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Abstract 

How cells regulate the number of organelles is a fundamental question in cell biology. While 
decades of experimental work have uncovered four fundamental processes that regulate 
organelle biogenesis, namely, de novo synthesis, fission, fusion and decay, a comprehensive 
understanding of how these processes together control organelle abundance remains elusive. 
Recent fluorescence microscopy experiments allow for the counting of organelles at the single-
cell level. These measurements provide information about the cell-to-cell variability in organelle 
abundance in addition to the mean level. Motivated by such measurements, we build upon a 
recent study and analyze a general stochastic model of organelle biogenesis. We compute the 
exact analytical expressions for the probability distribution of organelle numbers, their mean, 
and variance across a population of single cells. It is shown that different mechanisms of 
organelle biogenesis lead to distinct signatures in the distribution of organelle numbers which 
allows us to discriminate between these various mechanisms. By comparing our theory against 
published data for peroxisome abundance measurements in yeast, we show that a widely 
believed model of peroxisome biogenesis that involves de novo synthesis, fission, and decay is 
inadequate in explaining the data. Also, our theory predicts bimodality in certain limits of the 
model. Overall, the framework developed here can be harnessed to gain mechanistic insights 
into the process of organelle biogenesis. 

 

Introduction 
An organelle is a spatial compartment in eukaryotic cells [1,2] that performs a specialized 
function. Examples of organelles include vacuoles, Golgi bodies, endoplasmic reticulum etc. Cells 
tightly regulate organelle number in response to environmental and intra-cellular cues [1–3]. For 
instance, the number of mitochondria in mammals is tightly regulated in response to their 
metabolic needs [4]. Yeast cells significantly downregulate vacuole abundance in response to 
starvation, or upon hypotonic shock [5]. These instances raise the natural question: how is 
organelle abundance regulated in cells?  
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Fluorescence microscopy studies of live and fixed cells over the years have led to the discovery 
of four basic processes that control organelle numbers in cells, namely, de novo synthesis from a 
pre-existing membrane source [6–8], fission [9–12], fusion [5,13–19], and decay through 
autophagy or random partitioning during cell division [2,20–22]. For example, mitochondria 
regulation involves fission and fusion [23]. An important property of organelle biogenesis is that 
all of the aforementioned processes are inherently stochastic [24,25]. This has led to an 
alternative approach to unraveling the mechanisms of biogenesis in cells by counting organelle 
numbers [2,24,26]. Then, the measured steady-state distribution of organelles across a cell 
population can be used to infer the dynamics of their biogenesis. In a recent study, Mukherjee et 
al. [24] put forward a general and elegant model of organelle biogenesis consisting of these 
processes. Using a combination of theory and experiments the authors exploited the cell-to-cell 
variability in organelle abundance to uncover the kinetic rules of organelle biogenesis. This 
approach led to newer insights, such as that Golgi body abundance is controlled through the 
balance of de novo synthesis and decay [24]. While this study along with another follow up work 
[26] represent the first attempts to uncover the mechanisms of organelle biogenesis using cell-
to-cell variability or noise in organelle abundance, these aforementioned studies only looked into 
the specific limits of the general model. A comprehensive understanding of the impact of 
different mechanisms underlying organelle biogenesis on the cell-to-cell variability in organelle 
abundance remains in its infancy.  
 

The goal of this manuscript is to carry out such a systematic exploration. First, we compute 
the exact analytical expressions for the probability distribution, mean, and variance of the 
organelle distribution for the general model, and all the different limits of this model. We 
demonstrate the utility of our theoretical results by applying them to published datasets for 
peroxisome counts at the single cell level. We show that a proposed mechanism of biogenesis 
[24,26], where peroxisome number is controlled through de novo synthesis, fission, and decay is 
inadequate in explaining the data. Moreover, we discover that in a region of parameter space 
the model predicts bimodality in organelle abundance. Overall, our study provides a general and 
comprehensive analysis of how different mechanisms of organelle biogenesis control organelle 
number in vivo and illustrates a recipe to extract mechanistic insights from single cell organelle 
measurements.  

Model 

To shed light on how the mechanisms of organelle biogenesis impact the cell-to-cell variability in 
organelle abundance across a cell line, we build upon a recent study by Mukherjee et al. [24,26]. 
In this study, the authors proposed a general model of organelle biogenesis involving four 
different processes: de novo synthesis, fission, fusion, and decay, as shown in Figure.1A. This 
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phenomenological model essentially combines the hitherto observed mechanisms of biogenesis 
of various organelles such as mitochondria, vacuole, peroxisome, Golgi body, etc. [6,17]. As 
shown in Figure.1A, in this model, de novo synthesis of an organelle happens with a zeroth order 
rate constant kd. Through fission one organelle copy divides and produces two copies at first 
order rate constant kfis per organelle. Two organelle copies fuse at second order rate constant 
kfus per organelle squared, and form one organelle copy. Finally, an organelle copy can decay with 
a first order rate constant g per organelle. It is evident from the model that de novo synthesis 
and fission increase the number of organelles, while fusion and decay decrease their number (see 
Figure.1B). Through an interplay between these opposing processes, the organelle abundance 
reaches a steady-state, whereby the distribution of number of organelles does not change in 
time. While attaining the steady-state in the different limits of the model is not always 
guaranteed (for details, see the Materials and methods section), such an assumption has been 
useful and reasonable in explaining the experimental data [24,26]. In this regime, one can analyze 
the different limits of the general model and make specific predictions about the steady-state 
organelle abundance.  

 
For the investigation of the steady-state properties of the model, it is instructive to delineate the 
above processes [24,26] in the space of organelle number, as shown in Figure.1B. These 
processes and their corresponding weights allow us to employ a stochastic framework and 
monitor the time evolution of the organelle number. The probability distribution P(n, t) of 
having n organelles in a cell at a time t is given by the master equation [24] 

   

                                        (1) 

 
The above equation is an agglomeration of all possible steps that lead to either an increase or 
decrease in organelle copy number (see the processes in Figure.1B). In principle, the master 
equation contains all the information about the organelle number distribution and its moments 
such as the mean and variance etc. However, obtaining exact solutions for the moments and the 
distribution from this master equation is challenging [24,26]. Alternatively, we make use of the 
detailed balance condition [26,27] to obtain the steady-state organelle number distribution (see 
the Materials and methods section). From these steady-state distributions, we compute the 
mean and variance of organelle numbers using standard functions in Mathematica. 
 
 

dP(n,t)
dt

= kd + k fis(n−1)⎡⎣ ⎤⎦P(n−1,t)+ γ + k fusn⎡⎣ ⎤⎦(n+1)P(n+1,t)

− kd + k fisn+ γ n+ k fusn(n−1)⎡⎣ ⎤⎦P(n,t).
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Different mechanisms of organelle biogenesis provide distinct ‘fingerprints’ in cell-to-cell 
variability in organelle abundance 
To expound the effect of different mechanisms of organelle biogenesis on the cell-to-cell 
variability in organelle abundance, we consider different possible limits of the general model. For 
instance, consider a model of biogenesis that involves non-zero rates of de novo synthesis and 
decay, while contributions from fission and fusion processes are vanishing; we call this model, de 
novo synthesis-decay. We identify six such limits of the general model that reach the steady-
state: (i) de novo synthesis-decay, (ii) fission-fusion, (iii) de novo synthesis-fusion, (iv) de novo 
synthesis-fission-decay, (v) de novo synthesis-fusion-decay, and (vi) de novo synthesis-fission-
fusion. For a detailed discussion on the conditions of reaching the steady-state for the different 
possible mechanisms, see the Materials and methods section. Although the (iii) de novo 
synthesis-fusion and (vi) de novo synthesis-fission-fusion models do have steady-states in terms 
of organelle number, because of the presence of the de novo synthesis process the organelle size 
will keep increasing. Hence, these models can be biologically relevant only if there are other 
cellular mechanisms [22] to maintain mass balance without altering the organelle number (see 
Materials and methods section for a discussion). It must be noted that we consider only those 
models which show stationarity in the strict mathematical sense. Clearly, one cannot rule out the 
possibility of fission-decay or fission-fusion-decay model being biologically relevant, if the fission 
rate is much greater than the decay rate (for a detailed discussion, see the Materials and methods 
section). We compute the exact steady-state distribution of organelle numbers, its mean, and 
variance for each of these six cases as well as the general model (see Table.1). With these results 
at hand, we perform a comparative analysis of how these different mechanisms affect the cell-
to-cell variability in organelle abundance. To carry out such an analysis, throughout the rest of 
the manuscript we quantify the cell-to-cell variability using a statistical quantity, known as the 
Fano factor [24,28] which is defined as the ratio of the variance and the mean. We describe the 
behavior of the Fano factor as a function of the mean as we change the various experimentally 
tunable rates associated with the four processes.  
 
De novo synthesis-decay 
The de novo synthesis-decay model is a good starting point owing to its simplicity [24,26]. 
Abundance of many organelles such as Golgi body [24,29,31–33] is controlled through this 
mechanism [6,20,29,30]. The number distribution of organelles for this model is characterized by 
the Poisson distribution (shown in Table.1) [24], which is defined by one effective parameter, 
given by the ratio of de novo synthesis and decay rate constants. One of the key properties of a 
Poisson distribution is that its mean and variance are equal i.e., the Fano factor for this model is 
one, independent of the values of de novo synthesis and decay rate constants, as shown in Fig. 
2A. This model thus serves as a good reference point for the comparison of different models, 
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wherein a deviation of the Fano factor from one indicates the presence of other processes. This 
feature holds the key to our analysis in the rest of the manuscript.  

 
Table.1. Formulas for the steady-state probability distributions, as well as for their means and Fano factors 
for different models of organelle biogenesis are shown. We discuss each of the seven models in the first 
results section. The different special functions that arise in these different formulas are defined as 

following:  is the generalized hypergeometric function that has n 
parameters of type 1 and m parameters of type 2. 

is known as the regularized 

De novo-decay

Mechanism Steady-state probability
          distribution Mean Fano factor

Fission-fusion

De novo-fusion

De novo-fission
      - fusion

De novo-fission
      - decay

De novo-fusion
      - decay

De novo-fission
 - fusion-decay

where

where

where

where

where

where

where

n Fm(a1,a2,..,an;b1,b2,..,bm;z)

n Fm
R(a1,a2,..,an;b1,b2,..,bm;z) ≡

n Fm(a1,a2,..,an;b1,b2,..,bm;z)
Γ(b1)Γ(b2 )..Γ(bm )
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hypergeometric function, where  is the gamma function. Moreover,    is the modified Bessel 
function of the 1st kind of order n, where n is an integer. For a detailed discussion of special functions 
please see the references [34,35]. 
 
De novo synthesis-fusion 
The de novo synthesis-fusion model is fully characterized by one effective parameter, defined by 
the ratio of the rate constants characterizing de novo synthesis and fusion. For this model the 
steady-state number of organelles never goes to zero. The Fano factor increases as a function of 
the mean and asymptotically goes to 0.5 when we alter one of the rate constants of this model 
while keeping the other one fixed, as shown in Figure.2A. While de novo synthesis happens at a 
constant rate, fusion depends on the square of the number of organelles. Such a reduction in the 
overall noise level can be comprehended by comparing the de novo synthesis-decay and de novo 
synthesis-fusion models. These two models differ from each other owing to the manner in which 
the number of organelles decrease; the reduction in organelle number happens through two 
different processes, namely decay and fusion. While decay goes linearly with organelle number, 
fusion depends on the square of the organelle number, as shown in Figure.1B.  The relatively 
rapid change in the "weight" (or, equivalently, in the rate) of fusion as the organelle number 
fluctuates around its mean value has a strong restoring tendency, thus making the distribution 
narrower compared to decay. Consequently, the Fano factor becomes less than one. The impact 
of fusion on noise in organelle numbers has been reported before by Mukherjee et al. [24].  
 
 
Fission-fusion 
Next, we consider the Fission-fusion model. In yeast and mammalian cells, the biogenesis of 
organelles such as vacuole, mitochondria involves both fission and fusion [16,23,36–38]. For the 
fission-fusion model, we find that the organelle abundance is given by a truncated Poisson 
distribution, fully characterized by the ratio of the rate constants characterizing fission and 
fusion. This result is in agreement with a previous theoretical study [26]. It is evident that for this 
model the number of organelles can never go below one. As shown in Figure.2A, when we tune 
either one of the two rates of the model, while keeping the other rate fixed, the Fano factor 
increases as a function of the mean and asymptotically approaches one. In other words, with an 
increasing mean, the organelle number distribution approaches the Poisson distribution, 
characteristic of the de novo synthesis-decay model [24,26].  
 
Clearly, the three models corresponding to combinations of two processes lead to distinct 
predictions for the Fano factor as a function of the mean, as shown in Figure.2A. Since each of 
these three models depends on one effective parameter, the Fano factor as a function of the 

Γ(x) In(x)
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mean for each of them is uniquely defined. The results obtained for these models serve as 
reference points for exploring the models consisting of combinations of three processes.  
 
De novo synthesis-fission-decay 
 De novo synthesis-fission-decay model is defined by two effective parameters (ratio of the de 
novo synthesis and fission rate constants, and fission and decay rate constants respectively, see 
Table.1). We seek to explore the behavior of the Fano factor as a function of the mean for this 
model. This can be achieved in three different ways: i) change the de novo synthesis rate constant 
keeping the fission and decay rate constants fixed. ii) change the fission rate constant keeping 
the de novo synthesis and decay rates constants fixed, and iii) alter the decay rate constant 
keeping the fission and de novo synthesis rate constants fixed. Here we choose the second 
scenario, motivated by the fact that the fission rate constant of, for instance, peroxisome can be 
tuned by knocking down genes such as DNM1, VPS1, etc. The Fano factor versus mean plots for 
the other two scenarios are shown in the SI (Figure.S1). Using the de novo synthesis-decay model, 
as our reference, it is evident that the Fano factor increases monotonically as a function of the 
mean, as shown in Figure.2B. Clearly, the inclusion of the fission process enhances the overall 
noise, which is in agreement with previous studies [24,26].  

 
De novo synthesis-fission-fusion 
The de novo synthesis-fission-fusion model is defined fully by two effective parameters (ratio of 
the de novo synthesis and fission rate constant and fission and fusion rate constants), as shown 
in Table.1. Like the previous model, we can expound the behavior of the cell-to-cell variability for 
this model by tuning one of the parameters while keeping the other two parameters constant. 
As an example, we alter the de novo synthesis rate constant keeping the fission and fusion rate 
constants fixed, see Figure.2C; rest of the two scenarios are shown in the SI (Figure.S2).  Using 
the fission-fusion model as a reference, we find that as the de novo synthesis rate constant is 
increased, the de novo synthesis-fission-fusion model predicts an overall lowering of the noise 
level (see Figure.2B). Moreover, the Fano factor as a function of the mean approaches the de 
novo synthesis-fusion model. On the other hand, when the fission rate constant is increased 
keeping the de novo synthesis rate constant fixed, the Fano factor increases as a function of the 
mean and approaches the curve defining the fission-fusion model. Indeed, the cell-to-cell 
variability in organelle abundance for this model is bound by the Fano factor-mean curves 
defining the fission-fusion and de novo synthesis-fusion model.  

 
De novo synthesis-fusion-decay 
The de novo synthesis-fusion-decay model is characterized by two effective parameters (ratio of 
the de novo synthesis and fusion rate constants, and fusion and decay rate constants 
respectively, see Table.1). Fano factor as a function of the mean is plotted by altering the de novo 
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synthesis rate constant while keeping the fusion and decay rate constants fixed, see Figure.2D; 
For the other possible scenarios, see the SI (Figure.S3). Using the de novo synthesis-fusion model 
as our reference, we find that the introduction of the decay rate enhances the noise level, as 
shown in Figure.2D. Moreover, the Fano factor shows a non-monotonic behavior as a function of 
the mean as we alter the decay rate constant for when the fusion rate constant is much greater 
than the decay rate constant (see the red curve in Figure.2D). Initially, when the mean is less than 
one, the Fano factor decreases and shows a minimum around a value of mean equal to one. 
Subsequently, the Fano factor increases with the mean and asymptotically goes to one. The 
reason for this non-monotonic behavior is that the fusion process cannot occur when the 
organelle number is less than two, and hence decay is dominant. On the other hand, at large 
organelle numbers, the fusion process dominates over the decay process since the fusion rate 
constant is much greater than the decay rate constant. As a result, the Fano factor of the 
organelle number switches from a Poissonian behavior (set by the de novo synthesis-decay 
process) to a behavior set by the de novo synthesis-fusion process (Figure.2D). This cross-over 
produces the observed non-monotonic behavior in the Fano-factor. For the de novo synthesis-
fusion-decay model, the upper-bound of the noise level is set by the noise in a Poisson process, 
characteristic of the de novo synthesis-decay model, while the lower bound is set by the noise in 
the de novo synthesis-fusion process. It is evident that the presence of the fusion process 
decreases noise in organelle abundance which is consistent with previous studies [24,26]. 
 
De novo synthesis-fission-fusion-decay 
Finally, we analyze the general model consisting of all the four processes and explore how these 
four processes in conjunction impact organelle abundance across a cell population. This model is 
characterized by three effective parameters (ratio of the de novo synthesis and fission rate 
constant, fission and fusion rate constant, and fusion and decay rate constant), as shown in 
Table.1. Using the analytical expressions from Table. 1, we can study the behavior of the Fano 
factor as a function of the mean by altering one of the parameters of the model while keeping 
the others fixed. For instance, when we alter the fission rate constant (keeping the other rate 
constants fixed), the Fano factor shows a non-monotonic behavior as a function of the mean, as 
shown in Figure.2E. For a small mean level, the Fano factor increases with the mean as we 
increase the fission rate, which is characteristic of the de novo synthesis-fission-decay model. For 
higher organelle copy numbers the fission and fusion processes dominate (due to the weights of 
these processes, see Figure.1B) and the Fano factor asymptotically approaches one, after 
showing a peak in between. However, as the fusion rate tends to zero, the Fano factor manifests 
a linear behavior as a function of the mean abundance, characteristic of the de novo synthesis-
fission-decay model. For a thorough analysis of the de novo synthesis-fission-fusion-decay model, 
see the SI (Figure.S4).  
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Overall, these results imply that we can discern between different mechanisms of organelle 
biogenesis based on the specific predictions they make for the Fano factor as a function of the 
mean.  
 

The de novo synthesis-fission-decay model fails to explain the noise in peroxisome 
abundance in yeast 

To illustrate the usefulness of our theoretical results, we re-analyze previously published data for 
single-cell peroxisome counts in Saccharomyces cerevisiae [39]. In Saccharomyces cerevisiae, 
peroxisomes are primarily involved in the metabolism of various carbon and nitrogen sources, 
such as oleic acid, and purines etc. The underlying mechanisms of peroxisome biogenesis remain 
elusive [40,41]. Various experimental studies have reported the role of de novo synthesis 
[6,42,43], fission [44,45] and decay [46] in controlling peroxisome number. Most recent studies 
[24,26] have systematically constructed a model (de novo synthesis-fission-decay) based on 
these experimental observations and showed that this model captures the essential features of 
the peroxisome distribution data in glucose and oleic acid-grown yeast cells.   

 

Using our theoretical results, we put this model to test by applying it to single-cell peroxisome 
abundance measurements [39]. This study by Kuravi et al. [39], seeks to unravel the role of the 
dynamin-related proteins such as Vps1, Dnm1 etc., in regulating the number of peroxisomes in 
Saccharomyces cerevisiae. The authors deleted various combinations of the genes, VPS1, and 
DNM1 and noted the change in peroxisome count in glucose and oleic acid media. Interestingly, 
most of the mutants from this study [39] manifest a Fano factor of less than one (see Figure.3A). 
As shown before (see Figure.2C, and the SI), if the de novo synthesis-fission-decay model governs 
the biogenesis of an organelle, its Fano factor always remains equal to or greater than one (see 
Figure.3A). Hence, the de novo synthesis-fission-decay model of peroxisome biogenesis is 
inadequate. Our theoretical exploration showed (see Fig.2A) that the Fano factor of organelle 
number distribution can go below one only if its biogenesis involves fusion. Motivated by this 
observation, we consider the de novo synthesis-fission-fusion-decay model consisting of all the 
four processes. To test this model, first, we fit the peroxisome data for the dnm1- vps1 double-
deletion yeast strain with the model to find the values of the individual rate constants (see the 
Materials and methods and SI (Figure.S5)). For simplification, we assume that the fission rate for 
this strain is vanishing since two of the key fission factors are not present in the cells. Hence, the 
de novo synthesis-fission-fusion-decay model reduces to the de novo synthesis-fusion-decay 
model, which is defined by two effective parameters. Having obtained the corresponding 
parameter values, we are in a position to test the de novo synthesis-fission-fusion-decay model 
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by comparing the predictions this model makes against the data (for details see the Materials 
and methods). To achieve this goal, we plot the Fano factor as a function of the mean (Figure.3A), 
as the fission rate is increased; it is assumed here that the fission rate would be higher for the 
WT strain as well as the single deletion strains that consist of one of the two genes, DNM1, VPS1, 
and FIS1. Next, we compare these predictions with the peroxisome abundance measurements in 
yeast cells grown in the glucose and Oleic acid medium. The theory predictions match well with 
the data for yeast cells grown in the glucose medium. Interestingly, even for cells grown in the 
oleic acid medium, which is characterized by higher fission rate of peroxisome [47],  the data 
points follow the trend of the theory curve, barring the data point representing the WT yeast (not 
shown).  

In conclusion, the key finding of this section is that the de novo synthesis-fission-decay model, 
proposed by Mukherjee et al. [47] and later built upon by Craven et al. [26], cannot explain the 
single-cell peroxisome data, obtained from various different experimental studies.  

 
Mechanism of organelle biogenesis predicts a bimodal distribution of organelle abundance 
An idea that has gained much traction in recent years is the possibility of achieving phenotypic 
heterogeneity through non-genetic mechanisms [48]. A large number of studies have focused on 
how noise and bimodality in gene expression can lead to phenotypic diversification [28,48]. 
Interestingly, a recent commentary by Chang et al. [25] hints at the possible role of the cell-to-
cell variability of organelles in leading to distinct phenotypes. In this light, we theoretically 
explore the following question:  can mechanisms of biogenesis drive bimodality in organelle 
abundance? In order to answer this query, we look into the full model consisting of all the four 
processes. We find that when the rate of de novo synthesis is much smaller than the fission rate, 
the model predicts a bimodal distribution of organelle abundance across a cell population, as 
shown in Figure.3B. As discussed earlier, cells increase the number of organelles through de novo 
synthesis and fission. Fission happens when there is at least a single organelle copy in the cell. 
When the number of an organelle in a cell goes to zero, the cell remains in this state until the 
organelle number becomes one through a de novo synthesis event. Once the number of the 
organelle goes to one, the cell can start producing them through fission and the number can 
quickly increase. Hence, for when the rate of de novo synthesis is much smaller compared to the 
fission rate, the cells either remain in the zero-organelle state or produces a finite number of 
organelles, depending on the fusion and decay rate. It must be noted that the fusion and decay 
rates should be of comparable magnitude for bimodality to arise. While the fission rate should 
be higher than the rate of fusion and decay for the second mode of the distribution to exist, for 
when the fission rate is much greater than the fusion and decay rate, the first mode of the 
distribution corresponding to the zero-organelle state ceases to exist. It must be noted that none 
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of the six limiting models manifest bimodality. It would be interesting to explore the case where 
abundance of any organelle exhibits bimodality. 

 

Discussion 

Cell-to-cell variability in organelle abundance in a population of cells can be exploited to unravel 
the governing principles of organelle biogenesis. While the strategy of using cell-to-cell variability 
to gain mechanistic insights has led to a number of crucial discoveries in different areas of 
molecular and cellular biology, such as gene expression [49,50] and flagellar rotation [51], it 
remains less utilized in understanding the regulation of organelle abundance, except for a few 
studies [2,24,52]. In this manuscript, we explore a general model [24] of organelle biogenesis and 
explore the relative contributions of different processes associated with this model in controlling 
the noise in organelle abundance. In order to achieve this goal, we compute the closed-form 
steady-state organelle number distributions for each of the limiting models of the general model 
and the corresponding means and variances. Using these analytical results, we show that the 
change in the Fano factor of an organelle number distribution as a function of the various 
parameters leads to distinct predictions for the different mechanisms of organelle biogenesis. 
These specific predictions of the organelle number distribution not only complement the 
traditional microscopy experiments but also provide a powerful quantitative lens to extract 
deeper mechanistic insights from them.  

 
We elucidate the utility of our theory by applying it to published data for peroxisome abundance 
in Saccharomyces cerevisiae [39,53]. We show that the de novo synthesis-fission-decay model, 
proposed in recent studies [24,26], cannot explain single-cell peroxisome counts obtained from 
other experimental studies [39]. Rather, a general model consisting of all the four processes, 
namely, de novo synthesis, fission, decay, and fusion can capture the trend of the data. While 
experimental findings suggest that mature peroxisomes do not fuse in yeast, it remains debated 
[45,54]. It was suggested [45,54] that the possibility of peroxisome fusion under certain 
metabolic or environmental conditions cannot be excluded. In spite of the close match between 
the predictions of the de novo synthesis-fission-fusion-decay model, and peroxisome 
measurements, we cannot explicitly rule out other possible mechanisms of regulation of 
peroxisome abundance. For instance, an alternative possibility is that cells control the number of 
peroxisomes through some feedback mechanism [1]. It was shown in an experimental study [55] 
that HEX oligomers through a positive feedback mechanism provide a way of controlling 
composition and abundance of peroxisomes. Also, it has been shown that the rate of peroxisome 
decay via autophagy depends on the existence of a functional fission pathway [56]. It is possible 
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to extend our model to incorporate some of these findings. For example, in the case of fission-
dependent autophagy rates, the decay rate constant can be expressed as a function of the fission 
rate constants. More importantly, deviations from this simple model could actually pave the way 
for discovering the abovementioned mechanisms of organelle abundance control, such as the 
coupling between the different processes affecting organelle copy number, organelle-size 
dependent rates or feedback [2] etc.  Nonetheless, we make use of the de novo synthesis-fission-
fusion-decay model as a simple scenario that explains the data and provides mechanistic insights 
into the process of peroxisome biogenesis that leads to experimentally testable predictions.  
 
We apply our theory to peroxisome data to demonstrate the utility of our theory; nevertheless, 
our modeling framework is rather general in spite of its simplicity and is not limited to 
peroxisome. The processes this model incorporates have been experimentally observed in the 
context of biogenesis of various organelles such as vacuole, Golgi body, mitochondria, etc. 
[24,26].  
 
One key question our manuscript deals with is whether cell-to-cell variability in organelle 
abundance plays any functional role [25]. While many studies to date have identified molecular-
level variability such as gene expression noise as an important source of phenotypic 
heterogeneity [28,48], it’s not clear if organelle-level heterogeneity can play a role, if any, in 
creating phenotypic variability [25]. In a recent commentary, Chang et al. [25] hypothesized a 
possible role of cell-to-cell organelle variability in the context of disease, in particular, if some 
diseases exhibit more or less variability compared to non-diseased states [57]. Our analytical 
results concretize this hypothesis by making specific and experimentally testable predictions for 
generating bimodality in organelle abundance, where the two modes of the distribution can 
signify two different phenotypes. It must be noted that other scenarios where 
fission/fusion/decay depend on organelle composition and size can also potentially lead to 
bimodality.   
 

In conclusion, we have provided a theoretical framework and related analytical tools to analyze 
single-cell experiments that produce organelle number distribution, to extract information about 
the dynamics of organelle biogenesis in cells. The combination of single-cell experiments and 
theory holds the promise of uncovering comprehensive kinetic information about the process of 
organelle biogenesis.  
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Materials and methods 
 
On the conditions of reaching the stationary-state 
The general model, as shown in Figure.1A consists of four processes, namely, de novo synthesis, 
fission, fusion, and decay. While de novo synthesis and fission increase the number of organelles, 
fusion, and decay decrease their number, as shown in Figure.1B. Through an interplay between 
these opposing processes, the distribution of organelle abundance becomes stationary. 
Evidently, any possible combination of these processes should at the least consist of one process 
that increases organelle number and one process that decreases organelle number. We can in 
principle construct four limiting models that are combinations of two processes: de novo 
synthesis-decay, fission-fusion, de novo synthesis-fusion, fission-decay. However, out of these 
four combinations, the fission-decay model does not have any steady-state. When the fission 
rate constant is much greater than the decay rate constant, the number of organelles tends to 
keep growing. On the other hand, when the rate constant of decay is greater than the fission rate 
constant, the organelle number eventually goes to zero. The cell remains in this state since for 
fission to increase the number of organelles, the cell needs to have at least one organelle copy. 
Hence the fission-decay model does not lead to a steady-state where the organelle number is 
finite.  
 
For combinations of three processes, there are four possible limiting models: de novo synthesis-
fission-fusion, de novo synthesis-fusion-decay, de novo synthesis-fission-decay, fission-fusion-
decay. Amongst these limiting models, we note that the de novo synthesis-fission-decay process 
reaches a steady-state only when the fission rate constant is lesser than the decay rate constant. 
Otherwise, the organelle number keeps growing. When the decay rate constant is greater than 
the fission rate constant, the organelle number does not get frozen at the zero-organelle state 
due to the presence of de novo synthesis. Thus, the inclusion of de novo synthesis to the fission-
decay model leads to a non-trivial steady-state. This same line of argument shows that a 
combination of fission, fusion, and decay cannot also reach a steady-state in absence of de novo 
synthesis. All other combinations of the processes, as mentioned above, naturally lead to steady-
state conditions for any choice of the rates. Along the same lines, it can be argued that the fission-
fusion-decay model doesn’t have a non-trivial steady-state.  
 
In this paper, we consider those models which show stationarity in the strict mathematical sense. 
Let us consider the fission-decay model. For this model, once the system reaches the zero 
organelle-state it remains there forever. Hence in the limit of the decay rate constant being 
higher than the fission rate constant, there exists a trivial steady-state. However, if the fission 
rate constant is much higher than the decay rate constant, the system may never go to the zero-
organelle state. The same goes for the fission-fusion-decay model. Hence one cannot rule out 
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the possibility of fission-decay or fission-fusion-decay model being biologically relevant if the rate 
constant of the fission process is much greater than the decay rate constant.  
 
Detailed balance 
Here we employ the detailed balance condition following ref. [26,27] to obtain the steady-state 
organelle number distribution. To justify the applicability of the detailed balance condition, we 
follow the same line of argument as ref. [58]. Let us consider two organelle number-states, i and 
j. Moreover, let Jij denote the steady-state probability current between two states i and j, given 
by , where P(i) is the probability of having i number of organelles. 

Here is the transition rate from the i-th to the j-th state. The state space for the organelle 

numbers does not have any loops because the numbers go linearly from 0, to 1, from 1 to 2, and 
so on.  Correspondingly, the steady-state is characterized by a single constant probability current 
J. Furthermore, because P(N) tends to zero for large N, we must have J = 0. Thus, all probability 
currents vanish in the steady state. Hence, at the steady-state, the detailed balance condition 
would imply that the frequency of transition from a state of n organelle copies to the state of n-
1 organelle copies must equal the frequency of transition from n-1 organelle copy state to n 
organelle copy state, where n= {0, 1, 2,…}. For instance, if we consider the de novo synthesis-
decay model, the detailed balance condition would imply the following mathematical condition, 
 

  1 
 2 

Here the probability of having n-1 and n organelles in the cell is given by P(n-1) and P(n) 3 
respectively. The rate of de novo synthesis is given by kd, and g is rate of decay. This recursion 4 
relation allows us to find a relationship between the probability of having n organelles P(n), and 5 
zero organelles P(0) in the cell respectively, which is given by 6 

 7 

It is evident that P(0) has to be evaluated for obtaining the exact expression for P(n). To achieve 8 
this goal, we use the normalization condition that  9 

 10 

 We can evaluate this sum using Mathematica and get a final expression for P(n), which is given 11 
by  12 

Ji−> j = P(i)Wi−> j − P( j)Wj−>i

Wi−> j

kdP(n−1) = γ nP(n).

P(n) = 1
n!
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γ

⎛
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γ

⎛
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 . 13 

 14 
Similarly, the distribution of organelle abundance for all the different limits of the general model 15 
as well the full model can be obtained. Using standard functions in Mathematica, we can also 16 
obtain the mean and variance of the organelle distribution for all the models. We have also 17 
attached a Mathematica file as a supplementary material. The Mathematica file can also be 18 
found on Github: https://github.com/schoubey123/Analytical_Calculations. 19 
 20 
 21 
Limitations of the model 22 
The model of organelle biogenesis we explore here is an ‘effective’ model, where we assume the 23 
different rates to be constant.  It is potentially a simplistic assumption as some of these rates can 24 
depend on the size of the organelles i as the fusion rate of peroxisomes [59]. While it is possible 25 
to incorporate such size dependence, we believe that the model considered here provides the 26 
simplest scenario and hence provide the null-predictions. Any deviation from these models 27 
would hint at the presence of other more complicated mechanisms such as organelle-size 28 
dependent rates or feedback [2]. Two of the limiting models we consider in our analysis, (iii) de 29 
novo synthesis-fusion and (vi) de novo synthesis-fission-fusion models do have steady-states in 30 
terms of organelle number, but the mass of organelles would keep increasing indefinitely. Clearly, 31 
these models can be biologically relevant only if there are other cellular mechanisms such as 32 
possible membrane removal, etc. [22] to maintain mass balance without altering the organelle 33 
number. While we analyze these models for the sake of completeness, the obvious next step 34 
would be to consider size dependent rates to explore how the model predictions change. This 35 
would allow us to also garner a clear understanding of how cells regulate the number and 36 
composition of organelles [1]. 37 
 38 
Some of the models we consider do not include decay, and the reduction in number of organelles 39 
happens through fusion. One would imagine that in cells, organelles would encounter some form 40 
of decay on account of the various cellular processes. However, if the decay rate constant is much 41 
smaller than the rate constant of fusion, then organelle abundance will still be primarily dictated 42 
by fusion. 43 

 44 
Parameter extraction 45 
We evaluate the utility of our analytical results by applying them to published data to gain 46 
mechanistic insights into the biogenesis of peroxisome. To this end, we have reanalyzed 47 
peroxisome single-cell count data. We extract the peroxisome data from the published 48 
peroxisome number distribution plots in Fig. 1(A-J) of ref. [39] by using DigitizeIt, a free online 49 

P(n) = 1
n!
kd
γ

⎛
⎝⎜

⎞
⎠⎟

n

exp −
kd
γ

⎛
⎝⎜

⎞
⎠⎟
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tool for digitizing data plots. From this distribution we compute the mean and Fano factor for the 50 
various mutant strains, as shown in Figure.3A.  51 
 52 
Next, in order to make the Fano factor-mean prediction plot for de novo synthesis-fission-fusion-53 
decay model (see blue curve in Figure.3A), we fit the data for the dnm1- vps1 double-deletion 54 
yeast strain with the de novo synthesis-fusion-decay model to find the values of the individual 55 
rates. Here we assume that the fission rate for this strain is vanishing since two of the known 56 
fission factors are not present in the cells. It must be noted that we cannot uniquely determine 57 
the kinetic rate constants associated with the different processes defining the de novo synthesis-58 
fusion-decay model since the distribution of organelle abundance corresponding to different 59 
mechanisms depends on the ratios of the parameters. Hence, we need to set the value of one of 60 
the rate constants to one and measure the other rate constants with respect to that parameter. 61 
The value of the decay rate constant is set to one. We extract the following parameters: 62 
kfus=36.39 t-1, kd=3.46 t-1, and g=1 t-1, kfis=0 t-1.  63 
 64 
Error bars in Fano factor (Figure.3A) represent the standard deviation of 1000 independent, 65 
resampled data sets obtained using the method of Bootstrapping in Matlab. 66 
 67 
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 208 
 209 
Figure.1. Model of organelle biogenesis. A) Organelle biogenesis involves four mechanisms, namely, de 210 
novo synthesis, fission, fusion, and decay. The probability per unit time of de novo synthesis is given by 211 
zeroth order rate constant kd. kfis is the first order rate constant characterizing fission, kfus is the second 212 
order rate constant defining fusion, and g is the first order rate constant defining decay, as proposed by 213 
Mukherjee et al. [24]. From this model, we compute the probability distribution of organelle abundance 214 
as well as its mean and variance. B) List of possible reactions leading to either an increase or decrease in 215 
the organelle number and their respective weights. The weights constitute the probability that each 216 
reaction will occur during a time interval, Dt. 217 
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Figure.2. Noise profiles for different models of organelle biogenesis. Using the detailed balance condition 238 
[26,27], we computed the Fano factor of the organelle number distribution for the different models of 239 
organelle biogenesis. (A) Three different models of biogenesis involving two processes: de novo synthesis-240 
fusion (red), fission-fusion(green), and de novo synthesis-decay (blue). These models lead to qualitatively 241 
distinct predictions for the Fano factor as a function of the mean. (B) De novo synthesis-fission-decay: We 242 
tune the fission rate constant while keeping the other rates fixed to generate the plots. The family of 243 
curves corresponds to the different values of kd, where we keep the other rates fixed, g=1 t-1. (C) De novo 244 
synthesis-fission-fusion: Rate of fission is tuned to generate the plots, while we keep the other rate 245 
constants fixed. The family of curves correspond to the different values of kd; fusion rate is given by kfus = 246 
1 t-1. (D) De novo synthesis-fusion-decay: The de novo synthesis rate is tuned to make the Fano factor 247 
versus mean plots. The family of curves corresponds to the different values of kfus. The decay rate is given 248 
by g=1 t-1. E) In this plot, we vary kfis, while keeping kd and γ constant (Value of both the rate constants 249 
have been kept as one) and explore how the noise profile evolves over different values of kfus. When kfus=0, 250 
the curve becomes a straight line which is characteristic for the de novo synthesis-fission-decay. 251 
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279 
Figure.3. (A) Peroxisome biogenesis: The black data points represent the experimentally measured Fano 280 
factor of peroxisome number distribution as a function of the mean for various Saccharomyces cerevisiae 281 
mutant strains, grown in glucose medium, with combinations of deleted VPS1 and DNM1,  taken from the 282 
ref [39]. The data points represent the following mutants:  i) o vps1Ddnm1D, ii) D vps1D, iii) � fisD iv) à 283 
WT, v) * dnm1D. The red data points represent the same yeast strains, grown in the oleic acid medium. 284 
Corresponding data points are given by i) o vps1Ddnm1D, ii) D vps1D,  iii) � fisD, iv) à dnm1D. The blue 285 
curve shows the de novo synthesis-fission -fusion-decay model prediction for how the Fano factor changes 286 
as a function of the mean when we alter the fission rate constant while keeping the other rate constants 287 
fixed. The other rate constants are given by kfus=34.3 t-1, kd=3.45 t-1, and g=1 t-1.  (B) Bimodality in 288 
organelle abundance: The steady-state number distributions of organelles are shown for different values 289 
of the de novo synthesis rate constant for the de novo synthesis-fission-fusion-decay model. When the 290 
rate of de novo synthesis is much greater than the fission rate, the organelle distribution manifests 291 
bimodality. The rate constants corresponding to the blue curve are kd=0.1 t-1, kfis=0.1 t-1, kfus=1 t-1, and 292 
g=1 t-1. The rate constants corresponding to the red curve are kd=0.1 t-1, kfis=5 t-1, kfus=1 t-1, and g=1 t-1.   293 
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Supplementary Information 306 
 307 
 308 

 309 
Figure S1. Noise profile for the de novo synthesis-fission-decay model. We plot Fano factor vs mean 310 
curves by tuning de novo synthesis rate(kd)in (A), fission rate constant (kfis) in (B) and decay rate 311 
constant(γ) in (C). For the rest of the two parameters, we keep one of them constant and take three 312 
different values of the other parameter. The values of the constant are – A.1) γ = 2.5, A.2) kfis= 1.5 ; B.1) γ 313 
= 1 ,B.2)kd = 1 ; C.1) kfis= 1  ,C.2)kd = 1. Thus, we obtain a family of curves for each plot which helps us to 314 
understand how the noise profile evolves with the various rate constants. The different parameters and 315 
values are mentioned in the plots themselves. As it can be observed from the plots, the Fano factor never 316 
goes below one. When we vary kd, the Fano factor remains constant with variation of mean, and when 317 
we tune the other two parameters, it linearly increases.  318 
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 320 
 321 
Figure S2. Noise profile for the de novo synthesis-fission-fusion model. We plot Fano factor vs mean 322 
curves by tuning de novo synthesis(kd) in (A), fission rate constant (kfis) in (B) and fusion rate constant (kfus) 323 
in (C). For the rest of the two parameters, we keep one of them constant and take three different values 324 
of the other parameter. The values of the rate constants are – A.1) kfus = 5 , A.2)kfis = 3; B.1) kfus = 1, B.2) kd 325 
= 1 ; C.1) kfis = 1, C.2) kd = 1.  We obtain a family of curves for each plot. The different parameters and 326 
values are shown. The Fano factor always lies below one. 327 
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 347 
 348 

 349 
 350 

Figure S3. Noise profile for de novo synthesis-fusion-decay model. We plot the Fano factor vs mean 351 
curves by tuning de novo synthesis(kd) in (A), fusion rate constant (kfus) in (B) and decay rate constant(γ) 352 
in (C). For the two of the other parameters of the model, we keep one of them constant and take three 353 
different values of the other parameter. The values of the rate constants are – A.1) γ = 1, A.2) kfus= 10; B.1) 354 
γ = 0.1, B.2) kd = 10 ; C.1) kfus = 10, C.2) kd = 1. Different parameter values are shown in the plots. As it can 355 
be observed from the plots, fano factor A) decreases, then increases when kd is varied, B) non-linearly 356 
increases when kfus is varied and C) non-linearly decreases when γ is varied.  357 
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 373 

 374 
 375 
Figure S4. Noise profiles for organelle biogenesis when all the four mechanisms are present: We plot 376 
the fano factor vs mean curve when all the four processes (de novo synthesis, fission, fusion and decay) 377 



 29 

are involved and inspect all the cases. For the plots of one particular row, we tune one of the rate 378 
constants – de novo synthesis rate constant (kd) in the 1st row, fission rate constant (kfis) in 2nd row, fusion 379 
rate constant (kfus) in 3rd row and decay rate constant (γ) in the last row. we plot for different values of 380 
the other rate constants to check how they behave in different regimes, which gives us sets of family of 381 
curves. The values of the various rate constants are – A.1) γ = 1, kfus = 10 , A.2) γ = 1 , kfis = 10 , A.3) kfis = 382 
10, kfus  = 10. B.1) γ = 1 , kfus = 10 ,B.2) γ = 1 , kd = 1 , B.3) kd = 1 , kfus = 10. C.1) γ = 1, kfis = 10 , C.2) γ = 1, kd 383 
= 10 , C.3) kd = 1, kfis = 20. D.1) kfis = 10, kfus = 10 , D.2)  kd = 10 , kfus = 10 , D.3) kd = 1 , kfus = 10. The name 384 
and values of the rate constant that is varied to generate a particular family of curves is given in each plot. 385 
From this diagram, we can – a) observe how does the concavity/shape/slope of a curve evolves under 386 
variation of a parameter, b) differentiate and categorize the regimes where noise is greater than/less 387 
than/ equal to one. 388 
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 390 

 391 
Figure S5. We fit the data for the dnm1- vps1 double-deletion yeast strain with the de novo synthesis-392 
fusion-decay model to find the values of the individual rates. The value of the decay rate is set to one. We 393 
extract the following parameters: kfus=36.4 t-1, kd=3.45 t-1and g=1 t-1, kfis=0 t-1. To demonstrate the 394 
goodness of the fit, we have done the Kolmogorov-Smirnov test[1], a well-known tool in statistics. 395 
Kolmogorov-Smirnov test is a goodness-of-fit test with the null hypothesis H0 that the sample points have 396 
been taken from a certain probability distribution and an alternative hypothesis Hα which counters the 397 
former one. The test returns a probability value p, which, if small, denotes that the sample points have a 398 
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lesser probability of belonging to that particular distribution. Here, we use the test on the peroxisome 399 
data points with our predicted distribution, which returns a p-value of 1, suggesting that the model fits 400 
the data well. The test has been performed in Mathematica with the help of the KolmogorovSmirnovTest 401 
function. 402 
 403 
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