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ABSTRACT

Background: Virtual reality combined with a spherical treadmill is used across species for studying neural cir-
cuits underlying navigation and learning.

New method: We developed an optical flow-based method for tracking treadmill ball motion in real time using a
single high-resolution camera.

Results: Tracking accuracy and timing were determined using calibration data. Ball tracking was performed at
500 Hz and integrated with an open source game engine for virtual reality projection. The projection was up-
dated at 120 Hz with a latency with respect to ball motion of 30 + 8 ms. The system was tested for behavior
with fruit flies. The application and source code are available at https://github.com/ivan-vishniakou/neural-
circuits-vr.

Comparison with existing method(s): Optical flow-based tracking of treadmill motion is typically achieved using
optical mice. The camera-based optical flow tracking system developed here is based on off-the-shelf compo-
nents and offers control over the image acquisition and processing parameters. This results in flexibility with
respect to tracking conditions - such as ball surface texture, lighting conditions, or ball size — as well as camera
alignment and calibration.

Conclusions: A fast system for rotational ball motion tracking suitable for virtual reality behavior with fruit flies

was developed and characterized.

1. Introduction

Virtual reality (VR) is used across species for studying neural cir-
cuits underlying behavior (Dombeck and Reiser, 2012). In many im-
plementations, animals navigate through virtual realities on a spherical
treadmill — a ball which can be freely rotated around its center of mass
(Dombeck and Reiser, 2012; Mason et al., 2001; Lott et al., 2007;
Dombeck et al., 2007; Seelig et al., 2010).

Tracking of ball rotation is typically accomplished using optical
mice which are based on low-resolution, high-speed cameras integrated
with a light source for measuring displacements when moving across a
surface. Movement across the surface results in optical flow — the dis-
placement of features across the camera sensor. Such features can for
example be speckle-like reflections from surface roughness; comparing
these speckle images between different frames then allows computing
the displacement using hardware-integrated image processing.

Optical mice come however with some limitations for measuring
ball rotation. First, a single optical mouse measures displacements only
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in two directions and therefore two mice are required for tracking all
three degrees of freedom of ball motion. Secondly, limited or no control
over the onboard processing algorithms as well as camera settings re-
quires careful calibration. In particular, if the mouse sensors cannot be
placed in direct proximity of the ball surface, accurate alignment of the
two sensors as well as calibration with respect to surface properties and
lighting conditions is necessary (Seelig et al., 2010). As an approach
that overcomes some of these limitations, real-time tracking was de-
veloped with a single high-resolution camera for situations where a
uniquely patterned ball can be used (Moore et al., 2014). In that case,
ball orientation was calculated by matching each recorded frame to a
map of the entire ball surface pattern. Using a high-resolution camera
allows control over all recording parameters and offers the freedom to
choose a custom algorithms and test its performance with simulated
data (Moore et al., 2014).

Here, we combine the flexibility of optical flow-based tracking with
the advantages of using a high-resolution camera. The developed
system tracks optical flow of rotational ball movement at 500 Hz using
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a single camera and is integrated with an open source virtual reality
environment and two projectors (Haberkern et al., 2018) with a refresh
rate of 120Hz (Turner-Evans et al., 2017) and overall latency of
30 + 8ms - from detecting ball movement to projecting the updated
virtual reality image. This is achieved using off-the-shelf hardware
components and open source software. The system is easy to align and
calibrate, can be used under different conditions and at different scales,
and can be integrated with two-photon imaging or electrophysiology.
The system was tested for behavior with fruit flies, which showed a
robust closed-loop response.

2. Materials and methods
2.1. Virtual reality setup components

A schematic of the setup is shown in Fig. 1 and an actual setup in
Fig. 19. Two digital micromirror devices (DMD, DLP LightCrafter 6500
by Texas Instruments) were used for projecting the VR onto an angled
screen from two sides (Turner-Evans et al., 2017; Haberkern et al.,
2018). The projectors are FullHD digital micromirror devices with
HDMI and DisplayPort interfaces allowing them to display images the
same way as standard monitors. In our setup, the DMD was set to use
DisplayPort input and display the frames at a maximum frame rate of
120 Hz (see Section A.5 in the Appendix for details). This frame rate can
only be achieved when frames are displayed with bit depth 1 (binary
images). To display different gray levels, a dithering technique is used
and the density of white pixels is varied proportionally to the brightness
level of the displayed region with an ordered Bayer matrix (Bayer,
1973) (see Section A.5 in the Appendix for details). Two collimated
blue LEDs (M470L3, Thorlabs) were used as light sources. Light re-
flected off the DMD was projected from the outside (seen from the fly's
perspective) onto a screen made from black paper.

The spherical treadmill used for the current experiments is de-
scribed in Seelig et al. (2010). Briefly, a 6 mm diameter polyurethane
foam ball is held in a cup-shaped holder and suspended in an air stream.
The ball is illuminated with two IR LEDs (Thorlabs LED850LN - 850 nm
LED, TO-39, and Mightex LED Driver, SLA series) (Turner-Evans et al.,
2017) and monitored with a camera (Basler acA640-750um). The
camera uses a USB 3 interface to communicate with the PC, and the
bandwidth of 350MB/s allows transfer of full-frame images
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Fig. 1. A schematic of behavior setup for Drosophila melanogaster.
A 6-mm polyurethane ball is air-suspended in a holder and serves
as an omnidirectional treadmill. The fly is glued to a thin metal
wire. A rear projection screen is used for displaying the virtual
reality (VR) in the fly's field of view. Two DMDs, LED light
sources, and two projection lenses are combined to project from
two sides onto the screen. A single tracking camera is set up to
capture ball images at the rate of 500 fps. Infrared LED lighting
invisible to the fly is used for illuminating the ball.

(640 x 480 x 8 bpp mono color) at a rate of 751 frames per second
(fps). For tracking, a frame rate of 500 fps was used, with an exposure
time of 100us under infrared illumination. The resolution was
224 x 140 pixels, which results from cropping and 2 X 2 binning of the
full frame. Binning (summing the signal from adjacent pixels into a
single one) increased signal-to-noise ratio and reduced the image
readout and transfer time. A Computar camera objective M2514-MP2
F1.4, f = 25mm together with a Computar EX2C extender were used
for imaging the ball (Seelig et al., 2010).

2.2. Integration with virtual reality

For virtual reality applications a 3D rendering game engine
(Urho3D, an open-source C+ + game engine (Urho3D contributors,
2019a)) was used and the x, y- and z-rotations of the ball were mapped
to planar motion (forward-, sidestepping- and turning components) of
the animal in the virtual reality (this was done similarly to Moore et al.
(2014), see Section A.4 in the Appendix for details).

The application is designed to run ball tracking and environment
rendering in two separate execution threads. The image processing
thread is a loop acquiring camera frames and calculating ball dis-
placements, tuned to run one iteration in under 2ms, resulting in a
tracking frequency of 500 fps. The rendering thread runs the game
engine, which models a virtual environment in 3D. See Fig. 18 for a
screenshot of the runnign software.

Setting up the virtual environment requires specifying the arena
geometry as well as lighting and rendering properties. Further, the
virtual cameras have to be configured such that the virtual environment
is rendered from the angles corresponding to the position of the screen.
Additional parameters are required to describe the mapping of ball
rotations to movement in the virtual environment; these transforma-
tions take into account the size of the ball and the orientation of the
tracking camera relative to the forward direction of the animal. This is
all done with the in-built Urho3D engine's scripting language which
also describes each environment in a separate script file, containing
instructions about which objects are to be created in the scene. In each
update of the game engine the ball tracking signal is interpreted as the
displacement of the animal, and the virtual camera positions and or-
ientations are updated before being rendered and displayed on the
screen.
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Other game engine capabilities used in the application are dithering
shader to output binary frames suitable for the DMD and networking to
broadcast the state of the VR to any client, for example for monitoring
the VR or a script that triggers any other external stimuli. The appli-
cation can also be used without visual output for tracking the animal's
activity. The configuration of the virtual environment is described in
detail in Section A.4 in the Appendix as well as in the source code.

The tracking data is saved in a text log file: for each camera frame a
new line is added with the timestamp of the frame, x-, y-, z-ball dis-
placements and x-, y-, z-position of the animal in the virtual environ-
ment. Additionally, the tracking camera is set to output a frame trigger
pulse with each recorded frame, which can be used for synchronization
with other applications, such as two-photon imaging.

All experiments were performed on a PC with an Intel Xeon E5-1620
v3 @ 3.50 GHz (8 cores) CPU, 32Gb DDR 4 @ 2993 MHz of RAM, a
NVIDIA Quadro K620, 2Gb DDR3 RAM, 384 CUDA cores GPU and
Microsoft Windows 8.1 Enterprise edition operating system. OpenCV
3.4.1 and opencv-contrib module were compiled using Microsoft Visual
Studio Toolkit 14.0 (VS2015) in release configuration with CUDA 9.1
for tests of the GPU-accelerated algorithms.

3. Theory and algorithm

As seen in Fig. 2a-c, rotations around the three different camera
frame axes produce recognizably different velocity field distributions.
To distinguish them, a ring-shaped region of interest is selected around
the center of the ball (Fig. 2d-f). For each point in the ROI, two prin-
cipal directions are selected: radial (i.e., orthogonal) and tangential to
the ROI circle at this point, directed counterclockwise. The optical flow
vector is then projected onto these directions to find its radial and
tangential components with respect to the ROI (Fig. 2g—i). These radial
and tangential components of the optical flow build distinct distribu-
tions over the ROI, which allows to separate the motion components
(Fig. 2j-1).

We found empirically that these distributions can be fitted well by
the following two functions:

frad (@)= Cxy rad-WxyAL:sin(p + ¢)
fran (@)= Cxy tan*Wxy-AL-cOs(@ + @) + crw At o

Here, @ is the azimuth of a point in the ROI represented in polar co-
ordinates, w,, ‘At and w,-At are the angular displacements about a
rotational axis lying in the xy-plane or on the z-axis, respectively, ¢ is
the orientation of the axis of rotation in the xy-plane inducing the
corresponding phase offset of the optical flow distributions. ¢,y rad, Cxy
wan, @and c, (px/rad) are calibration factors relating the angular dis-
placements w,, - At and w;, - At to the angular velocity vectors lying in the
xy-plane and z-plane, respectively (see Section A.9 in the Appendix for
details). Note, that radial and tangential components of optical flow
induced by w,, rotation have different coefficients, since the respective
optical flow distributions are different, while the w, rotation induces
only tangential optical flow, and a single coefficient c, is sufficient. The
calibration factors subsume all setup parameters, such as camera focal
length, and can be determined as described below and in Section A.9 in
the Appendix.

3.1. Finding calibration factors by function fitting

Calibration factors were determined experimentally by recording a
sequence of frames with two cameras pointed at the ball center and
positioned orthogonally to each other (see Fig. 16 in the Appendix). The
z-component is a planar motion (that is, in the camera focal plane)
which can be measured accurately with optical flow (as was verified
using simulated as well as motor actuated ground truth data) and the
Cxy rad aNd Cyy 1qn coefficients can be found by regression between the
estimates of the ball motion based on the two cameras. This is described
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in more detail in Section A.9.3 of the Appendix and the corresponding
Python script for running the calibration is available at https://github.
com/ivan-vishniakou/neural-circuits-vr.

3.2. Tracking algorithm

The ball tracking algorithm takes two consecutive frames of ball
motion and calculates the three independent rotational displacements
of the ball, i.e. the x-, y- and z-axis angular displacements, by fitting
their projections onto the radial and tangential directions with function
(1) in a circular ROL Since the distribution of optical flow in the cir-
cular ROI is noisy the optical flow is averaged over a band (limited by
minimal inner and maximal outer rings, see Section A.8 in the Appendix
for how the optimal ROI size was determined) in the radial direction to
increase robustness. This results in the following algorithm:

Result: Angular velocity vector (wx, @y, ®;)

Input: Two grayscale images of the ball video: frame,, frame,

polar transform frame,, frame, with respect to the center of the ROI
crop the polar-transformed frame,, frame, to keep only the ROI

flow,,, flow,«— compute_optical_flow(frame,(cropped), frames(cropped))
flowROl, 44, flowROI,4,<— average flow,, flow, over radius

fit flowROI,q4, loWROI 4, With function (1) by finding (w,, - AD), ¢, (@, - At)
(Wx, Wy, ©;) — Wy SIN(P), Wy, COS(h), W,

return (wx, @, ©;)

A WN =

Data from the algorithm's intermediate steps are shown in Fig. 3.
The polar transform (Fig. 3b) is calculated before computing optical
flow, allowing the following optimizations: first, the ring-shaped ROI
transforms into a rectangular image section, where one dimension
corresponds to the azimuthal angle of the ROI, ¢, and the other to the
radius, p. This means that the ROI can be isolated by cropping the image
into a rectangular strip, and optical flow can be calculated for a small
fraction of the full frame. Secondly, in the polar-transformed ROI, the
optical flow u and v components correspond to the radial and tangential
motions directly. This avoids having to calculate these flows from op-
tical flow obtained in Cartesian coordinates. The dependence of the
optical flow calculation on the ROI position which results from the
polar transform (see Fig. 3b) is taken into account in the experimentally
determined calibration coefficients.

Other optimizations included passing over the polar-transformed
and cropped frame to the next iteration to save on those operations, and
using the previous iteration's function fitting result as a prior for the
solver in the next frame. Function fitting was done with Downhill
Solver included in OpenCV, which implements the Nelder-Mead
downhill simplex method (Nelder and Mead, 1965).

For the source code or a compiled executable of the VR application
please refer to the repository at https://github.com/ivan-vishniakou/
neural-circuits-vr or send an email to ivan.vishniakou@caesar.de or
johannes.seelig@caesar.de.

4. Results
4.1. Tracking algorithm implementation

For real-time applications the optical flow calculation was im-
plemented in a C+ + program using OpenCV 3.4.1. Best performance
in terms of processing speed and tracking accuracy was achieved with
the Farneback optical flow algorithm on a 60 X 140 ROI scaled down to
30 x 140 (see Section A.7 in the Appendix for a comparison of a range
of optical flow algorithms and for selecting ROI parameters).
Preprocessing (polar transform, cropping and resizing) together with
optical flow estimation took 1.45 ms (standard deviation s = 0.54 ms),
the function fitting by downhill solver was capped at 30 iterations to
keep its run-time under 0.4 ms. These parameters allow to achieve real-
time tracking at 500 frames per second with the current PC config-
uration. All time measurements were performed with the cv::TickMeter
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Fig. 2. Estimated optical flow produced by rotations of the ball around the respective three independent axes of rotation.

class.

We noticed that occasionally frames were dropped, for example
when starting the program or due to other operating system-related
processes. Such frame drops can be detected in the saved data file by
looking for time stamps with a separation of more than 2 ms. If a single
or (very rarely) multiple frames are dropped, the next displacement is
calculated with the latest available frame before the frame drop over
the corresponding longer time interval. As long as the increased ball

displacements stay within the tracking operating range (the window
over which the correlation is calculated), the accuracy is not affected.

4.2. Evaluation of tracking accuracy

The evaluation of tracking accuracy is based on comparing ground
truth wgr and estimated angular velocity wes;. Three metrics are se-
lected for this comparison: the absolute error (in degrees per frame)
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Fig. 4. Walking trajectories reconstructed from simulated ball rotation tracking (solid) and corresponding ground truth (dashed) at different angular velocities w.
Each trajectory's duration is 1s (500 frames) starting at the origin (0, 0); the endpoint is marked with a cross mark. Projection of ball rotations into the two-

dimensional walking trajectory was done as in Moore et al. (2014).

Two ground truth datasets were generated for testing the tracking
performance (see Section A.6 Appendix for details). One consisted of
simulated data, which offered control of all rotation parameters, while
however not fully replicating surface texture or lighting and camera
conditions encountered in the actual experiment. A second dataset was
generated by rotating balls of three different sizes with a stepper motor.

Using the simulated data with accelerated rotations the operation
range of the tracking algorithm was determined. For each of the three
rotation axes and rotation speeds in this dataset the tracking errors
were determined (see Fig. 17). The tracking error depends on the ro-
tation speed of the ball (for the ROI and parameters used here, see
Fig. 17 in the Appendix). The average tracking error stays under 10%
(magnitude) and 7.5° (orientation) for rotations up to 1.70° per frame,
which corresponds to 45 mm/s linear speed for a 6 mm diameter ball.
Figs. 4 and 5 show the comparison of the integrated tracked trajectories
with ground truth data.

Using a stepper-motor a ball was rotated at constant speed around a
single axis (see Section A.6 in the Appendix for details). The integrated
rotation magnitude error for the recorded sequences are shown in
Table 5.

4.3. VR system timing

The run-time of the tracking algorithm was measured using internal
timing. The total latency of the combined tracking and VR setup was

w=0.25%frame

w=0.75%frame

Table 1

Latency measurement of a camera — virtual reality — display

system.

Display mode

Median latency, ms

120 Hz 25 = 8ms
120 Hz, V-sync 33 = 8ms
60 Hz 50 + 16ms
60 Hz, V-sync 50 £ 16ms

estimated using a high-speed camera filming the VR display: the display
was triggered to change state, and the state change was detected with
the tracking camera. This sequence contains all the latency components
for one cycle of a closed loop VR experiment.

The main component of the latency is the display device input lag. It
depends strongly on the selected video mode (Table 1) and the lowest
values were found at 120 Hz update rate with V-sync disabled.

4.4. Behavior experiments in VR

For testing the setup for fly behavior, we used a simple VR with a
single bright stripe of 10° width and 45° height projected onto a two-
part screen similar to Haberkern et al. (2018) of 9 mm height and 2
times 18 mm width made out of black paper. The fly's head was fixed to
its thorax with UV glue, and the wings were glued to the tethering pin
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Fig. 5. Top row: Distance tracking error. i In the simulated ball rotation trajectories at different rotation speeds w. For each w, 40 trajectories were rendered, each as a
result of a 1 s long (500 frames) rotation of the ball about an axis with a randomly selected orientation. The resulting endpoints of the trajectories on a virtual 2D
plane is compared to the ground truth and the difference is shown as a cross mark. The resulting error distributions is fitted with a 2D Gaussian (top). Bottom row:
Orientation tracking error. The difference in orientation at the endpoint of the trajectory in the 2D plane is taken between the ground truth and the measured
trajectory; for each trajectory the difference is marked with a line, and the resulting distribution is fit with a Gaussian.
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using UV glue to encourage walking behavior (Grabowska et al., 2018).
The stripe was visible for 4/5th of the flies virtual surroundings and
disappeared for 1/5th behind the fly. This resulted in robust orientation
behavior with the fly walking away from the stripe (see Figs. 6-8).

5. Discussion

An optical flow-based method for tracking of spherical treadmill
motion using a single high-resolution camera was developed and in-
tegrated with virtual reality projection. Treadmill motion was mon-
itored at 500 Hz, the display update rate was 120 Hz, and the total la-
tency for an entire VR cycle was 30 + 8 ms (from reading out ball
movement to projecting the updated VR frame on the display). The
system combines the flexibility of optical flow-based tracking with the
convenience of using a single high resolution camera, off-the-shelf
components, and open source software.

Compared with an optical mouse based system the approach de-
veloped here offers independent control over the different components
of the system, such as camera settings and optical flow processing al-
gorithm. Image processing is therefore not limited to a preset and un-
known algorithm, but a suitable approach can be selected and its
parameters can be tuned (see Section A.7 in the Appendix for a com-
parison of all optical flow algorithms tested). Additionally, the resulting
tracking accuracy and the operation range (which for all optical flow-
based methods depends on the combination of field of view, movement
speeds and processing algorithm) can be tested using simulated data.
Different from approaches using optical mice, tracking of all three de-
grees of freedom of ball rotation is achieved with a single camera which
can be positioned flexibly and can easily aligned and calibrated. This
also facilitates adapting the system to a variety of experimental con-
ditions and scales.

As an alternative to optical flow approaches, a solution relying on a
unique patterning of the ball surface was implemented in Moore et al.
(2014). While this pattern matching approach avoids integration errors,
optical flow can on the other hand track any surface with sufficient
speckle contrast under a variety of lighting conditions. For small balls,
such as the ones used for Drosophila behavior, this has the advantage
that high contrast and unique ball patterning that could interfere with
visual stimulation is not required. The method can easily be adapted to
different ball sizes but requires sufficient optical contrast of the ball
surface, such as a random patterning as used in the motor actuated
calibration experiments.

Compared to cameras, optical mouse sensors typically have a higher
frame rate (at the cost of lower pixel resolution) and time jitter and
latencies are shorter on a dedicated processing chip. For example, Lott
et al. (2007) measured the temporal accuracy of a customized optical

Table 2

Latency time breakdown for the closed-loop virtual reality setup.
Component Time, ms
Camera exposure 0.1
Sensor readout 1.2
Transfer to PC <2
Tracking algorithm 2
VR rendering +
Transfer to DMD
Over DisplayPort + display latency 25 + 8
Total 30 £ 8

mouse sensor and found a tracking latency of less than 500 ps, com-
pared to 2 ms here. However, as the latency time breakdown shows (see
Table 2), the delay is mostly caused by the standard display interface
(DisplayPort). Since the camera tracking latencies and jitter are small
compared to the display latencies and jitter, this should have a very
limited impact on VR behavior. The overall latency of the closed-loop
virtual reality system was 30 + 8 ms on average, comparable to optical
mice-based solutions and about three times faster than another camera-
based pattern matching approach (Moore et al., 2014). The display
update rate of typical virtual reality setups with data transfer through
the display port is generally limited to 60 to 120 Hz. Typical latencies
found with such a PC and camera-based solutions are between 50-90 ms
(Stowers et al., 2017; Moore et al., 2014) and have been shown to be
acceptable for closed-loop behavior experiments with a variety of spe-
cies (Dombeck and Reiser, 2012; Stowers et al., 2017). We tested the
system for behavioral performance in fruit flies and found a robust
avoidance response of a bright stripe under the display conditions
tested.

Overall, a VR system based on optical flow measurements with a
high-resolution camera was developed with short latencies suitable for
VR experiments in fruit flies and easily adaptable to different scales.
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Appendix A
A.1 Modeling of optical flow camera projections

In this section a model is developed that describes how optical flow generated by ball rotations around different axes is projected onto the camera
sensor. Predictions of this model will be used as fit functions to extract ball rotation parameters from measured optical flow distributions.

Ball motion is described by specifying an axis of rotation and an angular velocity (axis-angle representation (Palais and Palais, 2007)). Assuming
a Cartesian coordinate system O with the origin at the center of the ball and a corresponding ISO-conventional (Weisstein, 2005) spherical coordinate
system S as shown in Fig. 9, a point p on the surface of the ball can be described with a vector ps = (rpa, 6, @,). Here, 0, and ¢, are the polar and
azimuth angle of a point on the surface of the ball and rp,y; is the constant radius. If O is selected so that its z-axis coincides with the axis of ball
rotation, it becomes a convenient parametrization since only the azimuthal angle is varying with time if the ball rotates around the polar axis with
angular velocity w:

%0, 0
?

Fig. 9. Spherical coordinate system complying with the ISO 31-11 convention: a point is addressed by radius r, polar angle 6 and azimuthal angle ¢.

Tball

ps(t) = O
|7, + wt 2

In the Cartesian coordinate system O the same trajectory is expressed as
[ Foan sin(6,)cos(g, + wt)

Po(®) = | Tvan sin(ep)sin((pp + wt) |.
Tbal1 €08 (6p) 3)

Using a pinhole camera model (Sturm, 2014) we can express the projection of points on the ball surface onto the camera sensor. We here follow
the same naming and frame orientation convention as the OpenCV library (Bradski, 2000, 2016), shown in Fig. 10. The trajectory of a point on the
ball surface in the camera frame C is

(center,
center,)

Fig. 10. Projection of points on the ball with a pinhole camera model. Point p on the ball surface can be described with coordinates (r, 6, ¢) in a polar coordinate
system aligned with the ball's instant axis of rotation. According to expression (4) it can be expressed in Cartesian coordinates (x, y, z) in the cameras reference frame
C and projected onto the point p’ = (4, v) in the image plane according to Eq. (5).
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X Fpall sin(Qp)cos((pp + wt)

Y| =R| roan sin(Qp)sin((pp +wt) |+ T,
Ze Fpal C0S(6p) @
where R is the rotation matrix representing the orientation of the ball's axis of rotation and T is the position of the ball's reference frame origin in the
camera frame C. The image plane coordinates (u, v) of the projected point p’ are expressed as

X
u =f,=° + center
C

v =fy& + center,

Ze )
where f, and f, are the focal lengths expressed in pixel units and (center,, center,) is the image center. The ball is centered in the camera's field of view
and therefore T = [0, 0, d], where d is the distance between the center of the ball and the camera aperture.

By calculating the ball point projection between two consecutive frames at time t and t + At, with At equal to the frame period, one can calculate
the displacement of the point projection and estimate optical flow. If all camera parameters as well as ball location and ball size are known, the
model can be used to calculate the optical flow distribution on the camera. The model was implemented using the symbolic math library Sympy.

The angular velocity vector can be expressed as a sum of three orthogonal angular velocity components. For a camera-centered ball, it is
convenient to choose the axes of a frame aligned with the camera frame with its origin at the ball's center. This gives three distinct rotations which
can be registered by the camera as x-, y- and z-rotations (see Fig. 10).

Filling in the matrix R in expression (4) to obtain ball rotations around the x, y, and z camera frame axes, respectively, and combining it with (5)
yields the trajectories of the ball's point projections on the camera (for rotation around the specified axis):

S rvancos(6p)

u = center, — -
*d + roa sin(6,) cos(wt + qop)

x: 4 )
y roansin(8p)cos(at + @,)
v = center, + :
d + roansin(Gy)cos(wt + ¢,) ©
feoansin(6)cos (@t + @,)
u = center, + . i
d — rpansin(@p)sin(wt + @,)
y: 3

Jyroansin(6p)cos(wt + @,)
d — Tpansin(6y)sin(wt + (pp) .

V= centery +

febausin(6p)cos (et + @,)
d + ryacos(6p)
f, Thansin(6y)cos(wt + @,)
d + rpacos(6p) ©

u = center, +

v = center, +

A.2 Tracking settings

Tracking-specific settings are stored in the Configx tracking.cfg file and include the path to the camera configuration file, the name of the
camera to be used for tracking, as well as calibration coefficients as explained in Section A.1. Those parameters can be found in the corresponding
sections of the config file:

[camera settings]

LoadCameraSettings=true

CameraSettingsFile=Configncamera settings.pfs

TrackingCameraName=ball cam

[tracking settings]

BallCenterx=112.0

BallCenter¥Y=70.0

BallRadius=116.0

CxyRad=100.31

CxyTan=76.85

Cz=20.63

The camera was set to capture images at 500 fps, and the exposure time was set to 100 us to prevent motion blurring (and required using
sufficient infrared intensity). The resolution was set to 224 x 140, the highest resolution that was handled by our system in the available 2 ms per
frame processing time. The settings of the camera can be saved in the Pylon configuration file and set to be loaded in the tracking configuration.

A.3 DMD settings
In order to use the LightCrafter 6500 DMDs at a 120 Hz display rate, they need to be connected through the DisplayPort interface and have to be
configured to use Dual pixel clock mode, run in Video Pattern mode: this is an operation mode where each frame arriving through the video interface

(RGB 8bpp) is regarded as 24 independent bit planes and each can be independently selected to be displayed with an arbitrary timing diagram. In
this mode the most significant bit of the green channel is taken and displayed for 7 ms, resulting in 120 fps display rate. Additionally, it might be
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necessary to enable 120 Hz refresh rate in the Windows display adapter settings for both DMDs, which are visible to the operating system as normal
displays.

The most convenient way to automate the DMD configuration is by saving these settings in a batch file (sequence of commands sent to the DMD)
and upload it to the DMD as a startup script (this is a feature supported by LightCrafter 6500).

A.4 Virtual environment settings

Virtual reality has several configuration parameters which are specified in the Confignvr.cfg. It has game-engine specific parameters in the
corresponding section, like the position of the VR window in screen coordinates and its size. Since we used two DMDs, it is spanned over twice the
resolution of the DMD in width and located to the right of the main screen. VSync is disabled, since it is otherwise introduces additional latency to
the display. minFps is set equal to the refresh rate of the displays; maxFps and maxInactiveFps are capping the update rate of the game engine.
maxInactiveFps is the frame rate limit for a window while it is not in focus, i.e. when the user is working with other applications. This is almost
always the case, since the game window is not visible for the computer user and other applications, for example for monitoring the VR, are used. The
default value is 60 fps, and therefore needs to be increased in order to use the full capacity of the 120 Hz DMD displays.

The “transforms” section of the configuration defines how the ball rotation maps to motion in the virtual environment. The tracking signal is
calibrated so that it presents angular displacements of the ball (in radians) about the x-, y-, and z-axes of the camera. Depending on how the camera is
oriented relative to forward walking direction of the animal, the mapping varies. ballXYZtoArenaXYZ is a 3 X 3 rotation matrix, and

arena_displacement = ballXYZtoArenaXYZ-ball_displacement.

Similarly, the turning in the virtual environment is calculated from the ball displacement as a dot product with ballXYZtoArenaYaw:

arena_yaw_displacement = ballXYZtoArenaYaw-ball_displacement.

In the provided example the tracking camera is placed behind the ball and is aligned with the forward walking direction of the fly:
[transforms]
ballXYZtoArenaX¥Z=00-3.00003.000
ballXYZtoArenaYaw=0 -57.3248 0
The 3 mm radius of the ball is incorporated in the motion transform, and the yaw rotation contains a conversion from radians to degrees.

A.5 Arena scripts

Although the Urho3D game engine allows saving and loading 3D environments in XML format, a more readable and convenient way is to declare
environment properties in a script. Urho3D supports a compiled scripting language called AngelScript (Jonsson and Contributors, 2018), which is
object-oriented, and features syntax similar to C+ +. The scene is represented in the game engine as a hierarchical tree structure: each entity of the
3D environment is a node that can be attached to either other nodes or to the root node of the scene. The coordinates of the nodes are always
interpreted in the coordinate frame of their parent nodes.

In-detail information is provided in the game engine's manual (Urho3D contributors, 2019b), and sample arenas are documented. Dithering,
which is required for displaying grayscale images with a DMD operating in binary display mode is done with a postprocessing shader, which is added
to the rendering pipeline of the game engine. The configuration of the VR display is also shown in a documented example script.

A.6 Ground truth datasets

The datasets for evaluation of the tracking accuracy and for calibration were created using two different methods. On the one hand we used
simulations, where a 3D scene was reconstructed with Blender 3D including a camera with focal parameters identical to the actual tracking setup, a
light source and a ball with grainy surface texture. The model of the ball was rotated about a selected axis with a set angular velocity and rendered
using Blender's API and in-built Python interpreter. This resulted in footage of the rotating 3D model of the ball with known rotation parameters. This
data allowed to evaluate both tracking errors in magnitude &my,g, and in rotation axis orientation eorien;.

On the other hand we used a stepper motor to rotate a ball. Unlike in simulations, it is difficult to arbitrarily control the axis of rotation, so that
the axis of rotation was set at the beginning and was constant during the experiment.

Using simulation, several rotation sequences were generated:

® Rotations with constant angular velocity of 1° per frame (corresponding to about half of the maximal walking speed of the fly) with 30 different
rotation axes, 100 frames for each axis;

e 30 rotations about various axes, but with exponentially increasing angular velocity from 0 to 2° per frame;

® 40 1-s long (500 frames) trajectories of a ball spinning about a random axis of rotation for each of the 4 selected angular velocities of 0.25, 0.75,
1.25 and 1.75° per frame.

With a stepper motor, controlled using Grbl firmware for Arduino boards (Simen Svale Skogsrud, 2009), following footage was recorded:

e Sequences of 1000 frames of rotation at 0.281, 0.562, 1.124 and 1.686° per frame, in two orientations corresponding to y- and z-rotations of a
6 mm polyurethane ball (same as used as a treadmill for the fly);

o Identical sequences of rotations of a 60 mm Styrofoam ball (scale model);

e Rotations of a 400 mm Styrofoam ball about y-axis at 0.12, 0.23 and 0.47° per frame, 6000 frames each.

An actual tracking camera image is shown side-to-side with a simulated image in Figs. 11 and 12: the real image has out-of-focus areas, some
bright speckles from direct reflection of the lighting, and an overall uneven brightness distribution.
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Fig. 12. Frame from simulated ball rotation sequence.

A.7 Optical flow algorithms

Algorithms for computing optical flow vary significantly in computational complexity, run-time and resulting accuracy. The OpenCV library
features several implementations of the optical flow estimation algorithms (as of version 3.4.1) and the algorithms tested here were: Lucas-Kanade
sparse feature tracking (Bouguet, 2001), Gunnar Farneback's algorithm of dense optical flow (Farnebick, 2003), the optical flow algorithm by Brox
et al. (2004), Dual TV-L; (Zach et al., 2007), Dense Inverse Search (DIS) (Kroeger et al., 2016), SimpleFlow (Tao et al., 2012), DeepFlow
(Weinzaepfel et al., 2013) and PCAFlow (Wulff and Black, 2015) (see Table 3).

The speedup through reducing the size of the ROI varies depending on the algorithm, which motivated a comparison of the run-times depending
on the input size (Fig. 14). To achieve a tracking frequency of 500 frames per second, the run-time should not exceed 2 ms, preferably be less to
accommodate the frame preprocessing and ball motion estimation calculations. The algorithms relying on sparse features pre-selection fail in smaller
ROIs (Sparse-to-dense, PCAFlow). Farneback, although being slow with default parameters, could be sped up significantly by reducing the number of
scale levels and by limiting the internal iterations. It turned out to be the algorithm most suitable for the application, since it can handle a ROI of up
to 60 X 140 px in under 2 ms when tuned for speed (Fig. 13).

A.8 Selecting ROI parameters

The ROI is a small part of the full frame used to identify the rotation direction of the ball from optical flow. The ROI is limited by two concentric
rings with their centers coinciding with the center of the frame, which is also selected to agree with the center of the tracked ball. By specifying the
radius of the ROI pgo; (px) and its width Apgo; (px), one can vary the run-times of the fitting algorithm and its accuracy. The ROI parameters are
chosen by running the tracking algorithm on simulated datasets (constant 1° per frame angular velocity) and finding the variance in the estimated
angular velocity magnitude and orientation compared to ground truth. Fig. 15 shows the summed magnitude and orientation error (normalized)
depending on pgey, using Apro; = 10 px. The lowest value was achieved for pror = 0.27, ppax = 60 px.

A.9 Calibration coefficients

The coefficients ¢y rad, Cxy wan @nd c, in expression (1) are required for relating the optical flow in pixels (as determined with the optical flow
algorithm) to the actual ball displacement in radians. Apart from a unit conversion factor these coefficients depend on the camera magnification, the
size of the ball, and the position of the ROI on the ball. These factors can be determined in any of the following ways: by correlating optical flow
induced by known ball rotations (with a ground truth dataset); by using modelled optical flow with the pinhole camera model as in expressions
((6)-(8), provided the optical parameters of the camera are known); or using a second synchronized camera. These methods are described in more
detail in the following subsections.

A.9.1 Calibration with ground truth dataset
The optical flow in the tracking ROI was calculated on simulated data and its distributions are fitted with function (1). Then the calibration
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Table 3
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Tracking performance on the simulated rotation dataset, using full frame optical flow. Error 1 is émagn r clative @s defined in Section 4.2 on accuracy evaluation, Error 2

is the mean absolute value of emagn r clatives EITOT 3 iS €orient-

Algorithm Error 1, % = SD Error 2, % Error 3, degrees + SD Time, ms
Dual TV-L1 (CUDA) 0.2 = 5.3 2.8 2.0 = 1.6 953.2 + 3824
DeepFlow -05 * 1.0 0.9 0.8 = 0.7 162.4 = 8.4
Brox (CUDA) -0.1 £ 25 2.1 1.7 £ 1.2 70.4 = 12.8
PCAFlow (10x10 priors) —-0.6 = 0.8 0.9 0.7 = 0.5 33.1 £ 27.7
PCAFlow (default priors) —-05 + 1.4 1.2 0.8 = 0.8 26.4 + 17.4
Farneback -0.2 £ 0.7 0.6 0.5 = 0.4 14.6 = 4.4
Lucas-Kanade (CUDA) 0.1 = 2.4 1.9 0.8 = 0.9 13.2 = 14.1
Farneback (CUDA) -0.2 £ 0.7 0.6 05 = 04 10.5 = 1.4
SparseToDense -0.5 * 1.3 1.2 0.8 = 0.8 8.2 = 1.2
DIS (medium) 0.5 + 2.6 1.9 16 + 1.1 46 = 0.7
DIS (fast) 29 * 86 7.1 6.5 = 4.3 1.9 + 0.3
DIS (ultrafast) 46 = 11.0 9.2 83 = 59 0.5 = 0.2

constants can be found as the ratios:

_ Wz GroundTruth

CZ
@z Fitted
Wxy GroundTruth
Cxyrad =—————
Wxy rad Fitted
Wxy GroundTruth
Cxy tan = —————— >
@xy tan Fitted
where

)]

Oxy GroundTruths @z GroundTruth are the known rotations, and @y rad Fitted> Wxy tan Fittea are the results of fitting radial and tangential optical flow
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Fig. 13. Ball rotation estimation errors (a) and run-time of the optical flow methods on full frame of the simulated dataset (b).
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Fig. 14. Run-time of optical flow algorithms depending on input size (ROI width x 140 px). Measured as average over 3000 frames with simulated dataset with

accelerating rotations.
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Fig. 15. Summed tracking orientation and rotation errors (normalized), obtained by running the tracking algorithm with Apror = 10 pX. pmax is the visual radius of

the ball (116 px).

Table 4
Measured parameters of the tracking setup scale model.
Parameter Value
Distance to the ball 1400 mm
Ball radius 30 mm
Image resolution 224 x 140 px
116 px

Ball image radius

Z
('02xy

G

V2

Camera 1 Camera 2

Synchronization trigger

Fig. 16. Calibration procedure using two cameras. The z-component of angular velocity of the ball in the reference frame of camera 1 is projected onto the x-axis in

the reference frame of camera 2. Calibration is performed by correlating those components to find c,,.
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Fig. 17. Tracking errors for measured on simulated accelerated rotations dataset. Each point represents the error for a rotation at the corresponding angular velocity.
The mean line shows average error between rotations about all axes of rotation of the dataset.

Fig. 18. Screenshot of the virtual reality application during an
experiment. The left side is displayed on the monitor visible to
the user, showing the status of the application; the right side is
displayed on two projection screens seen by the fly.

distributions in the ROI assuming ¢y, rad = Cxy tan = Cz = 1.0.
Using the rendered ball rotation dataset with constant rotations, the following calibration factors were found:

Cxy rad = 100.31 px/rad = 1.75px/°,

Cxy tan = 76.85 px/rad = 1.34px/°,

c; = 20.63 px/rad = 0.36px/°.

A.9.2 Calculation of the calibration factors from the scene model

Using the ball projection model (Egs. (4) and (5)) with substituted camera and scene parameters, optical flow distribution in the tracking ROI can

be estimated and used for calibration similar to the previous method. With the help of a scaled-up calibration setup, the camera and scene parameters
were measured as listed in Table 4.

Using these measurements, and the pinhole camera model (5) the focal length of the camera can be calculated (assuming the image projection
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Table 5
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Fig. 19. Virtual reality setup corresponding to the schematic in
Fig. 1. Two digital micromirror devices (DLP LightCrafter 6500,
Texas Instruments) illuminated by collimated blue LEDs (M470L3,
Thorlabs) are projecting rendered VR through achromatic lenses
(Thorlabs) onto a 4-segment screen made from black paper. A
6 mm polyurethane foam ball is held in a cup-shaped holder and
suspended in an air stream. It is illuminated with two IR LEDs
(Thorlabs LED850LN — 850 nm LED, TO-39, and Mightex LED
Driver, SLA series) and monitored with a camera (Basler acA640-
750um). The fly holder is mounted onto a xyz-translation stage.
An additional camera (Basler acA640-750um) provides the top
view of the fly through the mirror for alignment and monitoring.
(For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Tracking validation on a single run of stepper-motor actuated ball rotation. “Ground truth” is the actual ball displacement, “Measured” refers to
the rotation determined from the video sequence using the tracking system. Tracking was done using calibration factors obtained through two-

camera calibration procedure.

Rotation axis, speed Ground truth, degrees Measured, degrees Error, %
60 mm styrofoam ball

y-, 0.281°/frame 281 300 +6.8
¥y-, 0.562°/frame 562 593 +5.5
¥-, 1.124°/frame 1124 1215 +8.1
¥y-, 1.686°/frame 1686 1778 +5.5
z-, 0.281°/frame 281 295 +5.0
2-, 0.562°/frame 562 564 +0.3
2-, 1.124°/frame 1124 1092 -2.8
2-, 1.686°/frame 1686 1610 —-4.5
6 mm polyurethane ball

y-, 0.281°/frame 281 307 +9.3
y-, 0.562°/frame 562 612 +8.9
y-, 1.124°/frame 1124 1217 +8.3
y-, 1.686°/frame 1686 1633 -3.1
2-, 0.281°/frame 281 275 -2.1
2-, 0.562°/frame 562 540 -3.9
2-, 1.124°/frame 1124 1068 -5.0
2-, 1.686°/frame 1686 1585 -6.0
400 mm Styrofoam ball

y-, 0.117°/frame 702 713 +1.6
y-, 0.234°/frame 1404 1577 +12.3
y-, 0.473°/frame 2838 3166 +11.6

center is exactly in the middle of the frame, center, = 112 px, center, = 70 px):

30mm
116px = f— 0
b f1400mm
F=116px 20MM _ 54130
30mm

fe =, = 5410px
center, = 112px

center, = 70 px

The model with these parameters was used to estimate the optical flow induced by different rotations according to expressions ((6)-(8)).
The calibration factors found with this method are close to ones obtained with ground truth rotations:

Cxy rad = 95.37 px/rad = 1.66px/°,
Cxy tan = 70.31 px/rad = 1.21px/°,

¢, = 22.28 px/rad = 0.39px/°.
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A.9.3 Two-camera calibration

According to the mathematical model described above the z-component of the angular velocity measured by the tracking camera is detected as
the xy-plane component by a second camera filming the same rotation from an orthogonal direction (see Fig. 16).

As shown using the optical flow model (Fig. 2), a rotation of the ball around the camera's z-axis results in all of its points moving along circular
trajectories in the focal plane of the camera. This means that the angular displacement of the ball equals the angular displacement of the points in the
frame along their trajectories, and the tangential optical flow in the ROI induced by this motion is proportional to the radius of the ROI, meaning that
¢, can be estimated with a single camera without measuring any additionally parameters.

Different from z-factors, ¢, rq¢ and cy, «n depend on the camera properties and the scene geometry. Therefore, a second camera is introduced,
filming the ball from an orthogonal direction, as shown in Fig. (16). The z-component measured by camera 1 is then equal to the x-component
measured by camera 2, and camera 1 can therefore be used to calibrate xy-tracking by camera 2:

Cz estimated Wz1
Wxy rad2 COS ¢2

Cz estimated Wz1

Cxy rad =

Fry tan Wyxy tan2 COS ¢2 ’ 10
where ¢, cgimatea is estimated as described, w,; is measured by camera 1, w.y rad2, Wxy wan2 and ¢, are found by fitting function (1) on radial and
tangential optical flow in the ROI from camera 2, respectively, initially assuming cyy, rqa = Cxy tan = 1.0. ¢ is the orientation of the ball's axis of
rotation in the xy-plane of camera 2, and the cosine yields the x-axis projection of that rotation, corresponding to measured z-rotation by camera 1.

To perform this calibration, both cameras need to be set up with identical objectives and aligned at the same distance from the tracked ball at
right angles (see Fig. 16); the ball is allowed to spin freely (at a speed within the range where the tracking algorithm is valid) with a stream of air
while the cameras capture frames synchronized by an external triggering signal.

This calibration procedure was automated in a calibration script included with the application. It requires synchronized footage recorded by two
cameras with two views of the ball from orthogonal directions. Running the script with our tracking configuration resulted in calibration constants
very close to the ones calculated using the scene model with the same resolution and objective focal length:

Cxy rad = 94.61 px/rad = 1.65px/°,
Cxy tan = 70.86 px/rad = 1.23px/°,
c, = 22.28 px/rad = 0.39px/°.

This calibration script has also successfully been used for 40 cm ball and different camera objectives.
A.10 Accuracy evaluation

Using these datasets, tracking accuracy was evaluated with the calibrated tracking algorithm. Simulated data allowed to evaluate both rotation
magnitude and axis orientation errors (Fig. 17), as well as their effects on reconstruction of the fictive trajectory (Figs. 4 and 5).

The stepper-motor actuated ball rotations were used to evaluate the rotation magnitude errors integrated over the whole rotation sequence, and
the results are listed in Table 5. They demonstrate that the tracking system can be scaled up to be used on different size treadmill balls as well as the
validity of the 2-camera calibration procedure.
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