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Abstract

Background: Cell tracking experiments, based on time-lapse microscopy, have become an important tool in biomedical
research. The goal is the reconstruction of cell migration patterns, shape and state changes, and, comprehensive
genealogical information from these data. This information can be used to develop process models of cellular
dynamics. However, so far there has been no structured, standardized way of annotating and storing the tracking
results, which is critical for comparative analysis and data integration. The key requirement to be satisfied by an
ontology is the representation of a cell’s change over time. Unfortunately, popular ontology languages, such
as Web Ontology Language (OWL), have limitations for the representation of temporal information. The current
paper addresses the fundamental problem of modeling changes of qualities over time in biomedical ontologies
specified in OWL.

Results: The presented analysis is a result of the lessons learned during the development of an ontology, intended
for the annotation of cell tracking experiments. We present, discuss and evaluate various representation patterns for
specifying cell changes in time. In particular, we discuss two patterns of temporally changing information: n-ary relation
reification and 4d fluents. These representation schemes are formalized within the ontology language OWL and are
aimed at the support for annotation of cell tracking experiments. We analyze the performance of each pattern with
respect to standard criteria used in software engineering and data modeling, i.e. simplicity, scalability, extensibility and
adequacy. We further discuss benefits, drawbacks, and the underlying design choices of each approach.

Conclusions: We demonstrate that patterns perform differently depending on the temporal distribution of modeled
information. The optimal model can be constructed by combining two competitive approaches. Thus, we demonstrate
that both reification and 4d fluents patterns can work hand in hand in a single ontology. Additionally, we have found
that 4d fluents can be reconstructed by two patterns well known in the computer science community, i.e. state
modeling and actor-role pattern.
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Background
Life is a complex, hierarchical and dynamic process [1]:
it is a hallmark of all living systems that they change
over time. This is obvious during development, regener-
ation, or disease; but even under homeostatic conditions
living matter is in a dynamic equilibrium; an example is
the constant turnover in the hematopoietic system to
maintain a certain number of blood cells. Thus, a deeper
understanding of basic biological principles requires us to
resolve the system’s spatial and temporal structures [2].

Over the past decades, advances in biomedical imaging,
experimental procedures, and computational analysis led
to the establishment of time-lapse microscopy that
allowed us to study the spatio-temporal organization
of tissues, organs, or whole animals at the cellular
level [3, 4].
Time-lapse microscopy has become a fundamental ex-

perimental tool in biomedical research. The goal is to re-
construct migration patterns, shape changes, changes in
protein expression and, eventually, comprehensive ge-
nealogical information [5, 6] from the data. However,
the analysis of the resulting videos has become a major
bottleneck: manual analysis can be done on short se-
quences with few cells, but it is practically infeasible for
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large-scale, systematic experiments. Consequently, the
development of computational tools for cell tracking, ei-
ther fully or partly automated, is a vital field of research
in image analysis [7–9]. However, what is still largely
missing is a structured, standardized way of annotating
and storing the tracking results. But this is exactly what
we need in the future to build systematic databases of
cell tracking experiments and to mine, infer and com-
pare the inherent biological information.
A few steps have been taken in this direction: in [10–12]

we reported on our work in progress on the framework
for annotating results of experiments and simulations in
stem cell biology. The core component of the framework
is a Cell Tracking Ontology (CTO) formalized in the Web
Ontology Language (OWL) [13], which enables the anno-
tation of time-lapse experiments.
Typically, the information about a cell’s history is or-

ganized into pedigree-like data structures called cellular
genealogies [14]. In such a genealogy the root represents
the founder cell and its progeny is arranged in the
branches of the tree, with branching events representing
cell division. Here, a cell is perceived as a spatially and
temporally extended object. The existence of a cell is
temporally restricted by its birth (the division of the
mother cell) and either its death (apoptosis) or terminal
division (mitosis), yielding two daughter cells of the next
generation [10]. The observed cells themselves are dy-
namic entities, i.e. they can change their shape, their
position (migration), or their internal state (differenti-
ation). Therefore, the key requirement for an ontology
of cellular genealogies is the representation of changes
over time in individual cells, such as, for instance, the
change of a cell from a round to an elongated shape.
Unfortunately, representing temporal information is a

serious problem appearing across numerous areas of in-
formation modeling, including data modeling and rela-
tional database design [15] as well as the semantic web
languages typically used for ontology modeling, such as
Resource Description Framework (RDF) [16], Web
Ontology Language (OWL), or the Description Logics
underlying OWL. One problem originates from the
lack of direct support for n-ary relationships, which
in turn limits the capabilities for representing tempor-
ally indexed information.
One possible approach to overcoming this limitation is

the extension of these languages so that they can express
temporal information. For instance, in the area of de-
scription logics numerous approaches have been pro-
posed to incorporate time into the logic model [17–19].
Unfortunately, as discussed in [20], temporal logics still
have problems with representing temporally changing
information, as they are geared towards synchronic rela-
tionships, not diachronic ones. In the field of RDF the
incorporation of temporal information and temporal

reasoning has been proposed by [21] using the so-called
temporal RDF graphs or a query and storage syntax [22].
For OWL, [23] proposed an extension for representing
dynamic entities using a four-dimensional (4d) model.
An alternative to language extensions, and one more

relevant for the development of CTO, is a solution on
the user level without any need to modify the language
itself. Along these lines, numerous patterns have been
proposed [24], and two strategies are of particular inter-
est: reification of n-ary relations and 4d fluents.
The former strategy is rather straightforward: an n-ary

relationship is represented by introducing an additional
model element, the so-called reified entity. This ap-
proach is well known in many areas of information mod-
eling, e.g. Associative Entities in Entity-Relationship-
Diagrams (ERD)[25], Intersection Tables in SQL [26], or
Association Classes in Unified Modeling Language
(UML) [27]. This strategy has also been suggested for
OWL [28].
The alternative approach originates from the philo-

sophical theory of four-dimensionalism [29], where en-
tities are considered as the so-called 4d worms, which
can be sliced into temporal parts. Different variants of
the 4d fluents pattern have been introduced in literature,
among others by [24, 30–32], yet all have in common
the same underlying principle, which, analogously to the
reification strategy, introduces to the model an add-
itional entity (or entities) representing temporal informa-
tion. However, in contrast to reification, the introduced
entity does not represent a reified relationship but a
temporal part/slice of a modeled entity.
In the current paper we take a closer look at both pat-

terns and their relevance to modeling the dynamic
change of information in biomedical ontologies such as
CTO. We focus primarily on the application of these
patterns for constructing new ontologies from scratch. It
should be noted that our goal is neither to address other
related issues, such as time representation and temporal
reasoning, nor the extension of existent OWL domain
ontologies, as it has been presented e.g. in [33, 34].
Although we focus on the use-case of cell tracking ex-

periments, the problem is generic and has to be ad-
dressed by ontology engineers in different domains of
the biomedical field. In contrast to many overviews of
the discussed problem, which typically conduct their
analyses on single isolated temporal information, we
focus on a dynamically changing web of information.
We demonstrate that the patterns perform differently
depending on the temporal distribution of the informa-
tion. We further demonstrate that a 4d approach can be
re-constructed using other well known patterns not re-
quiring the introduction of 4-dimensionalism. We con-
duct our analysis discussing the benefits and drawbacks
of each pattern with respect to common criteria for
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software systems and information modeling, i.e. scalabil-
ity, extensibility and adequacy.

Cell tracking
To get an idea of the Cell Tracking Ontology, it is useful
to sketch some aspects of typical cell tracking experi-
ments. Figure 1 demonstrates examples from the variety
of image sequence data acquired via time-lapse micros-
copy, which can be either two-dimensional (e.g. in vitro
experiments using traditional wide-field microscopy) or
three-dimensional volumes (e.g. in vivo imaging using
fluorescence microscopy) over time. The data are cor-
rected, annotated and analyzed with the help of software
tools such as [11, 35–37]. The tool from [11] is shown as
an example in Fig. 2. A single experiment can span from a
few hours [38] to several days or even weeks [39, 40], de-
pending on the frame rate (i.e. the time between two con-
secutive snapshots). This yields a few hundreds up to
thousands of images (or image volumes) per experiment.
The number of cells observed in each image varies with
biological applications: from tens of cells in in vitro stem
cell assays [39] to tens of thousands of cells in develop-
mental studies [4, 8, 41]. That is, the total number of indi-
vidual observations (snapshots of a cell in time) in a
database will lie somewhere between 10,000 and 500,000
for typical studies but can easily reach a few million.
For biological studies, a number of cellular features

should be recorded and properly stored in the database.
There are various qualities of interest which are associ-
ated with a snapshot of a single cell; these can be classi-
fied and systematized within a top level ontology of data,
being a part of GFO [42]. Examples of such snapshot
qualities are:

– Cell position: typically given as the centroid of the
cell in Cartesian coordinates as a vector [x, y] in 2D
or [x, y, z] in 3D,

– Cell shape: either given as a mask (a set of spatial
grid elements (voxels) occupied by the cell), as a
polygonal outline, or in an abstract representation
(e.g. as an oriented ellipsoid),

– Cell dimensions: e.g. the area or volume occupied by
the cell,

– Cell state: usually measured as the concentration, or
the presence/absence of certain gene products (RNA
or protein) found in particular cell types,

– Depending on the research question additional
features could be of interest, e.g. cell polarity,
orientation, or intracellular features.

At the level of cell trajectories, the following features
would be of interest:

– Migration: the speed and direction of cell movement,
– Deformation: changes in cell shape,
– Mitosis: occurrence of cell division,
– Apoptosis: occurrence of cell death,
– Differentiation: changes in cell type reflected by

changes of other features, such as genetic markers.

Finally, using the information gathered in complete ge-
nealogies a number of aspects can be analyzed:

� Topology: overall structure of the pedigree and its
sub-trees,

� Cell cycle kinetics: distribution of cellular life-times,
� Fate maps: the identification of sub-populations of

cells that give rise to certain structures of interest
(e.g. tracing the origins of specific organs),

� General structure of sub-populations: the distribution
of different features (e.g. cell fate) within the
genealogy,

� Inter-cellular communication: the influence of cell
behavior by other cells within its spatial and
temporal neighborhood.

Preliminaries: terminological clarifications and problem
statement
We do not make many ontological restrictions on the
top level categories used for the development of an
ontology. The broad spectrum of top level categories,
which can be utilized for knowledge representation in

Fig. 1 Examples of cell tracking data: (a) In vitro tracking of an initially small number of cells. (b) In vitro tracking of a fast expanding culture of
pancreatic cells (200 images, 4600 cells in total). Resulting trajectories and genealogies are shown in a space-time plot. (c) In vivo tracking of early
zebrafish development over several hours (400 images, 10,000 cells per image)
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general and for ontology development in particular, can
be found in literature [43, 44].
We do not want to limit the analysis to any of those

ontologies, instead we only make a few common-sense
assumptions, keeping in mind that even those presup-
pose some ontological commitments, hence ontology
cannot be escaped:

� Entities such as cells endure through time spans
called their lifetimes. We call these Objects (Obj).

� Objects such as cells possess certain characteristics
describing them. Those characteristics, called in the
current paper Qualities (Q), are expressed in natural
and artificial languages by means of syntactic
elements such as adjectives/adverbs or attributes/
properties, respectively (p. 30, [45]). Typical qualities
of cells are e.g. round shape or a specific location.

� A quality such as an oval shape can be predicated
upon an object in a sense that we can say that the
object has that quality as e.g. a cell has an oval
shape. In the current paper we will call such
assignments Quality Assignments (QA).

� A particular QA can change over time. For instance,
the shape of a cell can change, i.e. shape quality at

two different time points may differ. We refer to all
types of entities as Time Entities (TE). Those are e.g.
intervals and time points.1 A complete analysis of
the current time-ontologies is presented in [46],
which also includes a comparison between GFO-
Time and Allen’s theory of temporal intervals
[47]. Allen’s theory can be reconstructed within
GFO-Time, though the converse is not possible.
GFO-Time provides a coincidence-relation between
time-boundaries which allows to model discrete
changes, if needed..

Putting the above together allows us to interpret the
sentence “a cell has an oval shape at time t1 ” as follows:
a cell c is an object, a round shape o is a quality and t1 is
a time entity indicating the time-extent of quality assign-
ment of o to c.
Based on the above assumptions and terminological

clarifications the problem addressed in the current paper
can now be formulated as follows: How to model the

Fig. 2 Screenshot: An example showing a software for manual correction and annotation of cell tracking experiments as described in [11]

1For the purpose of the current paper the class Time is considered as
an abstraction of the time parameter and no specific time ontology is
assumed.
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change of an object’s quality assignments over time in
OWL? E.g. how to represent a change of a cell’s shape
from round at time t1 to elongated at time t2 ?
We believe that in ontology development, as it is rec-

ognized in software engineering [48], there is no
uniquely determined approach which is optimal in all
contexts. For this reason, the goal of the current paper is
not to provide some ultimate template for modeling a
change of an object’s qualities, but instead to review pos-
sible patterns and verify them against our specific use
case of developing CTO.

Problem statement exemplified
Figure 3 presents a straightforward approach to model-
ing qualities in OWL: objects are modeled as OWL
Classes, Qualities as OWL Classes or Datatypes and
Quality Ascriptions - as Object Properties or Datatype
Properties, respectively. The upper part of Fig. 3 presents
a UML diagram depicting the pattern itself. The applica-
tion of the pattern to our use-case is shown in the
bottom part of Fig. 3. For instance, a shape of a cell is
modeled by owl:ObjectProperty named has_shape, link-
ing an owl:Class Cell with an owl:Class Shape.2

Utilizing this pattern, an individual cell and its shape
can be defined in turtle notation [49] as follows:

The major advantage of pattern 1 is its simplicity,
the limited number of entities and the ease of exten-
sion. Unfortunately, this pattern does not allow for

representing the change of qualities over time, e.g.
the change of a cell’s shape from round to elongated.
In order to overcome the limitations of pattern 1 and

to model the change of an object’s qualities over time
one can extend pattern 1 by adding a temporal index to
the Quality Assignment property as presented on Fig. 4.
For instance, a class Cell linked with a class Shape by
means of two distinct OWL properties: has_shape_at_t1
and has_shape_at_t2, denotes that a cell has a different
shape at time t1 and t2, respectively.
With the help of that pattern one can easily model the

change of cell shape:

This approach is simple and works well in situations
where the number of time indexes is limited or when there
is some idiosyncratic time index, as for instance the G2
checkpoint and Meta-phase checkpoint in the cell cycle.
Then, the change of shape can be modeled simply by means
of two distinct OWL properties: has_quality_at_G2_check-
point and has_quality_at_Metaphase_checkpoint. Unfortu-
nately, this pattern is not applicable to our use case, since in
cell tracking experiments the number of observations can
be very large for a single experiment. Additionally, time in-
dices are not known a priori. Therefore, the application of
pattern 2 would require the adjustment of the T-box for
each experiment. Moreover, it would result in hundreds of
quality assignment properties, which is hardly maintainable.

Methods
To find an optimal pattern for representing change in
biomedical ontologies encoded in OWL we base our

2For the sake of simplicity in the examples given here we model all
qualities as OWL classes and their values as instances. Clearly, in real
life systems different means can be utilized for that purpose, e.g. OWL
Enumerated Datatypes or RDF Literals.

Fig. 3 Pattern 1: Quality assignment modeled as OWL property. The upper part of the figure presents a semi-UML diagram depicting the categories
used in the pattern. The bottom part presents the application of the pattern to our domain of interest
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analysis on three common criteria for software sys-
tems, i.e. scalability, extensibility and adequacy. The
first is a common criterion for benchmarking system
performance with respect to a growing amount of
work. The question to be posed in the context of an
ontology is: How does it scale to accommodate an in-
creasing amount of data and, in particular, is the
number of entities kept to the minimum even in situ-
ations when the amount of information increases?
This corresponds to Ockham’s razor [50], a principle
broadly adopted to data modelling according to which
the number of entities must not be multiplied beyond
necessity. That principle entails two rules of database
design, i.e. avoidance of data redundancy and simpli-
city [26].
Extensibility is the second measurement of soft-

ware architecture anticipating the future growth of
the software. In the context of ontology engineering
it can be judged by analysing if and how new infor-
mation can be incorporated into the ontology, with-
out or with a minimal need of reorganizing the
existing knowledge base.
Adequacy is a well know criterion of data model-

ling, also called faithfulness [26], which boils down to
the rule that model elements should reflect reality.
The principle can be verified by examining the fol-
lowing questions: How far do the constructs of the
ontology reflect the elements of the domain and is
the ontology comprehensible to domain experts (who
are often non-technicians)? Although the last criterion
is subjective in nature, it works well in practice, espe-
cially in situations where ontology constructs reflect
tangible elements of the domain. It should be noted
that the criterion of adequacy in the current paper is

understood and applied in purely engineering terms;
we do not aim to contribute to the philosophically-
oriented discussion on the nature of the elements of
the modeled domain, i.e. on realism vs. idealism vs.
conceptualism [51, 52].

Results
Patterns for modeling qualities
In the current section we review two patterns fre-
quently proposed for modeling temporal information,
i.e. reification of n-ary relations and 4d fluents. First,
we present the patterns and then discuss their appli-
cation in three scenarios of distinct temporal distribu-
tion of qualities.

Reification
The reification of n-ary relations is a popular strat-
egy for modeling temporally changing information.
It interprets a time-indexed quality as a 3-ary rela-
tionship linking an object, its quality and the time
at which the quality is assigned to the object. Next,
the relation is reified and introduced to the model
as a class.
Pattern 3 depicted in Fig. 5 presents the application

of this reification strategy to our use case. In contrast
to patterns 1 and 2, a Quality Assignment is not
modeled as owl:ObjectProperty but instead as a re-
ified owl:Class acting as a proxy between an Object
and its Quality.
A reified QA represents a specific assignment of a

Quality to a particular Object and as such is
dependent on both the Object and the Quality. That
means that each Quality Assignment is inherent in
exactly one Object and is the assignment of exactly

Fig. 4 Pattern 2: Quality assignment modeled as time-indexed OWL property
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one Quality. The former constraint is represented by
the cardinality restriction on the carries link between
Object and Quality Assignment and the latter - by
the cardinality restriction on the of_quality link be-
tween Quality Assignment and Quality. Time-index is at-
tributed directly to QA by means of the at_time property
linking QA with the Time class.
The bottom part of Fig. 5 illustrates the applica-

tion of pattern 3 to the CTO use-case. The object
property carries links the Cell class with the
ShapeAssignment class, which is a subclass of Quality
Assignment. ShapeAssignment represents a quality assign-
ment at a given time and has two OWL properties: of_
quality and at_time. The former specifies the value of a
quality, i.e. a specific shape, whereas the latter - the time
index of the parameter.3

This pattern can be applied to annotate a single cell
with two distinct shapes at two different time points:

In many situations it is not the time index of quality
assignments that is relevant but only their t8emporal
order. This may also be true for some cell tracking ex-
periments. In such cases pattern 3 can be simplified: in
the upper part of Fig. 6 the property at_time and the
class Time can be replaced with the property is_next, es-
tablishing the temporal order of quality assignments.

Fig. 5 Pattern 3: Quality assignment modeled as time-indexed OWL class

3In a slightly different variant of the pattern a generic
QualityAssignment class could be used instead of class
ShapeAssignment. This generalization of handling qualities minimizes
the number of classes required in case of diverse qualities. However, it
does not influence the discussed patterns as such when it comes to
representing the change of quality value over time. Thus, it seems that
for the sake of readability the specific properties are more suitable.
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The implementation of this pattern to our case is pre-
sented in the bottom part of Fig. 6.
Pattern 3 overcomes the limitations of patterns 1 and

2 reported above, since time-indexed quality value as-
signments are represented as instances only. Thus, even
in situations where many time-indexed value assign-
ments occur, the number of classes and properties in the
ontology remains constant (and is relatively low).
On the other hand, as observed in [31], the model in-

troduces additional OWL classes and OWL properties
for representing time-indexed quality ascriptions, redu-
cing its lucidity.

4d Fluents
An alternative to the n-ary relation reification is the so-
called 4d fluents pattern [30]. It is inspired by four-
dimensionalism [29], a philosophical theory explaining
the persistence of objects through time, called perdur-
ance, in analogy to their extension in space: similarly to
an object occupying some space s having parts occupy-
ing parts of s, an object occupying some time t may have
temporal parts occupying parts of t. In that understand-
ing, time-extended objects are considered as the so-
called 4d worms, which can be sliced into temporal
parts, as 3d objects can be sliced into their spatial parts.
The top-part of Fig. 7 presents a 4d pattern. In contrast
to the reification pattern, the idea behind 4d fluents is

not to reify a temporally indexed relation but instead a
temporal part of an object. For instance, in order to
model the fact that a cell c has a round shape at time t1
one can reify a temporal part of c and then assign a
quality directly to the reified part:

Conceptually, the two patterns seem quite distinct, yet
when comparing Fig. 5 and Fig. 7 one can observe that
structurally they are almost the same and both are based
on introducing an association class. The only structural dif-
ference is the cardinality constraint determining the num-
ber of qualities linked to the reified class. In the reification
pattern it is 1, whereas in the 4d fluents pattern it is 0..n.
Therefore, when modeling an object’s single quality assign-
ment, both patterns are in fact equal.
The difference between the patterns can be well illus-

trated when applying the patterns to relations rather

Fig. 6 Pattern 4: Temporally ordered quality assignments
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than quality assignments. Let us consider the CTO rela-
tion of cell-cell contact, denoting the fact that two
cells touch each other. In order to model a tempor-
ally indexed cell-cell contact, the reification pattern
requires the introduction of a single reified time-
indexed relation, whereas the fluent pattern would
introduce a reified and time-indexed slice for each
cell participating in the contact.
The difference between the patterns can also be ob-

served in cases where numerous quality assignments are
being represented, which is in fact the real challenge of
ontology engineering. Therefore, we will analyze the pat-
terns using three different cases of temporal distribution
of qualities:

� Temporally non-overlapping quality assignments.
For instance, a cell can have an oval shape at one
time and an elongated shape at another, but it can
never have both shapes at the same time.

� Temporally equal quality assignments. Thit is a
typical scenario in time lapse experiments where
at a single time point numerous distinct qualities
are observed, e.g. shape, location, etc.

� Temporally overlapping, but not temporally equal
quality assignments. This is a common situation
when qualities change independently from one
another, as is the case with the location and
shape of a cell.

Temporally non-overlapping quality assignments of a
single quality
As a starting point, we consider the simplest case, in
which no two quality assignments of an object are lo-
cated at the same temporal location. Such a situation is
natural for many qualities when considered separately,
e.g. typically a cell has a single location or a single shape
at any given time. This scenario is often assumed in the
works devoted to the modeling of temporal information,
e.g. in [24, 30, 31]. In such a case it can be easily ob-
served that both patterns behave the same, in fact there
is no difference when applying them. Modeling n quality
assignments of a single quality of a single object we need
to introduce n instances of a reified class in both cases.
Both models are equally extensible, i.e. to introduce a

new characteristic a new instance must be added to the
model. Finally, the adequacy of both solutions seems to
be merely a matter of personal taste since the choice be-
tween the patterns generates no structural differences in
the models.

Temporally equal quality assignments
The above discussion is justified when considering a sin-
gle quality in isolation. Yet, when considering numerous
qualities of an object, it is clear that there can be two or
more quality assignments which overlap temporally, e.g.
a cell at a given time point can have some location and
some shape. This is a typical scenario in cell tracking

Fig. 7 Pattern 5: Reified 4D fluents
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experiments, where at a single time point more than one
quality is observed. In such cases the application of the
reification pattern results in a model with redundantly
time-indexed Quality Assignments: for each quality ob-
served at a given time point a separate Quality Assign-
ment instance has to be introduced.
It seems that the 4d fluents pattern solves that problem.

Time slices in their simplest form are temporal parts of
objects having an arbitrary temporal extension (usually
considered an interval). An alternative approach, present
e.g. in the General Formal Ontology (GFO), introduces
temporal particles located at discrete time points (the so-
called presentials) which are distinct from time extended
slices [45]. In GFO, a presential is an entity that is wholly
present at a single time point. For instance, a cell observed
at a single time point would be considered a presential
cell. A presential may have multiple assigned qualities, all
present at the same time point as the presential which car-
ries them. Thus, a presential is a snapshot of a time ex-
tended entity, i.e. a cell observed at a single time point can
be considered a snapshot of a time extended cell.
Figure 8 presents the pattern for modeling time slices

and presentials where both are considered temporal par-
ticles of objects. Based on that pattern a modeler can
utilize both time interval slices and/or presentials, de-
pending on the actual needs.
The annotation of an individual cell using the presen-

tial pattern would look as presented below:

In contrast to the reification pattern, the presential
pattern reduces the number of instances introduced
to the model. Instead of reifying each quality assign-
ment at a given time point, all coinciding quality as-
signments are modeled with the help of a single
presential instance.

Fig. 8 Pattern 6: Generalized 4D fluents. Presentials and Slices
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4d fluents also scales better: each new quality assign-
ment added to the reification-based model requires a
new instance, whereas in the case of the 4d-based model
no additional instance is needed when a time slice with
the same time index already exists in the model.
The frugality of the 4d pattern seems to make it more

intuitive than the reification pattern, especially in the
case of cell tracking experiments where the presential
cells are the entities physically represented in the ac-
quired images. Thus, they can be easily identified and it
seems quite natural to reify them.

Temporally overlapping characteristics
In cell tracking experiments the qualities of enduring
cells are deduced on the basis of a sequence of observed
presential cells and their qualities. For instance, if a cell
is observed to have a round shape over the sequence
taken at time points t1, t2,.., tn, then typically one can de-
duce that the cell has a round shape during the whole
time interval (t1, tn). Clearly, in the case of numerous
mutually independent quality assignments it may turn
out that the temporal extensions of many of them may
overlap. For instance, during a time interval (t1, t5) a cell
may remain in location l1 but its shape may change from
round in (t1, t3) to elongated in (t3, t5). That results in
two shape quality assignments overlapping with the lo-
cation quality assignment. This situation is clearly visible
when the reification pattern is used, as for each observed
quality assignment a reified instance is introduced.
However, when turning to 4d fluents, the first observation

we make is that the adaptation of the pattern to this case is
not as straightforward as in previous cases, when it was
relatively easy to say what the cell’s time slice is, namely, a
presential cell observable in an image and thus having its
own identity. However, in the current case we want to reify
not the presential (observable) cells but instead the time ex-
tended, temporal parts of cells. This raises the following
question: What is a temporal part of a cell and what rules
drive the slicing of an object (a cell) into its temporal parts?
It seems that at least two strategies for introducing tem-

poral parts could come in handy. The first is based on the
principal idea of 4-dimensionalism, namely that a time ex-
tended entity can be sliced into temporal slices in such a
way that each slice fully represents the sliced object at a
given time. This means that all qualities assigned to an ob-
ject within the time span of a slice are attributed to the
slice directly. We call this type of slicing vertical.
Unfortunately, modeling temporally overlapping qual-

ity assignments with vertical slices easily leads to serious
redundancy and is hardly maintainable. This is due to
the fact that slices are overlapping and each one rep-
resents an object in full at a given time and as such
it carries all qualities attributed to the object during
the slice’s lifetime.

An intuitive solution to fix this problem would be to
prohibit the overlapping of slices. This results in a model
in which a time extended entity is sliced into non-
overlapping slices so that the sum of all the parts consti-
tutes the full lifespan of the object.
Let us illustrate this strategy with an example, starting

with the model of a cell remaining in location l1 during
the interval (t1, t5):

Now, let us assume that we add to our model a new
observation (fact) that the cell changes its shape from
round in (t1, t3) to elongated in (t3, t5). If we add that
observation to our model, we end up with two additional
time particles depicting the location of the cell: one end-
ing at t3 and the other starting at t3, thus both new parti-
cles are overlapping with:my_cell_slice. In order to fix
this, one could reorganize the time slices into two non-
overlapping slices, the first representing the state of the
cell being round and located in l1 and the second - the
state of the cell being elongated and located in l2.

Unfortunately, this strategy has its problems. As it can
be seen from the above example, the change of any of
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the qualities may entail the reorganization of the object’s
slices. That leads to a proliferation of slices, but more
importantly, it makes the knowledge base strongly
coupled and thus harder to extend, i.e. the addition of
new information entails the reorganization of previous
knowledge.
In addition, despite the fact that the strategy solves the

problem of the model’s redundancy, it still results in
heavily overloaded models. As presented on the listing
above, each slice carries a full specification of the cell at
a given time, even for those qualities which remain con-
stant across many slices.
In order to overcome those limitations an alternative

interpretation of 4d fluents could be considered: an en-
tity could be sliced not only vertically, i.e. along the time
dimension, but also horizontally, i.e. along its quality as-
signments. That way a slice does not fully represent an
object at a given time but only some of its aspects, e.g.
that a cell is located at l1 at t1 - t2. Thus, a slice is a kind
of temporally indexed reified attribute of an entity.
That interpretation fixes the problem of model redun-

dancy, but it also blurs the difference between the 4d
fluents and the reification pattern, since a time slice now
represents some quality assignment, i.e. some temporally
indexed attribute of an entity. The actual difference be-
tween such an interpretation of time slices and reified
quality assignments is hidden in the cardinality
constraint on the quality role (presented in Fig. 5 and
Fig. 7). While the reified quality assignment links an ob-
ject with a single quality, a slice can link an object with
multiple qualities when quality assignments overlap tem-
porally. Thus, if we add the fact of a cell’s size, which is
temporally equal to that of its shape, we are not forced
to introduce a new temporal particle but it is sufficient
to add that fact to: my_cell_slice_2:

Discussion
Our analysis shows that there is no single best choice
with respect to simplicity, scalability, extensibility and
adequateness for modeling a change of qualities over
time. Table 1 provides a condensed summary of the dis-
cussed patterns and their flavours. Additionally, as the
ontology of cell tracking experiments is still under devel-
opment and relevant amounts of annotated data are cur-
rently lacking, we provide a synthetic example in Table 2
as a benchmark for the performance of discussed

patterns. We simulated data of a single cell undergoing
a parallel changes of four qualities K, L, M, N over time
t1–5. Since the size of A-box depends on the distribution
of quality changes we have simulated several schemas of
change as depicted on Fig. 9, i.e. qualities K and L
changes independently from all others, from values k1
to k2 and from l1 throughout l2, l3, l4 to l5, respectively.
M and N, in turn, undergo a change simultaneously.
Below we elaborate in detail on two of the presented

patterns, which are our main focus in the current paper,
i.e. the reification and the 4d fluents patterns. These pat-
terns perform differently depending on the temporal dis-
tribution of quality assignments. However, both patterns
result in the same model in the case where quality as-
signments are not temporally overlapping. This situation
seems, however, merely theoretical and in real life cases
it is to be expected that numerous qualities have to be
modeled (as it is also the case in the cell tracking ontol-
ogy). In fact, the introduction of numerous qualities
which are temporally overlapping or equal is the major
source of modelling complexity.
In cases where quality assignments are temporally

equal, the 4d fluents pattern performs better. Firstly, the
expected size of T-box is smaller in case of the 4d flu-
ents pattern as the number of reified classes is equal to
the number of domain classes/types having the qualities
attributed, whereas, in case of the reification pattern, it
is equal to the number of qualities, which, in turn is typ-
ically much higher than the number of classes/types.4 In
fact, in case of the cell tracking ontology the number of
classes is reduced to one as we are only interested in
cells. The size of A-box is also expected smaller for the
4d fluents pattern as the number of reified instances is
the product of objects and t-indexes and the number of
qualities has no additional influence in contrast to the
reification pattern. The extension and maintainability of
such models is also simpler than of models based on the
reification pattern, since adding new quality assignments
requires no additional (reified) model element. Especially
in cases where temporal slices are tangible objects (as in
cell tracking experiments), the number of reified entities
is lower and the reified presentials are well-grounded
domain concepts, which in turn increases the adequate-
ness of the model.
In cases of temporally overlapping quality assignments

the application of 4d fluents is not straightforward. It
could come in variants (a) vertical 4d fluents: a fully spe-
cified non-overlapping slices, and (b) horizontal 4d flu-
ents: a not fully specified overlapping slices. For both
variants of the pattern the size of T-box is expected to

4In case a reification pattern is applied in its generic form with a single
generic QualityAssignment the amount of T-Box elements for both
patterns would be the same.
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be smaller compared to the reification pattern. The size
of the A-box varies depending on the distribution of the
quality changes over time, yet the total sum of instances
and property axioms is higher for both variants than for
the reification pattern.
Here, the first variant does not work well since it is

hardly extensible, i.e. adding a quality assignment which
is temporally overlapping with existing ones requires the
reorganization of the A-box - it results in proliferation
and reorganization of reified instances (slices) and multi-
plication of property axioms for non-changing qualities.
For instance, the attribution of m2 over t2–5 must be
split into three axioms, one for each vertical slice.
The second variant solves that problem, as there is no

need of redundant quality assignments for non changing
qualities. Additionally, in contrast to the reification pat-
tern, it enables the bundling of temporally equal charac-
teristics into a single entity, which limits the number of
reified entities. New quality assignment only requires
introduction of a new instance if a time slice for a given
time is not yet present. However, a drawback of such an
approach is the non-obvious interpretation of the associ-
ation entity, which limits the intuitiveness and adequacy
of the model.
From the above considerations, we see that a presen-

tial variant of the 4d fluents pattern is naturally applic-
able to the case of temporally equal quality assignments,
especially in time lapse experiments where the presential
cells are tangible/observable objects. Yet, in cases of
non-equal but overlapping quality assignments, the ap-
plication of 4d fluents is not straightforward, demon-
strating the major weakness of a 4d approach: it is not
common-sense. In [30] the authors observe that it is not

very natural to convert statements such as “Joe walked
into the room” into their 4d equivalents such as “A tem-
poral part of Joe walked into a temporal part of the
room”. It seems that four dimensionalism has several
weaknesses, also on the level of philosophical theory
underlying the 4d fluents pattern, and the discussion is
still not settled [53]. One of the open problems is the
identity of four-dimensional entities. For a four-
dimensionalist, the identity of an entity resides in its un-
changing temporal parts, but, on the other hand, one
can argue that an entity has different temporal parts at
different times. In contrast, three-dimensionalism seems
more common-sense in that respect. 3d objects are con-
sidered to be identical over time, and only their proper-
ties change over time with no harm to the criteria
constituting the identity of 3d objects.
Therefore, one may still ask if it is possible to get the

benefits of the 4d-pattern without slipping into the 4-d
interpretation of time extended entities. We believe that
some well known approaches in the area of software en-
gineering permit a modeler to abandon a 4d account of
reality, sticking to the 3d approach and still obtaining a
similar output as the 4d pattern.
For instance, the second variant of the 4d pattern can

be successfully represented using state modeling, a tech-
nique originating from finite-state machines, which, due
to its intuitiveness, is applied far beyond hardware and
software engineering. In state modeling the behaviour of
an object (a system) is modeled with the help of the
states the object can be in. An object’s state corresponds
to a phase of the execution of the state machine during
which some invariable condition holds. A state can be
defined by the attributes of the object and their

Table 2 Amount of elements for a fragment of ontology representing the change of qualities of a single cell illustrated in Fig. 9

Classes Object properties Individuals Object Property Expressions

T-indexed OWL property 5 7 11 7

Reification Pattern 10 (7) 3 28 30

4D Vertical 7 3 21 30

4D Horizontal 7 3 25 24

Fig. 9 A fragment of simulated cell tracking experiment results presenting changes of qualities K, L, M, N over time t1–5
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respective values. For instance, a state of a cell can be
defined by the cell’s shape and location.
The change of an object’s state is modeled with the

help of a transition, which is a directed arc linking the
source state with the target state. An object can change
its state over time but at any given time an object can
only be in a single state. That corresponds to the second
variant of the 4d pattern, where time slices are non-
overlapping.
Thus, a change of quality assignments over time can

be interpreted in terms of a change in the object’s state.
In that sense, a model presenting temporal non-
overlapping slices of a cell can be easily reformulated
with the help of state modeling:

In contrast to the previous model, the new model does
not use the notion of time slices, which requires a 4-d
interpretation of entities. Instead, a collection of quality
assignments constitutes the state of the object.
Another alternative approach is the actor-role pat-

tern, also known as actor-participant pattern [54].
The pattern originates from software engineering, but
can be applied in the context of ontology engineering
as well [55]. In principle, the pattern is used to de-
couple the identity (the actor) from the behavior (the
role). The pattern consists of two entities, an actor
and a role, linked by a one-to-many relationship. An
actor is an entity which has an identity and attributed
non-changing characteristics. A role is existentially
dependent on an actor and bundles all characteristics
attributed to the actor in the context in which he
plays a role. An actor can have many roles both sim-
ultaneously as well as sequentially, whereas a role is

always a role of a single actor. A classical example of
an actor-role pattern are social roles such as e.g. a person
(an actor) having different roles such as a student, a driver
or an employee. A role pattern has been extended by some
authors to an actor-role-context pattern, introducing an
additional entity representing a context in which an actor
plays a given role [55, 56].
The modeling of temporally indexed quality assign-

ments with the role pattern results in a model analogous
to the third variant of the 4d pattern. In that sense, hori-
zontal and vertical slices of an object can be interpreted
as roles of the object in the context of a bundle of qual-
ities. Hence, each bundle of temporally equal quality as-
signments is represented as a separate temporally
indexed role. Thus, each role represents some aspect of
an entity at a given time, but, in contrast to the state
modeling pattern, roles can temporally overlap and a
single role does not provide a full specification of the ob-
ject’s characteristics at a given time, but only those rele-
vant in its context.
Summing up, the 4d pattern can be successfully recon-

structed with two intuitive and well known patterns, i.e.
state and role modeling. This finding can be helpful to
modelers not familiar with the philosophical account of
4-dimensionalism or those for whom considering time
extended objects in terms of 4d entities could be
counter-intuitive.

Choices adapted to the cell tracking ontology
Our analysis demonstrate that there is no single silver
bullet approach to modeling temporally changing infor-
mation. The key aspects here are the number of time in-
dexes and the actual temporal distribution of the
information to be modeled. Based on our analysis we de-
rive the following guidelines for ontology engineers:

– The default handling of OWL properties is most
performant but provides no means for modeling
changes in quality values and therefore cannot be
used when those changes need to be represented.

– The t-indexed property pattern is suited for cases
with a limited number of time indices or in case of
an idiosyncratic time index.

– The vertical 4d fluents/states pattern is suited for
cases with many time indexes and with temporally
equal quality assignments. That is a typical setting in
domains and applications where states of objects are
observed and documented at particular time windows
as it is the case of time lapse experiments where cells
are imaged at equal time intervals.

– The horizontal 4d fluent and the reification pattern
are best suited for the cases with overlapping but
not equal quality assignments. This is the case for
instance when object qualities change independently
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one from another, as for instance in situation where
the shape of a cell changes independently from its
location.

Accordingly, we have developed CTO as a combined
approach of n-ary relations and presentials. In CTO,
there are two possible types of temporal particles in-
volved: presentials and interval-based particles. The
former correspond to tangible objects observable in im-
ages and indexed with discrete and, therefore, non-
overlapping time points. This is why we have decided to
reify them. This reduces the number of entities, since we
are not forced to reify each QA on the presential level
but instead we can use a straightforward OWL approach
to model qualities as properties of presentials. On the
other hand, in order to model interval-based, overlap-
ping and dynamically changing quality assignments we
have decided to use reified quality assignments.
The combination of both patterns supports at the

same time the requirements of Ockham’s razor (the
number of entities used for representing presential qual-
ity assignments is limited by the usage of presentials)
and the extensibility of the ontology (since we use reified
time extended quality assignments, there is no need to
reorganize the existing ontology after adding new over-
lapping quality assignments).
In the current paper we focus on a specific use case of

modeling the change of an object’s qualities. Yet, we
think that the patterns and design choices presented are
not restricted to that case: in the development of CTO
we have followed the very same principles for modeling
the change of relations between cells. One example of
such a relation is cell_cell_contact representing adhesion
of two or more cells. Here, in analogy to the case of
quality assignments (modeling relations indexed with
time points), we have decided to follow the presential
pattern and we have used the reification pattern to
model time-extended relations.

Conclusions
Biomedical systems are dynamic in their nature; the rep-
resentation of change is thus one of the fundamental
challenges for knowledge engineering in the biomedical
domain. The current paper addresses the problem of
modeling the change of quality assignments over time in
biomedical ontologies encoded in OWL. The paper dis-
cusses two patterns for modeling temporally changing
information, i.e. n-ry relation reification and 4d fluents.
In contrast to the rich literature on the topic, we are not
interested in modeling temporally isolated characteristics
but an entire web of characteristics in a dynamically
changing domain. Concerning an ontology of time, we
take a minimal ontological commitment which can be
easily fulfilled by various time ontologies, depending on

intended granularity of the model. In many cases, OWL-
time is sufficient, though there might be situations in
which the modeling of a discrete change is needed. In this
case, OWL-time is not sufficient and we may use GFO-
time (and the corresponding OWL-representation).
We discuss the application of these patterns to the

biomedical ontology dedicated to the annotation of cell
tracking experiments (which is currently under develop-
ment). We have analyzed the performance of each solu-
tion in three different settings with respect to common
criteria of software engineering and data modelling, i.e.
scalability, extensibility and adequacy. We have dis-
cussed the benefits and drawbacks of each approach as
well as the underlying design choices. For each design
choice, we have presented possible options and modeling
variants.
The lesson learned from this analysis is that there is

no single best approach. We demonstrate that the pat-
terns behave differently depending on the temporal dis-
tribution of the information modeled. Thus, the optimal
model can be obtained by combining the two competi-
tive approaches. The example of CTO demonstrates that
both reification and 4d fluents patterns can work hand
in hand in a single ontology.
Additionally, we have found that in the (common) case

of temporally overlapping quality assignments the appli-
cation of the 4d fluents pattern can be reconstructed by
two alternative patterns well-known in computer sci-
ence, i.e. the state modeling pattern and the actor-role
pattern. This finding can be helpful to those users not
familiar with the philosophical discussion on four-
dimensionalism to whom considering entities in terms
of 4d worms may seem awkward.
Although the discussed patterns are dedicated for

OWL, the underlying conceptual choices are generic in
nature and we believe that they can be successfully ap-
plied to other technologies and formalisms, such as, e.g.,
UML or ERD. We also expect that the same patterns
could be helpful for modeling other types of temporal
information, such as temporal relations.
The patterns have been investigated in the context of

developing a biomedical ontology dedicated to the anno-
tation of cell tracking experiments. The ontology is
intended for integration with software used for annota-
tion of cell tracking results [11, 35–37] (see also Fig. 2).
Obviously, there are two main tasks to solve: Firstly,
we need a sufficiently expressive annotation ontology
(mainly an ontology describing qualities of cellular ge-
nealogies), secondly, we need a support for the anno-
tation of time lapse experiments (being sequences of
visual frames) by using the concepts of the CTO. The
second step could be supported by machine learning
methods, though the training data must be provided
by experts.
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The evolution of ontologies is an important research
topic which must be taken into account as existing an-
notations of time lapse experiments would have to be
re-annotated for a new version CTO (1) of the ontology
CTO. Here, we would build on the framework for classi-
fying and realizing ontology- versions in the context of
ontology evolution as presented in [57].
Finally, modeling of quality value change is not limited

to cell tracking experiments, but is a common and non-
trivial task across many domains of interest. The ana-
lysed patterns are domain-independent and, since a
change of quality values is common to many biomedical
domains, we believe that the application of these pat-
terns is important in many related problems. In such a
setting the patterns discussed can be used for the exten-
sion of the existing modeling languages such as e.g.
UML and used for the purpose of ontology engineering
and conceptual modeling in various applications includ-
ing modeling of new ontologies as well as refactoring of
existing ones. We already realized this approach and
proved its utility for a different modeling task of func-
tion representation, firstly by introducing the extension
into the UML [58] and, secondly, by the application of
extended UML for the task of refactoring of the Gene
Ontology [59, 60].

Abbreviations
CTO: Cell Tracking Ontology; GFO: General Formal Otology; OBJ: Object;
OWL: Ontology Web Language; Q: Quality; QA: Quality Assignment;
RDF: Resource description framework; TE: Time Entity; UML: Unified Modeling
Language

Acknowledgements
The paper was presented at the Workshop on Ontologies and Data in Life
Sciences (ODLS) 2014 in Freiburg. We acknowledge support from the
German Research Foundation (DFG) and Universität Leipzig within the
program of Open Access Publishing.

Authors’ contributions
PB drafted the paper and conceived the initial idea. NS provided the
experimental material and the application to time-lapse experiments. HH
contributed to the ontological foundation of the topic. All the authors
participated in the discussion, elaboration and revision of the paper. HH
supervised the project. All authors read and approved the final manuscript.

Funding
The publication fee is funded by the DFG and the University of Leipzig within
the program of Open Access Publishing.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute for Medical Informatics, Statistics and Epidemiology, University of
Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany. 2Institute of Computer
Science, Faculty of Mathematics, Physics and Computer Science, Marii
Curie-Sklodowskiej University, pl. Marii Curie-Sklodowskiej 5, 20-031 Lublin,
Poland. 3Max Planck Institute for Human Cognitive and Brain Sciences,
Stephanstr. 1a, 04103 Leipzig, Germany. 4Max Planck Institute of Molecular
Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
5Carl Gustav Carus Faculty of Medicine, Institute for Medical Informatics and
Biometry, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany.

Received: 21 July 2018 Accepted: 31 July 2019

References
1. Hyman AA. Whither systems biology. Philos Trans R Soc Lond B Biol Sci.

2011;366:3635–7.
2. Scherf N, Huisken J. The smart and gentle microscope. Nat Biotechnol.

2015;33:815–8.
3. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning

deep inside live embryos by selective plane illumination microscopy. Science.
2004;305:1007–9.

4. Khairy K, Keller PJ. Reconstructing embryonic development. Genesis. 2011;
49:488–513.

5. Schnabel R, Hutter H, Moerman D, Schnabel H. Assessing Normal
Embryogenesis in Caenorhabditis elegans Using a 4D Microscope:
Variability of Development and Regional Specification. Dev Biol. 1997;
184:234–65.

6. Schroeder T. Imaging stem-cell-driven regeneration in mammals. Nature.
2008;453:345–51.

7. Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking.
Methods Enzymol. 2012;504:183–200.

8. Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K, Myers EW,
Keller PJ. Fast, accurate reconstruction of cell lineages from large-scale
fluorescence microscopy data. Nat Methods. 2014;11:951–8.

9. Ulman V, Maška M, KEG M, Ronneberger O, Haubold C, Harder N, Matula P,
Matula P, Svoboda D, Radojevic M, Smal I, Rohr K, Jaldén J, Blau HM, Dzyubachyk
O, Lelieveldt B, Xiao P, Li Y, Cho S-Y, Dufour AC, Olivo-Marin J-C, Reyes-Aldasoro
CC, Solis-Lemus JA, Bensch R, Brox T, Stegmaier J, Mikut R, Wolf S, Hamprecht FA,
Esteves T, Quelhas P, Demirel Ö, Malmström L, Jug F, Tomancak P, Meijering E,
Muñoz-Barrutia A, Kozubek M, Ortiz-de-Solorzano C. An objective comparison of
cell-tracking algorithms. Nat Methods. 2017;14:1141–52.

10. Burek P, Herre H, Roeder I, Glauche I, Scherf N, Loeffler M: Towards a
Cellular Genealogy Ontology. In: Herre H, Hoehndorf R, Kelso JS, editors.
IMISE-Report Nr. 2/2010. S Universität Leipzig; 2010:59–63.

11. Scherf N, Kunze M, Thierbach K, Zerjatke T, Burek P, Herre H, Glauche I,
Roeder I: Assisting the Machine Paradigms for Human-Machine Interaction
in Single Cell Tracking. In Bildverarbeitung für die Medizin 2013. Berlin
Heidelberg: Springer; 2013. p. 116–21.

12. Burek P, Scherf N, Herre H: OWL Patterns for Modeling the Change over
Time exemplified by the Cell Tracking Ontology. In Proceedings Ontologies
and Data in Life Sciences (ODLS 2014). onto-med.de; 2014.

13. OWL 2 Web Ontology Language Document Overview. https://www.w3.org/
TR/owl2-overview/.

14. Glauche I, Lorenz R, Hasenclever D, Roeder I. A novel view on stem cell
development: analysing the shape of cellular genealogies. Cell Prolif. 2009;
42:248–63.

15. Gregersen H, Jensen CS. Temporal entity-relationship models-a survey. IEEE
Trans Knowl Data Eng. 1999;11:464–97.

16. Cyganiak R, Wood D, Lanthaler M, Klyne G, Carroll JJ, McBride B. RDF 1.1
concepts and abstract syntax. W3C recommendation. 2014;25.

17. Artale A, Franconi E. A survey of temporal extensions of description logics.
Ann Math Artif Intell. 2000;30:171–210.

18. Artale A, Franconi E. Temporal Description Logics. Handbook of Temporal
Reasoning in Artificial Intelligence. 2005;1:375–88.

19. Lutz C, Wolter F, Zakharyaschev M. Temporal Description Logics: A Survey.
In 2008 15th International Symposium on Temporal Representation and
Reasoning. 2008:3–14.

20. Krieger H-U: Where Temporal Description Logics Fail: Representing
Temporally-Changing Relationships. In KI 2008: Advances in Artificial
Intelligence. Springer Berlin Heidelberg; 2008:249–257.

Burek et al. Journal of Biomedical Semantics           (2019) 10:16 Page 17 of 18

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/


21. Gutierrez C, Hurtado CA, Vaisman A. Introducing Time into RDF. IEEE Trans
Knowl Data Eng. 2007;19:207–18.

22. Tappolet J, Bernstein A: Applied Temporal RDF: Efficient Temporal Querying
of RDF Data with SPARQL. In The Semantic Web: Research and Applications.
Berlin Heidelberg: Springer; 2009. p. 308–22.

23. Milea V, Frasincar F, Kaymak U, Di Noia T. An OWL-based approach towards
representing time in web information systems. In The 4th International
Workshop of Web Information Systems Modeling Workshop (WISM 2007).
2007. p. 791–802.

24. Gangemi A, Presutti V. A Multi-dimensional Comparison of Ontology Design
Patterns for Representing n-ary Relations. In SOFSEM 2013: Theory and
Practice of Computer Science. Berlin Heidelberg: Springer; 2013. p. 86–105.

25. Barker R. CASE* Method Entity Relationship Modelling-ORACLE; 1990.
26. Ullman JD, Widom J: First Course in Database Systems, A: Pearson New

International Edition. Pearson Education Limited; 2013.
27. Booch G, Rumbaugh J, Jacobson I. Unified Modeling Language User Guide,

The (2Nd Edition) (Addison-Wesley Object Technology Series): Addison-Wesley
Professional; 2005.

28. Noy N, Rector A, Hayes P, Welty C: Defining n-ary relations on the semantic
web. W3C working group note 2006, 12.

29. Sider T. Frederick J Whiton Chair of Philosophy Theodore Sider: Four-
Dimensionalism: An Ontology of Persistence and Time: Clarendon Press;
2001.

30. Welty C, Fikes R, Makarios S: A reusable ontology for fluents in OWL. In
Formal Ontologies in Information Systems 2006. 2006, 150:226–236.

31. Zamborlini V, Guizzardi G: On the Representation of Temporally Changing
Information in OWL. In 2010 14th IEEE International Enterprise Distributed
Object Computing Conference Workshops. 2010:283–292.

32. Batsakis S, Petrakis EGM: SOWL: Spatio-temporal Representation, Reasoning
and Querying over the Semantic Web. In Proceedings of the 6th
International Conference on Semantic Systems. New York, NY, USA:
ACM; 2010:15:1–15:9.

33. O’Connor MJ, Das AK: A Method for Representing and Querying Temporal
Information in OWL. In Biomedical Engineering Systems and Technologies.
Springer Berlin Heidelberg; 2011:97–110.

34. Andronikos T, Stefanidakis M, Papadakis I: Adding Temporal Dimension to
Ontologies via OWL Reification. In 2009 13th Panhellenic Conference on
Informatics. IEEE Computer Society; 2009:19–22.

35. Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E,
Bednarek SY, Shorte SL, Eliceiri KW. TrackMate: An open and extensible
platform for single-particle tracking. Methods. 2016.

36. Wolff C, Tinevez J-Y, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch
S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A. Multi-view light-sheet
imaging and tracking with the MaMuT software reveals the cell lineage of a
direct developing arthropod limb. Elife. 2018;7.

37. Strähle U, Mikut R, Stegmaier J. EmbryoMiner: A new framework for interactive
knowledge discovery in large-scale cell tracking data of developing embryos.
PLoS Comput. Biol. 2018.

38. Schmid B, Shah G, Scherf N, Weber M, Thierbach K, Campos CP, Roeder I,
Aanstad P, Huisken J. High-speed panoramic light-sheet microscopy reveals
global endodermal cell dynamics. Nat. Commun. 2013;4:2207.

39. Scherf N, Franke K, Glauche I, Kurth I, Bornhäuser M, Werner C, Pompe T,
Roeder I. On the symmetry of siblings: automated single-cell tracking to
quantify the behavior of hematopoietic stem cells in a biomimetic setup.
Exp. Hematol. 2012;40:119–30.e9.

40. Filipczyk A, Marr C, Hastreiter S, Feigelman J, Schwarzfischer M, Hoppe PS,
Loeffler D, Kokkaliaris KD, Endele M, Schauberger B, Hilsenbeck O, Skylaki S,
Hasenauer J, Anastassiadis K, Theis FJ, Schroeder T. Network plasticity of
pluripotency transcription factors in embryonic stem cells. Nat. Cell Biol.
2015;17:1235–46.

41. McDole K, Guignard L, Amat F, Berger A, Malandain G, Royer LA, Turaga SC,
Branson K, Keller PJ: In Toto Imaging and Reconstruction of Post-Implantation
Mouse Development at the Single-Cell Level. Cell 2018, 0.

42. Herre H: GFO-Data: Towards an Ontological Foundation of an Integrated
Data Semantics. In Festschrift zum 80. Geburtstag von Klaus Fuchs-Kittowski:
Informatik und Gesellschaft. Lang, P.; Internationaler Verlag der Wissenschaften.;
2016.

43. Mascardi V, Cordì V, Rosso P. A Comparison of Upper Ontologies. In WOA.
2007;2007:55–64.

44. Khan ZC, Keet CM: The Foundational Ontology Library ROMULUS. In Model
and Data Engineering. Springer Berlin Heidelberg; 2013:200–211.

45. Herre H, Heller B, Burek P, Hoehndorf R, Loebe F, Michalek H. General Formal
Ontology (GFO): A foundational ontology integrating objects and processes.
Onto-Med Report. 2006;8.

46. Baumann R, Loebe F, Herre H. Axiomatic theories of the ontology of time in
GFO. Appl. Ontol. 2014;9:171–215.

47. Allen JF. Maintaining Knowledge About Temporal Intervals. Commun. ACM.
1983;26:832–43.

48. Brooks FP. No Silver Bullet -- Essence and Accidents of Software Engineering.
IEEE Computer. 1987;20:10–9.

49. RDF 1.1 Turtle. Terse RDF Triple Language. W3C Recommendation 25
February 2014 [http://www.w3.org/TR/turtle/].

50. Spade PV, Panaccio C. William of Ockham. The Stanford Encyclopedia of
Philosophy. 2016.

51. Smith B, Ceusters W. Ontological realism: A methodology for coordinated
evolution of scientific ontologies. Appl. Ontol. 2010;5:139–88.

52. Dumontier M, Hoehndorf R. Realism for scientific ontologies. In FOIS. 2010:
387–99.

53. Baker LR. Identity across time: A defense of three-dimensionalism. Unity and
Time in Metaphysics. 2009;1:1–14.

54. Coad P, North D, Mayfield M: Object models: strategies, patterns, and
applications. Yourdon Press Upper Saddle River, NJ; 1997, 2.

55. Loebe F. Abstract vs. social roles--Towards a general theoretical account of
roles. Appl. Ontol. 2007;2:127–58.

56. Wieringa R, de Jonge W, Spruit P. Using dynamic classes and role classes to
model object migration. In TAPOS. Citeseer. 1995;1:61–83.

57. Auer S, Herre H. A Versioning and Evolution Framework for RDF Knowledge
Bases. In: Proceedings of the 6th International Andrei Ershov Memorial
Conference on Perspectives of Systems Informatics. Berlin, Heidelberg:
Springer-Verlag; 2007. p. 55–69.

58. Burek P, Loebe F, Herre H. FueL: Representing function structure and
function dependencies with a UML profile for function modeling. Appl.
Ontol. 2016;11:155–203.

59. Burek P, Loebe F, Herre H. A UML profile for functional modeling applied to
the Molecular Function Ontology. In Proceedings ICBO. 2015:12–6.

60. Burek P, Loebe F, Herre H. Towards refactoring the Molecular Function
Ontology with a UML profile for function modeling. J. Biomed. Semantics.
2017;8:48.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Burek et al. Journal of Biomedical Semantics           (2019) 10:16 Page 18 of 18

http://www.w3.org/TR/turtle/

	Abstract
	Background
	Results
	Conclusions

	Background
	Cell tracking
	Preliminaries: terminological clarifications and problem statement
	Problem statement exemplified

	Methods
	Results
	Patterns for modeling qualities
	Reification
	4d Fluents

	Temporally non-overlapping quality assignments of a single quality
	Temporally equal quality assignments
	Temporally overlapping characteristics

	Discussion
	Choices adapted to the cell tracking ontology

	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

