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We theoretically show that a network of superconducting loops and magnetic particles can be
used to implement magnonic crystals with tunable magnonic band structures. In our approach, the
loops mediate interactions between the particles and allow magnetic excitations to tunnel over long
distances. As a result, different arrangements of loops and particles allow one to engineer the band
structure for the magnonic excitations. Furthermore, we show how magnons in such crystals can
serve as a quantum bus for long-distance magnetic coupling of spin qubits. The qubits are coupled
to the magnets in the network by their local magnetic-dipole interaction and provide an integrated
way to measure the state of the magnonic quantum network.

I. INTRODUCTION

Complex microscopic interactions between particles in-
side materials often give rise to emergent collective ex-
citations. This collective behavior can be effectively
described in terms of weakly interacting quasi-particles
which propagate freely in the surrounding medium and
follow dispersion relations which are determined by the
microscopic details [1]. This treatment allows to greatly
simplify the description of otherwise intractable prob-
lems [2]. In many cases, the dispersion relation of quasi-
particles can be tailored by a careful design of the host
medium. For example, photonic crystals [3] are engi-
neered materials where the propagation of photons is
artificially designed by periodically arranging materials
with different refractive indices [4]. Quantum emitters
can then be coupled to such structures for a variety of
applications ranging from quantum simulation [5—8] and
quantum information processing [9-11] to the study of
open quantum system [12, 13].

Magnons, collective excitations of magnetization in
magnetically ordered materials, have recently attracted
significant attention in the context of quantum infor-
mation science. Strong quantum coherent coupling of
magnons to a microwave resonator [14-20], optical pho-
tons [21-23], and superconducting qubits [24, 25], have
been recently reported. Magnonic systems [26—28] with
tailored magnonic propagation properties are also inves-
tigated as a magnon quantum bus to couple quantum
emitters over long distances [29-31]. In present magnonic
systems, spin wave propagation between the ferromag-
netic elements is mediated by dipolar coupling. Thus,
sufficiently high coupling over long distances requires fer-
romagnets with high saturation magnetization. However,
those materials suffer from high losses [32-34]. In con-
trast, materials such as YIG have little loss but also have
a small saturation magnetization and thus a lower mag-
netic dipole coupling.

In this article, we propose a network of superconduct-
ing loops [35] that couples magnetic particles over dis-

tances larger than what can be achieved with magnetic
dipole-dipole interactions in free space. This allows to
combine low loss materials such as YIG with the desired
long range coupling. In such a set-up, the excitation
of the collective magnetization in a particle tunnels to
other particles provided that there is a superconducting
loop between them. This provides a lot of flexibility in
the topology of the networks that can be realized with
this architecture thereby enabling a wide range of ap-
plications. First we describe how to engineer artificial
magnonic crystals using a periodic arrangement of mag-
netic particles and superconducting loops called hereafter
hybrid magnetic lattice (HML), as shown in Fig. 1.a. Sec-
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FIG. 1. a) Schematic illustration of a general hybrid mag-
netic lattice (HML) of superconducting-loops and magnetic
particles. b) Scheme of the simplest cell of the HML: two
magnetic particles positioned at a distance d and height h
from two opposite points of a superconducting ring of radius

.



ond, we discuss how to interface spin qubits with HMLs
via their dipolar coupling to the magnetic particles. The
coupling enables long-range magnetic coupling of spin
qubits and it introduces quantum non-linear elements
into the magnonic crystal. In this context, our proposal
offers an all-magnetic solid-state alternative to optical
quantum emitters coupled to photonic crystals [4]. In
addition, the tunability of the magnonic band-gap by an
externally applied magnetic field offers a handle which
has no analogue in photonic systems. Through this fea-
ture, the qubit frequency can be tuned to lie inside or
outside the band-gap, making the qubit dynamics pre-
dominantly conservative or dissipative, respectively [4].
Importantly, the band-gap can be tuned on-demand in
real time, thereby giving direct access to various, very
different many-body problems simply by varying the ex-
ternal magnetic bias field.

The article is structured as follows. In Sec. II, we dis-
cuss how magnonic crystals with a tailored band struc-
ture can be designed from a hybrid lattice of supercon-
ducting loops and magnetic particles. We first intro-
duce the Hamiltonian describing tunneling of magnons
between different magnetic particles via a loop-mediated
interaction. Then, we present some specific examples of
HMLs. In Sec. III, we discuss in detail the coupling be-
tween a qubit and a magnetic particle and show how to
couple two distant spin qubits via the HML. Finally, we
draw our conclusions in Sec. IV. Further details are pro-
vided in the appendices.

II. ARTIFICIAL MAGNONIC CRYSTAL

In this section, we focus on how to engineer an HML by
placing magnetic particles near superconducting loops.
In Sec. IT A, we present the Hamiltonian describing the
interaction between a single superconducting loop and
several magnetic particles. In Sec. II B, we generalized
the Hamiltonian to many loops and use this model to
discuss specific HML examples.

A. Hamiltonian of the elementary cell: one
superconducting loop and several magnets

We consider N magnetic particles with magnetic mo-
ments p; (j = 1,...,N) located at positions r; near
a superconducting circular loop with radius /. An ex-
ternal bias field By = —Bge, is applied parallel to the
plane containing the loop (see the illustration for N = 2
in Fig. 1.b). We model the superconductive ring as a sin-
gle mode LC-resonator, whose self-inductance L and ca-
pacitance C are of geometrical origin (see Appendix A).
We model the magnetic particle as a sphere of radius R,
whose center of mass position r; lies outside the area en-
circled by the loop. The applied field By polarizes the
magnetic particles uniformly. Therefore, the magnetic
field produced by the particles can be approximated as

the field generated by a constant magnetic point dipole
of magnitude y; = |u;|. The coherent dynamics of the
system is modeled by the following quantum mechanical
Hamiltonian (see Appendix B for a derivation)
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Here, Q (®) is the charge (flux) operator of the loop [30],
and
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is the external flux induced in the coil by the magnetic
dipole moment f;. In Eq. (2), @] . is the field induced in
the loop by the magnetic moment at its equilibrium value
(f1;)0, while 6®;(Af;) is the flux induced in the loop by
the magnetic moment fluctuation Afy; = fi;—(f1;)o. The
first two terms in Eq. (1) represent the energy of the loop
in the presence of the magnets. The third term refers to
the Larmor precession of the magnetic moments about
the direction of Bg. The fourth term [}, ®; ()7 /2L
represents the total loop-mediated magnetic interaction
between the magnets. The magnetic dipole interaction
between the magnets, obtained after tracing out all the
electromagnetic field modes, is modified (as compared
to free space) due to the presence of the loop, which is
treated as a single electromagnetic field mode (see Ap-
pendix A). The correction to the free dipole-dipole in-
teraction is precisely the fourth term in Eq. (1). The
seemingly additional dipole-dipole interaction included
in the second term of Eq. (1) is cancelled out perfectly
when tracing out the loop’s electromagnetic field mode
(see Appendix B for a detailed derivation). This subtle
point was previously discussed in the literature in [37].
The remaining contribution to the magnetic dipole-dipole
interaction is mediated by the free space electromagnetic
modes and is represented by Ua({;}) in Eq. (1). The
last term in Eq. (1) is the magnetic anisotropy energy
of each particle which represents the energy cost of mag-
netizing the particle along a certain direction due to the
interaction between its magnetic moment and its internal
crystal structure [38].

Let us now introduce the macrospin F of a magnetic
particle, which is related to the magnetic moment by
the gyromagnetic relation f1; = hyoF; [39]. In the fol-
lowing, we assume the magnetic particles to be iden-
tical, namely they have the same gyromagnetic ratio

7o, the same radius R, and thus the same total spin
F?2 = F(F + 1)1, where we define F' = p/(hyy) and
i = p Vj. The flux fluctuations in Eq. (2) can be

written as 0®;(Af;) = P ZVI]-”AF;’ (v = z,9,2),
where AF; = Afp;/(hyo), ®ej = hyopo/4nd;. Here,
d; is the smallest distance, in the plane containing the
loop, between the dipole’s position and a point in the



loop (see Fig. 1.b). I 7 is a dimensionless geometrical fac-
tor which contains the dependence on the center of mass
position of the nanomagnet and on the orientation of its
magnetic moment (see Appendix C).

For a sufficiently large By, such that the thermal en-
ergy is negligible compared to the interaction —f; - By,
the fluctuations of the magnetic moment Af; can be
expressed within the Holstein-Primakoff approximation

as Afif = h’yof;fj, Apg = h%\/ﬁ(fj + fj)/Q, and
Apf = h%\/ﬁ(f; — f;)/(2i). The operator f; (f;r)
creates (annihilates) an excitation in the uniformly pre-
cessing (Kittel) magnonic mode of the j-th magnet, and
satisfies [f;, f; | = d;;. Within the Holstein-Primakoff ap-

proximation (valid when ( f; fj) < 2F) and the assump-
tion that the LC-circuit is far detuned from the magnonic
modes (such that the degrees of freedom of the circuit can
be traced out), the coherent dynamics of the magnets re-
duce to
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Counter-rotating terms (of the form fZ-T fJT + f; f]) have
been neglected within the rotating-wave approximation
(see Appendix D). Here, Vj, is a linear term in the
bosonic operators which can be reabsorbed by defining
a new equilibrium position (f‘)o. Notably, for the par-
ticular case of the magnetic particles lying in the plane
containing the loops one finds that @fms =0Vj5 and Vi
disappears (see Appendix D). It is thus always possible to
write the quadratic Hamiltonian describing the magnon
dynamics in a HML as

N N
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Here, w; is the sum of the frequency associated with
the magnetic anisotropy and the Larmor precession fre-
quency due to the total magnetic field, which consists
of the external field By, the field created by other mag-
nets and the field created by the superconducting loop
(see Appendix D). The second term in Eq. (4) describes
magnon tunneling between magnets. The total tun-
neling rate has two contributions. The contribution
from the free space magnetic dipole-dipole interaction is
given by jfjl = —hyduoF(3sin?6;; — 2)/(87r7“§j), where
rij = |r; —r;| and 6;; is the angle between r; — r; and
e,. The contribution from the loop-mediated magnetic
interaction is given by (see Appendix D)

hopo\° Ly
= F.

Here, I;; = I;1;, where I; = I +il, depends on the
mutual position of the magnetic particles at the sites
1,7 and on the orientation of their magnetic moments

(see Appendix C). In particular, J;; can be made in-
dependent of i,j for symmetric arrangements of mag-
netic particles around the loop such that I;; = I and
d; = d Vj (see Sec. IIB). We stress that J;; scales as
1/(d;d;l), where the factor 1/(d;d;) arises from the 1/d;-
dependence of ®;(f1;) and the factor 1/1 arises from the
linear dependence of L on the loop radius [see Eq. (A1)].
For fixed d;,d; < [, the loop-mediated interaction thus
leads to a magnon tunneling rate which scales as ~ 1/7;;.
The minimal possible distance d (and thus the maximum
achievable tunneling rate for a given loop geometry) is
ultimately set by the critical field tolerated by the loop’s
wire in the Meissner state (see Appendix E).

As an example, let us consider the simple config-
uration of one loop and two magnetic particles illus-
trated in Fig. 1.b for the particular case of h = 0.
For this case one has, w; = 2y0ka/Ms + v0Bo + Tij —
2o F/[167(l + d)3], 12 = 2(I + d), 012 = 0, and
Ji2 = [hyopo/(4nd)]*TF/(2hL), where I15 = Iy = I.
The geometrical inductance of a circular coil is approxi-
mated as L =~ uolln (81/7) for 7 < I, where 7 is the wire
thickness. For [ > d, one finds
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For R = 1pym, d = 1.5pum, [ = 30um, h = 0, and
7 = 50nm, which leads to I ~ 1.9 [40], the tunneling
rate due to the inductive magnetic interaction is then
J12/27 =~ 5.85 MHz whereas the one due to the magnetic
dipole interaction is J5/27 ~ 0.09 MHz. In general,
for sufficiently large loop size, magnetic dipole-dipole in-
teractions are negligible as compared to loop mediated
coupling (see Fig. 6.b in Appendix F). In this case, the
magnon tunneling can be approximated by J;;. We re-
mark that larger tunneling rates could be obtained by
inscribing the magnets in the contour defined by the loop
(see Appendix F'). However, this configuration will not be
considered further since it is not well suited for building
large networks.

B. Examples of hybrid magnetic lattices

Let us now focus on how to build networks by peri-
odic arrangements of superconducting loops and mag-
netic particles. Eq. (1) can be directly generalized to
the case of many superconducting loops thus yielding the
general Hamiltonian of a HML. In the following, we ne-
glect the magnetic dipole-dipole coupling (74 = 0) and
the flux generated in a coil by next-to-nearest neighbor
magnets as well as by neighboring superconducting coils.
Furthermore, within the assumption of identical loops,
magnetic particles, and relative positioning of particles
and loops, the magnon frequency (tunneling rate) is site-
independent, namely w; = wo Vj (Ji; = J Vi, j).

In the following we consider three different examples
of HMLs:



(i) A one dimensional HML, shown in Fig. 2.a, can be
described by

AP = MOijTfj + hJZ(f}fj-&-l + fjﬂfj)- (7)
j J

This textbook Hamiltonian describes magnon tunneling

to nearest-neighbors in a one dimensional crystal with N
lattice sites separated by a distance a = 2(d +1). As-
suming periodic boundary conditions, ﬁﬁ/ID can be di-
agonalized in the reciprocal space leading to a magnon
dispersion relation w(k) = wo + 27 cos(ka), where k =
2mn/(Na) (n € [N/2,N/2 —1]). In the continuum limit
(N > 1), the magnon propagation is thus restricted to
the frequency band w € [wg — 27, wo +2J], which can be
tuned in real time by simply modifying the external mag-
netic field By, and hence wy. Note that this in-situ tun-
ability is a characteristic feature of the proposed HMLs
in this article.

(ii) A HML where N magnets couple to each other
with the same strength can be realized with the circular
geometry shown in Fig. 2.b. The Hamiltonian is given
by

N N
HYP =hwo»  fif+0T > fl;, ®)
i=1 i#i=1
with an all-to-all interaction ~ J [cf. Eq. (5)]. Here,
the geometrical factor I;; = I is different from example
(i) due to the fact that the magnets are now polarized
perpendicularly to the superconducting coils. In princi-
ple, this Hamiltonian could be used to generate magnonic
superradiance by enhancing dissipation in the coil and
allowing the system to evolve beyond the quadratic ap-
proximation [41].

(iii) A two-dimensional HML can be realized by a repe-
tition of the single cell in Fig. 2.c leading to the structure
displayed in Fig. 2.d. Owing to the checkerboard ar-
rangements of superconducting loops, we distinguish two
magnonic sublattices: magnons in the D (A) sublattice
preferably tunnel along the direction of the main diago-
nal (anti-diagonal) in the yz-plane. This HML can thus
be described as a 2D Bravais lattice with a basis where
each elementary cell contains the two types of sites D and
A (see Fig. 2.d). The operators fjA, fJ.AT ( ;D, fJ.DT) respec-
tively create and annihilate a magnon in the sublattice A
(D) within the cell at position j = j,vi+j.va = (Jy, J-),
(Jy,J= € Z), where vi = (2a,0) and vy = (a,a) are Bra-
vais vectors. The Hamiltonian of this 2D HML is given
by (see Appendix G)
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Here, B € {(+1/2,F1),(+1/2,0)}, a € {(F1,+1)}, and
d € {(£1,0)}, with & (d) and B connecting the nearest
neighbors of a point along the main anti-diagonal (di-
agonal) and along the z,y direction in the basis spec-
ified by vi and vy (Fig. 2.d). The magnon disper-
sion relation of Eq. (9) leads to two bands given by
wi(k) = wo + 2J[4cos(kya)cos(kya) + VA], where
A = 4 + 4cos(kza) cos(kya) — cos(2kya) — cos(kza) +
2 cos(2k,a) cos(2kya), with a = v/2(I + d). As shown
in Fig. 2.e, the upper band w, (k) features saddle points
at k = (£7/2a,+7/2a) where the density of state di-
verges [12]. As recently shown in [43], this type of excep-
tional points may give rise to very exotic features in the
quantum dynamics of emitters coupled to a two dimen-
sional crystal.

III. SPIN QUBITS INTERFACED WITH A
HYBRID MAGNETIC LATTICE

Our three examples show that HMLs can be engineered
to realize artificial long-range magnonic crystals. Let us
now address how to magnetically interface spin qubits
with the magnons in a given HML. In Sec. IIT A, we
describe the local coupling between a spin qubit and a
magnetic particle in a single site of a HML. In Sec. II1 B,
we discuss the sources of dissipation of the system. In
Sec. III C, we analyse the magnon-mediated qubit-qubit
interaction.

A. DMagnon-qubit coupling at a single site

A spin qubit is coupled to a magnetic particle in a HML
by local magnetic dipole-dipole interactions. Specifically,
we consider the interaction between the j-th magnet
and an NV-center spin qubit, that is obtained from the
{]0),|—1)} subspace of the NV ground state triplet [14],
placed at a position r, with respect to the center of the
magnet. The Hamiltonian of this system is given by

Hyjy = 5wa05 = 57405 Blrg, &), (10)

where wy = Anv — V¢Bo, V¢ is the qubit gyromagnetic
ratio (generally different from 7g), Any the NV-center
zero field splitting, and B(r,, f1;) the magnetic field gen-
erated by the magnet at the position of the qubit. Within
the Holstein-Primakoff approximation, the rotating wave
approximation, and assuming the qubit to be positioned
along the x-axis of a reference frame centered in the mag-
net, r, = rqe,, and oriented as in Fig. 1.b (see Ap-
pendix H for the generalization to any other position),
Eq. (10) is approximated by the Jaynes-Cumming Hamil-
tonian (see Appendix H)

N7 1 p
A = Yhonsos — atiloy +11e). ()
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FIG. 2. a) Top view of a 1D HML. b) Top view of a system of vertically polarized magnets around a common loop. c) Unit cell
of a 2D HML comprising one loop and four magnetic particles. d) Top view of a 2D HML implementing a 2D magnonic crystal
by a checkboard arrangement of the single cell in c¢). The black dashed arrows indicate coupling between nearest-neighbors at
the same rate J and the red dashed area corresponds to the elementary cell of such a magnonic crystal with Bravais vectors
v1 and va. e) Plot for the magnonic bands (w+ — wo)/J of the 2D HML in d).

Here, g = 304140 V2F/ (87rr2) and the qubit frequency
Woj = wq + IyovgroF/(4mrd) already contains the shift
introduced by the dipole-interaction. The dynamics of a
general 2D HML with magnetically coupled spin qubits
at each lattice site is described by the Jaynes-Cumming-
Hubbard Hamiltonian fIT = ﬁM + Zj fllg;})@ namely in
k-space [see Eq. (H14) for the expression in real space]

Ay =13, () flyforc+ 1Y 267
v,k J (12)
—h Z (gl/jkfjka-j_ —+ HC) .
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Here, we introduced the k-space magnonic operator
fore = (1/N) 3= fuj exp(—iaj-k), which creates a magnon
of momentum k in the v-magnonic band propagating in a
N x N 2D lattice characterized by the dispersion relation
wy (k), and the coupling rate g,5x = (g,,/N) exp(—iaj-k),
where g, is the local coupling to a magnon in the
v-band, a is the HML lattice constant, and j labels
the sites in a 2D HML. In Eq. (12), we neglected the
small interaction between the qubit and the loop as well
as counter-rotating terms of the form (7j+ fik + 05 fyk
within the rotating wave approximation, valid provided
g, lwy (k) — we| < wy (k).

B. Sources of dissipation

The Hamiltonian Eq. (12) can lead to strongly corre-
lated, coherent magnon physics [15, 46], provided that
the relevant decoherence rates are sufficiently small com-
pared to the coherent coupling rates of the system.
While the coherent magnon tunneling J can reach sev-
eral MHz (as discussed above), the coherent magnon-
qubit coupling can be quantified as ¢g/(27) ~ 5.2 X
102(Rnm]*/?/r,[nm])>MHz, as a function of both the

magnet size R and magnet-qubit distance r, > R; see
caption of Fig. 3 for the remaining parameters. The
main sources of decoherence arise from qubit dephas-
ing and magnon decay, as any potential damping in the
superconducting loop is suppressed by its large detun-
ing. For a NV-center spin qubit, characteristic dephasing
times Ty = 200 us have been reported [17], which can
further be increased by dynamical decoupling schemes
up to Tp ~ 0.5s [48]. In the low-temperature regime
~ 1K the magnon linewidth [19] for a millimeter-size
pure single-crystal YIG sphere has been measured as
k/2m =~ 0.5MHz [15], at a relatively high magnon fre-
quency of ~ 10GHz; this number could potentially be fur-
ther reduced by working at lower frequencies according to
the linear frequency dependence of the Gilbert damping
rate in YIG [50]. Accordingly, the regime J > 7/T5, Kk is
within reach for particles of size R ~ 1um (see Sec. ITA)
with current experimental capabilities, while the regime
g > k is found to be challenging with the current reported
values of the magnon linewidth. However, the detrimen-
tal effects due to magnon decay can be reduced efficiently
by operating in the dispersive regime, as detailed next.

C. Effective qubit-qubit interaction thorugh a
single cell of a HML

Let us consider two identical spin qubits coupled to
the elementary configuration described in Fig. 3.a, and
thus separated by a distance 2(d 4+ [). The system is
described by the Hamiltonian Hp = E?Zl[ﬁwo f; fj +
T iz fjfj + fIﬂAQ] In the dispersive regime, when
the qubits are detuned from the magnonic eigenmodes of
the system, it is possible to adiabatically eliminate the
magnonic degrees of freedom. The qubit dynamics are
thus described by the following effective spin-spin inter-
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FIG. 3. a) Elementary HML configuration (single cell) with
two identical spin qubits locally coupled to each magnetic
particle. b) Level structure of the system, where wo + J are
the magnonic normal mode of the elementary cell. ¢) Relevant
frequencies and coupling of the system in a) as a function of
the applied field By. d) Cooperativity Co as a function of
the decoherence rates k and w/T> for a fixed magnet-qubit
coupling g. Other parameters: R = 350nm, r;, — R = 20nm,
d— R =100nm, [ = 5um, 7 = 50nm, h = 0, v = 1.76199 X
10Mrad - Hz - T, 4, = 1.76149 x 10''rad - Hz - T™!, M =
196 x 10® T-m™ 23 (YIG saturation magnetization), and k, =
2480 J-m?® (YIG anisotropy energy density). The parameters
for YIG are taken from [51].

action Hamiltonian (see Appendix T)

9° 9°
AN A_27 (61 +53) (13)

— hge(6765 +6767),

~ h
Hoq =5 |wo =

where A = wg + J — ws, and the effective spin-spin
coupling strength reads geg = ¢?[1/A — 1/(A — 27)].
The level structure and typical values of frequencies and
couplings are shown in Fig. 3.b-c. ﬁQQ can be used
to swap excitations between the two qubits at a rate
/gt Whenever gegr >> 7, Kesr, Where v = /Ty and
ket = KG2[1/A% + 1/(A — 27)?] is the qubit damping
induced by the lossy magnonic bus (see Appendix I) [52].
In this strong coupling regime, the error € on the state
transfer fidelity for optimized values of the detuning A
and magnon-tunneling 7 is given by ¢ =~ /a,a,/(2Co)
with cooperativity Cy = ¢?/(yx) where we numerically
estimate oy, ~ 0.779 and a, ~ 0.006 as detailed in Ap-
pendix L. In Fig. 3.d, values of Cj are shown as a function
of magnon damping x and qubit dephasing times T5 and
fixed values for the remaining parameters. As qubit de-
phasing times T5 ~ 0.5s are achievable with dynamical
decoupling schemes [48], the main limitation is given by
the magnon damping rate [15] for the current experimen-
tal state of the art.

IV. CONCLUSIONS

In conclusion, we have shown that hybrid magnetic
lattices allow to implement artificial magnonic crystals
with engineered band structures. Our approach ex-
tends the range of magnetic interactions beyond the limit
set by free-space magnetic-dipole interactions and pro-
vides an attractive alternative to existing methods, where
magnonic crystals are built from arrays of dipolarly cou-
pled nanostripes of magnetic materials [32-34]. Further-
more, it presents an alternative platform to study mag-
netic crystallization and dynamics of low density ensem-
bles of nanomagnets embedded in a non-magnetic ma-
trix. Thus, it is relevant for the field of artificial spin
systems [53, 54]. For those systems it would be interest-
ing to replace the lattice of loops with a superconducting
wire network [55, 56], since this would allow to study how
the interplay between connectivity and superconductiv-
ity affects the dynamics of magnetic particles in the net-
work. In addition, spin qubits coupled to the magnets
in the network allow to perform local magnetometry and
thereby probe the state of the network. The spin net-
work configuration also allows to use magnons as a quan-
tum bus to magnetically couple spin qubits over long dis-
tances [31], analogously to what is done with quantum
emitters coupled to photonic crystals [4], albeit in a dif-
ferent parameter regime.

The potential of our proposal depends very much on
the linewidth of magnons in a magnetic sphere. While
the microscopic origin of such damping is still not com-
pletely understood, interesting strategies to possibly re-
duce the damping can be envisioned. Smaller magnetic
particles might show a lower damping at T" 2 1K due
to the discretization of phononic modes in the sample.
A levitated version of our proposal [57, 58] might allow
to study the impact of the conservation of total angular
momentum on the (dissipative) dynamics of the magne-
tization. Finally, we remark that the present discussion
could be generalized beyond the macrospin approxima-
tion to include other magnonic modes inside the mag-
netic particles which might result in an improvement on
the magnon linewidth [59].
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Appendix A: Description of a superconducting loop

In the following, we describe a superconducting loop as
a multimode microwave resonator, and we derive under
which conditions it can be approximated as a single mode
LC-oscillator.

Superconducting rings on top of a dielectric substrate
have been shown to behave as microwave multimode res-
onators [60, 61] characterized by a large quality fac-
tor @ ~ 10° at GHz frequencies [62-64]. The spec-
trum of the resonator is double degenerate, each fre-
quency corresponding to both a clockwise and counter-
clockwise traveling wave. Within a transmission line
model the mode frequencies can be approximated by
wn /21 = n/(2rl/LiC) for n € N, where L; (C}) is the
inductance (capacitance) per unit length of the loop and
[ is the loop radius.

Adjusting the external magnetic field By such as to
tune the Larmor precession frequency of the magnetic
particle’s macrospin close to the fundamental resonance
of the ring resonator, it is possible to neglect the coupling
between F and the higher resonant modes. Moreover the
degeneracy of the fundamental mode can be broken by
introducing small asymmetries or imperfections as done
for instance in [62, 63]. The ring thus behaves as a single
mode LC-resonator of frequency w. = 1/ VLC, where L
(C) is the total inductance (capacitance) of the ring. C
is the capacitance between the loop and the ground plate
at the opposite end of the dielectric substrate, and can be
arbitrarily reduced by careful design. L amounts to the
geometrical self-inductance of the loop, which depends on
the particular shape of the loop and on the thickness 7
of the wires as detailed in [65]. For the case of a circular
loop of radius [ and wire of circular section, the self-
inductance reads [65]

(2 Tro (7))

Here we are assuming for simplicity the electric permit-
tivity (magnetic permeability) of the substrate support-
ing the loop, Fig. 5.a, to be &, = 1 (u, ~ 1).

(A1)

Appendix B: Derivation of the system Hamiltonian

In the following, we derive the quantum mechanical
Hamiltonian Eq. (1) describing the dynamics of the cou-
pled system composed by the circuit and the magnetic
dipole moments.

Within the single mode approximation, a superconduc-
tive LC-ring resonator can be modeled as an LC-circuit
(see Appendix A). The equations of motion for the LC-
circuit can be derived from Kirchhoff’s current and volt-
age laws, together with the constitutive relations which
relate current and voltage at each element of the circuit.
Defining Vo = 0;®¢ (V, = 0;P1) the flux at the capac-
itor (inductor) of the circuit, we write the constitutive

relations for the capacitor as o = Io /C and for the
inductor as

N
Op=LIL+ Y ®;(p;). (B1)
j=1
Here, C (L) are the circuit capacitance (inductance), and
®;(p;) is the flux induced in the ring by the j-th mag-
netic dipole. The equation of motion for the circuit can
be derived from Kirchhoft’s law as

N
® :ZM (B2)

Co+ T2 T
j=1
where & = &, = - [60].
The coherent dynamics of the magnetic moment p; =
p(cos@;sinb;, sin p;sin6;, cosd;), for 6, € [0,7] and
€ [0,2x], is described by the Landau-Lifshitz equa-
tion Oyp; = —yop; X B(r;), where B(r;) is the total
magnetic field acting on the j-th magnetic moment. In
term of the polar ¢; and azimuthal 6; angles the Landau-
Lifshitz equations read [67]
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psing; 77
70
psin 0 b3

Pj ==
(B3)

j =

where U = Z;\Ll VI (1) +Uo+Ua+Uing is the magnetic
interaction energy of the dipoles. VJ (1) represents the
magnetic anisotropy energy of the j-th magnetic particle.
Uy =— Zj\;l ;- B represents the interaction energy of
the dipoles with the external bias field. Uy represents
the free-space dipole-dipole interaction energy between
the magnetic moments

[\')\»—l

N N
Gl =32 3wy B¥w). (B4

j=li#j=

by

The dipolar field created
position r reads

the dipole moment p, at

dip/.y _ Mo 3Ar;(p, - Ar;) My
Bi (I‘) - A7 |: |AI‘Z'|5 ‘Al‘i|3 ’ (B5)

with Ar; = r —r;. Upg = I Zj @j(uj), where I, is
given by Eq. (B1), represents the interaction between the
magnetic dipoles and the field produced by the current
flowing in the ring [68].

The equations of motion Eq. (B2) and Eq. (B3) can be
derived from the Lagrangian




From Eq. (B6), the classical Hamiltonian of the sys-
tem is obtained introducing the generalized momenta
Q = C® and p; = pcosb;/vy conjugated to @ and ¢, re-
spectively. Following the usual canonical quantization
procedure one can then derive the quantum mechani-
cal Hamiltonian of the system given in Eq. (1). The
charge @ and flux & operators of the circuit appearing
in the system Hamiltonian satisfy canonical commuta-
tion relations [®, Q)] = ih. The components of the mag-
netic moment f1; = p(sin éj cos gﬁj,sinéj sin ¢, cos éj)T,
commute as [}, ii]] = i,uéijel,ng/lg, for v,n, & = x,y, 2,
according to the canonical quantization of the classical
Poisson bracket

N
_Nh L (9500 of b

Jj=1

for any f, g functions of 6, ¢;.

Appendix C: Magnetic flux through a coil

In the following, we derive the expression for the flux
induced by a magnetic dipole moment in a neighbouring
superconducting loop.

We consider the inductive coupling between a magnet
with magnetic moment g = h%f‘ and a coil of arbitrary
shape. We assume the magnet to be placed at a distance
h above the coil and at a horizontal distance d from the
coil’s closest wire (see Fig. 1.b in the main text). The
flux induced in the coil by the magnet reads

O(F) = jfdl “A(r, F) (C1)

where A(r, ﬁ) is the magnetic vector potential generated
by the magnet and the integral is taken on the contour

defined by the coil. Eq. (C1) can be written as ®(F) =
hyopo Y, I F, / (4nd) for v = x,y, z where

_ (Ar x dl),

is a dimensionless factor which depends only on the shape
of the coil and on the mutual position of the magnet and
the coil. Here Ar is the distance between the magnet
and a point in the coil. For instance, for a circular coil
of radius ! centered at (0,0,!+ d) and for a nanomagnet
at a position (h,0,0), the factors I, in Eq. (C2) read

l/d 1 h
IZ:/ dAF(A,,),
1d d'd
l/d 1 h
sz/ dAG<)\,,),
"y d'd

(C3)

FIG. 4. Plot of the parameters I, and I, in function of h/d
for I/d = 10 (dotted line), 10® (dashed line), 10® (solid line).
For I, the dashed and solid line are almost coincident.

and I, = 0, where

y Va2 — N2

F(\z,y) = ;
2 + 22 + (x+ 1) + 2 (z + 1))*/? -
V2 = N2 4 A (z+1+))
G\ z,y) = e

w2 + a2 + (@ + 1) + 22 (@ + D]

As shown in Fig. 4, the integrals in Eq. (C3) have an
optimal value around unity in function of h/d in the limit
of a large loop radius, I/d > 1.

Appendix D: Magnon dynamics in a HML:
Hamiltonian derivation

In the following, starting from Eq. (1), we derive
Eq. (4), which describes the propagation of magnons in
a HML. We consider the simple case of two magnets as
depicted in Fig. 1.b (generalization to the case of several
magnets is straightforward). By substituting the defini-
tion Eq. (2) into Eq. (1), one obtains

2 A
- i Do A, (69)?
H:hwcataff(af+a)5fb+th;Fj+ T
[ 2 .
+ =00+ Ua({ig}) + Y Vi ().
j=1
(D1)

where w, = 1/VLC, ®pjas = Zj . ., and 5§ =
>.;0®;(Af;). Here, we expressed the circuit oper-
ators in terms of creation and annihilation operators
(& — Ppins) = Po(af +a) and Q =i(al —a)/(29®..), where

o, = /h/(2Cw,).
We consider the applied field By to be sufficiently large
as to initially polarize the macrospin at the two nodes

along —e,, such that <]§‘j>0 = —Fe,. The fluctuations of
ﬁj around the equilibrium state can be described by a
bosonic mode fj, f; (magnon) according to the Holstein-
Primakoff approximation ﬁ'jz = —-F+ f; fj, and ﬁ';r ~



\/ﬁf; In the limit of small fluctuations <f;f3> <2F,

H can be approximated by a quadratic Hamiltonian in
the bosonic operators ', a, f; and f; as

2
i =hweala - h (@' +a) Y (s + He)
j=1

+ hi: {wjfoj ) Z (Aijﬁf} + H.c.)

ff (D2)
+ > [2=6)T+ (1 - 5ij)~75]ﬁfj}
ij=1
2
+ Z(ijj +1; fT)
j=1
We have defined
w]—’VOBO+2M +u7j]
2. ndu
oMo 2
+ ; W(S (¢0)] Qij — 1)F, (D?))
h
Ay =-3(1-9; )K;YOMO Fsin? 0,;€'2%is
+@2F1 I (D4)
2RL 7Y
_ ( hyopo ? I F
Jis = ( A ) 2hdid;L’ (D5)
717 Ho
d — _MoHo 02
S = 3sin“ 6; F D6
g7zj 871'7’” ( sin ij ) s ( )
PP,
X =gl V2F, (D7)
3hpio5 i2¢;; :
;= F\2Fe'“¥ii 97" 61
7; Zl: 8777"% e cos §;; sin 6,
(beq)bias
————V2F1I,. D8

Here, ®. is independent of j as we assumed the parti-
cles to be at the same distance d from the loop’s wire
(see Sec. IT A), k, is the magnetic anisotropy energy den-
sity and Mj is the saturation magnetization of the mag-
netic particle. We additionally assumed the easy mag-
netization axis of the magnetic anisotropy potential of
the material to be aligned along the direction of the ap-
plied magnetic field. In this case, the anisotropy energy
contributes only as a shift to the magnon oscillation fre-
quency within the quadratic approximation.

The linear term in Eq. (D2) shifts the equilibrium ori-
entation of the magnetic moments and the equilibrium
value of the flux in the loop. It can be formally elimi-
nated from Eq. (D2) displacing the bosonic operators af,
a, A]-, and f] to represent the fluctuations around the
new equilibrium values. The linear term in Eq. (D2) is
identically zero when the magnetic particles are placed

in the plane of the LC-resonator (h = 0), as in Fig. 5.a
and the distance between the magnets is such that the
free-space dipole-dipole interaction is negligible [69]. We
thus neglect hereafter the last term in Eq. (D2) assum-
ing the shift in the relevant couplings and frequencies to
be negligible (h ~ 0). We remark that all the quantita-
tive predictions made in the main text are calculated for
h = 0 and negligible dipole-dipole interaction.

Due to the large detuning between w, and the frequen-
cies defined in Eq. (D3-D7), we adiabatically eliminate
the LC-resonator degrees of freedom, which are assumed
to be in the vacuum state. Within the rotating-wave ap-
proximation and taking into account the circuit-induced
shifts of the frequencies and couplings, one obtains the
effective Hamiltonian Eq. (4) that describes the magnon
dynamics.

Appendix E: Magnetic field intensity at the wires of
the loop

Here, we calculate the field produced by the magnetic
particle at the wire of the loop. From the requirement
that this field should not exceed the critical field to keep
the loop in the Meissner state, we derive the minimal
distance from the wire at which a magnetic particle can
be placed.

The magnetic field produced by the particle at any
point in the wire must be smaller than the critical field
(first crytical field) B. of the type I (type II) supercon-
ductor that makes up the loop. Consider the situation
illustrated in Fig. 5.a. The distance at which the center
of the magnetic particle should be placed such that the
e.-component of the magnetic field at the closest point
of the loop equals B, reads

where M is the saturation magnetization of the magnetic
particle, R the particle radius, and 7 the wire thickness.
In Fig. 5.b, (d. — 7/2)/R is plotted as a function of the
field B, at the wire position. For the values used in Fig. 3,
the field produced by the magnetic particle at the posi-
tion of the loop wire is &~ 110mT, which is below the
first critical field of many type II superconductor such as
Nb [70].
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FIG. 5. a) Lateral view (not to scale) of a magnetic particle
positioned on the substrate (hatched grey region) sustaining
the superconducting-ring (h = 0) at a distance d — 7/2 from
the closest point of the superconducting-ring wire (dark grey
region) of thickness 7. b) Critical distance d. — 7/2 in unit
of R at which the field produced by the magnetic moment at
the closest wire point equals B.. Other physical parameters
are taken from the caption of Fig. 3.

Appendix F: Bone-shape configuration

In the following, we analyze a different coil geometry
in which the magnets are inscribed inside the perime-
ter defined by the coil’s wire. We show that while such
a configuration is not suitable to build hybrid magnetic
lattices, it can achieve a larger magnon tunneling rate
than the configuration in Fig. 1.b. Let us consider the
situation illustrated in Fig. 6.a, where two magnets are
coupled through a bone-shaped loop. Here, d is the ra-
dius of the circular end-rings, w the separation of the
middle parallels wires, and 2[ their length. For w < d?/I,
the middle region connecting the two circular ends of the
loop has a negligible contribution to the self inductance
L of the loop. Moreover for R < d, the magnetic flux
produced by the magnetic particle is obtained as the flux
generated by a magnetic moment p placed at the origin
of a circular coil and of intensity u = M4rR?/3. For
I > d, the flux produced by a magnet in the loop at the
opposite end of the coil can be neglected. The fluctu-
ating magnetic moment fi; produces a fluctuating flux

®; = hyopuoAE,/(4l), where AF, and AE, contribute
only at higher order. In this configuration, the direct in-
ductive magnetic coupling contribution to the magnon-
tunneling rate thus reads
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FIG. 6. a) Bone shape coil for enhancing the magnon tun-
neling rate between distant magnets. In such a configuration
the total distance between the magnets is a = 2d + 2l. b)
Magnon tunneling rate J12 (solid blue line), JS (dashed red
line), and J8™° (dotted green line) as function of the mag-
nets separation a. We assumed R = 1 um, d = 500 nm, and
7 = 50nm. The tunneling rate Ji2 (Jih) corresponds to the
loop-mediated (free-space magnetic dipole) tunneling rate in
the configuration shown in Fig. 1.b.

Here, L represents the inductance of a circular coil of
radius d [cf. Eq. (A1)].

In Fig. 6.b, 7" is plotted as function of the magnet
separation a = 2(I + d), keeping d fixed. Realistically, at
larger values of [ the contribution of the middle region
to the total inductance will affect the scaling of Jh°me.
However, for a sufficiently small separation w between the
two parallel wires the tunneling rate is expected to vary
only slightly with an increase of . The bone-shape con-
figuration (Fig. 6.a) thus allows to enhance the magnon
tunneling rate for a given separation a as compared to
the simpler configuration in Fig. 1.b.

Appendix G: Hamiltonian for the 2D HML

In the following, we derive the Hamiltonian Eq. (9)
which describes the two-dimensional HML illustrated in
Fig. 2.d, whose band structure is shown in Fig. 2.e.

Let us consider the elementary cell of such a configu-
ration shown in Fig. 2.c. For large loop size [, j;j < Jij
(see Fig. 6.b), and thus the magnon tunneling rate is
given by J;; = J €'%ii | with

2R

J= 2hL

(I2+ 1), (G1)



where we defined I, = I = I§ = I§ = If and I, =
Il =1y = -1y = —Ij, and ¢;; is a function of I, I,.
The magnon dynamics in the elementary cell in Fig. 2.c
is thus described by

gt = hwo§jf*ﬂ-+hj }: 1.

J=1 i#j=1

(G2)

where we redefined some of the magnonic operators to
absorb the phase factor appearing in the tunneling rate
Jij-

The extended 2D HML shown in Fig. 2.d is built by
repetition of this elementary cell. As discussed in the
main text, the magnon dynamics of such a 2D HML can
be described by a two interacting sublattices model, la-
belled by A and D according to the Hamiltonian

H2D —Fig Z( DTfD+fATfA)

o [Z B+ D5 oy

3 PR+ H] |
3,6

Here, the operators fA7 fAJr ( fD f ) respectively create
and annihilate a magnon in the sublattice A (D) within
the cell at position j = (jy, j.) and the vectors ac and 8 (6
and §), for B € {(+1/2,F1), (£1/2,0)}, o € {(F1,%1)},
and § € {(£1,0)}, connect the nearest neighbors of a
point in the sublattice A (D) in the basis of the Bravais
vectors vy and va.
In terms of the operators

R 1 i 2

=52 (G4)
J

DY _ —ik-j fDt

k sz:e ij ) (G5)

N 1 i

fe=5 2 e (G6)
J

N 1 as oA

At _ —ikej pAT

RS DOl (G7)
J

which create/annihilate a magnon of momentum k =
(ky,k-) in the sublattice D or A, the Hamiltonian in

Eq. (G3) can be written as H2P = 27U MU where
= (f2, M7 and

_( 2cos|(ky + k.)a]
M= <cos(k‘za) + cos(kya)

cos(kya) + cos(kza)
2 cos{(ky — ky)a] > (G8)

The eigenvalues of H2P read

we (k) = wo + 2[4 cos(kya) cos(kya) = VA],  (G9)
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where A = 444 cos(kya) cos(kya)—cos(2kya)—cos(kya)+
2 cos(2k,a) cos(2kya), with a = v/2(1 + d) being the lat-
tice constant. Eq. (G9) correspond to the magnon bands
illustrated in Fig. 2.e.

Appendix H: Spin qubits coupled to a HML

In the following, we derive derive the general Hamil-
tonian Eq. (12) describing NV-center qubits coupled to
the magnetic particles in a HML. In particular, we ob-
tain first Eq. (11) for an NV-center qubit coupled to a
magnetic particle by magnetic dipole-dipole interaction,
and we later generalize this result to the case of several
NV-center qubits coupled to a HML.

Let us first consider a single NV-center located at
r, = 74(sinfcosp,sinfsin ¢, cosf) around a magnetic
particle (see inset Fig. 7). The magnetic dipole interac-
tion Hamiltonian between the NV-center and the mag-
netic particle reads,

ﬁM—NV = FLAN\/SE + 'YqBOS’z — h’ng . Bdip(rq), (Hl)

where S is spin-1 operator of the NV-center, Ayy its zero
field splitting, v, its gyromagnetic ratio, and B4 (r,)
is the dipole field produced by the magnet at the NV
position [see Eq. (B5)]. In the following, as the derivation
is the same at each node, we drop the site-index j.

Expressing the NV spin operators in terms of the
eigenstates of S., namely S, = [1)(1| — |~1)(~1] and
S, = (S)F = v2(]0)(=1| + |1)(0]), the Hamiltonian
Eq. (H1) can be rewritten as Hyxv = Hi + IfI_l, where
H;, acts only on the states |0), |k) (k = £1) of the NV
center. In the following, we assume the frequency of
the magnon to be close to the NV center transition fre-
quency between |0) and |—1). This can be achieved by
appropriate values of the applied field By, magnet size R,
and relative distance r, between the NV and the magnet
(see Fig. 3.c). With this assumption, the coupling be-
tween the magnet and the higher level |1) is negligible,
and the NV-magnet coupling is thus well approximated
by H_;. Hence, within the two-level approximation and
the Holstein-Primakoff approximation the magnon-NV
center Hamiltonian is given by

+
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+
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where 6% = |-1)(—1] —



|0)(—1|, and we defined the frequencies

h
wo(0) = Ay — 74 Bo — %F (3cos?6—1), (H3)
q

£0) = %\/2F sin 0 cos 0, (H4)
3

Q(0) = %\/ﬁ(s sin?f — 2), (H5)
3

g(0) = %\/ﬁsmz 6. (H6)
oy

The spin qubit in Eq. (H2) can be diagonalized in terms
of dressed states |£). These are obtained from the uncou-
pled state |0), |—1) by the unitary transformation matrix

& (e79/2c08(0/2) —e71%/25in(0/2)
U= ( e¥/25in(0/2)  €'¥/?cos(0/2) ) - (HT)

where the angle © € [0, 7] is defined as

m — arctan (M) , £(0)/ws(0) <0

0= (HS)
arctan (%) ) £(0)/ws(0)
In the dressed state basis, Eq. (H2) reads
g :hwg% + e (ei“" F+ H.c.) %
—ng (e fF |+)(~| + He.) (H9)

—hQ (ei“"ﬁ |=)(+] + H.c.) .

The Pauli operator in Eq. (H9) refer now to the dressed
states, namely 6% = |+)(+| — |—=)(—|. The dressed state
frequency is

we = Vwoe(0)? + FE(0)?,

and the spin qubit-magnon couplings are

£ =£(0)ePcosO + (Qf)e ¥ + g(0)e*?) sin®,(H11)

(H10)

9= ig(a) $inO+g(0) cos2(0/2) — () sin(©/2(H12)
and

Q= -£(0) sin® + 2(0) cos(0/2) — g(0) sin(0©/2). (H13)

o] =

Fig. 7 shows the dependence of the coupling £, g, and 2
in Eq. (H11), Eq. (H12), and Eq. (H13) as function of 6.

The Hamiltonian describing the general scenario of
quantum emitters (NV centers) locally coupled to the
magnets in a HML by magnetic dipole-dipole interaction
reads Hr = Hy + Z;V:;L ﬁI{AQ, where H); is the Hamil-
tonian of the HML and H opfv[Q is the magnet-NV inter-
action at site j and is given by Eq. (H9). For a quasi
resonant interaction, A = wg — w, K wWg,wp, the total
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FIG. 7. Plot of the couplings &, g, and € vs the position
angle . The remaining parameter have the following values:
R = 350nm, ro = R + 20nm, By = 70mT, and o, 4 as
in the caption of Fig. 3. Inset: general configuration of the
nanomagnet-qubit system.

Hamiltonian of the system, within the rotating wave ap-
proximation, is given by the following Jaynes-Cumming-
Hubbard Hamiltonian

N s 67 N
Hy=h)_ {Wof;fj + %7J -9 (ffﬁj_ + fj&}rﬂ
J o (H14)
+hT YR
i£]

>

where j = (jz,jy) and i = (ig,4,) are the index labeling
the nodes of a general 2D HML. Note that Eq. (H14) is
the real space representation of Eq. (12) in the main text.

Appendix I: Effective spin-spin interaction through
a magnonic quantum bus

In the following, we derive Eq. (13) describing the
magnon-mediated interaction between the two qubits,
and we obtain the figure of merit presented in Sec. 11 C,
which estimates the efficacy of a SWAP gate operation
performed by the magnonic quantum bus.

We consider two spin qubits locally coupled by mag-
netic dipole-dipole interactions to two magnetic parti-
cles coupled by a superconducting loop resonator (see
Fig. 3.a). The dynamics of the quantum state of the to-
tal system is described by the following master equation

) 2
~ 1A A £ Af 1 I 5
Oup =~ 1 [Hr. pl + kY (fjpfjT - Z{f;fjm})
j=1
, (I1)
+ Y (67p6% — 1),
j=1

where p represents the quantum state of the two qubits
and the magnons at site j = 1,2, £ is the magnon damp-
ing rate, v = m/T5 the qubit dephasing rate, and Hr is



defined in Eq. (H14) for the simple case where i,j =1, 2.
In terms of the modes fi = (f1£f2)/v/2 the Hamiltonian
Hrt reads

~ A A 5% 52
Hp =heoy f{ fo 4+ ho_ f1 -+ ho, (21 i 2)
9 [t (5 A 72N .
—ﬁ[f+(0fr+<7§r)+f—(0’f—02+) (12)
—l—H.c.},

where wy = wy £ J. The dissipative term in Eq. (I1)
maintains the same structure whereas the magnonic op-
erators fj, fAJJr (j = 1,2) are replaced by the normal modes
flv fi .

In the limit of a large detuning between the spin qubits
and the magnons, it is possible to adiabatically eliminate
the magnonic degrees of freedom and obtain an effective
master equation describing the effective dynamics of the
spin qubits. Transforming the master equation describ-
ing the total system via the unitary operator

U =exp fj_(frl— +465)— H.c.}

5)—H.c.] }

keeping terms up to second order in g/A,g/(A—2T) < 1
and projecting the result on the vacuum subspace of the
magnons Hilbert space, one obtains

Vel

9 s
V2(A —2J){f(

(I13)

R in . TH
Oipert = — ~[HQQ, Pett] + Ket Y DL [peri]
h
i=1

2
+ Qef'f Z DZ:TJ— [ﬁeff] (14)
i£j=1

2
36
Wo (07 +63) — hgeff(&r&; + &1_&;_)7 (I5)

_— o 1
DZ}{ [Pet] = 6 peffo';'r - 5{0’;‘71‘ s Peft }- (16)

Here, pe represents the effective state of the two qubits
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and we defined the effective frequencies and decay rates

1 1
@UEWU—QQ (w‘i‘A), (17)
Y
A2 —27)?
l‘ieff—fig AQ((M)Q)» (19)
AQ— —2J
Qe = K g° M (110)

The Hamiltonian Eq. (I5) can be used to implement a
long-range qubit-qubit interaction through the magnonic
quantum bus provided by a HML.

The intrinsic qubit dephasing ~ as well as the bus-
induced effective qubit damping keg described in Eq. (14),
affect the performance of coherent exchange of excita-
tions between the qubits. In the following, we describe
the impact of these noise sources and derive a figure of
merit for the performance of the coherent qubit coupling.

Let us consider a SWAP gate which transfers an ex-
citation from the first to the second qubit through the
interaction described by Eq. (I5). The performance of
the gate can be estimated in terms of the quantum state
fidelity [71] F(t) = (Tr+/ (14| p(t)[101))? between the state
of the system p(t) after the evolution governed by Eq. (I1)
and the target state [i;) = |01) ® |vac), where |vac) is
the vacuum of the magnon bus and |01) is the two qubits
state where only the second (target) qubit is excited. We
assume that the system is initially prepared in the pure
state p(0) = |¥) (x| with |¢p) = [10) ® |vac), where only
the first qubit is excited. The performance of the SWAP
gate can then be estimated by maximizing F(¢) over the
total evolution time ¢, and calculating the fidelity error
¢ =1 —max; [F(t)] in the presence of noise. A numerical
optimization of € over all the relevant parameters of the
system g, 7, A, k, and ~y yields a figure of merit for the
performance of the gate.

An analytical expression for the scaling of the op-
timal error can be obtained in the dispersive regime
g/A,g/(A —27J) < 1. In the strong coupling limit
Jeft => Keft, 7Y, € scales approximately linearly with the de-
coherence rates as € & Y/ geft + Qwkest/gest [72], where
the coefficients a, and o, are assumed to be approxi-
mately independent on the detuning A. This assump-
tion can be numerically checked simulating the error
scaling for different values of A for the same values of
Keft/ Joff, V/ get < 1. After substituting Eq. (I8) into the
linear expansion for € one obtains

_ A -2g) kAT (A-20) (1)

T T T 2T WS TTAN —2T)
For the optimal values A* = J* =
V20,.9%6Ty [(Tany) [73], Eq. (I11) reads
Qe Oty
= 112
STV 26, 12)
where the cooperativity C' is defined as
g2
Cop=—. (113)
YK

In Fig. 8, the error £ optimized for A = 7 is plotted as
a function of the normalized decoherence rates Kefr/gefr
and 7/ geft-
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FIG. 8. Distribution of the fidelity error £ for the optimized
detuning A* = 7 as a function of a) k/ges for /T3 = 0 and
b) v/gest for for kK = 0. Each panel shows the numerically
calculated points (square/circles) together with the linear in-
terpolation (dashed line) with slope a) a, and b) a,.
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