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Variability of neural activity is regarded as a crucial feature of healthy brain function, and several neuroimaging
approaches have been employed to assess it noninvasively. Studies on the variability of both evoked brain
response and spontaneous brain signals have shown remarkable changes with aging but it is unclear if the

fBI\SI)li‘? different measures of brain signal variability — identified with either hemodynamic or electrophysiological
EEG methods - reflect the same underlying physiology. In this study, we aimed to explore age differences of spon-
Aging taneous brain signal variability with two different imaging modalities (EEG, fMRI) in healthy younger (25 + 3

Sex years, N = 135) and older (67 + 4 years, N = 54) adults. Consistent with the previous studies, we found lower
blood oxygenation level dependent (BOLD) variability in the older subjects as well as less signal variability in the
amplitude of low-frequency oscillations (1-12 Hz), measured in source space. These age-related reductions were
mostly observed in the areas that overlap with the default mode network. Moreover, age-related increases of
variability in the amplitude of beta-band frequency EEG oscillations (15-25 Hz) were seen predominantly in
temporal brain regions. There were significant sex differences in EEG signal variability in various brain regions
while no significant sex differences were observed in BOLD signal variability. Bivariate and multivariate corre-
lation analyses revealed no significant associations between EEG- and fMRI-based variability measures. In sum-
mary, we show that both BOLD and EEG signal variability reflect aging-related processes but are likely to be
dominated by different physiological origins, which relate differentially to age and sex.

Default mode network

1. Introduction measurements (as spontaneous variations of background activity) has

been shown to provide relevant information about the brain’s functional

Functional neuroimaging methods such as fMRI, PET, fNIRS, EEG, or
MEG have allowed the non-invasive assessment of functional changes in
the aging human brain (Cabeza, 2001; Cabeza et al., 2018). Most pre-
vious functional neuroimaging studies on aging have employed a
task-based design (Grady, 2012) and in their data analysis the central
tendency has typically been assumed to be the most representative value
in a distribution (e.g., mean) (Speelman and McGann, 2013) or the
“signal” within distributional “noise”. In recent years, also the variability
of brain activation in task-dependent and task-independent

state (Garrett et al., 2013b; Grady and Garrett, 2018; Nomi et al., 2017).
These studies primarily measured the blood oxygen level dependent
(BOLD) signal using fMRI. For example, it has been demonstrated that the
variance of the task-evoked BOLD response was differentially related to
aging as well as cognitive performance (Armbruster-Genc et al., 2016;
Garrett et al., 2013a). Similarly, spontaneous signal variability in resting
state fMRI (rsfMRI) has been found to decrease with age (Grady and
Garrett, 2018; Nomi et al., 2017), in individuals with stroke (Kielar et al.,
2016), and 22q11.2 deletion syndrome (Zoller et al., 2017). An increase
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of fMRI variability has been shown to occur in inflammation induced
state-anxiety (Labrenz et al., 2018) and to parallel symptom severity in
Attention Deficit Hyperactivity Disorder (Nomi et al., 2018). From these
studies, it was concluded that changes in BOLD signal variability might
serve as an index for alterations in neural processing and cognitive
flexibility (Grady and Garrett, 2014).

The conclusions of aforementioned studies imply that BOLD signal
variability is mainly determined by neuronal variability. To a large extent,
this is based on the premise that BOLD is related to neuronal activity: The
evoked BOLD signal in task-based fMRI reflects the decrease of the
deoxyhemoglobin concentration to changes in local brain activity, which
is determined by vascular (blood velocity and volume: “neurovascular
coupling”) and metabolic (oxygen consumption: ‘“neurometabolic
coupling”) factors (Logothetis and Wandell, 2004; Villringer and Dirnagl,
1995). The BOLD signal is therefore only an indirect measure of neural
activity (Logothetis, 2008). For the variability of task-evoked BOLD
signal and for spontaneous variations of the BOLD signal, in principle, the
same considerations apply regarding their relationship to underlying
neural processes (Murayama et al., 2010). However, since in rsfMRI there
is no explicit external trigger for evoked brain activity to which
time-locked averaging could be applied, the time course of rsfMRI signals
is potentially more susceptible to contributions of “physiological noise”,
such as cardiac and respiratory signals (Birn et al., 2008; Chang et al.,
2009), but also spontaneous fluctuations of vascular tone, which is found
even in isolated arterial vessels (Failla et al., 1999; Hudetz et al., 1998;
Wang et al., 2006). In the same vein, the variability of task-evoked fMRI
is not necessarily reflecting only the variability of evoked neuronal ac-
tivity, as it may also — at least partly — reflect the variability of the
spontaneous background signal on which a constant evoked response is
superimposed.

In aging, non-neuronal signal fluctuations may also introduce
spurious common variance across the rsfMRI time series (Caballer-
o-Gaudes and Reynolds, 2017), thus confounding estimates of “neural”
brain signal variability. Previous evidence suggests that the relationship
between neuronal activity and the vascular response is attenuated with
age — and so is, as a consequence, the BOLD signal (for review see
D’Esposito et al., 2003). For instance, aging has been associated with
altered cerebrovascular ultrastructure, reduced elasticity of vessels, and
atherosclerosis (Farkas and Luiten, 2001) but also with a decrease in
resting cerebral blood flow (CBF), cerebral metabolic rate of oxygen
(CMROy), and cerebrovascular reactivity (CVR) (Liu et al., 2013). Taken
together, age-related changes in BOLD signal or BOLD signal variability
are related to a mixture of alterations in non-neural spontaneous fluc-
tuations of vascular signals, neural activity, neurovascular coupling,
and/or neurometabolic coupling (D’Esposito et al., 2003; Geerligs et al.,
2017; Tsvetanov et al., 2015).

While BOLD fMRI signal and specifically variance measures based on
fMRI are only partially and indirectly related to neural activity (Liu,
2013; Logothetis, 2008), electrophysiological methods such as EEG can
provide a more direct assessment of neural activity with a higher tem-
poral but poorer spatial resolution (Cohen, 2017). EEG measures
neuronal currents resulting from the synchronization of dendritic post-
synaptic potentials across the neural population; the cerebral EEG
rhythms thereby reflect the underlying brain neural network activity
(Steriade, 2006). Resting state (rs)EEG is characterized by spontaneous
oscillations (“brain rhythms™) at different frequencies. Previously, the
mean amplitude of low-frequency bands (e.g., delta and/or theta, 1-7
Hz) has been shown to correlate negatively with age (Vlahou et al.,
2015), while higher-frequency bands (e.g., beta, 15-25 Hz) show the
reverse pattern (Rossiter et al., 2014). However, less is known about the
within-subject variability of EEG measures and their association with
aging. Several studies have addressed the variability in the spectral am-
plitudes of different frequency bands using variance (Hawkes and Pre-
scott, 1973; Oken and Chiappa, 1988), coefficient of variation (Burgess
and Gruzelier, 1993; Maltez et al., 2004), and complexity (Fernandez
et al., 2012; Sleimen-Malkoun et al., 2015). For instance, reductions of
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the complexity in rsEEG signal have been found not only in healthy aging
(Yang et al., 2013; Zappasodi et al., 2015) but also in age-related pa-
thologies such as mild cognitive impairment (McBride et al., 2014) and
Alzheimer’s disease (Smits et al., 2016). Accordingly, it has been sug-
gested that irregular (e.g., variable) systems indicate a normal and
healthy state (more integrated information) while highly regular systems
often mark dysfunction or disease (Lipsitz and Goldberger, 1992; Vail-
lancourt and Newell, 2002).

The different methodological approaches, fMRI based “vascular” ap-
proaches on the one hand and electrophysiological methods such as EEG
and MEG, on the other hand, indicate alterations of brain signal vari-
ability with aging. However, it remains unclear whether these different
measures of brain variability at rest reflect the same underlying physio-
logical changes. Evidently, there are some correlations between the two
signal sources (for a review see, Jorge et al., 2014; Ritter and Villringer,
2006). For instance, in task-based EEG-fMRI simultaneous recordings, a
relationship between BOLD responses and amplitude of evoked poten-
tials has been demonstrated (e.g., Ritter et al., 2009; Seaquist et al.,
2007), while in resting state EEG-fMRI studies, a negative association
between spontaneous modulations of alpha rhythm and BOLD signal has
also been established (e.g., Chang et al., 2013; Goldman et al., 2002;
Gongalves et al., 2006; Moosmann et al., 2003). Further, differential
correlation patterns have been noted for the various rhythms of different
frequencies in EEG/MEG and the fMRI signal, such that low-frequency
oscillations show a negative (Deligianni et al., 2014; Mantini et al.,
2007; Meyer et al., 2013), while higher frequencies oscillations demon-
strate a positive correlation with the BOLD signal (Niessing et al., 2005;
Scheeringa et al., 2011).

Regarding the known age-related changes in BOLD and EEG signal
variability, respectively, the question arises whether these alterations are
dominated by joint signal sources of fMRI and EEG or by - potentially
different — signal contributions that relate to each of these two methods.
Given the — potentially large — non-neuronal signal contribution, this
issue is particularly relevant for rsfMRI studies. Here, we addressed this
question by analyzing rsfMRI and EEG measures of variability in healthy
younger and older subjects. To our knowledge, the only study that
compared variability in a “vascular” imaging method (rsfMRI) and an
electrophysiological method (rsMEG at the sensor space) concluded that
the effects of aging on BOLD signal variability were mainly driven by
vascular factors (e.g., heart rate variability) and not well-explained by the
changes in neural variability (Tsvetanov et al., 2015). The main aims of
the present study were to explore i) age differences of brain signal vari-
ability measures, as well as to investigate ii) how neural variability
derived from rsEEG related to the analogous parameters of BOLD signal
variability derived from rsfMRI. We used rsfMRI and rsEEG from the
“Leipzig Study for Mind-Body-Emotion Interactions” (Babayan et al.,
2019). As an exploratory analysis, we further investigated sex-related
differences of brain signal variability measures. To measure brain
signal variability, we calculated the standard deviation (SD) of both the
BOLD signal and of the amplitude envelope of the filtered rsEEG time
series for a number of standard frequency bands at the source space. We
hypothesized that brain signal variability would generally decrease with
aging. In addition, based on the premise that BOLD fMRI signal vari-
ability reflects neural variability as measured by rsEEG, we expected that
the corresponding changes in both signal modalities would demonstrate
moderate to strong similarity in their spatial distribution. Given the
confounding effects of vascular factors during aging on the fMRI signal
(D’Esposito et al., 2003; Liu, 2013; Thompson, 2018), we further ex-
pected to find the relationship between BOLD and EEG signal variability
to be stronger in younger than older adults.

2. Method
2.1. Participants

The data of the “Leipzig Study for Mind-Body-Emotion Interactions”
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(LEMON; Babayan et al., 2019) comprised 227 subjects in two age groups
(younger: 20-35, older: 59-77). Only participants who did not report any
neurological disorders, head injury, alcohol or other substance abuse,
hypertension, pregnancy, claustrophobia, chemotherapy and malignant
diseases, current and/or previous psychiatric disease or any medication
affecting the cardiovascular and/or central nervous system in a telephone
pre-screening were invited to the laboratory. The study protocol con-
formed to the Declaration of Helsinki and was approved by the ethics
committee at the medical faculty of the University of Leipzig (reference
number 154/13-ff).

RsEEG recordings were available for 216 subjects who completed the
full study protocol. We excluded data from subjects that had missing
event information (N = 1), different sampling rate (N = 3), mismatching
header files or insufficient data quality (N = 9). Based on the rsfMRI
quality assessment, we further excluded data from subjects with faulty
preprocessing (N = 7), ghost artefacts (N = 2), incomplete data (N = 1),
or excessive head motion (N = 3) (criterion: mean framewise displace-
ment (FD) < 0.5 mm; Power et al., 2014) (Supplementary Fig. 1). The
final sample included 135 younger (M = 25.10 + 3.70 years, 42 females)
and 54 older subjects (M = 67.15 + 4.52 years, 27 females).

2.2. fMRI acquisition

Brain imaging was performed on a 3T Siemens Magnetom Verio MR
scanner (Siemens Medical Systems, Erlangen, Germany) with a standard
32-channel head coil. The participants were instructed to keep their eyes
open and not fall asleep while looking at a low-contrast (light grey on
dark grey background) fixation cross.

The structural image was recorded using an MP2RAGE sequence
(Marques et al., 2010) with the following parameters: TI 1 = 700 ms, TI 2
= 2500 ms, TR = 5000 ms, TE = 2.92 ms, FA 1 = 4°, FA 2 = 5°, band-
width = 240 Hz/pixel, FOV = 256 x 240 x 176 mm?, voxel size =1x 1
x 1 mm®. The functional images were acquired using a T2*-weighted
multiband EPI sequence with the following parameters: TR = 1400 ms,
TE = 30 ms, FA = 69°, FOV = 202 mm, imaging matrix = 88 x 88, 64
slices with voxel size = 2.3 x 2.3 x 2.3 mm3, slice thickness = 2.3 mm,
echo spacing = 0.67 ms, bandwidth = 1776 Hz/Px, partial fourier 7/8,
no pre-scan normalization, multiband acceleration factor = 4, 657 vol,
duration = 15 min 30 s. A gradient echo field map with the sample ge-
ometry was used for distortion correction (TR = 680 ms, TE1 =5.19 ms,
TE 2 = 7.65 ms).

2.3. fMRI preprocessing

Preprocessing was implemented in Nipype (Gorgolewski et al., 2011),
incorporating tools from FreeSurfer (Fischl, 2012), FSL (Jenkinson et al.,
2012), AFNI (Cox, 1996), ANTs (Avants et al., 2011), CBS Tools (Bazin
et al., 2014), and Nitime (Rokem et al., 2009). The pipeline comprised
the following steps: (I) discarding the first five EPI volumes to allow for
signal equilibration and steady state, (II) 3D motion correction (FSL
mcflirt), (III) distortion correction (FSL fugue), (IV) rigid body coregis-
tration of functional scans to the individual T1-weighted image (Free-
surfer bbregister), (V) denoising including removal of 24 motion
parameters (CPAC, Friston et al., 1996), motion, signal intensity spikes
(Nipype rapidart), physiological noise in white matter and cerebrospinal
fluid (CSF) (CompCor; Behzadi et al., 2007), together with linear and
quadratic signal trends, (VI) band-pass filtering between 0.01 and 0.1 Hz
(FSL fslmaths), (VII) spatial normalization to MNI152 (Montreal Neuro-
logical Institute) standard space (2 mm isotropic) via transformation
parameters derived during structural preprocessing (ANTS). (VIII) The
data were then spatially smoothed with a 6-mm full-width half-maximum
(FWHM) Gaussian kernel (FSL fslmaths). Additionally, we calculated
total intracranial volume (TIV) of each subject using the Computational
Anatomy Toolbox (CAT12: http://dbm.neuro.uni-jena.de/cat/) running
on Matlab 9.3 (Mathworks, Natick, MA, USA) and used it as a covariate of
no interest for further statistical analyses to investigate age and sex
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differences (Malone et al., 2015). The reproducible workflows containing
fMRI preprocessing details can be found here: https://github.com/Ne
uroanatomyAndConnectivity/pipelines/releases/tag/v2.0.

BOLD Signal Variability (SDporp). Standard deviation (SD) quantifies
the amount of variation or dispersion in a set of values (Garrett et al.,
2015; Grady and Garrett, 2018). Higher SD in fMRI signal may indicate
greater intensity of signal fluctuation or an increased level of activation
in a given area (Garrett et al., 2013). We first calculated SDporp across the
whole time series for each voxel and then within 96 boundaries of pre-
selected atlas-based regions of interests (ROIs) based on the
Harvard-Oxford cortical atlas (Desikan et al., 2006). The main steps of
deriving brain signal variability (SDgorp) from the preprocessed fMRI
signal are shown in Fig. 1.

2.4. EEG recordings

Sixteen minutes of rsEEG were acquired on a separate day with
BrainAmp MR-plus amplifiers using 61 ActiCAP electrodes (both Brain
Products, Germany) attached according to the international standard
10-20 localization system (Jurcak et al., 2007) with FCz (fronto-central
or cephalic electrode) as the reference. The ground electrode was located
at the sternum. Electrode impedance was kept below 5 kQ. Continuous
EEG activity was digitized at a sampling rate of 2500 Hz and band—pass
filtered online between 0.015 Hz and 1 kHz.

The experimental session was divided into 16 blocks, each lasting 60
s, with two conditions interleaved, eyes closed (EC) and eyes open (EO),
starting with the EC condition. Changes between blocks were announced
with the software Presentation (v16.5, Neurobehavioral Systems Inc.,
USA). Participants were asked to sit comfortably in a chair in a dimly
illuminated, sound-shielded Faraday recording room. During the EO
periods, participants were instructed to stay awake while fixating on a
black cross presented on a white background. To maximize compara-
bility, only EEG data from the EO condition were analyzed, since rsfMRI
data were collected only in the EO condition.

2.5. EEG data analysis

EEG processing and analyses were performed with custom Matlab
(The MathWorks, Inc, Natick, Massachusetts, USA) scripts using func-
tions from the EEGLAB environment (version 14.1.1b; Delorme and
Makeig, 2004). The continuous EEG data were down-sampled to 250 Hz,
band-pass filtered within 1-45 Hz (4th order back and forth Butterworth
filter) and split into EO and EC conditions. Segments contaminated by
large artefacts due to facial muscle tensions and gross movements were
removed following visual inspection, resulting in a rejection of on
average 6.6% of the recorded data. Rare occasions of artifactual channels
were excluded from the analysis. The dimensionality of the data was
reduced using principal component analysis by selecting at least 30
principal components explaining 95% of the total variance. Next, using
independent component analysis (Infomax; Bell and Sejnowski, 1995),
the confounding sources e.g. eye-movements, eye-blinks, muscle activity,
and residual ballistocardiographic artefacts were rejected from the data.

2.6. EEG source reconstruction

Before conducting source reconstruction, preprocessed EEG signals
were re-referenced to a common average. We incorporated a standard
highly detailed finite element method (FEM) volume conduction model
as described by Huang et al. (2016).

The geometry of the FEM model was based on an extended MNI/
ICBM152 (International Consortium for Brain Mapping) standard anat-
omy, where the source space constrained to cortical surface and parceled
to 96 ROIs based on the Harvard-Oxford atlas (Desikan et al., 2006). We
used eLORETA (exact low resolution brain electromagnetic tomography)
as implemented in as implemented in as implemented in the M/EEG
Toolbox of Hamburg (METH; Haufe and Ewald, 2016; Pascual-Marqui,
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Fig. 1. Main steps of deriving brain signal variability from the preprocessed resting state fMRI and EEG signal. We calculated the standard deviation of the blood
oxygen level dependent (BOLD) signal and of the coarse-grained amplitude envelope of the rsEEG time series for a number of standard frequency bands at the source
space. Each sample of coarse-grained amplitude envelope of the rsEEG (represented in numbers) is generated by averaging the samples in non-overlapping windows of

length 0.5 s.

2007) to compute the cortical electrical distribution from the scalp EEG
recordings. The leadfield matrix was calculated between 1804 points
located on the cortical surface to the 61 scalp electrodes. We filtered into
several frequency bands, associated with brain oscillations: delta (1-3
Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (15-25 Hz). Following the
singular value decomposition (SVD) of each voxel’s three-dimensional
time course, the dominant orientation of the source signal was identi-
fied by preserving the first SVD component. The amplitude envelope of
filtered oscillations was extracted using the Hilbert transform (Rose-
nblum et al., 2001). Next, we applied temporal coarse graining by
averaging data points in non-overlapping windows of length 0.5 s
(Fig. 1).

EEG Variability (SDggg). We calculated the SD of amplitude envelope
of band-pass filtered oscillations on the coarse-grained signal. RSEEG
signal variability (SDggg) was obtained for different frequency bands
(SDDELTAy SDTHETA’ SDALPHA; SDBETA) in each of 96 ROIs. Further, in our
study we investigated variability in the amplitude of oscillatory signals
from one time segment to the other. If amplitude (or power) of each
signal stays the same, the variability (SD) in the amplitude of such seg-
ments will be zero. Therefore, the average amplitude of a signal is not
indicative of its variability. Although amplitude and its standard devia-
tion mathematically are different, they can show some correlation due to
size effects (Immer, 1937).

Main steps toward deriving brain signal variability from the pre-
processed EEG signal are shown in Fig. 1. The raw and preprocessed fMRI
and EEG data samples can be found at https://ftp.gwdg.de/pub/misc/
MPI-Leipzig Mind-Brain-Body-LEMON/

2.7. Statistical analyses

Mean SDporp and SDggg. For the topographic information (based on
ROIs), the mean BOLD and EEG variability were calculated by I) log-
transforming the SD values, II) averaging separately for younger and
older subjects, and III) then back-transforming the values (McDonald,
2014).

Age and Sex Effects. A series of non-parametric analyses of covariance
(ANCOVAs, type IITI) were applied to brain signal variability values in

each 96 ROIs for SDporp and SDggg using age group and sex as variables
of interest, adjusting for TIV and mean FD. The significance level was
controlled for using false discovery rate (FDR) correction according to
Benjamini and Hochberg (1995). Significant group differences were
further examined by Tukey HSD post-hoc comparisons. The signal vari-
ability values were log-transformed to normalize SDporp and SDggg
before further analyses (assessed by Lilliefors tests at a significance
threshold of 0.05). All analyses were performed using the aovp function
in the Imperm package (Wheeler, 2016) as implemented in R (R core
team, 2018).

SDporp — SDggg Correlation. To investigate the association between
each ROI of SDporp and SDggg, we used pairwise Spearman’s rank cor-
relation separately for younger and older subjects, corrected for FDR (96
ROIs). We further applied sparse canonical correlation analysis (CCA) to
show that the relationship between SDgorp and SDggg is not missed when
only mass bivariate correlations are used. CCA is a multivariate method
to find the independent linear combinations of variables such that the
correlation between variables is maximized (Witten et al., 2009). The
sparse CCA criterion is obtained by adding a Lasso Penalty function (l;),
which performs continuous shrinkage and automatic variable selection
and can solve statistical problems such as multicollinearity and over-
fitting (Tibshirani, 2011). We used [; penalty as the regularization
function to obtain sparse coefficients, that is, the canonical vectors (i.e.,
translating from full variables to a data matrix’s low-rank components of
variation) will contain exactly zero elements. Sparse CCA was performed
using the R package PMA (Penalized Multivariate Analysis; Witten et al.,
2009; http://cran.r-project.org/web/packages/PMA/). In our analyses,
the significance of the correlation was estimated using the permutation
approach (N = 1000) as implemented in the CCA.permute function in R
(Pperm<0.05).

Cognition. The Trail Making Test (TMT) is a cognitive test measuring
executive function, including processing speed and mental flexibility
(Reitan, 1955; Reitan and Wolfson, 1995). In the first part of the test
(TMT-A) the targets are all numbers, while in the second part (TMT-B),
participants need to alternate between numbers and letters. In both
TMT-A and B, the time to complete the task quantifies the performance,
and lower scores indicate better performance. To reduce the number of
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multiple comparisons (Nguyen and Holmes, 2019), we implemented
principal component analysis using SVD. More precisely, brain signal
variability estimates (SDgorp, and SDggg) in all ROIs (n = 96) were
decomposed into singular values using the prcomp function belonging to
factoextra package (R core team, 2018), which performs SVD on the
centered values. As a criterion, the minimum total variance explained
over 70% was selected (Jollife and Cadima, 2016). This resulted in four
principal components (PCs) in SDgorp (57.54%, 5.96%, 5.34%, 3.61%),
two PCs in SDpgrta (54.36%, 17.38%), two PCs in SDrygra (65.60%,
11.03%), one PC in SDaipna (74.58%), and two PCs in SDggra (54.81%,
13.80%). We further ran multiple linear regression using task completion
time in TMT-A and TMT-B as the dependent variables with the PCs scores
(for SDpoLp, and SDggg) and their interaction with continuous age as
independent variables. Since the residuals from the regression models
fitted to the data were not normally distributed, the TMT values were
log-transformed prior to the final analyses. These tests were conducted
using the Imp function in Imperm package implemented in R (R core team,
2018).

3. Results

Mean SDgorp and SDggg. The topographic distribution of SDggp in
younger adults revealed the largest brain signal variability values in
fronto-temporal regions while in older adults it was in the frontal and
occipital areas. Further, we found strongest variability across younger
subjects in occipito-temporal regions for SDpgrTa, SDTHETA, SDALPHA, and
in medial frontal brain regions for SDggras, While older adults showed
strongest brain signal variability in the fronto-central brain regions for
SDpEgLTA, in parietal-central brain regions for SDrygra, SDaLPHA, and in
medial frontal brain regions for SDggra. The details of the mean values of
SDporp and SDggg across age groups and their topographic distributions
are given in Supplementary Table 1, Supplementary Figs. 2 and 3, and are
also available at Neurovault (https://neurovault.org/collections/
WWOKVUDV/).

Q
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Age and Sex Effects. The nonparametric ANCOVAs with SDgorp as
dependent variable demonstrated that there was a significant main effect
of age group in 72 ROIs in frontal, temporal, and occipital brain regions
(F-values: 13.32-61.14; Fig. 2). However, there was no significant main
effect of sex on SDporp and no significant interaction between age group
and sex (all pppr>0.05). Tukey HSD post-hoc analyses showed that older
subjects had decreased SDgop compared to younger adults which were
presented in both sexes (ngo; = 35).

The nonparametric ANCOVAs with SDggg as dependent variable
showed significant main effects of age group in all frequency bands:
SDpgrtA in 14 ROIs in occipital (F-values: 12.57-20.94), SDygra in 16
ROIs in frontal and parietal (F-values: 13.16-40.30), SDarpua in 20 ROIs
in occipital (F-values: 12.69-20.12), and SDggra in 19 ROIs in central and
temporal brain regions (F-values: 12.50-21.61), as shown in Fig. 2. There
were also significant main effects of sex in all frequency bands: SDpgTA
in 21 ROIs in temporal and occipital (F-values: 13.24-26.63), SDrygta in
74 ROIs in frontal, occipital, and temporal (F-values: 12.68-30.06),
SDarpHa in 4 ROIs in frontal (F-values: 12.88-16.51), and SDggta in 69
ROIs in temporal, occipital, and central brain regions (F-values:
12.54-35.72), as shown in Fig. 3. No significant interaction effects be-
tween age group and sex on SDggg were observed in any frequency band
(prpr>0.05). Tukey HSD post-hoc analyses on SDggg showed that older
subjects had less brain signal variability, which was present in both sexes
for SDpgrTA (MROI = 12), SDTHETA (NROI = 10), and SDarpHa (nror = 11).
Additionally, older adults showed higher SDggra, driven by female sub-
jects (npor = 15). With regard to sex differences, post-hoc analyses
showed that females had higher SDpgrTa, SDTHETA, SDALPHA, @and SDggra
than males. Sex differences in SDpgrra (Nror = 13) and SDygra (NROT =
54) were mostly pronounced in younger adults, while the effect of sex in
SDggra (NROI = 21) Were mainly presented in older adults (p < 0.05). The
graphical distribution of the F-values for the significant effects of age
group or sex for each ROIs are shown in Supplementary Fig. 4. Additional
information of SDporp and SDggg for each frequency band and for each of
the 96 ROIs, split up by age group and sex, are presented in the

F
12.57

40.30

Fig. 2. Spatial maps of significant age group differences in SDporp and SDggg. We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD)
signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (15-25 Hz) frequency
bands at the source space. Statistical significance was determined using nonparametric ANCOVAs corrected for multiple comparisons by false discovery rates (FDR;
Benjamini and Hochberg, 1995). Blue color indicates areas where brain signal variability was lower in older than in younger adults, while red color indicates

the opposite.
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Fig. 3. Spatial maps of significant sex differences in SDporp and SDggg. We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD) signal
and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (15-25 Hz) frequency bands at
the source space. Statistical significance was determined using nonparametric ANCOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini
and Hochberg, 1995). Yellow color indicates areas where brain signal variability was higher in female subjects as compared to male subjects in EEG.

Supplementary Tables 2-6

SDgoLp — SDggg Correlation. The correlation coefficient of pairwise
associations for 96 ROIs of SDBOLD with SDDELTA, SDTHETA, SDALPHA, and
SDggra ranged in younger adults from rho = —0.200 to rho = 0.223
(Supplementary Table 7) and in older adults from rho = 0.386 to rho =
0.349 (Supplementary Table 8), as shown in Fig. 4. None of the pairwise
associations between SDporp and SDggg remained significant after the
correction for multiple comparison corrections. Confirmatory multivar-
iate sparse CCA further showed that correlations between SDgorp and
SDggg across all subjects were rather low, highly sparse, and non-
significant (SDpgrra; r = 0.145, Pperm = 0.750, I; = 0.367; SDTHETA; T

A) Younger Adults (N=135)

Density

0.6 03 0.0 03 0.6
Correlation Coefficient (rho)

= 0.143, Pperm = 0.713 11 = 0.7; SDALPHA; r= 0.153, Pperm = 0.528, l] =
0.1; SDggTa; T = 0.232, Pperm = 0.096, I; = 0.633).

Cognition. There was a significant effect of SDgorp in PC3 on the TMT-
A performance (adjusted R? = 0.263, F(9,179) = 8.455, p < .001, p =
—0.026, p = 0.0143) and significant interaction between age and SDgorp
in PC3 on the TMT-B performance (adjusted R?> = 0.395, F(9,179) =
15.05, p < .001, interaction: p = —0.001, p = 0.029). For older, but not
younger participants, stronger SDporp was associated with faster
completion time in PC3 (Fig. 5A), driven mainly by the bilateral cuneal
and lingual cortex, left medial frontal cortex, and bilateral temporal
cortex (middle and inferior part). We further found significant

B) Older Adults (N=54)

6

Density

0.6 0.3 0.0 03 0.6
Correlation Coefticient (rho)

[CIDELTA [JTHETA [JALPHA [JBETA

Fig. 4. Distribution of correlation coefficients (rho) for the association between SDgorp and SDggg for A) younger (N = 135) and B) older (N = 54) adults for different
frequency bands across each pair of 96 regions of interests. The correlations between SDporp and SDgrg were tested using pairwise Spearman’s rank correlation
corrected for multiple comparison by false discovery rates (FDR; Benjamini and Hochberg, 1995).
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Fig. 5. Age-dependent relationship between cognitive performance using Trail Making Test (TMT) and brain signal variability measures obtained with resting state

fMRI and EEG.

The scatterplots show A) the significant interaction between age and SDgorp (x-axis) in principal component 3 with contributions from the temporal, occipital, and
frontal cortices, and B) age and SDtygra (x-axis) in principal component 1 with contributions mainly from the right temporal cortex on the task completion time in

TMT-B (y-axis).

interaction between age and SDrygra in PC1 on the TMT-B performance
(adjusted R? = 0.421, F(5,183) = 26.64, p < .001, interaction: f =
—0.0002, p = 0.046). Similarly, this effect was driven by older adults in
PC1 (Fig. 5B), that was mainly composed of right temporal cortex (right
insula, parahippocampal gyrus, temporal fusiform, and inferior temporal
gyrus). Finally, we observed significant effect of SDggT4 in PC1 (driven by
central brain regions) on the TMT-B performance (adjusted R? = 0.275,
F(5,183) = 13.90, p < .001, p = 0.007, p = 0.04). However, the
regression analyses in SDpgrta, and SDarppa did not show a significant
association between cognition and brain signal variability measures. The
contributions of all ROIs (n = 96) to the PCs resulted from SVD analyses
separately for SDgop and SDggg can be found in Supplementary Table 9.
The complete multiple linear regression results can be found in Supple-
mentary Table 10.

4. Discussion

Comparing healthy younger and older adults, we found widespread
variability reductions in BOLD signal as well as in the amplitude envelope
of delta, theta, and alpha frequency of rsEEG, whereas increased vari-
ability with aging was observed in the beta-band frequency. As a com-
plementary analysis, we also explored sex differences and found that
female subjects exhibited higher EEG signal variability than male sub-
jects; no significant sex differences were found in BOLD signal variability.
There were no significant correlations between hemodynamic (SDgorp)
and electrophysiological (SDggg) measures of brain signal variability,
neither in the younger nor in the older adults. Our results suggest that
variability measures of rsfMRI and rsEEG — while both related to aging —
are dominated by different physiological origins and relate differently to
age and sex.

4.1. BOLD signal variability

The first aim of our study was to investigate the effect of age on BOLD
signal variability, as measured by SD of spontaneous fluctuations during
rsfMRI. Consistent with recent rsfMRI studies demonstrating that BOLD
signal variability decreases with age in large-scale networks (Grady and
Garrett, 2018; Nomi et al., 2017), we found that older subjects had
reduced SDporp in temporal and occipital brain regions but also in
cortical midline structures like the precuneus, anterior and posterior
cingulate cortices, as well as orbitofrontal cortex compared to younger
adults. These age-related reductions in BOLD signal variability were thus
especially apparent in regions of the Default Mode (DMN) and the
Fronto-Parietal Network (FPN). The DMN is an intrinsically correlated

network of brain regions, that is particularly active during rest or fixation
blocks (Biswal et al., 2010). It reflects the systematic integration of in-
formation across the cortex (Margulies et al., 2016) and has been
frequently associated with psychological functions like self-referential
thought or mind-wandering, and also memory retrieval (Andrew-
s-Hanna et al., 2014; Raichle, 2015). The FPN is involved in cognitive
control processes (Spreng et al., 2013), and closely interacts with the
DMN, for example during mind-wandering state (Golchert et al., 2017).
Previous studies in healthy aging noted that older subjects showed lower
functional connectivity in DMN and FPN regions (Damoiseaux, 2017;
Damoiseaux et al., 2008; Meunier et al., 2009; Petersen et al., 2014).
Similarly, an altered functional connectivity in the DMN has been found
in different pathologies, for example, in Alzheimer’s disease (Greicius
et al., 2004) or mild cognitive impairment (Das et al., 2015). Further, we
found a significant interaction between age and SDporp in temporal,
occipital, and frontal cortices for performance on the cognitive task
(TMT-B), suggesting that the relationship between brain signal vari-
ability and cognitive performance depends on the participants’ age. We
speculate that — in the elderly — reduced BOLD signal variability in the
DMN and the FPN, particularly in the overlapping frontal brain regions,
could be related to locally impaired function that is reflected in impaired
cognitive performance (Campbell et al., 2012). Such findings support the
notion that local BOLD signal variability may be a valuable biomarker of
neurocognitive health (and disease) in aging.

Sex-specific differences in brain structure and function have been
previously shown (for a review see, Gong et al., 2011; Ruigrok et al.,
2014; Sacher et al., 2013). For example, larger total brain volume has
been reported in male as compared to female subjects (Gong et al., 2011),
whereas higher cerebral blood flow (Gur et al., 1982; Rodriguez et al.,
1988) and stronger functional connectivity in the DMN (Tomasi and
Volkow, 2012) were found in females. In our exploratory analysis, we did
not find significant sex differences in BOLD signal variability when
controlling for total intracranial volume as an approximation of overall
brain size.

4.2. Electrophysiological signal variability

Measures of neural variability were derived from rsEEG for several
main frequency bands (delta, theta, alpha, beta) as the standard deviation
of their amplitude of envelope time series data, analogously to the BOLD
signal variability. Multimodal imaging studies have shown that the
amplitude envelope of neural oscillatory activity across frequency bands
relates to different rsfMRI networks (Brookes et al., 2011; Deligianni
et al., 2014), confirming the neurophysiological origin of the resting state
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networks measured with BOLD fMRI. Additionally, these studies also
concluded that different frequency bands can be related to the same
functional network, but also differentially to distinct networks (Brookes
et al., 2011; Laufs et al., 2006; Mantini et al., 2007; Meyer et al., 2013).
For instance, Mantini et al. (2007) reported that the visual network is
associated with all frequency bands except gamma rhythm, while the
sensorimotor network is primarily associated with beta-band oscillations.

In our analysis, we found age-dependent EEG signal variability
changes within networks which were associated with more than one
frequency band, thus confirming that neurons generating oscillations at
different frequencies may contribute to the same network. More pre-
cisely, we found age-related reductions in SDpgr1s and SDarppa mainly in
a visual network (including calcarine regions, cuneal cortex, and occip-
ital pole), SDtygra in posterior DMN (e.g., posterior cingulate cortex),
while an enhancement of SDggrs Was mainly seen in the temporal (e.g.,
superior/middle temporal gyrus), and central/sensorimotor (e.g.,
supramarginal gyrus) regions. These results align with previous reports
of age-dependent changes of electrophysiological activity using spectral
power (Dustman et al., 1993; Vlahou et al., 2015), and signal variability
(Dustman et al., 1999; Tsvetanov et al., 2015).

Age-related decreases of alpha amplitude and alpha band variability
(measured by SD of the oscillatory signal) were previously found in
posterior and occipital brain regions (Babiloni et al., 2006; Tsvetanov
et al., 2015). Alpha rhythm is a classical EEG hallmark of resting wake-
fulness (Laufs et al., 2003) that is modulated by thalamo-cortical and
cortico-cortical interactions (Bazanova and Vernon, 2014; Goldman
et al., 2002; Lopes Da Silva et al., 1997; Moosmann et al., 2003). It has
been suggested that the posterior alpha-frequency plays an important
role in the top-down control of cortical activation and excitability (Kli-
mesch, 1999). Accordingly, decreased alpha variability in occipital re-
gions might be associated with altered functioning of the cholinergic
basal forebrain, affecting thalamo-cortical and cortico-cortical process-
ing. Our finding of higher temporal and sensorimotor SDggra in the
elderly is in line with previous findings (Rossiter et al., 2014; Tsvetanov
et al., 2015). Aging has previously been associated with an increase in
movement-related beta-band attenuation, suggesting an enhanced motor
cortex GABAergic inhibitory activity in older individuals (Rossiter et al.,
2014). Similarly, beta-band activity is thought to play a key role in
signaling maintenance of the status quo of the motor system, despite the
absence of movement (Engel and Fries, 2010). Therefore, greater SDggra
in sensorimotor brain regions could be interpreted as a compensatory
mechanism to account for a decline of motor performance during aging
(Quandt et al., 2016).

It should be noted that the present findings of age-related alterations
of brain signal variability at different frequencies might be influenced by
several anatomical factors which might influence EEG-generators such as
reduced cortical grey matter (Babiloni et al., 2013; Moretti et al., 2012),
white-matter (Nunez et al., 2015; Valdés-Hernandez et al., 2010), and
increased amount of cerebrospinal fluid (CSF; Hartikainen et al., 1992;
Stomrud et al., 2010), but also alterations of cerebral glucose metabolism
(Dierks et al., 2000). Localized or global disturbances of brain anatomy
and function might lead to deviations in the EEG sources, resulting in
EEG amplitude changes. A methodological improvement for future
studies will therefore be the application of individual head models
(Ziegler et al., 2014).

In addition to the effect of age on rsEEG signal variability, an
exploratory analysis showed sex differences in distinct brain regions and
EEG frequencies. More precisely, we found higher SDpg;1p and SDrygTa
in occipito-temporal, SDa1pya in frontal, and SDpgra in frontal as well as
occipito-temporal brain regions in female compared to male subjects.
While some studies demonstrated higher alpha (Aurlien et al., 2003),
delta (Armitage, 1995), theta (Carrier et al., 2001; Duffy et al., 1993),
and beta power (Jausovec and Jausovec, 2010; Matsuura et al., 1985;
Veldhuizen et al., 1993) in female relative to male subjects, other studies
reported the opposite pattern (Brenner et al., 1995; Latta et al., 2005;
Zappasodi et al., 2006). These differences in EEG signal variability could
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be a result of different mechanisms (biological/hormonal, cultural or
developmental) involved in shaping sex differences. Unfortunately,
based on our dataset we cannot differentiate which of these potential
mechanisms might be most relevant for the observed changes.

4.3. Association between BOLD and EEG variability

We further assessed how neural variability in source-reconstructed
rsEEG related to the analogous parameters of BOLD signal variability
in rsfMRI using univariate and multivariate correlation analyses. Previ-
ously, simultaneous EEG-fMRI studies have shown meaningful relation-
ships between fluctuations in EEG power, frequency, phase, and local
BOLD changes (for a review see, Jorge et al., 2014; Ritter and Villringer,
2006). Due to age-related physiological (particularly cardiovascular) al-
terations in the brain, we expected the relationship between BOLD and
EEG signal variability to be stronger in younger than older adults.
However, in the present study, both univariate and multivariate analyses
showed no significant correlations between SDgoyp and SDggg neither in
the younger nor in the older adults. This finding was supported by the
distinct anatomical distributions of age-related changes in BOLD and EEG
signal variability, that barely showed a spatial overlap, suggesting
different underlying physiological processes. What could they be?
Clearly, neuronal activity is the main signal source for EEG- and MEG
recordings as well as for EEG/MEG-based variability measures. BOLD
signal variability, however, can reflect both vascular and neural pro-
cesses (Garrett et al., 2017). While neuronal activity clearly contributes
to the BOLD signal at rest (Ma et al., 2016; Mateo et al., 2017), our results
indicate, however, that neuronal activity which is captured by EEG (or
more specifically by our EEG-based measures), is not the major deter-
minant of BOLD variability in the resting state. Other factors that could
contribute to BOLD variability are (i) neuronal activity which is not
captured by EEG and (ii) non-neural factors such as vasomotion, or car-
diac and respiratory signals (Murphy et al., 2013). In the elderly, addi-
tional factors related to the known morphological and functional changes
of blood vessels as well as age-related metabolic changes are known to
affect CBF (Ances et al., 2009; Martin et al., 1991), CMRO, (Aanerud
et al., 2012), and CVR (Liu et al., 2013) and therefore are likely to also
influence BOLD variability. Thus, given different underlying physiology,
joint EEG and fMRI variability studies might provide complementary
information for a comprehensive assessment of neuronal as well as
vascular factors related to aging.

5. Limitations

There are several limitations of our study: EEG and MRI scans were
not recorded simultaneously. Therefore, we could not directly relate the
two signals in a cross-correlation analysis. Furthermore, EEG and MRI
were performed with different body postures (fMRI; supine, EEG; seated)
known to affect brain function, for example, changes in the amplitude of
the EEG signal have been related to different body postures presumably
due to the shifts in cerebrospinal fluid layer thickness (Rice et al., 2013).
Similarly, other experimental (e.g., visual display; Nir et al., 2006),
environmental (e.g., acoustic noise in MRI; Andoh et al., 2017; Cho et al.,
1998) and subject-related factors (e.g., changes of vigilance; Tagliazucchi
and Laufs, 2014; Wong et al., 2013) could have introduced unintended
variations in our results (Yan et al., 2013) and the influence of these
factors is probably not the same for the different methods, e.g., noise in
MRI or poor “control” of vigilance in MRI. For instance, given the
well-known relationship between vigilance or arousal and fMRI signal
fluctuations (Bijsterbosch et al., 2017; Chang et al., 2016; Haimovici
etal., 2017), it is likely that the observed age-related differences in BOLD
signal variability might be confounded by such within-subject (state)
variability. Therefore, future rsfMRI studies may benefit from obtaining
arousal-related (e.g., self-report) measures and an explicit measurement
of eye movements and eye opening/closure to account for the influence
of arousal on the BOLD amplitude changes. Another option would be to
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combine EEG and fMRI simultaneously. Yet, resting state measures of
EEG (Napflin et al., 2007) and fMRI (Shehzad et al., 2009; Zuo et al.,
2010) have been shown to be reliable within-individuals across time.

In our study, the computation of the source reconstructed rsEEG
required the parcellation of the brain into relatively large anatomical
ROIs. It could well be that the analysis with a higher spatial resolution
(e.g., at the voxel-level) with individual head models may provide
additional insights about brain signal variability.

Finally, while our study aimed at comparing analogous variability
measures in EEG and fMRI, future research using rsEEG and rsfMRI in the
same subjects would benefit from the addition of connectivity-based
measures including graph theory-based (Yu et al., 2016) or
sliding-window methods (Chang et al., 2013; Qin et al., 2019).

6. Conclusion

In this study, we report age and sex differences of brain signal vari-
ability obtained with rsfMRI and rsEEG from the same subjects. We
demonstrate extensive age-related reduction of SDporp, SDpgrra,
SDtHETA, and SDappya mainly in the DMN and the visual network, while a
significant increase of SDggra Was mainly seen in temporal brain regions.
We could not demonstrate significant associations between SDgorp and
SDggg. Our findings indicate that measurements of BOLD and EEG signal
variability, respectively, are likely to stem from different physiological
origins and relate differentially to age and sex. While the two types of
measurements are thus not interchangeable, it seems, however, plausible
that both markers of brain variability may provide complementary in-
formation about the aging process.
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