
as c→∞. It is thus meaningful to study the asymptotic
behavior of I(w)/D for large values of w/D3. This can
be easily done by plugging into Eq. (47) the expansion
in Eq. (89), finding

I(w)

D
=
α2
1/2

4
w̃−1 +O

(
w̃−2

)
, (94)

which is plotted in Fig. 5 together with the exact numer-
ical values of I(w)/D.

Before concluding this section, we note that an analo-
gous analysis can be done for the limit w → 0 of the rate
function I(w), by plugging Eq. (91) into Eq. (47). In this
case, we find that I(w) behaves as in Eq. (78), showing
that fluctuations for small values of w are not qualita-
tively affected by considering the TG regime c→∞.

VI. Algebraic behavior of p(w) for large w

In the previous sections we have quantitatively ana-
lyzed the rate function I(w), characterizing the expo-
nential decay of the distribution function p(w) for w < w̄
as L grows. On the other hand, for the quench con-
sidered here, we saw that I(w) vanishes identically for
w > w̄, so that, in this regime, the decay of p(w) as
a function of L is sub-exponential. As we have antic-
ipated in Sec. IV, assuming (for large w) a power-law
decay p(w) ∼ C(L, c)w−β one can bound the value of β
based on the divergence of cumulants of w higher than

0
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0.05

10 20 30 40 50 60 70 80 90 100

c = ∞

I
(w

)/
D

w̃ = w/D3

exact
expansion

FIG. 5. Asymptotic behavior of the rate function I(w)/D for
large values of w̃ = w/D3 and quenches to the TG regime
c → ∞. The solid line corresponds to the exact value ob-
tained by the numerical Legendre-Fenchel transform of the
function f(s)/D given in Eq. (88), while the dashed line is
the analytical expansion in Eq. (94).

the first. However, the leading behavior in L of C(L, c),
characterizing p(w) for w > w̄, and the value of the ex-
ponent β, can not be obtained by large deviation theory
and a more sophisticated analysis has to be carried out.

In order to determine such a leading behavior, one
could start from an exact expression for p(w) at finite
sizes, and then perform the correct asymptotic analy-
sis. This strategy, however, appears to be unpractical,
as the exact computation of p(w) at finite sizes is a sig-
nificant challenge. Nevertheless, in this section we show
that this problem can be solved assuming a vanishingly
small density of particles. In particular, we consider the
limit L→∞, with the number N of particles kept fixed.
We will show that, in this regime, one can extract the
exact leading dependence on L of p(w) for large values
of w.

From the technical point of view, the reason why the
problem becomes tractable in this regime lies in the sim-
plified structure of the solution to the Bethe equations
(3), parametrizing the eigenstates of the Hamiltonian.
Indeed, fixing the quantum numbers Ij in Eq. (4), one
immediately obtains the following expansion as L grows

λj =
2πIj
L

+

∞∑
n=2

λ
(n)
j

Ln
=

2πIj
L

+O(L−2) , (95)

with j = 1 , . . . N . Namely, at the leading order in L,
the rapidities coincide with the quasi-momenta of a free
quantum gas confined within a ring of length L (with
the condition Ij 6= Ik for j 6= k). The corresponding
eigenvalues of the Hamiltonian become

EN =

N∑
j=1

λ2j =
4π2

L2

N∑
j=1

I2j +O(L−3) . (96)

For simplicity, we consider below the case in which the
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number N of particles is odd, so that the quantum num-
bers Ij are integer, i.e., we choose

N = 2M + 1 . (97)

A completely analogous derivation applies to the case of
even N .

As a first ingredient for the computation of p(w), we
consider the zero-density limit of the overlap in Eq. (21),
which has been already studied in the literature [82, 101,
102]. In particular one finds

〈{λj}|BEC〉 '
√

(cL)−M
√
N !∏M

j=1

(
λj

c

√
1
4 +

λ2
j

c2

) . (98)

As a consistency check, one should verify that, using
Eq. (98) and keeping only the leading term of the ra-
pidities λj ' 2πIj/L, one obtains the correct values for
the normalization and the energy of the initial state, i.e.,∑

I1<I2<...IM

|〈{λj}|BEC〉|2 = 1 , (99)

and

∑
I1<I2<...IM

 M∑
j=1

2λ2j

 |〈{λj}|BEC〉|2 =
cN(N − 1)

L
.

(100)
In fact, Eq. (99) can be established analytically on the ba-
sis of Eq. (98) by using the identity (see, e.g., Ref. [103])

∑
1≤I1<I2<...IM<∞

M∏
j=1

1

I2j
=

π2M

(2M + 1)!
, (101)

while we checked that also Eq. (100) is fulfilled by numer-
ically performing the sum for small particle numbers.

We have now all the ingredients to determine the lead-
ing behavior of p(w). Our strategy consists in a direct
computation based on the definition in Eq. (32) which,
for the Lieb-Liniger model, reads

P (W ) =
∑
{λj}

|〈{λj}|BEC〉|2δ (W − (E[{λj}]− Ec0)) .

(102)
Let us fix the value w, so that the extensive work is
W = wL, and let ε � W be a small energy shell (more
precisely, we choose ε = ε̃L with ε̃ � w). Then, the
definition in Eq. (102) directly yields∑

W ′∈(W−ε,W+ε)

P (W ′) ∼ ε P (W ) . (103)

Note that since w = O(L0), we are in the regime w � w̄,
since in the zero-density limit w̄ = O(L−2). We can
then proceed to evaluate the sum over the energy shell
in Eq. (103) and obtain the behavior of P (W ) and hence
of p(w). In order to simplify the discussion, we start by

illustrating the main idea of this derivation in the sim-
plest case where M = 1, i.e., N = 3. The generalization
to an arbitrary number N of particles, which does not
bear conceptual complications, is presented in Appendix
E. At the end of this section we will report the final result
of this analysis.

For M = 1, Eq. (103) can be rewritten as

εP (W ) =
∑

I1∈(Imin,Imax)

|〈I1|BEC〉|2 , (104)

where Imin and Imax are determined, via Eq. (96), by the
boundaries of the energy shell in Eq. (103), i.e.,

Imin =
L√
8π

√
W − ε , (105)

Imax =
L√
8π

√
W + ε . (106)

Here we dropped the ground state energy Ec0 ∼ 1/L2

since it is sub-leading with respect to W . Consequently
we have

εP (W ) =
6c2L2

16π2

Imax∑
I=Imin

1

I21 (π2I21 + c2L2

16 )

=
3c2L2

8π2

δI∑
j=0

1

(j + Imin)2(π2(j + Imin)2 + c2L2

16 )
,

(107)

where

δI ≡ Imax − Imin =
Lε√
8Wπ

+O
(
ε2
)
. (108)

The series in Eq. (107) can be easily bounded as

εPmin < εP (W ) < εPmax , (109)

where

εPmin =
3c2L2

8π2

δI∑
j=0

1

I2max(π2I2max + c2L2

16 )

=
3c2L2

8π2

δI

I2max(π2I2max + c2L2

16 )
, (110)

εPmax =
3c2L2

8π2

δI∑
j=0

1

I2min(π2I2min + c2L2

16 )

=
3c2L2

8π2

δI

I2min(π2I2min + c2L2

16 )
. (111)

Plugging Eqs. (105)–(108) into Eqs. (110) and (111), we
immediately get

Pmin =
3c2L3

π3
√

83W

1

W ( c
2L4

128π2 + WL4

64π2 )
+O(ε) , (112)

Pmax =
3c2L3

π3
√

83W

1

W ( c
2L4

128π2 + WL4

64π2 )
+O(ε) . (113)
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Accordingly, at the leading order in ε, we find Pmin =
Pmax = P (W ). We recall now that the probability dis-
tribution function p(w) of the intensive work is related to
P (W ) by p(w) = LP (wL). Accordingly, from Eq. (113),
we obtain

p(w) ∝ c2

L5/2
w−5/2 +O(L−7/2) . (114)

which has the form anticipated in Eq. (54) with C(L, c) =
c2/L5/2, β = 5/2 and clearly displays that the depen-
dence C(L, c) of p(w) on L is not exponential. The value
of β furthermore satisfies the bound 2 < β < 3, an-
ticipated in Sec. V A. Finally, we show in Appendix E
that the same reasoning can be repeated for an arbi-
trary number N of particles and that the behavior in
Eq. (114) is valid for all N (with an N -dependent nu-
merical prefactor). To our knowledge, this constitutes
the first quantitative calculation of the power-law tail of
p(w), first predicted in Ref. [40], for interactive bosonic
systems starting from a critical initial state. Note that,
even if the result in Eq. (114) holds for an arbitrary finite
number of particles N , its validity is still limited to the
regime of vanishing density D: indeed, by construction,
the large-L limit is taken while N is kept finite. In fact,
in the case of finite D, while the bound 2 < β < 3 contin-
ues to hold, we can not make any statement on the exact
value of the exponent without further assumptions.

VII. Conclusions

In this work we studied the large-deviation statistics of
the intensive work w done by an interaction quench of the
one-dimensional Lieb-Liniger model, focusing on the case
in which the initial state is the ground state of the non-
interacting gas. By means of the quench action approach,
we have shown that, for w < w̄, the large-deviation prin-
ciple applies to the probability p(w), as it depends expo-
nentially on the system size L with p(w) ∼ exp[−LI(w)],
and that the Gärtner-Ellis theorem employed in Ref. [40]
can be used in order to determine the corresponding rate
function I(w). We have provided a fully quantitative
analysis of the latter, working out analytically its behav-
ior for small values of the intensive work w, cf. Eq. (78),
and close to the average work w̄, cf. Eq. (61). Inter-
estingly, we have shown that for w ' w̄− fluctuations

are not Gaussian, in contrast to what would be expected
from a direct application of the central-limit theorem.
Furthermore, we analyzed the probability distribution
function of the intensive work p(w) for w � w̄ where
the large-deviation principle is violated and p(w) has a
sub-exponential dependence on L. Using an exact Bethe
ansatz representation of the eigenstates of the Hamilto-
nian, we have derived the power-law decay of p(w) in the
regime of vanishing particle density, see Eq. (114), pro-
viding the first quantitative calculation of the power-law
tail of p(w) for interactive bosonic systems starting from
a critical initial state.

Contrary to other works [36, 41, 46], our approach to
derive p(w) is not based on the Fourier transform of the
so-called Loschmidt echo evaluated at real times. This
is an important point, as the latter has proven to be
especially hard to compute [96, 104], due to the pres-
ence of points of “non-analyticity” arising in its real-time
dynamics [42]. For this reason the quench action ap-
proach presented in this work can be straightforwardly
generalized to a wide class of quantum quenches in other
interacting integrable models. A particular interesting
example would be the prototypical XXZ Heisenberg
chain, where, for instance, the quantum-classical corre-
spondence mentioned in Sec V B could be investigated in
detail.

Finally, it would be interesting to investigate the statis-
tics of the work done by quenches to the attractive regime
of the Lieb-Liniger model, where intriguing phenomena,
such as the formation of multi-particle bound states [79],
have been predicted. While the study of arbitrary attrac-
tive interactions might be challenging due to the emer-
gence of singularities in the spectrum of the Hamiltonian
[73], we believe the weakly attractive regime investigated
in Refs. [105–109] to be within the reach of the techniques
presented in this work.
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A. Small-s asymptotics of the scaled cumulant generating function

In this appendix we derive Eqs. (59) and (60), characterizing the behavior of the scaled cumulant generating function
f(s) as s → 0. The starting point is Eq. (58) in the main text and therefore the expansion in s of ρ∗s(λ) is needed.
The latter can be obtained from the expansions in s of as(λ) and ρts(λ) that we now perform.

First, from the integral equation of η∗s (λ) we can write that for as(λ), which reads

log as(λ) = −2sλ2 − log

[
λ2

c2

(
λ2

c2
+

1

4

)]
+ h(s) +

∫ ∞
−∞

dµ

2π
K(λ− µ) ln (1 + as(µ)) . (A1)
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As a first step, we write the formal expansions of log as(λ) and h(s) as a function of s:

log as(λ) = log a(0)(λ) + s log a(1)(λ) +
s2

2
log a(2)(λ) + . . . , (A2)

h(s) = h0 + sh1 +
s2

2
h2 + . . . . (A3)

Plugging these into Eq. (A1), we obtain a system of integral equations, one for each successive order in the expansion
in s. The order 0 gives the same quench action equations solved in Ref. [50]. To clarify the procedure we write in
addition the result at first order

log a(1)(λ) = −2λ2 + h1 +

∫ +∞

−∞

dµ

2π
K(λ− µ)

a(0)(µ)

1 + a(0)(µ)
log a(1)(µ) . (A4)

Since, for each fixed value of s, the driving term of Eq. (A1) grows as λ2 when λ → ∞, it follows that log as(λ)
increases at most as λ2 in the same limit, and therefore the following expansion as a function of λ can be written:

log as(λ)− log a(0)(λ) = β2(s)λ2 + β0(s) + β−2λ
−2(s) + . . . , (A5)

where β2j(s) = O(s) and j ≤ 1 is an integer number. In particular, one has

β2(s) = −2s+O(s2) . (A6)

Accordingly, from Eq. (A5) one has

as(λ) = a0(λ)eβ2(s)λ
2+β0(s)+β2λ

−2+... = a0(λ)eβ2(s)λ
2
∞∑
n=0

αn(s)λ−2n . (A7)

Since as(λ) equals a0(λ) in s = 0 we have that

αn(s) = δn,0 +O(s) for s→ 0 (A8)

with δn,0 the Kronecker delta symbol. Next, since the driving term of Bethe equations (6) is 1/2π, with a reasoning
analogous to the one done to justify Eq. (A5) one has the asymptotic expansion for ρts for large λ

ρts(λ) =
1

2π
+

∞∑
n=1

γ2n(s)λ−2n, (A9)

with suitable coefficients γ2n(s) whose explicit expression we do not need for the present calculation. We can eventually
use the results in Eqs. (A7) and (A9) into the integral in the r.h.s. of Eq. (58), that we conveniently write as∫ +∞

−∞
dλ ρ∗s(λ)λ2 = 2

∫ 1

0

dλ ρ∗s(λ)λ2 + 2

∫ +∞

1

dλ ρ∗s(λ)λ2 . (A10)

Since the first integral on the r.h.s. has a finite support, one can expand ρ∗s(λ) in a power series in s. Each term can
be integrated without divergences, so that after integration the result is expected to have the form of a power series
in s. Hence, no term proportional to

√
s will arise from this contribution. This is not the case for the second integral

on the r.h.s. as we see in the following. First, we write it as∫ +∞

1

dλ ρ∗s(λ)λ2 =

∫ +∞

1

dλ
as(λ)

1 + as(λ)

(
1

2π
+

∞∑
n=1

γ2n(s)λ−2n

)
λ2 , (A11)

where we used ρ(λ) = ρt(λ)a(λ)/(1 + a(λ)) for ρ∗s(λ) and Eq. (A9). It is not difficult to see that substituting as(λ)
with a0(λ) in the denominator of the integrand on the r.h.s. of Eq. (A11) leads only to corrections of order O(s). As
we are interested in the emergence of terms of order O(

√
s), we are allowed to perform this substitution. Next we can

use Eq. (A7) to express as(λ) in the numerator of the resulting integrand of Eq. (A11) and then note that [50]

a0(λ)

1 + a0(λ)
' c2D2

λ4
+O(λ−6) , (A12)
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such that Eq. (A11) becomes∫ +∞

1

dλρ∗s(λ)λ2 =

∫ +∞

1

dλ

(
c2D2

2πλ2
+

∞∑
n=2

z2n(s)λ−2n

)
eβ2(s)λ

2

, (A13)

where we used Eq. (A8) for α0, which again leads to corrections of order O(s), while the coefficients z2n(s) can
in principle be derived from α2n(s) and γ2n(s) introduced in Eqs. (A7) and (A9), respectively. The integration in
Eq. (A13) can be performed term by term and only the first one yields a contribution O(

√
s) which is easily computed.

Putting the latter result together with Eq. (53), which fixes the term linear in s, one arrives at Eq. (59), which we
also tested numerically.

B. Large-s asymptotics of the scaled cumulant generating function

In this appendix we provide a detailed derivation of Eqs. (70)–(73) reported in the main text.
We start from the equation (42) for ε∗s(λ) which in the large-s limit reads as

ε∗s(λ) = 2λ2 − h′ − h0
s
− h−1

s2
+

1

s
ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
− 1

s

∫ ∞
−∞

dµ

2π
K(λ− µ) ln

(
1 + e−sε

∗
s(µ)
)

+O(s−3) , (B1)

where we used the large-s asymptotic of h(s) in Eq. (66). Taking the difference between Eq. (B1) and Eq. (64) we
have

ε∗s(λ)− ε∞(λ) = −h0
s
− h−1

s2
+

1

s
ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
− 1

s

[∫ ∞
−∞

dµ

2π
K(λ− µ)

(
ln
(

1 + e−sε
∗
s(µ)
)

+ sε−∞(µ)
)]

+O(s−3) ,

(B2)
where ε−∞(λ) is defined as

ε−∞(λ) =
1

2
(ε∞(λ)− |ε∞(λ)|) . (B3)

The last integral in Eq. (B2) can be decomposed in a way similar to Eq. (67), namely,∫ ∞
−∞

dµ

2π
K(λ− µ)

(
ln
(

1 + e−sε
∗
s(µ)
)

+ sε−∞(µ)
)

=

∫ +∞

−∞

dµ

2π
K(λ− µ) ln

(
1 + e−s|ε

∗
s(λ)|

)
− s
∫ −Q
−Q′

dµ

2π
K(λ− µ)ε∗s(µ)− s

∫ Q′

Q

dµ

2π
K(λ− µ)ε∗s(µ)

− s

∫ Q

−Q

dµ

2π
K(λ− µ) [ε∗s(µ)− ε∞(µ)] , (B4)

with Q′ and Q having the same meaning as in Sec. V B. The analysis of the integrals appearing on the right hand
side is completely analogous to the one carried out in Sec. V B for Eqs. (68),(69) and (71). In conclusion from
Eqs. (B2),(B4), δε∗s(λ) = ε∗s(λ)− ε∞(λ) satisfies the following integral equation

δε∗s(λ) =− h0
s
− h−1

s2
+

1

s
ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
+

∫ Q

−Q

dµ

2π
K(λ− µ)δε∗s(µ)− ε′∞(Q)

4π
(Q′ −Q)2(K(λ−Q) +K(λ+Q))

− π

12ε′∞(Q)s2
[K(λ−Q) +K(λ+Q)] +O(s−3) . (B5)

With a reasoning analogous to the one done in Ref. [99] one can show that the term containing (Q′ −Q)2 is at least
of order O(s−2). Accordingly,

δε∗s(λ) =
U1(λ)

s
+O(s−2), (B6)

where the function U1(λ) is the solution of the integral equation

U1(λ) = −h0 + ln

[
λ2

c2

(
λ2

c2
+

1

4

)]
+

∫ Q

−Q

dµ

2π
K(λ− µ)U1(µ) . (B7)
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In particular, computing Eq. (B6) for λ = Q′ and expanding it in the difference Q′ −Q we get

Q′ −Q = − U1(Q)

sε′∞(Q)
+O(s−2) . (B8)

Note that this result shows that (Q′−Q)2 is exactly of order O(s−2). As a consequence, in order to determine δε∗s(λ)
up to the second order in 1/s in Eq. (B5) we keep the terms containing Q′ − Q. Exploiting the first-order result
reported in Eq. (B6), we finally obtain

δε∗s(λ) = ε∗s(λ)− ε∞(λ) =
U1(λ)

s
+
U2(λ)

s2
+O(s−3) , (B9)

U2(λ) =
[K(λ−Q) +K(λ+Q)]

ε′∞(Q)

(
−U

2
1 (Q)

4π
− π

12

)
− h−1 +

∫ Q

−Q

dµ

2π
K(λ− µ)U2(µ) , (B10)

completing the derivation of Eqs. (70)–(73) in the main text.

C. Small-s asymptotics of the scaled cumulant generating function in the Tonks-Girardeau limit

In this section we study the small-s asymptotic behavior of the function h∗(s,D2) = h∗(s̃) defined in Eq. (81), we
name for brevity s̃ = sD2 in this appendix.

We start by taking the derivative with respect to s̃ of both sides of Eq. (84), obtaining∫ ∞
−∞

dy

2π

y2 e2s̃y
2−h∗(2y2 − dh∗(s̃)

ds̃ )(
1 + y2

4 e2s̃y2−h∗
)2 = 0 , (C1)

which is equivalent to

dh∗(s̃)

ds̃

∫ ∞
−∞

dy

2π

y2e2s̃y
2−h∗(s̃)(

1 + y2

4 e2s̃y2−h∗
)2 =

∫ ∞
−∞

dy

2π

8y2
(
y2

4 e2s̃y
2−h∗

)
(

1 + y2

4 e2s̃y2−h∗
)2 . (C2)

The right-hand side of this equation can be rewritten as∫ ∞
−∞

dy

2π

8y2

1 + y2

4 e2s̃y2−h∗
−
∫ ∞
−∞

dy

2π

8y2(
1 + y2

4 e2s̃y2−h∗
)2 ≡ H1(s̃) +H2(s̃) . (C3)

We analyze the two terms H1,2(s̃) in the limit s̃→ 0. For H2, we simply compute

lim
s̃→0

H2(s̃) = −
∫ +∞

−∞

dy

2π

8y2(
1 + y2

4

)2 = −16 , (C4)

where we have used that h∗(s̃)→ 0 as s̃→ 0, see Eq. (81). For H1, instead, we have

H1(s̃) =

∫ ∞
−∞

dy

2π

8y2

1 + y2

4 e2s̃y2
= 32

∫ ∞
−∞

dy

2π
e−2s̃y

2
y2

4
y2

4 + e−2s̃y2

= 32

∫ ∞
−∞

dy

2π
e−2s̃y

2 − 32

∫ ∞
−∞

dy

2π

e−4s̃y
2

e−2s̃y2 + y2

4

=
16√
2πs̃
− 32 +O(s̃1/2) . (C5)

Similarly, the integral on the left-hand side of Eq. (C2) can be straightforwardly evaluated for s̃ → 0. Taking into
account Eqs. (C4) and (C5), Eq. (C2) becomes, for s̃→ 0,

2
dh∗(s̃)

ds̃
=

16√
2πs̃

+O
(
s̃0
)
, (C6)
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and therefore, after integration in s̃ = sD2

h∗(s̃) =
16√
2π

√
s̃+O (s̃) , (C7)

which is Eq. (87). The small-s̃ asymptotic behavior of the scaled cumulant generating function follows from this result.
In particular, plugging Eq. (87) into Eq. (88) and performing the change of variable λ = yD inside the integral, the
latter is rewritten as

f(s̃)

D
= 1 +

8√
2π

√
s̃− π2

3
s̃− 1

2

∫ ∞
−∞

dy

2π
ln

(
1 +

4

y2
e−2s̃y

2+16
√
s̃/(2π)

)
. (C8)

Taking now the derivative with respect to s̃ of both sides, one has

d(f(s̃)/D)

ds̃
=

4√
2πs̃
− π2

3
− 1

2

∫ ∞
−∞

dy

2π

4
y2 (−2y2 + 8√

2πs̃
)e−2s̃y

2+16
√
s̃/(2π)

1 + 4
y2 e−2s̃y

2+16
√
s̃/(2π)

=
4√
2πs̃
− π2

3
+

1

2
F ′(s̃) , (C9)

where F ′(s̃) stands for the derivative w.r.t. s̃ of the integral appearing in Eq. (C8). The asymptotics of this integral
can be worked out using the same steps as above for the function h∗(s̃). In particular, defining for convenience

C = 16/
√

2π, we write

F ′(s̃) = I1(s̃) + I2(s̃) , (C10)

where

I1(s̃) = −4

∫ ∞
−∞

dy

2π

C
2
√
s̃

y2e2s̃y2−C
√
s̃ + 4

, (C11)

I2(s̃) = 4

∫ ∞
−∞

dy

2π

2y2

y2e2s̃y2−C
√
s̃ + 4

. (C12)

We analyze I1(s̃) and I2(s̃) separately. For I1(s̃) in the limit s̃→ 0, we have

I1(s̃) = −4

∫ ∞
−∞

dy

2π

C
2
√
s̃

y2e2s̃y2−C
√
s̃ + 4

= −2C√
s̃

∫ ∞
−∞

dy

2π

1

y2 + 4
+O(s̃0)

= − C√
s̃

∫ ∞
−∞

dy

2π

1

1 + y2
+O(s̃0)

= − C

2
√
s̃

+O(s̃0) , (C13)

while for I2(s̃)

I2(s̃) = 8

∫ ∞
−∞

dy

2π

y2

y2e2s̃y2−C
√
s̃ + 4

= 8

∫ ∞
−∞

dy

2π
e−2s̃y

2+C
√
s̃

(
1− 4 e−2s̃y

2+C
√
s̃

y2 + 4 e−2s̃y2+C
√
s̃

)
≡ J1(s̃) + J2(s̃) . (C14)

For J1,2 introduced above we have

J1(s̃) = 8eC
√
s̃

∫ ∞
−∞

dy

2π
e−2s̃y

2

=
4√
2πs̃

eC
√
s̃

=
4√
2πs̃

+O(s̃0) , (C15)
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while

J2(s̃) = −8

∫ ∞
−∞

dy

2π
e−2s̃y

2+C
√
s̃ 4

y2e2s̃y2−C
√
s̃ + 4

= −8

∫ ∞
−∞

dy

2π

4

y2 + 4
+O(

√
s̃) = −8 +O(

√
s̃). (C16)

Collecting all the terms in Eqs. (C13) and (C15), Eq. (C9) yields

d(f(s)/D)

ds̃
=

2√
2πs̃

+O(s̃0) . (C17)

After integration, we finally obtain

f(s)

D
= 2

√
2

π
s̃1/2 +O(s̃) , (C18)

i.e., Eq. (89).

D. Large-s asymptotics of the scaled cumulant generating function in the Tonks-Girardeau limit

In this appendix we provide details of the calculation leading to the large-s expansion of the scaled cumulant
generating function f(s) reported in Eq. (91). As well as in Appendix. C we denote for brevity s̃ = sD2.

We start from Eq. (88) with h∗(s̃) given by Eq. (85) and h′ = 2π2. One rewrites it as

f(s̃)

D
= 1 +

2π2

3
s̃+

h′0
2

+
f>(s̃)

D
+
f<(s̃)

D
, (D1)

where

f>(s̃)

D
= −

∫ ∞
π

dy

2π
ln

(
1 +

4

y2
e−s̃(2y

2−h′)eh
′
0

)
, (D2)

f<(s̃)

D
= −

∫ π

0

dy

2π
ln

(
1 +

4

y2
e−s̃(2y

2−h′)eh
′
0

)
, . (D3)

where we performed the change of variable λ = Dy inside the integral in Eq. (88). The value λ = Q = Dπ (y = π) is
the TG limit of the analogous symbol introduced in Sec. V B and then in Appendix B. First, we rewrite f<(s̃)/D as

f<(s̃)

D
= −

∫ π

0

dy

2π
ln

(
1 +

4

y2
e−s̃(2y

2−h′)eh
′
0

)
= 2f0 − 1− 2π2

3
s̃− h′0

2
−
∫ π

0

dy

2π
ln

(
1 +

y2

4
es̃(2y

2−h′)e−h
′
0

)
, (D4)

with f0 given in Eq. (92). Expanding the logarithm in a power series, one has:

−
∫ π

0

dy

2π
ln

(
1 +

y2

4
es̃(2y

2−h′)e−h
′
0

)
= −

+∞∑
n=1

(−1)n+1e−ns̃h
′
e−nh

′
0

2πn 4n

∫ π

0

dy y2nens̃2y
2

, (D5)

where the last integral, after integration by parts, can be estimated as∫ π

0

dy y2nens̃2y
2

=
1

4ns̃(2ns̃)n−1/2

∫ 2ns̃π2

0

dz zn−1/2ez

=
π2n−1

4ns̃
e2ns̃π

2

+O

(
e2ns̃π

2

s̃2

)
. (D6)

Plugging Eq. (D6) into Eq. (D5), we get

−
∫ π

0

dy

2π
ln

(
1 +

y2

4
es̃(2y

2−h′)e−h
′
0

)
=

1

8s̃π2

+∞∑
n=1

(−1)nπ2ne−nh
′
0

4nn2
+O(s̃−2)

=
1

8s̃π2
Li2

(
−π

2

4
e−h

′
0

)
+O(s̃−2). (D7)
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The evaluation of f>(s̃)/D proceeds along the same lines: in particular, after expanding the logarithm, we can write

f>(s̃)

D
= −

+∞∑
n=1

(−1)n+14nens̃h
′
enh

′
0

2πn

∫ +∞

π

dy
e−s̃n2y

2

y2n

=
1

8s̃π2

+∞∑
n=1

(−4)nenh
′
0

π2nn2
+O(s̃−2) =

1

8s̃π2
Li2

(
− 4

π2
eh
′
0

)
+O(s̃−2) . (D8)

Summing now the results in Eqs. (D7), (D8), and using the identity (see, e.g., Ref. [110])

Li2 (z) + Li2

(
1

z

)
= −π

2

6
− 1

2
ln2 (−z) z ∈ C \ (1,+∞) , (D9)

we finally arrive at Eq. (91).

E. Algebraic behavior of p(w) for large w: arbitrary particle number

In this appendix we show how to extend by induction the computation presented in Sec. VI for N = 3 to an
arbitrary number N of particles. In order to simplify the discussion we will first present the explicit example M = 2
(N = 5), and then treat the general case. As a result of the analysis of this appendix, we conclude that Eq. (114)
holds for arbitrary values of N .

In the case M = 2, Eq. (103) reads

εP (W ) =
∑

W ′∈(W−ε,W+ε)

|〈I1, I2|BEC〉|2

=
∑

I1,I2∈D
|〈I1, I2|BEC〉|2, (E1)

where the domain D of the double sum is determined, via Eq. (96), by the boundaries of the energy shell in Eq. (E1)
and the fact the two quantum numbers I1 and I2 have to be different. In particular

I1, I2 ∈ D ⇔
{
I21 + I22 ∈ L2

8π2 (W − ε,W + ε)
0 < I1 < I2,

(E2)

corresponding to the region highlighted in blue in the I1 − I2 plane shown in Fig. 6. For convenience we will neglect
from the start the contribution of the domain D where I1 > Imax

1 = L
√

(W − ε)/(4π), depicted in red in Fig. 6, which
provides a contribution O(ε2). Then, from Eqs. (E1),(95) and (98) one has

εP (W ) =
5!c4L4

(16π2)2

Imax
1∑
I1=1

1

I21 (π2I21 + c2L2

16 )

Imax
2 (I1)∑

I2=Imin
2 (I1)

1

I22 (π2I22 + c2L2

16 )
, (E3)

where I2 = Imin
2 (I1) and Imax

2 (I1) are obtained from the on-shell condition in Eq. (E2), in analogy with the case
M = 1, and read

Imin
2 (I1) =

√
L2

8π2
W − ε− I21 ,

Imax
2 (I1) =

√
L2

8π2
W + ε− I21 ,

δI(I1) ≡ Imax
2 (I1)− Imin

2 (I1) =
L2ε

8π2

√
L2W
8π2 − I21

+O
(
ε2
)
. (E4)

The sum S(I1) over I2 in Eq. (E3) can be bounded using the same argument as the one presented in Sec. VI for the
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FIG. 6. Pictorial representation of the summation domain D of Eq. (E2) in blue and red shaded areas. The latter one is of
order ε2, with ε the thickness of the shell, and can therefore be neglected to order ε. The intercept of the vertical black dashed
line with the horizontal I1 axis is given by Imax

1 = L
√

(W − ε)/(4π).

case M = 1 to get Eqs. (110) and (111); in particular at leading order in ε

S(I1) ≡
Imax
2 (I1)∑

I2=Imin
2 (I1)

1

I22 (π2I22 + c2L2

16 )

=

δI(I1)∑
j=0

1

[j + Imin
2 (I1)]2[π2(j + Imin

2 (I1))2 + c2L2

16 ]

=
L2ε

8π2
√
L2W/(8π2)− I21

1

L2W/(8π2)− I21
1

π2(L2W/(8π2)− I21 ) + c2L2

16

+O(ε2) . (E5)

In terms of S(I1) in Eq. (E5), εP (w) in Eq. (E3) can be written as

εP (W ) =
5!c4L4

(16π2)2

Imax
1∑
I1=1

1

I21 (π2I21 + c2L2

16 )
S(I1) , (E6)

where S(I1) can be bounded as

S(I1 = 1) < S(I1) < S(Imax
1 ),

S(I1 = 1) ∝ S(Imax
1 ) ∝ L2ε√

L2WL2W (L
2W
8π2 + c2L2

16 )
+O(ε2) , (E7)

where the symbol ∝ henceforth indicates that we are neglecting numerical prefactors. From Eq. (E7) it follows that

εP (W ) ∝ c4L4 L2ε√
L2WL2W (L

2W
8π2 + c2L2

16 )

L
√
W/4π∑
I1=1

1

I21 (π2I21 + c2L2

16 )
+O(ε2), (E8)

and, equivalently, for the probability density function p(w) = LP (wL) of the intensive work w

εp(w) ∝ c4L5 L2ε√
L3wL3w(L

3w
8π2 + c2L2

16 )

L
√
wL/4π∑
I1=1

1

I21 (π2I21 + c2L2

16 )
+O(ε2). (E9)
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In order to get the leading behaviour of p(w) as a function of L, as a final step, we need to estimate the asymptotic
of the sum over I1 in Eq. (E9) for L large. We have

L
√
wL/4π∑
I1=1

1

I21 (π2I21 + c2L2

16 )
=

∞∑
I1=1

1

I21 (π2I21 + c2L2

16 )
−

∞∑
I1=L

√
wL/4π

1

I21 (π2I21 + c2L2

16 )
, (E10)

with
∞∑

I1=L
√
wL/4π

1

I21 (π2I21 + c2L2

16 )
≤ 1

L3w/(16π2)

∞∑
I1=L

√
wL/4π

1

(π2I21 + c2L2

16 )
≤ 16π2

L3w

∞∑
I1=1

1

(π2I21 + c2L2

16 )

=
32π2

cwL4
+O(L−5) as L→∞ (E11)

and
∞∑
I1=1

1

I21 (π2I21 + c2L2

16 )
= 8π2 48 + c2L2 − 12 cL coth

(
cL
4

)
3c4L4

=
8π2

3c2L2
+O(L−3) as L→∞. (E12)

Plugging this into Eq. (E9) we arrive at the final result

p(w) ∝ c4L5 L2

√
L3wL3w(L

3w
8π2 + c2L2

16 )

[
8π2

3c2L2
+O(L−3)

]
.

∝ c2

L5/2
w−5/2 +O(L−7/2) as L→∞. (E13)

At this point it should be clear how to generalize the result in Eq. (E13) by induction to the general case of
N = 2M + 1 particles. Indeed, consider the expression for PM (W )

εPM (W ) =
∑

I1,I2,...IM∈D
|〈I1, I2, ...IM |BEC〉|2

=
Nc2L2

16π2

Imax
1∑
I1=1

1

I21 (π2I21 + c2L2

16 )

 ∑
I2,I3,...IM∈D′(W ′)

|〈I2, I3, ...IM |BEC〉|2
 . (E14)

Here the sum in the first line is over the M -dimensional shell D defined by

I1 . . . IM ∈ D ⇔
{
I21 + I22 + ...I2M ∈ L2

8π2 (W − ε,W + ε),
0 < I1 < I2... < IM ,

(E15)

while D′, appearing in the second line, is the same as D with W → W ′ = W − 8π2I21/L
2 and Imax

1 =

L
√

(W − ε)/(
√

8Mπ). Then, we note that Eq. (E14) can be written in terms of PM−1 as

εPM (W ) =
Nc2L2

16π2

Imax
1∑
I1=1

1

I21 (π2I21 + c2L2

16 )
εPM−1(W ′). (E16)

Exploiting now the induction hypothesis, we have

εPM−1(W ′) ∝ c2L2 L2ε√
L2WL2W (L

2W
8π2 + c2L2

16 )
+O(ε2) (E17)

where again we neglect numerical prefactors depending on N . Then using Eqs. (E10), (E11) and (E12) it follows that
pM (w) displays the large-L behavior in Eq. (E13), concluding the derivation.

[1] P. Calabrese, F. H. L. Essler, and G. Mussardo, J. Stat.
Mech. (2016) 064001.

[2] S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imam-

http://dx.doi.org/10.1088/1742-5468/2016/06/064001
http://dx.doi.org/10.1088/1742-5468/2016/06/064001


23

bekov, V. Gritsev, E. Demler, and J. Schmiedmayer,
Nature Phys. 4, 489 (2008).

[3] J. Armijo, T. Jacqmin, K. V. Kheruntsyan, and I. Bou-
choule, Phys. Rev. Lett. 105, 230402 (2010).

[4] T. Jacqmin, J. Armijo, T. Berrada, K. V. Kheruntsyan,
and I. Bouchoule, Phys. Rev. Lett. 106, 230405 (2011).

[5] T. Kitagawa, S. Pielawa, A. Imambekov, J. Schmied-
mayer, V. Gritsev, and E. Demler, Phys. Rev. Lett. 104,
255302 (2010).

[6] T. Kitagawa, A. Imambekov, J. Schmiedmayer, and E.
Demler, New J. Phys. 13, 073018 (2011).

[7] R. W. Cherng and E. Demler, New J. Phys. 9, 7 (2007).
[8] A. Lamacraft and P. Fendley, Phys. Rev. Lett. 100,

165706 (2008).
[9] D. A. Ivanov and A. G. Abanov,Phys. Rev. E 87, 022114

(2013).
[10] Y. Shi and I. Klich, J. Stat. Mech. (2013) P05001.
[11] V. Eisler, Phys. Rev. Lett. 111, 080402 (2013).
[12] I. Klich, J. Stat. Mech. (2014) P11006.
[13] M. Moreno-Cardoner, J. F. Sherson and G. De Chiara,

New J. Phys. 18, 103015 (2016).
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