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Abstract
The generation andmanipulation of hybrid entanglement of light involving discrete- and continuous-
variable states have recently appeared as essential resources towards the realization of heterogeneous
quantumnetworks. Here we investigate a scheme for the remote generation of hybrid entanglement
between particle-like andwave-like optical qubits based on a non-local heralding photon detection.
We also extend this schemewith additional local or non-local detections. An additional local heralding
allows the resulting state to exhibit a higherfidelity with the targeted entangled qubits while a two-
photon non-local heralding detection gives access to a higher dimensionality in the discrete-variable
subspace, resulting thereby in the generation of hybrid entangled qutrits. The implementation of the
presented schemes, in combinationwith ongoingworks on high-fidelity quantum state engineering,
will provide novel non-classical light sources for the development of optical hybrid architectures.

1. Introduction

Following thewave-particle duality of light, optical quantum information protocols have been traditionally
implemented based either on discrete variables or on continuous variables of the electromagnetic field [1–3].
The discrete-variable (DV) approach involves single photons living in afinite-dimensional space spanned for
instance by orthogonal polarizations or the absence or presence of a single photon [4]. Alternatively, the
continuous-variable (CV) approach encodes informationwithin quadrature components (amplitude or phase)
of a lightfield [5] and qubits can be implemented as arbitrary superpositions of coherent states with equal
amplitude but opposite phases, also known as optical Schrödinger cat states or qumodes [6–8].

Recently, tremendous progress has been seen towards combining both approaches in a so-called optical
hybrid architecture, with the aimof gathering benefits fromboth sides and exploring new capabilities in
quantum information science [8–11]. First of all, DV operations are necessary to transform initial Gaussian
resources to non-Gaussian states [12]. Photon subtraction acting on squeezed vacuum states is now commonly
used to prepare Fock states and their superpositions, including Schrödinger cat states [7, 13–24]. Beyond
quantum state engineering, theDV–CVhybridization has also led to a variety of theoretical studies and
experimental investigations of novel protocols where states and operations are combined. Experimental
implementations ofGaussian entanglement distillation have beenmade possible by coherent subtraction of
single photons [25–27]. Deterministic continuous-variable teleportation ofDVqubits has been demonstrated
[28] aswell as single-photon entanglement certification based on local quadraturemeasurements between
distant nodes [29, 30].
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Anothermotivation in thefield is the development of heterogeneous quantumnetworks, where CV andDV
resources can be effectively combined and interconverted [8, 11]. In this context, the ability to interface disparate
encoding bases becomes a key component for quantum teleportation protocols. In this scenario the required
quantum link is provided by hybrid entanglement of light, i.e. entanglement of the form 0 1a añ ñ + ñ - ñ∣ ∣ ∣ ∣
between particle-like andwave-like optical qubits [31]. Recently such hybrid entangled states have been
experimentally generated [32–34], including at a distance via a loss-tolerant scheme [32]. These entangled states
have then been used to interconvert quantum information betweenCV andDVencodings [35, 36], to
demonstrate remote state preparation of arbitrary CVqubits by localmanipulation of theDV component [37]
or to violate a steering inequality that shows their suitability for one-sided device-independent protocols [38].
Such class of states has also been considered for resource-efficient quantum computation [39, 40] and near-
deterministic quantum teleportation [41, 42]. Additionally, optical hybrid entanglement is reminiscent of the
original idea of the Schrödinger cat state, with potential interesting studies ofmicro-macro properties in phase
space [43, 44].

Thehybrid entangled statefirst generated in [32] relies on aprobabilistic preparationheraldedby thedetectionof
a single photon in an indistinguishable fashion.Hereweprovide adetailed investigationof this schemeand extend it
to engineerCV–DVentangled states. Inparticular,we investigate the effect of local squeezing andphoton-counting
balancing, andwe consider various caseswith local andnon-local photon subtractions. Thepresented schemeswill
also stimulate fundamental explorationonproperties of such class of states,whichmaybe thebasis for novel
protocols andpractical implementationof heterogeneous quantumnetworks.

This paper is organized as follows. First, in section 2we outline ameasurement-induced scheme for the
preparation of hybrid qubit entanglement and illustrate a possible application of the generated state as a
quantum encoding converter. Then, in section 3we provide a formal derivation of the state and discuss the
experimental steps for its preparation as realized in [32].We evaluate in particular the properties of the
entangled states and discuss the decoherence induced by photon loss or phase noise. In section 4we investigate
an enhanced scheme, where an additional local subtraction is applied to improve the fidelity with the targeted
state. Then, in section 5we introduce the non-local detection of two photons to generate hybrid qutrit
entanglement for higher dimensionality. The effects of local squeezing and photon-counting balancing are
discussed. Finally, in section 6we provide a short summary and outlook.

2.Measurement-induced generation of hybrid entanglement

In principle, deterministic generation of hybrid entanglement between discrete and continuous variables can be
realized by dispersive light–matter interaction [45] or by cross-Kerr nonlinearity between a coherent state and a
single-photon qubit [46, 47]. However, such approaches are still very challenging. A compromisedworkaround
resorts to the seminal Knill–Laflamme–Milburn protocol [48], where the desired strong nonlinear coupling is
provided by conditional photon detection at the expense of a probabilistic operation. In this sectionwe consider
the scheme for the generation of remote CV–DVhybrid entanglement of light based on the heralding of a
photon at a central station. This schemewill be the starting point for all ensuing discussions.

The scheme is illustrated infigure 1(a). The basis for discrete encoding is provided by the absence and
presence of a single photon, 0ñ∣ and 1ñ∣ . For theCVqubit, the basis is given by even and odd coherent state
superpositions, also known as cat states, cat ñ+∣ and cat ñ-∣ . A small fraction of light is subtracted fromBob’s
initial state, cat ñ+∣ , andmixedwith onemode of aweak two-mode squeezed vacuum TMSSñ∣ generated on
Alice’s side. A single-photon detection at one output of the beam-splitter will herald the generation of hybrid
entanglement. The resulting output state, for which a rigorous derivation is provided in section 3.1, is of the
form 0 cat 1 catñ ñ + ñ ñ- +∣ ∣ ∣ ∣ .

One advantageof this scheme is that the fragile components remain local, andonly single photonspropagate
between the twodistant nodes.As a result, a lossyheralding channel affects the success rate but not thefidelity of the
resulting state, such as in theDuan–Lukin–Cirac–Zoller proposal for entangling remote quantummemories [49].
Therefore, theproposedmethod is suitable to establishhybrid entanglement connectionover a longdistance.

2.1. An example application: a qubit encoding converter
One example of a networking protocol based on hybrid entanglement is a qubit encoding converter, which
would allow the interaction and transfer of information between different types of qubits in heterogeneous
quantumnetworks.

A possible converter scheme is presented infigure 1(b), where the hybrid entangled state of light serves as the
driving element of a discrete-to-continuous convertermapping single-photon qubits to coherent-state-
superposition qubits. The converter, represented in the gray box, receives an arbitrary superposition between
presence and absence of a single photon as input, c c0 1C C0 1ñ + ñ∣ ∣ , which is thenmixed on a beam-splitter with
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theDVmode of the hybrid entangled state 0 cat 1 catA B A Bñ ñ + ñ ñ- +∣ ∣ ∣ ∣ . The successful conversion is heralded by
the detection of exactly one photon at one output port of the beam-splitter within the converter. This single
photon can originate either frommodeA ormodeC. If the single photon comes from the input qubit state, then
the heralded statewill be c cat B1 ñ-∣ . If instead the single photon is coming from the hybrid state, the resulting
outputwill be c cat B0 ñ+∣ . Due to the indistinguishability between these two events, a qubit state is obtained
as c ccat catB B0 1ñ + ñ+ -∣ ∣ .

Rigorously, themixing between the input qubit and the hybrid entangled state on the symmetric beam-
splitter is described by the following operator evolutions:

a
a c

c
c a

2
and

2
, 1

+


-ˆ ˆ ˆ ˆ ˆ ˆ ( )†
† †

†
† †

where â† and ĉ† are creation operators inmodesA andC. The resulting three-mode state is given by

c c
c

c

0 0 cat 2 0 0 2 cat

2
1 0 0 1 cat
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C A B C A C A B

C A C A B

C A C A B

0 1
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1
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+ ñ ñ + ñ ñ ñ

+ ñ ñ - ñ ñ ñ

- +

+

-

∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ )∣

(∣ ∣ ∣ ∣ )∣

(∣ ∣ ∣ ∣ )∣ ( )

Projecting on a single photon onmodeC and tracing outmodeA, the result is the targeted qumode onmodeB
converted from the original input. Note that the reverse conversion fromqumodes to qubits can be realized by
using Bell-statemeasurements for coherent-state qubits [50]. In these converters, hybrid entanglement is the
critical resource formapping the two computational bases.

3.Generation of hybrid qubit entanglement

In this sectionwe focus on the creation of hybrid entanglement between particle-like andwave-like optical
qubits.We consider current experimental generation schemes, as demonstrated in [32], and identify the relevant
parameters and resources. In particular, we discuss the negativity of the associatedWigner functions and the
negativity of entanglement of the bipartite state, whichwill also be considered in the extended schemes
presented in the next sections.

3.1.Model of the generation scheme
Adetailed generation scheme is illustrated infigure 2.On theCV side, the Schrödinger cat states can be
expressed as

Figure 1.Hybrid entanglement of light used as the resource for a qubit converter. (a)Generation scheme for hybrid entanglement
between particle-like andwave-like optical qubits. The small fraction subtracted from an even cat state cat ñ+∣ onBob’s side ismixed
with onemode of aweak two-mode squeezed vacuum state TMSSñ∣ generated onAlice’s side. A single-photon detection at the central
stationwill herald the generation of hybrid entanglement. (b) Scheme for the qubit encoding converter. The key resource for this
teleportation-based protocol is the hybrid entanglement of light. The input qubit ismixedwith the discrete-variablemode of the
hybrid entangled state on a symmetric beam-splitter. The detection of a single photon in one output port of the beam-splitter will
herald the successfulmapping to the targetedCVqubit.
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where the amplitudeα of the coherent state is assumed to be real for simplicity. A small fraction of light is tapped
from the initial cat state by a beam-splitter of amplitude reflectivity sin 1q q» ( ) , resulting in

B abcat 0 e cat 0 1 cat 0 , 4a b
ab a b

a b a bq qñ ñ = ñ ñ » + ñ ñq
+

-
+ +ˆ ( )∣ ∣ ∣ ∣ ( ˆ ˆ )∣ ∣ ( )( ˆ ˆ ˆ ˆ) †† †

where B qˆ ( ) is the beam-splitting operator and â†, b̂
†
are the respective creation operators formodes a and b. On

the other side a two-mode squeezed vacuum state in the low gain limit (with a small squeezing factorλ=1) is
prepared, which can be approximated as

c dTMSS 0 0 1 1 1 0 0 , 5c d c d c d c d, l lñ » ñ ñ + ñ ñ = + ñ ñ∣ ∣ ∣ ∣ ∣ ( ˆ ˆ )∣ ∣ ( )† †

where ĉ† and d̂
†
are creation operators in the correspondingmodes c and d.

Themodes b and c are then spatially combined on a beam-splitter with reflectivity and transmissivity

coefficients r and t, leading to the transformations b tb rcei 1 +jˆ ( ˆ ˆ )† † † and c tc rbei 2 -jˆ ( ˆ ˆ )† † †
, wherej1,2

denote the accumulated phases. Substitutionwithin the above expressions yields the resulting state:

rac tab tc d rb d1 e e 1 e e cat 0 . 6a b c d
i i i i

, ,1 1 2 2q q l l+ + + - ñ ñj j j j
+( ˆˆ ˆ ˆ )( ˆ ˆ ˆ ˆ )∣ ∣ ( )† † † † † †

We implement themeasurement-induced generation of the entangled state by considering only the terms

containing b̂
†
, i.e. ignoring vacuumcontributions and considering only heralded states onmode b. Tracing out

mode c and keeping only first-order terms in θ andλ, the state isfinally reduced to

ta rcat 0 cat 1 , 7a d a dq lñ ñ + ñ ñ+ +ˆ∣ ∣ ∣ ∣ ( )

withΔj=j1−j2=π for simplicity. Since a cat catN

N
añ = ñ+ -

-

+
ˆ∣ ∣ , the heralded state can be rewritten as

t N rN0 cat 1 cat . 8d a d aq a lñ ñ + ñ ñ- - + +∣ ∣ ∣ ∣ ( )

The superpositionweights can be balanced by adjusting the beam-splitter ratio to obtain the targetedmaximally
hybrid entangled state:

0 cat 1 cat

2
. 9AB

A B A BYñ =
ñ ñ + ñ ñ- +∣ ∣ ∣ ∣ ∣ ( )

Note that the subscripts d and ahave been replaced byA andB to indicate that the resulting state is shared by
Alice and Bob, who useDV andCV encodings, respectively. The entangled state above can alternatively be
expressed in the rotated qubit basis, 0 1 2+ñ = ñ + ñ∣ (∣ ∣ ) and 0 1 2-ñ = ñ - ñ∣ (∣ ∣ ) , as

1

2

cat cat

2

cat cat

2
, 10AB A

B B
A

B BYñ = +ñ
ñ + ñ

+ -ñ
ñ - ñ- + - +⎛

⎝⎜
⎞
⎠⎟∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

Figure 2. Scheme formeasurement-induced generation of hybrid entanglement in a practical scenario. The initial continuous-
variable state, an even cat state cat ñ+∣ , is approximated here by a squeezed vacuum, as experimentally realized in [32]. The optional
shaded boxes represent extensions of the scheme. The first box onmode a enables the implementation of an additional local
subtraction onBob’s side to increase thefidelity and size of the generated hybrid entangled states, as discussed in section 4. The second
optional box replaces themeasurement at the central stationwith a two-photon detection, enabling the generation of hybrid qutrit
entanglement as detailed in section 5.

4

New J. Phys. 21 (2019) 083033 KHuang et al



which in the limit of a largeα is equivalent to

2
. 11AB

A B A Ba a
Yñ =

+ñ ñ - -ñ - ñ∣ ∣ ∣ ∣ ∣ ( )

The state can be converted into other forms by the application of targeted operations. AHadamard gate to the
DVmode, which can be realizedwith a non-Gaussian ancilla and projectivemeasurements [51], would for
example transform the above hybrid entangled state into 0 1A B A Ba añ ñ + ñ - ñ∣ ∣ ∣ ∣ . In the following discussionwe
will commonly refer to expression (9) unless otherwise specified.

3.2. Experimental resources
The protocol above shows howhybrid entanglement can be established between twoCVandDVopticalmodes.
One element that it does not take into account however is how to create theCV source state. Large-amplitude cat
states are generally hard to realize in the optical domain. In the experiment reported in [32] the CVmode is
approximated by a squeezed vacuum state S 0z ñˆ ( )∣ , which has highfidelity with an even cat state cat ñ+∣ of
amplitudeα1 [52].

Introducing the squeezed vacuum state and the single-photon subtracted squeezed vacuum state,

S
aS

S0PS 0 and 1PS
0

sinh
1 , 12z

z
z

zñ = ñ ñ =
ñ
= ñ∣ ˆ ( )∣ ∣

ˆ ˆ ( )∣ ˆ ( )∣ ( )

we can rewrite expression (7) as

t rsinh 0 1PS 1 0PS . 13A B A Bq z lñ ñ + ñ ñ∣ ∣ ∣ ∣ ( )

The resulting two-mode state can then bewritten as

S
0, 1 1, 0

1
. 14AB B

A B A B, ,

2
z

m

m
Yñ =

ñ + ñ

+
∣ ˆ ( ) ∣ ∣ ( )

Theweight parameterμ is defined by

r

t

N

Nsinh
15A

B

m
l

q z
= = ( )

and it can be extracted directly from the experiment bymeasuring the photon countsNA andNB coming from
the twomodes taken independently. Symmetric balancing between the two components of the entangled state in
a lossless scenario is simply expressed by the conditionμ2=1, or equivalentlyNA=NB. In the presence of loss,
modeled byfinite transmission through a beam-splitter, balancing is achievedwhenμ2=ηB/ηA, where ηA and
ηB are the intensity transmissions for the corresponding channel.

It should be noted that in this low-amplitude regime the continuous structure of Bob’smode is determined
by the squeezing operation SB zˆ ( ). Given the local nature of this operation, wewill bypass it whenever
appropriate in order to operate with a rather simplifiedmodel to obtain analytical expressions.

Figure 3.Hybrid entangled state representation. (a)The blocks provide theWigner functions associatedwith the reduced density
matrices k lrá ñ∣ ˆ∣ with k, lä{0, 1}. Since the components with k l¹ are not hermitian, the correspondingWigner functions are not
necessarily real, but conjugate. The plot shows the real part for k>l and the imaginary part for k<l. (b)Wigner functions associated
with the reduced densitymatrices k lrá ñ∣ ˆ∣ with k, lä{+,−}, where +ñ∣ and -ñ∣ stand respectively for the rotated basis elements

0 1 2ñ + ñ(∣ ∣ ) and 0 1 2ñ - ñ(∣ ∣ ) . Here we consider symmetric balancingwithμ2=1 and no losses. The local squeezing onBob’s
side is 3 dB.
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3.3. Representation of the hybrid entangled state
Typically, theDVquantum states living in a finite-dimensionalHilbert space are described in terms of density
matrices, while theCV states with potentially infinite dimensionality are displayed using theWigner function
representation. Herewe combine the twomethods to show the hybrid entangled state in a visualmanner.
Specifically, theWigner functions are used to represent the reduced densitymatrices k lA B,rá ñ∣ ˆ ∣ , where kñ∣ and lñ∣
indicate states in the discrete basis. The hybrid representation of the two-mode densitymatrix is shown in
figure 3(a) for the case of symmetric balancingμ2=1 and no losses. The diagonal blocks 0 0rá ñ∣ ˆ∣ and 1 1rá ñ∣ ˆ∣
correspond to the single-photon-subtracted squeezed vacuum state and the squeezed vacuum state, respectively.
The non-zero off-diagonal terms show the coherence of the superposition. Note that theWigner functions
associatedwith these off-diagonal terms are complex conjugate. The real and imaginary parts are thus used for
the terms 1 0A B,rá ñ∣ ˆ ∣ and 0 1A B,rá ñ∣ ˆ ∣ , respectively.

The generatedhybrid state can alsobe represented in the rotatedDVbasis formedby +ñ ={∣
0 1 2 , 0 1 2ñ + ñ -ñ = ñ - ñ(∣ ∣ ) ∣ (∣ ∣ ) }, as shown infigure 3(b). The twoprojections A B,rá+ +ñ∣ ˆ ∣ and

A B,rá- -ñ∣ ˆ ∣ exhibit anopposite displacement inphase space. In this basis, the diagonal terms resemble coherent states

añ∣ and a- ñ∣ withopposite phases.However, theydeviate from the roundGaussianprofile expected for coherent
states, showing inparticular negative values. This feature arises because of the approximation that uses a squeezed
vacuumas the initial source.As a consequence, themaximumachievablefidelitywith the targetedhybrid state of size

12a =∣ ∣ given in equation (9) is limited to 92%.Togobeyond this limitation, Bob canperforma local single-photon
subtraction to initially prepare anodd cat sate. Thedetails on this enhanced schemewill be given in section4.

3.4. Negativity of theWigner function
As can be seen infigure 3(a), the block 0 0A B,rá ñ∣ ˆ ∣ shows negative values in itsWigner function representation,
which is a strong, directly accessible signature of the non-Gaussianity of the hybrid state. In the protocol, the
term 0 0A B,rá ñ∣ ˆ ∣ corresponds to a photon-subtracted squeezed vacuum state heralded by the detection of a single
photon onBob’s side. This photon detection is a non-Gaussian operation that leads to a pronounced negativity
in theWigner function, which can be quantitatively evaluated by its value at the origin of phase space.

Figure 4(a) shows thisWigner negativity as a function of symmetric transmission efficiency ηA=ηB=η
under different balancing conditions. Note that theWigner function has been normalized by the scaling factor
2 0

2ps , where 0
2s is the quadrature variance defined by the vacuum state. In the limiting caseμ2=0 all the

heralding photons come fromBob’s side and the two-mode state is separable. For a small amount of squeezing,
the projected state S 1B Bz ñˆ ( )∣ is approximated to a single-photon state, whose decoherence follows a linear
dependence on transmission as 1–2η. At the other limit, i.e. for a large value ofμ2, the heralding photons come
predominantly fromAlice’s side. After losses the term 1, 0 A B,m ñ∣ will lead to an appreciable weight of 0, 0 A B,ñ∣
compared to that of 0, 1 A B,ñ∣ . Hence, the dominating vacuum state after projection on the discretemode 0 0Añ á∣ ∣
could decrease the negativity even in the presence of small losses, indicating a faster decoherence for larger values
ofμ2 as shown infigure 4(a). For symmetric balancingμ2=1, the negativity of theWigner function is present
for an intensity transmission above 67.8%.

Rigorously, the losses in the twomodes both affect the negativity [32]. To elaborate this point we consider
the approximated state obtained by omitting the small local squeezing onBob’s side, leading essentially to a

Figure 4. (a)Negativity of theWigner function of the state 0 0A B,rá ñ∣ ˆ ∣ as a function of the intensity transmission for various balancing
factors. The losses in the twomodes are assumed to be symmetric, with ηA=ηB=η. The shaded region indicates the condition to
obtain a negativeWigner function. (b)Negativity of entanglement for various balancing factors as a function of the transmission η.
The local squeezing onBob’s side is 3 dB. The dashed lines in gray correspond to the simplifiedmodel obtained by removing by
removing the local squeezing.

6

New J. Phys. 21 (2019) 083033 KHuang et al



superposition state of the form 0, 1 1, 0A B A B, ,mñ + ñ∣ ∣ as shown in equation (14). In this case, the evolution of the
Wigner function negativity in a lossy channel can be expressed analytically as

1 2 1

1 1
. 16B A

A

2

2


h h m
h m

=
- + -

+ -
( ) ( )

( )
( )

Balancing the state in the general case of asymmetric losses,μ2=ηB/ηA , we obtain

3
. 17A B A B

A B A B


h h h h
h h h h

=
+ -
+ -

( )

The boundary for negativity can be derived as 1/ηA+1/ηB�3. Afinite efficiency onAlice’s side results into
extra vacuumcontributions onBob’s side. In the particular case of symmetric channels, the transmission for
bothmodes should be larger than 2/3 to preserve negativity in theWigner function. This requirement is
experimentally challenging but feasible for current high-fidelity quantum state engineering experiments
[14, 22]. The obtained boundary agrees well with the previously obtained value of 67.8%, justifying thereby the
simplifiedmodel in the limit of small local squeezing. The reduction of theWigner function negativity given by
the simplifiedmodel with a 3-dB squeezing onBob’s side is also shown infigure 4(a) and exhibits a slight
deviationwith the fullmodel as expected.

We note that in the presented simulations, the state preparation losses (initial squeezing resource that can be
not pure), the channel propagation losses and the detection losses are incorporated into a total effective loss.
Indeed, only the overall loss affects the properties of the heralded state.We also underline that losses in the
conditioning path are only decreasing the generation rate and not the fidelity of the heralded state (assuming
dark counts contribution to be negligible, which is usually the case for experiments based for instance on
superconducting single-photon detectors as used in our implementations).

3.5. Negativity of entanglement
The generated entanglement of the bipartite state can be quantitativelymeasured by computing the
entanglement negativity [53] defined as

1

2
, 18

i
i i år l l= -( ˆ ) (∣ ∣ ) ( )

whereλi are the eigenvalues of the partial transpose of the state TAr . The negativity of entanglement has an upper
bound of 0.5, corresponding to amaximally entangled qubit state.

Figure 4(b) gives the negativity of entanglement as a function of the symmetric intensity transmission η for
various balancing factors. For unbalanced cases with 12m ¹ , the negativity of entanglement is smaller than the
maximumvalue of 0.5, as expected. Particularly, in the limiting casesμ2=0 andμ2?1 the obtained hybrid
states are separable. For balanced heraldingwithμ2=1, the negativity of entanglement decreases with
decreasing transmission from themaximumvalue of 0.5–0. Specifically, for theminimumefficiency of 2/3
required to obtain negativity of theWigner function, the corresponding negativity of entanglement is about 0.2.
With the help of advanced optical quantum technologies, which can demonstrate a high efficiency above 90% in
bothmodes, limited for instance by current escape efficiencies of optical parametric oscillators [22], it is possible
to achieve an entanglement negativity 0.4 = .

For a small squeezing of the initial source onBob’s side, the simplifiedmodel without local squeezing can be
used to obtain analytical expressions. In this case, the two-mode densitymatrix corresponding to the state
0, 1 1, 0A B A B, ,mñ + ñ∣ ∣ leads to

4 1 1 1 1

2 1
. 19

2 2 2 2 2 2

2


h m h m h m
m

=
+ - + - - +

+

( ) ( ) ( )( )
( )

( )

For a squeezing of 3 dB onBob’s side, the decay of entanglement given by this expression is shown infigure 4(b),
which is close to the one obtained by the numerical computation based on the fullmodel.

3.6. Phase noise
To generate entanglement, the relative phasef in the hybrid state 0 cat e 1 catAB A B A B

iYñ µ ñ ñ + ñ ñf
- +∣ ∣ ∣ ∣ ∣ has to

be kept constant over successive heralding events. In any practical realization, however, the superposition phase
between the two heralding paths can vary due to imperfect phase locking. Assuming that the phase noise follows
aGaussian distributionwith standard deviationσ, the resulting densitymatrix then reads

1

2
e d . 20AB

2

2 2òr
ps

f= Yñ áY
-¥

¥
- f

sˆ ∣ ∣ ( )

Even in the absence of loss (η=1) the negativity of entanglement will be affected by the phase noise and follow a
Gaussian decay e1

2
22s- . It is worth noting that the accumulated phasefluctuation is not only due to the
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instability of the two conditional paths but also to all the perturbations of the other upstream locking signals,
such as in the preparation of the initial squeezing source.

In a typical experiment, the phase parameter could be controlledwith a standard deviation smaller than 5°
[32], thereby barely degrading the entanglement negativity. Specifically, for a 5%drop from themaximum
entanglement value (0.5), the allowed standard deviationσwould be about 18°. Hence phase noise plays here a
negligible role compared to other loss factors in the experiment.

In the next section, wewill present an enhanced version of the preparation scheme to obtain hybrid
entangled states with larger size and better fidelity to the targeted state.

4.Generation of enhanced hybrid qubit entanglement

In this sectionwewill consider a variation of the previous scheme. A local single-photon subtraction is now
implemented onBob’s side to prepare an odd cat state as the initial CV source. After a single-photon heralding
event, the entangled state 0 cat 1 catA B A Bñ ñ + ñ ñ+ -∣ ∣ ∣ ∣ is obtained. From an experimental perspective, the even cat
is now approximated by a two-photon subtracted squeezed vacuum,which allows a better approximation of cat
states of larger size [52]. In the following, we present the enhanced scheme and detail the properties of the
heralded state.

4.1.Model of the generation scheme
As depictedwithin the shaded box infigure 2, the additional local photon subtraction is implemented on the
initial even cat state onBob’s side. The subsequent operations are identical to the ones used in the
aforementioned scheme. This novel implementation thus combines local and non-local photon detections.

Considering an extramode e for the additional single-photon subtraction, the state onBob’s side evolves as

B B ab aecat 0 0 1 1 cat 0 0 . 21ab ae a b e a b e0 0q q q qñ ñ ñ » + + ñ ñ ñ+ +ˆ ( ) ˆ ( )∣ ∣ ∣ ( ˆ ˆ )( ˆ ˆ )∣ ∣ ∣ ( )† †

OnAlice’s side, the state is still given by the two-mode squeezed vacuum state TMSS c d,ñ∣ . As before, the
conditioning paths inmodes b and c are combined on a beam-splitter at the central station, leading to the state

a tb rc ae d tc rb1 e 1 1 e cat 0 . 22a b c d e
i

0
i

, , ,1 2q q l+ + + + - ñ ñj j
+[ ˆ ( ˆ ˆ )]( ˆ ˆ )[ ˆ ( ˆ ˆ )]∣ ∣ ( )† † † † † †

Keeping only terms containing b̂
†
and ê† offirst order in θ andλ, one obtains

ta b e rab d ee e cat 0 . 23a b c d e
i 2 i

, , ,1 2q l- ñ ñj j
+( ˆ ˆ ˆ ˆ ˆ ˆ ˆ )∣ ∣ ( )† † † † †

By projectingmodes b and e onto the single-photon state and tracing outmode c, the state becomes

ta ra0 cat 1 cat , 24A B A B
2q lñ ñ + ñ ñ+ -ˆ ∣ ∣ ˆ∣ ∣ ( )

where 1 2j j j pD = - = is used and subscripts d, a are replaced byA, B.
In an experimental realization, the initial even cat state can be approximated by a squeezed vacuum state.

Using again the states of equation (12) and introducing the two-photon subtracted squeezed vacuum state,

a S S S
2PS

0

sinh 1 3 sinh

cosh 0 2 sinh 2

1 3 sinh
, 25

2

2 2

z

z z

z z z z

z
ñ =

ñ

+
=

ñ + ñ

+
∣

ˆ ˆ ( )∣ ˆ ( )∣ ˆ ( )∣ ( )

we can finally rewrite the entangled state as

3 1 sinh 0 2PS 1 1PS . 26AB A B A B
2 z mYñ = + ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )

4.2. Photon-counting balancing condition
To obtainmaximal entanglement for the hybrid state given in equation (26) the relative weights should be
equalized as

c3
1

sinh
2 1 , 272

2
2m

z
= + = +( ) ( )

wherewe use c 1 2 tanh z= ( ). As before, this condition can be experimentally achieved by adjusting the
beam-splitter ratio at the central station formixing the two conditional paths. For the sake of clarity, wewill refer
to this as the two-photon balancing condition in order to distinguish it from the single-photon balancing
condition,μ2=1, previously obtained.

We can interpret the two-photon balancing condition from the perspective of photon counting.We assume
thatN0 is the photon count from the local subtraction onBob’s side, andNA andNB are the photon counts in the
conditional path fromAlice’s and Bob’s side, without subtraction, for an acquisition timeT. Therefore, to
maximize the indistinguishability we need to balance the two coincidence counts:
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C g N N T C g N N Tand , 28A A A B B B0, 0 0, 0t t= = ( )

where gA and gB are the degrees of correlation for the corresponding coincident detections and τ the timewidth
of the coincidencewindow. Since the photon countsN0 andNB are from the same squeezed vacuum source, the
auto-correlation function is given by g 3 1 sinhB

2 z= + . In contrast, the countsN0 andNA are from two
uncorrelated sources, leading to gA=1. Therefore, balancing the coincidence counts between the twomodes
requires

C C
g

g

N

N
3

1

sinh
, 29A B

B

A

A

B
0, 0, 2

2

z
m=  =  + = ( )

which corresponds to the condition given by equation (27).

4.3. Representation of the hybrid entangled state
Figure 5(a) displays the generated hybrid entangled state in the case of an initial 3-dB squeezed vacuum. The
diagonal blocks 0 0A B,rá ñ∣ ˆ ∣ and 1 1A B,rá ñ∣ ˆ ∣ correspond to the single-photon-subtracted squeezed vacuumand the
two-photon-subtracted squeezed vacuum, respectively. Additionally, the hybrid state in the rotatedDVbasis is
shown infigure 5(b). The projected states in the diagonal aremostly positive with a fairly round shape, i.e. a
better similarity to coherent states compared to the case without using the local subtraction as shown in
figure 3(b). This feature results from the use of a photon-subtracted squeezed vacuum state as the initial source
for the entangled state. A quantitative comparison of the fidelities to the targeted hybrid states in the two
scenarios will be given later in section 4.6.

4.4. Negativity of theWigner function
Wenow evaluate the negativity of theWigner function corresponding to the state 1 1A B,rá ñ∣ ˆ ∣ . As given in
equation (26), the resulting state is a single-photon subtracted vacuum state 1PS Bñ∣ , which is equivalent to a

squeezed single-photon state S 1B Bz ñˆ ( )∣ . The trend of the negativity of theWigner function in the case of an
initial 3-dB local squeezing is given by the green line infigure 4(a). For a small amount of squeezing, it decreases
linearly with transmission efficiency as

1 2 , 30B h= - ( )

which is independent from the efficiency inAlice’smode, the balancing parameter and the squeezing parameter.
Indeed, all these parameters affect the preparation rate of the state but not its purity.

4.5. Negativity of entanglement
For the proposed enhanced version, the targeted entangled state is still a hybrid qubit state similar to the one
produced by the original scheme, albeit with a basisflip in onemode.Hence, the achievablemaximum
entanglement is expected to be the same value of 0.50. To elaborate on this point, the state presented in (26) can
be rewritten as

Figure 5.Hybrid representation of the heralded hybrid entangled state with an additional local subtraction in the lossless,
symmetrically-balanced scenario. The blocks provide theWigner functions associatedwith the reduced densitymatrices k lrá ñ∣ ˆ∣ with
k l, Î {0, 1} in (a) and k l, Î{+,−} in (b), respectively. The local squeezing onBob’s side is 3 dB.
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S
c

c

0 0 2 2 1 1

1 2
. 31AB B

A B B A B

2 2
z

m

m
Yñ =

ñ ñ + ñ + ñ ñ

+ +
∣ ˆ ( ) ∣ ( ∣ ∣ ) ∣ ∣ ( )

In the absence of losses, the negativity of entanglement can be derived from this expression:

c

c

2 2

2 2
. 32

2

2 2


m
m

=
+

+ +
( )

Amaximumnegativity of 0.5 can always be obtainedwhen the two-photon balancing condition,
c2 12 2m = +( ), is satisfied. In this case, the generated state corresponds to amaximally entangled qubit state.

Figure 6(a) shows the negativity of entanglement in the presence of loss. The two-photon balancing
condition is found to be critical to obtainmaximumnegativity of entanglement. Under the single-photon
balancing condition, i.e.μ2=1, the negativity is always smaller than 0.28. Additionally, we can observe that the
hybrid qubit state prepared by the enhanced scheme ismore sensitive to the losses due to the higher photon
number components in theCVmode.

4.6. Fidelity
Herewe compare the two schemes for the generation of hybrid entangled qubits, i.e. with andwithout the
implementation of the local photon subtraction onBob’s side. Intuitively, the second scheme should produce
hybrid entangled states with higherfidelity since the even cat state in this case is better approximated by a two-
photon-subtracted squeezed vacuum state. In the following, we quantify this difference.

In thefirst scheme, without local subtraction, themaximally entangled hybrid state reads

0 1PS 1 0PS

2
, 33A B A B

0F ñ =
ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )

and the targeted state is

0 cat 1 cat

2
. 34A B A B

0Y ñ =
ñ ñ + ñ ñ- +∣ ∣ ∣ ∣ ∣ ( )

The corresponding fidelity for no local subtraction, i.e. n=0, is obtained as

cat 0PS cat 1PS

4 4
, 35n 0 0 0

2
2

0 1
2


 

= áY F ñ =
á ñ + á ñ

=
+

=
+ -∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ( )

where 0 and 1 are given by

e
cat 0PS

1

cosh
360

2
2

2

2


l
a

= á ñ =
- la

+∣ ∣ ∣ ( )

and

e
cat 1PS

1

sinh
. 371

2
2 3 2 2

2

2


l a

a
= á ñ =

- la

-∣ ∣ ∣ ( ) ( )

Figure 6. (a)Negativity of entanglement as a function of the intensity transmission for the single-photon and two-photon balancing
conditions. For comparison, the negativity for the state generated by the original scheme is givenwith the dashed line. The losses in the
twomodes are assumed to be symmetric. (b) Fidelities n 1 = and n 0 = , i.e. with andwithout local single-photon subtraction on Bob’s
side, as a function of 2a∣ ∣ and for different squeezing levels. The implementation of the additional photon subtraction allows to obtain

2a∣ ∣ above 1while keeping a high fidelity.
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In the second scheme, themaximally entangled hybrid qubit obtained after a local subtraction is

0 2PS 1 1PS

2
. 38A B A B

1F ñ =
ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )

The targeted hybrid entangled state is given by

0 cat 1 cat

2
. 39A B A B

1Y ñ =
ñ ñ + ñ ñ+ -∣ ∣ ∣ ∣ ∣ ( )

Thefidelity in this case with local single-photon subtraction, i.e. n=1, is obtained as

cat 2PS cat 1PS

4 4
, 40n 1 1 1

2
2

2 1
2


 

= áY F ñ =
á ñ + á ñ

=
+

=
+ -∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ( )

where 2 is given by

e
cat 2PS

1 1

1 2 cosh
. 412

2
2 5 2 2 2

2 2

2


l la

l a
= á ñ =

- +
+

la

+∣ ∣ ∣ ( ) ( )
( )

( )

These fidelities are plotted infigure 6(b) as a function of the cat size 2a∣ ∣ for different values of the initial
squeezing.We can see that the fidelity with the targeted hybrid state is indeed improved by the additional local
subtraction to generate cat states with sizes 12 a∣ ∣ . Specifically, in the case of 3 dB of squeezing, we have

92%n 0 »= and 99%n 1 »= for 12a =∣ ∣ . By increasing the squeezing, the state retains a highfidelity even for
larger cat sizes. For instance, by using 4-dB squeezing, the schemewith local photon subtraction can achieve a cat
size of 22a =∣ ∣ with fidelity of 96%while the first scheme can only achieve afidelity around 75%.

While the enhanced scheme can substantially improve the fidelity of the generated hybrid qubit state, the
amount of entanglement is still inherently limited by the dimensionality of the state. In the following section, we
propose amodified scheme to generate hybrid qutrit entanglement.

5.Generation of hybrid qutrit entanglement

The scheme shown infigure 2 can be extended to generate hybrid qutrit entanglement. For this purpose, a two-
photon heralding detection at the central station should be used. The resulting entangled state occupies a higher
dimensionalHilbert space, with the discretemode spanning the 0 , 1 , 2ñ ñ ñ{∣ ∣ ∣ } subspace. In this sectionwe
derive the generated state and detail the related properties.

5.1.Model of the generation scheme
In order to implement a two-photon detection in the conditioning path, the approximation of the beam-splitter
operator should be extended to the second order:

B ab a b
ab a b

e 1
2

. 42ab a b
2 2

q q
q

= » + - +
-q -ˆ ( ) ( ˆ ˆ ˆ ˆ) ( ˆ ˆ ˆ ˆ) ( )( ˆ ˆ ˆ ˆ) † †

† †† †

Similarly, the two-mode squeezed vacuum state should also bewritten as:

TMSS 0 0 1 1 2 2 . 43c d c d c d
2l lñ µ ñ ñ + ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

Following the procedure detailed in section 3, we can obtain the entangled state corresponding to a two-photon
detection as

r
tra

t
a

2
cat 2 cat 1

2
cat 0 . 44a d a d a d

2 2 2 2
2l

ql
q

+ ñ ñ + + ñ ñ + + ñ ñ∣ ∣ ˆ∣ ∣ ˆ ∣ ∣ ( )

In practical implementations, where the even cat state is approximated by a squeezed vacuum state, the above
expression can be reformulated as

S c2 0 2 1 1 0 2 0 0 45a d a d a d a d a
2z m mñ ñ + ñ ñ + ñ ñ + ñ ñˆ ( )( ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

wherewe use again equations (12) and (25) and the parameter c 1 2 tanh z= ( ).

5.2. Photon-counting balancing condition
Tomaximize the achievable entanglement, balancing of Alice’s and Bob’s count rates should be obtained.We
denote the coincidence counts with simultaneous detection of two photons from either Alice’s or Bob’s side as
CA,A andCB,B, respectively.We also denote withNA andNB the single-photon counts from each side in an
acquisition timeT. These counts are linked by the second-order auto-correlation functions gA and gB as
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C g N T C g N Tand . 46A A A A B B B B,
2

,
2t t= = ( )

The auto-correlation functions gA and gB corresponding to the thermal state in Alice’s side and the squeezed
vacuum state onBob’s side are given by

g g2 and 3
1

sinh
. 47A B 2 z

= = + ( )

Therefore, balancing the coincidence countsCA,A andCB,B leads to the condition

c
3

2

1

2 sinh
1 . 484

2
2m

z
= + = + ( )

5.3. Representation of the hybrid entangled state
The state presented in (45) can be reformulated as

S
c

c

2 0 2 1 1 0 0 2

1
, 49AB B

A B A B A B B
2

2 2 2
z

m m

m
Yñ =

ñ ñ + ñ ñ + ñ ñ + ñ

+ +
∣ ˆ ( ) ∣ ∣ ∣ ∣ ∣ ( ∣ ∣ )

( )
( )

where the subscripts d, a are replaced byA, B. Figure 7(a) displays the hybrid representation of the qutrit
entangled state for the balancing conditionμ4=1+c2. The diagonal blocks 0 0A B,rá ñ∣ ˆ ∣ , 1 1A B,rá ñ∣ ˆ ∣ and 2 2A B,rá ñ∣ ˆ ∣
correspond to the two-photon subtracted squeezed vacuum, the single-photon subtracted squeezed vacuum
and the squeezed vacuum, respectively. The two-photon subtracted squeezed vacuum is a good approximation
to an even cat state. By using 6-dB local squeezing, the cat size in the generated hybrid entangled qutrit is enlarged
with the presence of pronounced negativity in theWigner function as shown infigure 7(b) .

5.4. Negativity of entanglement
The negativity of entanglement for the hybrid qutrit state given in equation (49), in the absence of losses, can be
written as

c c c

c c c c

1 2 1 1

1 2 1 1 1 . 50

2 4 4 2 4 4 2

2 4 4 2 4 4 2 2 2 2

 m m m m m

m m m m

= + + + - + + + -

+ + + + + + + - + +

[ ( ) ( )

( ) ( ) ] [ ( ) ] ( )

Themaximumnegativity  is ahieved under the balancing conditionμ4=1+c2 and is given by

c
c c c c c c

c c

2 1 1 1 1

2 1 1
. 51max

2 2 2 2

2 2
 =

+ + - + + + + +

+ + +
( )

( ) ( )
( )

( )

For a qutrit entangled state, themaximumachievable value for  is 1. In the limiting case of very large
squeezing, i.e. c 1 2 , the negativity reaches here 0.9cmax 1 2 »=∣ . The state is therefore notmaximally
entangled.

As shown infigure 8(a), the negativity of entanglement increases with larger squeezing values.With 6-dB
initial squeezing, a negativity of 0.82 can be obtained. Therefore, even formoderate squeezing the hybrid

Figure 7.Hybrid entangled qutrit states under the balancing condition formaximal entanglementμ4=1+c2, for a local squeezing
of 3 dB (a) and 6 dB (b), respectively. The diagonal blocks 0 0A B,rá ñ∣ ˆ ∣ , 1 1A B,rá ñ∣ ˆ ∣ and 2 2A B,rá ñ∣ ˆ ∣ correspond to the two-photon subtracted
squeezed vacuum, the single-photon subtracted squeezed vacuum and the squeezed vacuumused in the protocol.
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entangled qutrit could exhibit a negativity of entanglement stronger thanwhat could at any point be attained by
hybrid entangled qubits.

Wenowstudy thenegativity of entanglement in thepresence of loss. Figure 8(b)presents the value of  as a
functionof transmission. In general, local squeezingmakes thedecoherence faster due to the enlarged ‘size’of the
quantumstate.With a local squeezingof 6dB, the entanglementof thehybridqutrit state drops below theone
obtainedwith 3-dB squeezingwhen the channel transmission is smaller than88%.Furthermore, the available hybrid
qutrit entanglement drops below theoneof thehybridqubit state for a transmissionbelow77%.Therefore, the
potential higher entanglement for thehybridqutrit states canonlybeobserved in the conditionof lowoverall loss, i.e.
high-purity initial sources, high-transmissionpropagation channels andhigh-efficiencydetection.

6. Conclusion

In conclusion,wehavepresented various schemes to engineer hybrid entanglement betweenCVandDVoptical
states. For each schemewehave identified themainparameters shaping the entangled state, such as thephoton-
countingbalancingparameter and the local squeezing level in the experimental implementation.Moreover,wehave
investigatedhow these parameters determine important properties of theheralded state, such as thenegativity of the
Wigner function, thefidelitywith the targeted states and theoverall degreeof entanglement. For the generationof
hybrid entangledqubitswehave shown inparticular that a local single-photon subtraction in theCVmode leads to a
higherfidelitywith a cat size 2a∣ ∣ greater than1.Thedemonstrated size is compatiblewith the values 12a »∣ ∣ shown
as theoptimal value in recent proposals for resource-efficient operationswithhybrid qubits [41]. Furthermore,we
have analyzed anovel scheme topreparehybridqutrit entanglement by applying a two-photonheraldingdetection.

Experimentally, these states are challenging to prepare. They require non-classical states with high purity,
and sometimes strong squeezing, togetherwith large efficiencies for state propagation and detection. Thanks to
recent progresses in optical quantum state engineering, these advanced schemes are becoming increasinglymore
feasible. The generation of these hybrid entangled states would provide crucial light sources to explore a variety
of novel protocols for heterogeneous quantumnetworks.
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