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Backaction-evading measurements of mechanical motion can achieve precision below the zero-point uncer-
tainty and quantum squeezing, which makes them a resource for quantum metrology and quantum information
processing. We provide an exact expression for the conditional state of an optomechanical system in a two-tone
backaction-evading measurement beyond the standard adiabatic approximation and perform extensive numeri-
cal simulations to go beyond the usual rotating-wave approximation. We predict the simultaneous presence of
conditional mechanical squeezing, intra-cavity squeezing, and optomechanical entanglement. We further apply
an analogous analysis to the multimode optomechanical system of two mechanical and one cavity mode and find
conditional mechanical Einstein-Podolski-Rosen entanglement and genuinely tripartite optomechanical entan-
glement. Our analysis is of direct relevance for state-of-the-art optomechanical experiments that have entered
the backaction-dominated regime.

Introduction.—The standard quantum limit (SQL) is the
precision limit that arises from the fundamental trade-off be-
tween the information extractable from a measurement and
the associated backaction when continuously monitoring the
mechanical motion [1, 2]. Backaction-evading (BAE) mea-
surements bypass this limit by restricting the measurement to
a single quadrature of motion [3–5]. One way to implement
this is to parametrically couple the mechanical motion to a
cavity driven on both mechanical sidebands [3, 6]. BAE mea-
surements have been demonstrated in optomechanics, both in
the microwave [7, 8] and in the optical domain [9], with sensi-
tivities approaching the SQL. BAE measurements have been
exploited to generate spin squeezing in light-controlled atomic
ensembles [10]. They have also been extended to collective
observables of two modes [11, 12], with implementations pro-
posed in an optomechanical system [13] (partially realized in
[14]) and in an atomic medium coupled to a nanomechanical
resonator [15, 16] (realized in [17]).

Recent experimental advances have allowed to access the
conditional dynamics and real-time feedback of weakly mon-
itored optomechanical systems at the quantum limit [18–21].
In BAE measurements, continuous monitoring would enable
uncertainties below the SQL and the generation of mechan-
ical squeezing, conditional on the measurement record [22–
24]. Surprisingly, the current literature only considers an ap-
proximate description of such process, based on the intracav-
ity field adiabatically following the mechanical motion [25].
With state-of-the-art cavity optomechanics experiments oper-
ating in the backaction-dominated regime [26], this descrip-
tion has become inadequate and, as we shall show, it fails to
address the quantum features present in the joint conditional
dynamics of the cavity mode and mechanical resonator.

In this Letter we present an exact treatment of the condi-
tional dynamics of BAE measurements. We give an analytical
expression for the steady-state covariance matrix and find that
mechanical (single-mode) squeezing is maximal for interme-
diate sideband parameters. For small sideband parameters,
i.e., a very good cavity, the measurement is inefficient, while
in the bad-cavity limit, the measurement of the photons leav-
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FIG. 1. (a) Backaction-evading (BAE) measurement of a single me-
chanical quadrature. An optomechanical cavity (â) is driven on the
lower and upper mechanical (b̂) sideband and is continuously mon-
itored via the output homodyne current. Mechanical squeezing, op-
tical squeezing, and entanglement can be generated conditional on
the measurement record. (b) If two mechanical modes b̂1 and b̂2 are
considered instead (as indicated in the dashed boxes), a two-mode
BAE measurement can be realized.

ing the cavity only weakly affects the state of mechanical os-
cillator. We then numerically go beyond the rotating-wave ap-
proximation (RWA). Excitingly, we uncover conditional me-
chanical squeezing, intra-cavity squeezing, and optomechan-
ical entanglement. All of these have been missed by taking
the adiabatic approximation. We finally extend our analy-
sis to two mechanical modes coupled to a common cavity.
We demonstrate both conditional generation of mechanical
Einstein-Podolski-Rosen (EPR) as well as genuine tripartite
optomechanical entanglement. Our study provides a substan-
tial improvement in the description of weakly monitored op-
tomechanical systems (as well as parametrically coupled su-
perconducting circuits [27–29]) and opens novel avenues for
measurement-based quantum control of mechanical motion.

Optomechanical conditional dynamics.—We consider a
standard optomechanical system where a mechanical oscilla-
tor of frequency ωm modulates the frequency of a cavity mode
of frequency ωc [30]. The Hamiltonian is given by (~ = 1)

Ĥ = ωcâ
†â+ωmb̂

†b̂−g0â
†â(b̂+ b̂†)+E(t)â†+E∗(t)â , (1)

where â (b̂) describes the cavity (mechanical) mode, g0 is the
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FIG. 2. Mechanical squeezing (in dB) for g = 0.01ωm (red), g =
0.05ωm (yellow) and g = 0.3ωm (cyan) as predicted by Eq. (5).
Other parameters are γ = 10−4ωm, n̄ = 10, η = 1. Solid black
lines represent the prediction of the adiabatic solution σ2

Xm,ad while
dashed lines that of a slow cavity σ2

Xm,slow. For each curve, the part
to the left of the black dot (g = κ) is in the strong-coupling regime.

single-photon coupling strength, and the cavity is driven on
both mechanical sidebands ωc ± ωm with the same strength,
i.e., the driving field reads E(t) = 2|E|e−iωct cosωmt. After
linearizing the equations of motion and moving to an inter-
action picture with respect to the free mechanical and cavity
evolution, we obtain the interaction Hamiltonian

ĤI(t) = −gX̂c

[
X̂m(1 + cos 2ωmt) + P̂m sin 2ωmt

]
, (2)

with coupling strength g ≡ g0|E|/
√
ω2
m + κ2/4, cavity decay

rate κ, and dimensionless quadratures X̂c = (â+ â†)/
√

2,
X̂m = (b̂+ b̂†)/

√
2, and P̂m = i(b̂† − b̂)/

√
2. The Hamil-

tonian ĤI(t) consists of a time-independent part, ĤQND =

−gX̂cX̂m, and an oscillating part ĤCR(t). In the good-cavity
limit κ � ωm, the latter term can be neglected and the inter-
action takes a manifestly QND form [6].

We also include system-environment interactions with the
photonic and the mechanical environment [31]. In a quantum
noise picture, both environments consist of a collection of un-
correlated modes that interact with the system at time t and
are otherwise uncoupled; this assumption both gives rise to
a Markovian environment and provides a monitoring channel.
After interacting with the system, we assume that the photonic
modes of the environment undergo a homodyne measurement
of the phase quadrature [23] [see Fig. 1 (a)].

Given the (bi)linear nature of both the interaction and
the measurement and given a Gaussian initial state, the
state of the optomechanical system %̂ is exhaustively de-
scribed in terms of the mean vector x̄ = Tr [%̂ x̂] and co-
variance matrix (CM) σ = 1

2Tr
[
%̂{x̂− x̄, (x̂− x̄)T }

]
, where

we have grouped the system quadratures into the vector
x̂ = (X̂c, P̂c, X̂m, P̂m)T [32]. The conditional evolution of
the continuously monitored system is then described by the

following set of equations [33, 34]

dx̄ = Ax̄dt− (σB −N)dWt , (3)

σ̇ = Aσ + σAT +D − (σB −N)(σB −N)T , (4)

where A = A(t) is the drift matrix, D the diffusion matrix,
B and N account for the reduction of uncertainty and added
noise due to the measurement process; Wt is a vector of in-
dependent Wiener processes (dWjdWk = δjkdt); see SM for
details [31]. We notice that the stochastic evolution, conse-
quence of the measurement-induced disturbance, is confined
to the first moments. Therefore, at any time the conditional
state is represented by a Gaussian state whose covariance ma-
trix evolves deterministically according to Eq. (4). This will
represent the main tool of our analysis.

Mechanical squeezing beyond adiabatic approximation.—
We start by studying the conditional dynamics of a two-tone
BAE measurement within the RWA, namely when Eq. (2) re-
duces to the perfect QND interaction ĤQND = −gX̂cX̂m.
The steady-state conditional CM (4) can be obtained analyti-
cally (cf. SM [31]). Here, we will focus on the properties of
the variances of the two mechanical quadratures

σ2
Xm

=

√
γ2 + κ2 + 2ζ

16g2ηκ

(
ζ + γ2 − γ

√
γ2 + κ2 + 2ζ

)
,

(5)

σ2
Pm

= n̄+
1

2
+

2g2

γ(γ + κ)
, (6)

where ζ =
√
γκ[16g2η(1 + 2n̄) + γκ], n̄ is the thermal oc-

cupancy of the mechanical bath and 0 ≤ η ≤ 1 is the quantum
efficiency of the measurement. These exact expressions are
the first central result of our work.

We note that for η → 0 no measurement is recorded and
Eq. (5) reduces to the unconditional variance σ2

Xm
→ n̄ + 1

2 ,
which is consistent with the fact that X̂m is a conserved quan-
tity and the initial thermal variance thus remains unaffected.
On the other hand, the acquisition of information via the mea-
surement (η > 0) reduces the variance, eventually resulting in
mechanical squeezing σ2

Xm
< 1

2 . We show the degree of me-
chanical squeezing [expressed in −10 log10(2σ2

Xm
) Decibel

(dB)] in Fig. 2, as a function of the sideband parameter κ/ωm.
It is instructive to distinguish the regimes of a slow cavity
(small κ/ωm) and that of a fast cavity (large κ/ωm). For a fast
cavity κ � ωm, we obtain the well-known adiabatic result

σ2
Xm,ad =

√
1+4ηC(1+2n̄)−1

4ηC , where we introduced the coop-
erativity C = 4g2/κγ. In this regime, decreasing κ leads to a
larger cooperativity, so information is extracted faster from the
mechanical resonator. This expression can also be obtained by
adiabatically eliminating the cavity mode and considering the
resulting effective measurement of the mechanical quadrature
X̂m [35]; this approach was put forward in Refs. [22, 25] and
has become the standard tool for describing the conditional
evolution of weakly monitored systems [6, 13, 24, 26, 36].

The adiabatic approximation (solid lines in Fig. 2) clearly
becomes inaccurate in the good-cavity, strong-coupling limit.
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FIG. 3. (a) Conditional mechanical squeezing (in dB) assuming the RWA [Eq. (5)] (dashed dark curves) and beyond the RWA (lighter shaded
areas). The curves are for g = 0.01ωm (red), g = 0.05ωm (yellow) and g = 0.3ωm (cyan); when present, the dotted curve shows the
mean squeezing (averaged over one mechanical period) and the shaded area extends between the minimum and maximum value of squeezing.
Solid black lines represent the prediction of the adiabatic solution σ2

Xm,ad. (b) Conditional optomechanical entanglement (measured by the
logarithmic negativity) for the same coupling values as panel (a); the vertical dashed line corresponds to κ = 0.05ωm and in the inset we show
the temporal evolution of entanglement along this cut for the case g = 0.05ωm. (c) Conditional cavity squeezing for the same coupling values
as panel (a). (d) Zoom-in of panel (b). In all panels other parameters are: γ = 10−4ωm, n̄ = 10, η = 1.

For example, for g = κ = 10−2ωm, σ2
Xm,ad overestimates

the actually amount of squeezing by approximately a factor of
two (cf. Fig. 2). Physically, as κ decreases, the measurement
rate starts to be limited by the rate at which photons leave
the cavity and the adiabatic solution fails to account for this
effect. To describe this regime correctly, we express Eq. (5)
in terms of C and keep only the leading term in the expansion
C � 1, which yields σ2

Xm,slow = (1+2n̄)3/4

(Cη)1/4

√
γ/κ shown as

dashed lines in Fig. 2. The rationale is that, for fixed large
cooperativity C, increasing κ will increase the measurement
rate, which in turn will reduce the variance σ2

Xm
.

Our exact solution (5) interpolates between these two lim-
its. An approximate condition for optimal squeezing is ob-
tained from the intersection of the two straight lines in Fig. 2

κopt = 4g2/3[ηγ(1 + 2n̄)]1/3 . (7)

This gives the optimal value of the sideband parameter, which
both depends on the rate at which information is transferred
to the cavity mode and the rate at which thermal decoherence
influences the measurement.

Turning our attention to (6), we notice the variance σ2
Pm

is
not affected by the measurement (independent of η). Heat-
ing of the phase quadrature is an unavoidable consequence of
measurement backaction and entails that highly pure squeezed
states are not accessible via continuous monitoring. Further-
more, having access to the full CM we can consider the con-
ditional state of mode â (which is never squeezed) and the
steady-state correlations. Due to the measurement, condi-
tional entanglement between modes â and b̂ can be established
which has been missed in previous analyses of this setting.

Effects of counter-rotating terms.—We now explore the ef-
fect of the counter-rotating (CR) terms appearing in Eq. (2).
For the unconditional dynamics, corrections to the RWA have
been studied in Ref. [37]. As the drift matrix is explicitly time-
dependent, we numerically integrate the equations of motion

(4) and consider the long-time limit, when the system settles
in a time-periodic steady state. If the effect of ĤCR(t) is non-
negligible, the ideal QND regime is perturbed and we expect
a reduction of mechanical squeezing. This expectation is in-
deed confirmed by inspecting Fig. 3 (a). However, such a
reduction is accompanied by the emergence of two novel fea-
tures: (i) the stabilization of optomechanical entanglement to
considerably larger values [panels (b), (d)] and (ii) the appear-
ance of squeezing in the cavity quadrature X̂c [panel (c)]. In
particular, we see that the presence of CR terms can have a
dramatic effect on entanglement, which survives in the steady
state, as opposed to the typical entanglement ‘sudden death’
predicted by RWA [38]. Furthermore, the RWA solution en-
tirely misses intra-cavity squeezing [31]. We thus see that cor-
rections to RWA can lead to qualitatively different quantum
features, which is a second major result of the present work.

In contrast to unconditional two-tone BAE measurements,
where CR terms are always detrimental to quantum correla-
tions [6, 37], we find under continuous monitoring quantum
correlations can be stronger in their presence. We expect this
to be a general feature of continuously monitored systems.
Remarkably, in the strong-coupling regime we observe the
joint presence of conditional optical squeezing, mechanical
squeezing, and entanglement. This unusual set of properties
has been predicted for the ground state of a pair of bosonic
modes in the ultra-strong coupling regime [39, 40] and ob-
served in analog quantum simulation of that model [41]. The
presence of monitoring could make the same phenomenology
accessible without such stringent experimental requirements.

Conditional entanglement in a three-mode optomechanical
system.—We now consider two mechanical resonators of fre-
quency ωm,1 and ωm,2 coupled to a common cavity mode, as
sketched in Fig. 1 (b). While the two mechanical oscillators
are not directly coupled, the measurement of the output cavity
field can induce conditional EPR-like entanglement between
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them [13, 15, 42]. Following Ref. [13], we introduce the mean
and the relative mechanical frequency, respectively, defined as
ω = (ωm,1 + ωm,2)/2, Ω = (ωm,1 − ωm,2)/2 (we assume
ωm,1 > ωm,2 without loss of generality) and the collective
EPR mechanical variables

X̂± = (X̂m,1±X̂m,2)/
√

2 , P̂± = (P̂m,1±P̂m,2)/
√

2 , (8)

that satisfy [X̂±, P̂±] = i, [X̂±, P̂∓] = 0. In terms of X̂+ and
P̂−, all-mechanical entanglement is certified by the violation
of Duan’s inequality σ2

X+
+ σ2

P−
≥ 1 [43]. Amplitude mod-

ulation of a resonant drive at the mean mechanical frequency
ω results in the Hamiltonian

ĤI(t) = Ω(X̂+X̂− + P̂+P̂−)−
√

2gX̂cX̂+ + ĤCR . (9)

In the limit ω � κ, CR terms can be dropped and Eq. (9)
becomes a perfect two-mode QND interaction [12, 13]. This
is due to the fact that ĤQND = ĤI(t)− ĤCR(t) couples X̂+

and P̂− in the same way as for simple harmonic motion, so
that the interaction with the cavity turns into a joint contin-
uous measurement of both X̂+ and P̂−. Since X̂+ and P̂−
commute, they can be simultaneously squeezed by the mea-
surement, while the backaction is confined to the conjugate
quadratures P̂+ and X̂− [12]. If their combined uncertainties
are reduced below twice the zero-point level, the measurement
induces conditional mechanical entanglement, in the form of
two-mode squeezing.

In Fig. 4 (a) we quantify the amount two-mode squeezing
through the violation of Duan’s bound (expressed in Decibel).
We observe a trade-off which can be physically understood as
in the single-mode case [cf. Fig. 2], although a simple ana-
lytic expression [like Eq. (5)] is no longer available due to the
intricacy of the coupled Riccati equations (4). The effects due
to CR terms in Eq. (9), responsible for the reduction of the en-
tanglement and the appearance of cavity squeezing for g > κ,
are akin to our findings for the single-mode case [cf. Fig. 3
(a), (c)]. We compare our result with the prediction derived
in the adiabatic limit (dotted curves, see Ref. [13] for the ex-
pressions), which is only accurate for γ � Ω, g � κ� ω. In
particular, decreasing the coupling, the adiabatic approxima-
tion predicts a constant amount of entanglement, only shifted
towards smaller sideband parameters. This prediction can fail
dramatically (see red curve), while our theory correctly quan-
tifies mechanical entanglement in the experimentally relevant
good-cavity limit.

Finally, we study the full conditional dynamics of the three-
mode optomechanical system, described by Eq. (4), with the
appropriate expressions given in the SM [31]. We can de-
termine the separable/entangled nature of the system with re-
spect to all the possible bipartitions, i.e. (â|b̂1b̂2), (b̂1|âb̂2) and
(b̂2|âb̂1), leading to the notion of k-biseparable states [44]. In
particular, there are states that are entangled for any biparti-
tion of the modes [45]; these states are called fully inseparable
and possess genuine tripartite entanglement. In Fig. 4 (b), (c)
we show the inseparability structure induced by the two-mode
QND measurement. We find ample regions where genuinely
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fully inseparable
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FIG. 4. (a) Mechanical two-mode squeezing (in dB) assuming
the RWA (dashed curves), beyond the RWA (lighter shaded areas)
and in the adiabatic limit (dotted darker curves). The curves are
for g = 0.01ω (red, which is zero), g = 0.05ω (yellow) and
g = 0.3ω (cyan). As in Fig. 3 the dotted gray curve shows the av-
erage two-mode squeezing (taken over 2π/ω). In the inset the con-
ditional cavity squeezing is shown. Other parameters are Ω = 0.1ω,
γ = 10−4ω, n̄ = 10, η = 1. (b) Inseparability structure of the con-
ditional three-mode optomechanical system. In particular, the orange
region indicates genuinely tripartite entanglement and the shaded re-
gion marks the presence of mechanical two-mode squeezing. Other
parameters as in (a). (c) Same as (b) except for n̄ = 100.

tripartite entanglement and mechanical two-mode squeezing
(marked by the shaded area) coexist, which survive even for
large thermal occupation. Tripartite entanglement in optome-
chanical devices has been considered in Refs. [46, 47], how-
ever not under continuous monitoring and for a pair of cavity
modes and a single mechanical resonator. Most remarkably,
our study shows that continuous monitoring can induce non-
classical features at every ‘layer’ of the three-mode system:
at the single-mode level, the cavity field is squeezed [cf. inset
panel (a)]; the two-mode mechanical state is entangled and
the optomechanical system as a whole displays genuine mul-
tipartite entanglement [Fig. 4 (b), (c)].

Conclusions.—We provided a description of the condi-
tional dynamics of single- and two-mode BAE measurement
beyond the adiabatic limit, which was missing from previous
studies. Our results are needed to correctly describe state-of-
the-art experiments and implement quantum feedback. They
open new prospects for the generation and characterization of
measurement-based squeezing and entanglement, as well as
quantum correlations in many-mode systems. Beyond cavity
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optomechanics, our analysis also applies to QND measure-
ments in hybrid quantum systems [16, 17].
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Supplementary Material:
Conditional dynamics of optomechanical two-tone backaction-evading measurements

DETAILS ABOUT THE OPTOMECHANICAL CONDITIONAL DYNAMICS

Two-mode optomechanical system

In the following we provide the explicit expressions of the terms appearing in Eq. (4), necessary to quantify the conditional
dynamics of the continuously monitored system, together with their derivation. We will employ the phase-space formalism,
which is particularly convenient for our problem, and in particular we will follow closely the treatment of Ref. [34]. We start by
rewriting the linearized optomechanical Hamiltonian Eq. (2) in terms of the quadrature vector x̂ = (X̂c, P̂c, X̂m, P̂m)T , which
takes the form ĤI(t) = 1

2 x̂TSx̂, with the matrix S given by

S =


0 0 −g(1 + cos 2ωmt) −g sin 2ωmt

0 0 0 0

−g(1 + cos 2ωmt) 0 0 0

−g sin 2ωmt 0 0 0

 . (S1)

The system-bath coupling Ĥdiss is modeled by an energy-preserving interaction between each of the system modes and the
excitations of two distinct baths, namely

Ĥdiss = i
√
κ(â†ξ̂c − âξ̂†c) + i

√
γ(b̂†ξ̂m − b̂ξ̂†m) , (S2)

which is valid in the weak-coupling limit. For the mechanical system, the limit γm � ωm is also understood, where
the damping mechanism of quantum Brownian motion reduces to standard quantum-optical dissipation. The environmen-
tal modes ξ̂c,m = ξ̂c,m(t) are labeled by time and provide a microscopic description of a white-noise process. In terms
of quadrature operators the latter condition is expressed by 〈{x̂b(t), x̂b(t′)}〉 = σbδ(t − t′), where we defined the vector
x̂b(t) = (X̂ξc(t), P̂ξc(t), X̂ξm(t), P̂ξm(t))T , each quadrature operator being defined analogously to system quadratures, and

σb = diag

[
1

2
,

1

2
, n̄+

1

2
, n̄+

1

2

]
, (S3)

with n̄ the thermal occupation of the mechanical bath. Similarly to the optomechanical couplingHI , the bilinear interaction (S2)
can be written as

Ĥdiss = x̂TCx̂b , (S4)

where the matrix C is given by C =
√
κω−1 ⊕√γ ω−1, and we introduced the symplectic form ω =

(
0 1
−1 0

)
. With these

ingredients at hand, the drift (A) and diffusion (D) matrices appearing in Eq. (4) can be expressed as [33, 34]

A = ΩS +
1

2
ΩCΩCT , (S5)

D = ΩCσbC
TΩT , (S6)

with Ω = ω ⊕ ω. Their explicit expression reads

A =


−κ2 0 0 0

0 −κ2 g(1 + cos 2ωmt) g sin 2ωmt

−g sin 2ωmt 0 −γ2 0

g(1 + cos 2ωmt) 0 0 −γ2

 , (S7)

D = diag

[
κ

2
,
κ

2
,

(
n̄+

1

2

)
γ,

(
n̄+

1

2

)
γ

]
. (S8)
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We also need to incorporate the measurement process into the dynamical evolution. We consider the case of continuous
monitoring of the output cavity field via homodyne detection. This measurement can be described by a projection onto a pure
squeezed state, which is modeled by the following covariance matrix

σmeas =
1

2
Rθ diag(r, r−1)RTθ , (S9)

where Rθ is a rotation matrix. In particular, homodyne detection of the optical phase quadrature is recovered in the limit r → 0
and θ = π/2. It is also desirable to account for non-unit efficiency of the detection process, which is modeled by a beam splitter
of transmissivity

√
η prior to the detection, and gives

σηmeas =
1

η
σmeas +

1− η
2η

1 . (S10)

The matrices B and N describing the effect of the measurement on the environment in Eq. (4) are given by

B = CΩ(σb + σηmeas)
− 1

2 , N = ΩCσb(σb + σηmeas)
− 1

2 . (S11)

We point out that, since we are interested in the case where only the photonic modes undergo monitoring, the correct way of
evaluating Eq. (S11) is to take the covariance matrix of a bipartite measurement [i.e., Eq. (S10) for both optical and mechanical
modes] and then taking the limit of vanishing efficiency on the mechanical modes, which corresponds to no monitoring of the
mechanical environment.

Three-mode optomechanical system

In the case of a three-mode optomechanical system, the expressions entering the conditional evolution of the covariance
matrix (4) can be easily deduced following the construction outlined above. In particular, the quadrature vector is now given by
x̂ = (X̂c, P̂c, X̂m,1, P̂m,1, X̂m,2, P̂m,2)T and the expression of the optomechanical interaction (9) in terms of the quadratures
reads

ĤI(t) =
Ω

2

∑
j=1,2

(−1)j+1(X̂2
m,j + P̂ 2

m,j)− g
∑
j=1,2

X̂c[X̂m,j(1 + cos 2ωt) + P̂m,j sin 2ωt] . (S12)

For simplicity, in our study we consider the case of equal single-photon optomechanical couplings, equal mechanical damping
rates, and same occupancies of the baths. For non-degenerate mechanical modes, these conditions entail adjusting the local
temperatures of the baths to achieve the same occupancy. However, we stress that our analysis can be easily extended to the case
of asymmetric couplings and/or damping rates to describe experimental inaccuracies. The expressions entering Eq. (4) are given
by

A =



−κ2 0 0 0 0 0

0 −κ2 g(1 + cos 2ωt) g sin 2ωt g(1 + cos 2ωt) g sin 2ωt

−g sin 2ωt 0 −γ2 Ω 0 0

g(1 + cos 2ωt) 0 −Ω −γ2 0 0

−g sin 2ωt 0 0 0 −γ2 −Ω

g(1 + cos 2ωt) 0 0 0 Ω −γ2


, (S13)

D = diag

[
κ

2
,
κ

2
,

(
n̄+

1

2

)
γ,

(
n̄+

1

2

)
γ,

(
n̄+

1

2

)
γ,

(
n̄+

1

2

)
γ

]
, (S14)

σb = diag

[
1

2
,

1

2
, n̄+

1

2
, n̄+

1

2
, n̄+

1

2
, n̄+

1

2

]
, (S15)

C =
√
κω−1 ⊕√γ ω−1 ⊕√γ ω−1 , (S16)

Ω = ω ⊕ ω ⊕ ω . (S17)
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EXPRESSION OF THE STEADY-STATE CONDITIONAL COVARIANCE MATRIX

The matrix equation (4) can be solved exactly at the steady state. Besides the expression of the conditional mechanical
variances σ3,3 ≡ σ2

Xm
and σ4,4 ≡ σ2

Pm
, respectively given in Eq. (5) and (6), the other elements of the covariance matrix read

σ1,1 ≡ σ2
Xc

=
1

2
, σ2,2 ≡ σ2

Pc
=

1

4ηκ

[√
γ2 + κ2 + 2ζ + κ(2η − 1)− γ

]
, (S18)

σ1,4 =
g

γ + κ
, σ2,3 =

1

8gηκ

[
ζ + γ2 − γ

√
γ2 + κ2 + 2ζ

]
, (S19)

while σ1,2 = σ1,3 = σ2,4 = σ3,4 = 0. We recall that we set ζ =
√
γκ[16g2η(1 + 2n̄) + γκ]. One can check that the optical

phase quadrature is never squeezed, and that steady-state optomechanical entanglement can be present for suitable values of the
parameters.

PERTURBATIVE SOLUTION FOR THE EFFECT OF COUNTERROTATING TERMS

In order to gain some analytical understanding of the long-time behavior of the covariance matrix associated to Eq. (2), we
expand the latter in Fourier components [48] σ(t) =

∑
n exp(in2ωmt)σn, retaining only the leading-order contribution σ±1

for simplicity. In principle, truncating at sufficiently high order yields a set of algebraic equations that capture the steady-state
covariance matrix, but as we already have a numerical method, we instead aim to obtain simple closed-form solutions and only
perform second order perturbation theory in HCR. Given the solution in RWA σ0 (see previous section), we find σ1, which
fulfills

0 = −2iωmσ1 +A0σ1 + σ1A
T
0 +A1σ0 + σ0A

T
1 − σ0BB

Tσ1 − σ1BB
Tσ0 + σ1BN +NBTσ1, (S20)

where we have also introduced Fourier components of the coupling matrix A(t) =
∑
n exp(in2ωmt)An. This equation is linear

in σ1, which means that it can readily be obtained from the RWA solution for σ0 (note that σ−1 = σ†1). The n 6= 0 Fourier
components of the covariance matrix cause oscillating variances associated to a periodic steady state, which is the reason why
in Fig. 3 the squeezing corresponds to a shaded area rather than a single value. Physically, A±1 in the above expression are a
modulated coupling of the quadratures. To first order, they are a source term for the oscillating variances. The coupling between
the quadratures is not QND, such that information about the previously unmonitored quadrature Pm now enters the cavity via
A±1. The last four terms in Eq. (S20) entail that, as a result of mixing of oscillating and stationary parts, the cavity output and
thus the conditioning due to the measurement also oscillates.

To second order in the counterrotating terms, they affect the stationary part of the covariance matrix as σ0 +σ0,correction, with
the correction given by

σ0,correction = A−1σ1 + σ1A
T
−1 +A1σ−1 + σ−1A

T
1 − σ−1BB

Tσ1 − σ1BB
Tσ−1. (S21)

Again we can distinguish two types of contributions. The terms containing A±1 arise due to the unitary dynamics induced
through the CR terms, whereas the terms containing B are a result of the measurement. Deep in the backaction-dominated
regime, the correction to the variance of the squeezed quadrature arises entirely from the dynamical part and reads

σ2
Xm,correction =

κ

2ωm
|χc(2ωm)|2g2 1

2
+O(γ/ωm) , (S22)

where χc(ω) = (κ/2 − iω)−1 is the cavity susceptibility. This contribution can be interpreted as measurement backaction (or
shot noise) from the cavity entering the squeezed mechanical quadrature due to the CR terms. The fact that it results from cavity
sidebands off resonance is captured by the cavity susceptibility evaluated at the position of the next-order sidebands at 2ωm. On
the other hand, the absence of the measurement efficiency clearly indicates that this is a dynamical effect. This is the dominant
leading-order source of squeezing loss.

We can also look at the correction to the anti-squeezed quadrature, which to lowest order in γ/ωm is

σ2
Pm,correction = −η κ

2ωm
|χc(2ωm)|2g2 1

2
(C + 2n̄+ 1)2 +O(γ/ωm), (S23)

where for convencience we have kept both g2 and C, which adds slight inconsistencies in the expansion for low γ. Comparison
to the full second-order solution obtained from Eq. (S21) shows that Eq. (S23) is indeed a very good approximation. There is a
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striking similarity between the lowest-order correction to the mechanical quadratures Eqs. (S22) and (S23), as both result from
a coupling to the cavity sideband at 2ωm. Interestingly, the correction to the anti-squeezed quadrature is negative, which means
that the variance is decreased. Physically, the CR terms lead to some coupling of the anti-squeezed quadrature into the optical
phase quadrature, such that the measurement reduces the uncertainty in Pm. This conclusion is supported by the fact that the
whole expression is proportional to the measurement efficiency. As this reduction is larger in magnitude than the correction to
the variance of Xm, the mechanical state overall is purified, a conclusion that is borne out by our numerical simulations.
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