BOLD and EEG Signal Variability at Rest Differently Relate to Aging in the Human Brain

D. Kumral^{1,2}, F. Şansal^{3,1}, E. Cesnaite¹, K. Mahjoory^{1,4}, E. Al^{2,1}, M. Gaebler^{1,2}, V. V. Nikulin^{1,5,6}, A. Villringer^{1,2,7,8}

¹Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ²MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany ³International Graduate Program Medical Neurosciences, Charité-Universitätsmedizin, Berlin, Germany

⁴Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany

⁵Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Berlin, Germany

⁶Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation

⁷Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany ⁸Department of Cognitive Neurology, University Hospital Leipzig

Corresponding author: Deniz Kumral, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany. Email: <u>dkumral@cbs.mpg.de</u>

Abbreviations: BOLD – Blood Oxygenation Level Dependent; CBF – cerebral blood flow; CBV– cerebral blood volume; CCA – canonical correlation analysis; CMRO₂– cerebral metabolic rate of oxygen; CVR – cerebrovascular reactivity; DMN – Default Mode Network; EEG – electroencephalography; EC – eyes closed; EO – eyes open; framewise displacement – FD; FDR - false discovery rate; FEM – finite element method; fMRI – functional Magnetic Resonance Imaging; fNIRS – functional Near-Infrared Spectroscopy; FWHM – full-width half-maximum; ICBM – International Consortium for Brain Mapping; MEG – magnetoencephalography; MNI – Montreal Neurological Institute; rho – Spearman's rank correlation coefficient; PET –Positronemission tomography; ROI – regions of interests; rs – resting state; SD – standard deviation; SVD – Singular Value Decomposition; TIV–Total Intracranial Volume Abstract

1

2 Variability of neural activity is regarded as a crucial feature of healthy brain function, and 3 several neuroimaging approaches have been employed to assess it noninvasively. Studies on 4 the variability of both evoked brain response and spontaneous brain signals have shown 5 remarkable changes with aging but it is unclear if the different measures of brain signal 6 variability – identified with either hemodynamic or electrophysiological methods – reflect the 7 same underlying physiology. In this study, we aimed to explore age differences of 8 spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in 9 healthy younger (25±3 years, N=135) and older (67±4 years, N=54) adults. Consistent with 10 the previous studies, we found lower blood oxygenation level dependent (BOLD) variability 11 in the older subjects as well as less signal variability in the amplitude of low-frequency 12 oscillations (1–12 Hz), measured in source space. These age-related reductions were mostly 13 observed in the areas that overlap with the default mode network. Moreover, age-related 14 increases of variability in the amplitude of beta-band frequency EEG oscillations (15–25 Hz) 15 were seen predominantly in temporal brain regions. There were significant sex differences in 16 EEG signal variability in various brain regions while no significant sex differences were 17 observed in BOLD signal variability. Bivariate and multivariate correlation analyses revealed 18 no significant associations between EEG- and fMRI-based variability measures. In summary, 19 we show that both BOLD and EEG signal variability reflect aging-related processes but are 20 likely to be dominated by different physiological origins, which relate differentially to age 21 and sex.

Keywords: brain signal variability, resting state, BOLD, fMRI, EEG, aging, sex, default
 mode network

24 1. Introduction 25 Functional neuroimaging methods such as fMRI, PET, fNIRS, EEG, or MEG have 26 allowed the non-invasive assessment of functional changes in the aging human brain (Cabeza, 27 2001; Cabeza et al., 2018). Most previous functional neuroimaging studies on aging have 28 employed a task-based design (Grady, 2012) and in their data analysis the central tendency 29 has typically been assumed to be the most representative value in a distribution (e.g., mean) 30 (Speelman and McGann, 2013) or the "signal" within distributional "noise". In recent years, 31 also the variability of brain activation in task-dependent and task-independent measurements 32 (as spontaneous variations of background activity) has been shown to provide relevant 33 information about the brain's functional state (Garrett et al., 2013b; Grady and Garrett, 2018; 34 Nomi et al., 2017). These studies primarily measured the blood oxygen level dependent 35 (BOLD) signal using fMRI. For example, it has been demonstrated that the variance of the 36 task-evoked BOLD response was differentially related to aging as well as cognitive 37 performance (Armbruster-Genc et al., 2016; Garrett et al., 2013a). Similarly, spontaneous 38 signal variability in resting state fMRI (rsfMRI) has been found to decrease with age (Grady 39 and Garrett, 2018; Nomi et al., 2017), in individuals with stroke (Kielar et al., 2016), and 40 22q11.2 deletion syndrome (Zöller et al., 2017). An increase of fMRI variability has been 41 shown to occur in inflammation induced state-anxiety (Labrenz et al., 2018) and to parallel 42 symptom severity in Attention Deficit Hyperactivity Disorder (Nomi et al., 2018). From these 43 studies, it was concluded that changes in BOLD signal variability might serve as an index for 44 alterations in neural processing and cognitive flexibility (Grady and Garrett, 2014). 45 The conclusions of aforementioned studies imply that BOLD signal variability is

mainly determined by *neuronal* variability. To a large extent, this is based on the premise that 46 47 BOLD is related to neuronal activity: The evoked BOLD signal in task-based fMRI reflects 48 the decrease of the deoxyhemoglobin concentration to changes in local brain activity, which is 49 determined by vascular (blood velocity and volume: "neurovascular coupling") and metabolic 50 (oxygen consumption: "neurometabolic coupling") factors (Logothetis and Wandell, 2004; 51 Villringer and Dirnagl, 1995). The BOLD signal is therefore only an indirect measure of 52 neural activity (Logothetis, 2008). For the variability of task-evoked BOLD signal and for 53 spontaneous variations of the BOLD signal, in principle, the same considerations apply 54 regarding their relationship to underlying neural processes (Murayama et al., 2010). However, 55 since in rsfMRI there is no explicit external trigger for evoked brain activity to which time-56 locked averaging could be applied, the time course of rsfMRI signals is potentially more 57 susceptible to contributions of "physiological noise", such as cardiac and respiratory signals

(Birn et al., 2008; Chang et al., 2009), but also spontaneous fluctuations of vascular tone,
which is found even in isolated arterial vessels (Failla et al., 1999; Hudetz et al., 1998; Wang
et al., 2006). In the same vein, the variability of task-evoked fMRI is not necessarily
reflecting only the variability of evoked neuronal activity, as it may also – at least partly –
reflect the variability of the spontaneous background signal on which a constant evoked
response is superimposed.

64 In aging, non-neuronal signal fluctuations may also introduce spurious common 65 variance across the rsfMRI time series (Caballero-Gaudes and Reynolds, 2017), thus 66 confounding estimates of "neural" brain signal variability. Previous evidence suggests that the 67 relationship between neuronal activity and the vascular response is attenuated with age – and 68 so is, as a consequence, the BOLD signal (for review see D'Esposito et al., 2003). For 69 instance, aging has been associated with altered cerebrovascular ultrastructure, reduced 70 elasticity of vessels, and atherosclerosis (Farkas and Luiten, 2001) but also with a decrease in 71 resting cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO₂), and 72 cerebrovascular reactivity (CVR) (Liu et al., 2013). Taken together, age-related changes in 73 BOLD signal or BOLD signal variability are related to a mixture of alterations in non-neural 74 spontaneous fluctuations of vascular signals, neural activity, neurovascular coupling, and/or 75 neurometabolic coupling (D'Esposito et al., 2003; Geerligs et al., 2017; Tsvetanov et al., 76 2015).

77 While BOLD fMRI signal and specifically variance measures based on fMRI are only 78 partially and indirectly related to neural activity (Liu, 2013; Logothetis, 2008), 79 electrophysiological methods such as EEG can provide a more direct assessment of neural 80 activity with a higher temporal but poorer spatial resolution (Cohen, 2017). EEG measures 81 neuronal currents resulting from the synchronization of dendritic postsynaptic potentials 82 across the neural population; the cerebral EEG rhythms thereby reflect the underlying brain 83 neural network activity (Steriade, 2006). Resting state (rs)EEG is characterized by 84 spontaneous oscillations ("brain rhythms") at different frequencies. Previously, the mean 85 amplitude of low-frequency bands (e.g., delta and/or theta, 1-7 Hz) has been shown to 86 correlate negatively with age (Vlahou et al., 2015), while higher-frequency bands (e.g., beta, 87 15-25 Hz) show the reverse pattern (Rossiter et al., 2014). However, less is known about the 88 within-subject variability of EEG measures and their association with aging. Several studies 89 have addressed the variability in the spectral amplitudes of different frequency bands using 90 variance (Hawkes and Prescott, 1973; Oken and Chiappa, 1988), coefficient of variation 91 (Burgess and Gruzelier, 1993; Maltez et al., 2004), and complexity (Fernández et al., 2012;

Sleimen-Malkoun et al., 2015). For instance, reductions of the complexity in rsEEG signal
have been found not only in healthy aging (Yang et al., 2013; Zappasodi et al., 2015) but also
in age-related pathologies such as mild cognitive impairment (McBride et al., 2014) and
Alzheimer's disease (Smits et al., 2016). Accordingly, it has been suggested that irregular
(e.g., variable) systems indicate a normal and healthy state (more integrated information)
while highly regular systems often mark dysfunction or disease (Lipsitz and Goldberger,
1992; Vaillancourt and Newell, 2002).

99 The different methodological approaches, fMRI based "vascular" approaches on the 100 one hand and electrophysiological methods such as EEG and MEG, on the other hand, 101 indicate alterations of brain signal variability with aging. However, it remains unclear whether 102 these different measures of brain variability at rest reflect the same underlying physiological 103 changes. Evidently, there are some correlations between the two signal sources (for a review 104 see, Jorge et al., 2014; Ritter and Villringer, 2006). For instance, in task-based EEG-fMRI 105 simultaneous recordings, a relationship between BOLD responses and amplitude of evoked 106 potentials has been demonstrated (e.g., Ritter et al., 2009; Seaquist et al., 2007), while in 107 resting state EEG-fMRI studies, a negative association between spontaneous modulations of 108 alpha rhythm and BOLD signal has also been established (e.g., Chang et al., 2013; Goldman 109 et al., 2002; Gonçalves et al., 2006; Moosmann et al., 2003). Further, differential correlation 110 patterns have been noted for the various rhythms of different frequencies in EEG/MEG and 111 the fMRI signal, such that low-frequency oscillations show a negative (Deligianni et al., 2014; 112 Mantini et al., 2007; Meyer et al., 2013), while higher frequencies oscillations demonstrate a 113 positive correlation with the BOLD signal (Niessing et al., 2005; Scheeringa et al., 2011).

114 Regarding the known age-related changes in BOLD and EEG signal variability, 115 respectively, the question arises whether these alterations are dominated by joint signal 116 sources of fMRI and EEG or by – potentially different – signal contributions that relate to 117 each of these two methods. Given the - potentially large - non-neuronal signal contribution, 118 this issue is particularly relevant for rsfMRI studies. Here, we addressed this question by 119 analyzing rsfMRI and EEG measures of variability in healthy younger and older subjects. To 120 our knowledge, the only study that compared variability in a "vascular" imaging method 121 (rsfMRI) and an electrophysiological method (rsMEG at the sensor space) concluded that the 122 effects of aging on BOLD signal variability were mainly driven by vascular factors (e.g., 123 heart rate variability) and not well-explained by the changes in neural variability (Tsvetanov 124 et al., 2015). The main aims of the present study were to explore i) age differences of brain 125 signal variability measures, as well as to investigate ii) how neural variability derived from

- 126 rsEEG related to the analogous parameters of BOLD signal variability derived from rsfMRI.
- 127 We used rsfMRI and rsEEG from the "Leipzig Study for Mind-Body-Emotion Interactions"
- 128 (Babayan et al., 2019). As an explanatory analysis, we further investigated sex-related
- 129 differences of brain signal variability measures. To measure brain signal variability, we
- 130 calculated the standard deviation (SD) of both the BOLD signal and of the amplitude
- 131 envelope of the filtered rsEEG time series for a number of standard frequency bands at the
- 132 source space. We hypothesized that brain signal variability would generally decrease with
- aging. In addition, based on the premise that BOLD fMRI signal variability reflects *neural*
- 134 variability as measured by rsEEG, we expected that the corresponding changes in both signal
- 135 modalities would demonstrate moderate to strong similarity in their spatial distribution. Given
- 136 the confounding effects of vascular factors during aging on the fMRI signal (D'Esposito et al.,
- 137 2003; Liu, 2013; Thompson, 2018), we further expected to find the relationship between
- 138 BOLD and EEG signal variability to be stronger in younger than older adults.

139	2. Method
140	2.1.Participants
141	The data of the "Leipzig Study for Mind-Body-Emotion Interactions" (LEMON;
142	Babayan et al., 2019) comprised 227 subjects in two age groups (younger: 20-35, older: 59-
143	77). Only participants who did not report any neurological disorders, head injury, alcohol or
144	other substance abuse, hypertension, pregnancy, claustrophobia, chemotherapy and malignant
145	diseases, current and/or previous psychiatric disease or any medication affecting the
146	cardiovascular and/or central nervous system in a telephone pre-screening were invited to the
147	laboratory. The study protocol conformed to the Declaration of Helsinki and was approved by
148	the ethics committee at the medical faculty of the University of Leipzig (reference number
149	154/13-ff).
150	RsEEG recordings were available for 216 subjects who completed the full study
151	protocol. We excluded data from subjects that had missing event information (N=1), different
152	sampling rate (N=3), mismatching header files or insufficient data quality (N=9). Based on
153	the rsfMRI quality assessment, we further excluded data from subjects with faulty
154	preprocessing (N=7), ghost artefacts (N=2), incomplete data (N=1), or excessive head motion
155	(N=3) (criterion: mean framewise displacement (FD) \leq 0.5 mm; Power et al., 2012)
156	(Supplementary Figure 1). The final sample included 135 younger ($M = 25.10 \pm 3.70$ years,
157	42 females) and 54 older subjects ($M = 67.15 \pm 4.52$ years, 27 females).
158	2.1.fMRI Acquisition
159	Brain imaging was performed on a 3T Siemens Magnetom Verio MR scanner
160	(Siemens Medical Systems, Erlangen, Germany) with a standard 32-channel head coil. The
161	participants were instructed to keep their eyes open and not fall asleep while looking at a low-
162	contrast (light grey on dark grey background) fixation cross.
163	The structural image was recorded using an MP2RAGE sequence (Marques et al., 2010) with
164	the following parameters: TI 1 = 700 ms, TI 2 = 2500 ms, TR = 5000 ms, TE = 2.92 ms, FA 1
165	= 4°, FA 2 = 5°, band width = 240 Hz/pixel, FOV = $256 \times 240 \times 176$ mm ³ , voxel size = 1 x 1
166	x 1 mm ³ . The functional images were acquired using a T2*-weighted multiband EPI sequence
167	with the following parameters: $TR = 1400 \text{ ms}$, $TE = 30 \text{ ms}$, $FA = 69^{\circ}$, $FOV = 202 \text{ mm}$,
168	imaging matrix= 88×88 , 64 slices with voxel size = 2.3 x 2.3 x 2.3 mm ³ , slice thickness = 2.3
169	mm, echo spacing = 0.67 ms, bandwidth= 1776 Hz/Px, partial fourier 7/8, no pre-scan
170	normalization, multiband acceleration factor = 4, 657 volumes, duration = $15 \text{ min } 30 \text{ s. A}$
171	gradient echo field map with the sample geometry was used for distortion correction (TR =
172	680 ms, TE 1 = 5.19 ms, TE 2 = 7.65 ms).

2.2.fMRI Preprocessing

174 Preprocessing was implemented in Nipype (Gorgolewski et al., 2011), incorporating 175 tools from FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), ANTs 176 (Avants et al., 2011), CBS Tools (Bazin et al., 2014), and Nitime (Rokem et al., 2009). The 177 pipeline comprised the following steps: (I) discarding the first five EPI volumes to allow for 178 signal equilibration and steady state, (II) 3D motion correction (FSL mcflirt), (III) distortion 179 correction (FSL fugue), (IV) rigid body coregistration of functional scans to the individual 180 T1-weighted image (Freesurfer bbregister), (V) denoising including removal of 24 motion 181 parameters (CPAC, Friston et al., 1996), motion, signal intensity spikes (Nipype rapidart), 182 physiological noise in white matter and cerebrospinal fluid (CSF) (CompCor; Behzadi et al., 183 2007), together with linear and quadratic signal trends, (VI) band-pass filtering between 0.01-184 0.1 Hz (FSL fslmaths), (VII) spatial normalization to MNI152 (Montreal Neurological 185 Institute) standard space (2 mm isotropic) via transformation parameters derived during 186 structural preprocessing (ANTS). (VIII) The data were then spatially smoothed with a 6-mm 187 full-width half-maximum (FWHM) Gaussian kernel (FSL fslmaths). Additionally, we 188 calculated total intracranial volume (TIV) of each subject using the Computational Anatomy 189 Toolbox (CAT12: http:// dbm.neuro.uni-jena.de/cat/) running on Matlab 9.3 (Mathworks, 190 Natick, MA, USA) and used it as a covariate for further statistical analyses (Malone et al., 191 2015). 192 BOLD Signal Variability (SD_{BOLD}). Standard deviation (SD) quantifies the amount of 193 variation or dispersion in a set of values (Garrett et al., 2015; Grady and Garrett, 2018). 194 Higher SD in rsfMRI signal indicates greater intensity of signal fluctuation or an increased 195 level of activation in a given area (Garrett et al., 2011). We first calculated SD_{BOLD} across the 196 whole time series for each voxel and then within 96 boundaries of preselected atlas-based 197 regions of interests (ROIs) based on the Harvard-Oxford cortical atlas (Desikan et al., 2006). 198 The main steps of deriving brain signal variability (SD_{BOLD}) from the preprocessed fMRI 199 signal are shown in Figure 1. 200 The reproducible workflows containing fMRI preprocessing details can be found here: 201 https://github.com/NeuroanatomyAndConnectivity/pipelines/releases/tag/v2.0. 202 **2.3.EEG Recordings** 203 Sixteen minutes of rsEEG were acquired on a separate day with BrainAmp MR-plus 204 amplifiers using 61 ActiCAP electrodes (both Brain Products, Germany) attached according 205 to the international standard 10-20 localization system (Jurcak et al., 2007) with FCz (fronto-206 central or cephalic electrode) as the reference. The ground electrode was located at the

- sternum. Electrode impedance was kept below 5 kΩ. Continuous EEG activity was digitized
 at a sampling rate of 2500 Hz and band–pass filtered online between 0.015 Hz and 1 kHz.
- The experimental session was divided into 16 blocks, each lasting 60 s, with two conditions interleaved, eyes closed (EC) and eyes open (EO), starting with the EC condition.
- 211 Changes between blocks were announced with the software Presentation (v16.5,
- 212 Neurobehavioral Systems Inc., USA). Participants were asked to sit comfortably in a chair in
- a dimly illuminated, sound-shielded Faraday recording room. During the EO periods,
- 214 participants were instructed to stay awake while fixating on a black cross presented on a white
- 215 background. To maximize comparability, only EEG data from the EO condition were
- analyzed, since rsfMRI data were collected only in the EO condition.
- 217

2.4.EEG Data Analysis

218 EEG processing and analyses were performed with custom Matlab (The MathWorks, 219 Inc, Natick, Massachusetts, USA) scripts using functions from the EEGLAB environment 220 (version 14.1.1b; Delorme and Makeig, 2004). The continuous EEG data were down-sampled to 250 Hz, band-pass filtered within 1-45 Hz (4th order back and forth Butterworth filter) and 221 222 split into EO and EC conditions. Segments contaminated by large artefacts due to facial 223 muscle tensions and gross movements were removed following visual inspection, resulting in 224 a rejection of on average 6.6% of the recorded data. Rare occasions of artifactual channels 225 were excluded from the analysis. The dimensionality of the data was reduced using principal 226 component analysis (PCA) by selecting at least 30 principal components explaining 95% of 227 the total variance. Next, using independent component analysis (Infomax; Bell and 228 Sejnowski, 1995), the confounding sources e.g. eye-movements, eye-blinks, muscle activity, 229 and residual ballistocardiographic artefacts were rejected from the data.

230

2.5.EEG Source Reconstruction

Before conducting source reconstruction, preprocessed EEG signals were rereferenced to a common average. We incorporated a standard highly detailed finite element method (FEM) volume conduction model as described by Huang et al. (2016).

The geometry of the FEM model was based on an extended MNI/ICBM152 (International

- 235 Consortium for Brain Mapping) standard anatomy, where the source space constrained to
- 236 cortical surface and parceled to 96 ROIs based on the Harvard-Oxford atlas (Desikan et al.,
- 237 2006). We used eLORETA (exact low resolution brain electromagnetic tomography) as
- 238 implemented in as implemented in the M/EEG Toolbox of Hamburg
- 239 (METH; Haufe and Ewald, 2016; Pascual-Marqui, 2007) to compute the cortical electrical
- 240 distribution from the scalp EEG recordings. The leadfield matrix was calculated between

- 241 1804 points located on the cortical surface to the 61 scalp electrodes. We filtered into several
- 242 frequency bands, associated with brain oscillations: delta (1–3 Hz), theta (4–8 Hz), alpha (8–
- 243 12 Hz), and beta (15–25 Hz). Following the singular value decomposition (SVD) of each
- voxel's three-dimensional time course, the dominant orientation of the source signal was
- 245 identified by preserving the first SVD component. The amplitude envelope of filtered
- oscillations was extracted using the Hilbert transform (Rosenblum et al., 2001). Next, we
- 247 applied temporal coarse graining by averaging data points in non-overlapping windows of
- length 0.5 s (Figure 1).
- 249 *EEG Variability (SD_{EEG}).* We calculated the SD of amplitude envelope of band-pass filtered
- 250 oscillations on the coarse-grained signal. RsEEG signal variability (SD_{EEG}) was obtained for
- 251 different frequency bands (SD_{DELTA}, SD_{THETA}, SD_{ALPHA}, SD_{BETA}) in each of 96 ROIs. Further,
- in our study we investigated variability in the amplitude of oscillatory signals from one time
- 253 segment to the other. If amplitude (or power) of each signal stays the same, the variability
- (SD) in the amplitude of such segments will be zero. Therefore, the average amplitude of a
- 255 signal is not indicative of its variability. Although amplitude and its standard deviation
- 256 mathematically are different, they can show some correlation due to size effects (Immer,
- 257 1937).
- 258 Main steps toward deriving brain signal variability from the preprocessed EEG signal are
- shown in Figure 1. The raw and preprocessed fMRI and EEG data samples can be found at
- 260 https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/

- 261 Figure 1. Main steps of deriving brain signal variability from the preprocessed resting state
- 262 fMRI and EEG signal. We calculated the standard deviation of the blood oxygen level
- 263 dependent (BOLD) signal and of the coarse-grained amplitude envelope of the rsEEG time
- series for a number of standard frequency bands at the source space. Each sample of coarse-
- 265 grained amplitude envelope of the rsEEG (represented in numbers) is generated by averaging
- the samples in non-overlapping windows of length 0.5 s.

- 267
- 268
- 269

2.6.Statistical Analyses

 $Mean SD_{BOLD} and SD_{EEG}.$ For the topographic information (based on ROIs), the mean BOLD and EEG variability were calculated by I) log-transforming the SD values, II) averaging separately for younger and older subjects, and III) then back-transforming the values

273 274 (McDonald, 2014).

Age and Sex Effects. A series of non-parametric analyses of covariance (ANCOVAs, type III)
were applied to brain signal variability values in each 96 ROIs for SD_{BOLD} and SD_{EEG} using
age group and sex as variables of interest, adjusting for TIV and mean FD. The significance
level was controlled for using false discovery rate (FDR) correction according to Benjamini
and Hochberg (1995). Significant group differences were further examined by Tukey HSD
post-hoc comparisons. The signal variability values were log-transformed to normalize
SD_{BOLD} and SD_{EEG} before further analyses (assessed by Lilliefors tests at a significance

threshold of 0.05). All analyses were performed using the *aovp* function in the *lmperm*

- 283 package (Wheeler, 2016) as implemented in R (R core team, 2018).
- 284

285 $SD_{BOLD} - SD_{EEG}$ Correlation. To investigate the association between each ROI of SD_{BOLD} and 286 SD_{EEG}, we used pairwise Spearman's rank correlation separately for younger and older 287 subjects, corrected for FDR (96 ROIs). We further applied sparse canonical correlation 288 analysis (CCA) to show that the relationship between SD_{BOLD} and SD_{EEG} is not missed when 289 only mass bivariate correlations are used. CCA is a multivariate method to find the 290 independent linear combinations of variables such that the correlation between variables is 291 maximized (Witten et al., 2009). The sparse CCA criterion is obtained by adding a Lasso 292 Penalty function (l_1) , which performs continuous shrinkage and automatic variable selection 293 and can solve statistical problems such as multicollinearity and overfitting (Tibshirani, 2011). 294 We used l_1 penalty as the regularization function to obtain sparse coefficients, that is, the 295 canonical vectors (i.e., translating from full variables to a data matrix's low-rank components 296 of variation) will contain exactly zero elements. Sparse CCA was performed using the R 297 package PMA (Penalized Multivariate Analysis; Witten et al., 2009; http://cran.r-298 project.org/web/packages/PMA/). In our analyses, the significance of the correlation was 299 estimated using the permutation approach (N=1000) as implemented in the CCA.permute

300 function in R ($p_{perm} < 0.05$).

301

302 Cognition. The Trail Making Test (TMT) is a cognitive test measuring executive function, 303 including processing speed and mental flexibility (Reitan, 1955; Reitan and Wolfson, 1995). 304 In the first part of the test (TMT-A) the targets are all numbers, while in the second part 305 (TMT-B), participants need to alternate between numbers and letters. In both TMT-A and B, 306 the time to complete the task quantifies the performance, and lower scores indicate better 307 performance. Based on the previous literature, we focused on SD_{BOLD}, SD_{DELTA}, and SD_{THETA} 308 (Vlahou et al., 2015) and selected different ROIs from two research papers about the neural 309 correlates of the TMT: Zakzanis et al., (2005) and Jacobson et al., (2011) (Table 1). To reduce 310 the number of multiple comparisons (Nguyen and Holmes, 2019), these ROIs were 311 decomposed into singular values using the prcomp function belonging to factoextra package 312 (R core team, 2018), which performs SVD on the centered values. As a criterion, the 313 minimum total variance explained over 70% was selected (Jollife and Cadima, 2016). This 314 resulted in three principle components (PC) in SD_{BOLD} (52.82%, 10.34%, and 7%), two PCs 315 in SD_{DELTA} (67.37%, 10.95%), and one PC in SD_{THETA} (75.63%). We also ran multiple linear

- 316 regression using task completion time in TMT-A and TMT-B as the dependent variables with
- 317 the PC scores (for SD_{BOLD}, SD_{DELTA}, and SD_{THETA}) and their interaction with continuous age
- 318 as independent variables. Since the residuals from the regression models fitted to the data
- 319 were not normally distributed, the TMT values were log-transformed prior to the final
- 320 analyses. These tests were conducted using the *lmp* function in *lmperm* package implemented
- 321 in R (R core team, 2018).
- 322
- 323 Table 1. Selected region of interests (ROIs) derived from the previous fMRI literature, and
- 324 their corresponding ROIs in Harvard-Oxford atlas to investigate the age-dependent
- 325 relationship between TMT and SD_{BOLD} or SD_{EEG} .

Literature	Region	Hemisphere	Harvard-Oxford Atlas
	Middle Frontal Gyrus	Left	Middle Frontal Gyrus
	Precentral Gyrus	Left	Precentral Gyrus
	Cingulate Gyrus	Left/Right	Cingulate Gyrus, anterior/posterior
Zakzanis et al.,	Superior Frontal Gyrus	Left	Superior Frontal Gyrus
2005	Medial Frontal Gyrus	Left	Frontal Medial Cortex
	Insula	Left/Right	Insular Cortex
	Middle Temporal Gyrus	Left	Middle Temporal Gyrus, anterior/posterior/temporooccipital
	Superior Temporal Gyrus	Left	Superior Temporal Gyrus, anterior/posterior
Jacobson et al.,	Fusiform Gyrus	Right	Occipital Fusiform Gyrus
2011	Inferior Middle Frontal Gyrus	Right	Middle Frontal Gyrus
	Precentral Gyrus	Right	Precentral Gyrus

3. Results

328 Mean SD_{BOLD} and SD_{EEG}. The topographic distribution of SD_{BOLD} in younger adults revealed 329 the largest brain signal variability values in fronto-temporal regions while in older adults it 330 was in the frontal and occipital areas. Further, we found strongest variability across younger 331 subjects in occipito-temporal regions for SD_{DELTA}, SD_{THETA}, SD_{ALPHA}, and in medial frontal 332 brain regions for SD_{BETA}, while older adults showed strongest brain signal variability in the 333 fronto-central brain regions for SD_{DELTA}, in parietal-central brain regions for SD_{THETA}, 334 SD_{ALPHA}, and in medial frontal brain regions for SD_{BETA}. The details of the mean values of 335 SD_{BOLD} and SD_{EEG} across age groups and their topographic distributions are given in 336 Supplementary Table 1, Supplementary Figure 2 and 3, and are also available at Neurovault 337 (https://neurovault.org/collections/WWOKVUDV/). 338 339 Age and Sex Effects. The nonparametric ANCOVAs with SD_{BOLD} as dependent variable 340 demonstrated that there was a significant main effect of age group in 72 ROIs in frontal, 341 temporal, and occipital brain regions (F-values: 13.32–61.14; Figure 2). However, there was 342 no significant main effect of sex on SD_{BOLD} and no significant interaction between age group 343 and sex (all p_{FDR}>0.05). Tukey HSD post-hoc analyses showed that older subjects had 344 decreased SD_{BOLD} compared to younger adults which were presented in both sexes ($n_{ROI}=35$). 345 The nonparametric ANCOVAs with SD_{EEG} as dependent variable showed significant main

346 effects of age group in all frequency bands: SD_{DELTA} in 14 ROIs in occipital (F-values: 12.57–

20.94), SD_{THETA} in 16 ROIs in frontal and parietal (F-values: 13.16–40.30), SD_{ALPHA} in 20

348 ROIs in occipital (F-values: 12.69–20.12), and SD_{BETA} in 19 ROIs in central and temporal

349 brain regions (F-values: 12.50–21.61), as shown in Figure 2. There were also significant main

350 effects of sex in all frequency bands: SD_{DELTA} in 21 ROIs in temporal and occipital (F-values:

351 13.24–26.63), SD_{THETA} in 74 ROIs in frontal, occipital, and temporal (F-values: 12.68–30.06),

352 SD_{ALPHA} in 4 ROIs in frontal (F-values: 12.88–16.51), and SD_{BETA} in 69 ROIs in temporal,

353 occipital, and central brain regions (F-values: 12.54–35.72), as shown in Figure 3. No

354 significant interaction effects between age group and sex on SD_{EEG} were observed in any

frequency band (p_{FDR} >0.05). Tukey HSD post-hoc analyses on SD_{EEG} showed that older

356 subjects had less brain signal variability, which was present in both sexes for SD_{DELTA}

357 $(n_{ROI}=12)$, SD_{THETA} $(n_{ROI}=10)$, and SD_{ALPHA} $(n_{ROI}=11)$. Additionally, older adults showed

- 358 higher SD_{BETA}, driven by female subjects ($n_{ROI}=15$). With regard to sex differences, post-hoc
- 359 analyses showed that females had higher SD_{DELTA}, SD_{THETA}, SD_{ALPHA}, and SD_{BETA} than
- 360 males. Sex differences in SD_{DELTA} ($n_{ROI}=13$) and SD_{THETA} ($n_{ROI}=54$) were mostly pronounced

- 361 in younger adults, while the effect of sex in SD_{BETA} ($n_{ROI}=21$) were mainly presented in older
- adults (p<0.05). The graphical distribution of the F-values for the significant effects of age
- 363 group or sex for each ROIs are shown in Supplementary Figure 4. Additional information of
- 364 SD_{BOLD} and SD_{EEG} for each frequency band and for each of the 96 ROIs, split up by age group
- and sex, are presented in the Supplementary Tables 2-6.
- 366
- 367 Figure 2. Spatial maps of significant age group differences in SD_{BOLD} and SD_{EEG}.
- 368 We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD)
- 369 signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1–
- 370 3 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (15–25 Hz) frequency bands at the source
- 371 space. Statistical significance was determined using nonparametric ANCOVAs corrected for
- 372 multiple comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Blue
- 373 color indicates areas where brain signal variability was lower in older than in younger adults,
- 374 while red color indicates the opposite.

- **Figure 3**. Spatial maps of significant sex differences in SD_{BOLD} and SD_{EEG}.
- 377 We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD)
- 378 signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1–
- 379 3 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (15–25 Hz) frequency bands at the source
- 380 space. Statistical significance was determined using nonparametric ANCOVAs corrected for
- 381 multiple comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Yellow
- 382 color indicates areas where brain signal variability was higher in female subjects as compared
- to male subjects in EEG.

- 385 $SD_{BOLD} SD_{EEG}$ Correlation. The correlation coefficient of pairwise associations for 96 ROIs
- 386 of SD_{BOLD} with SD_{DELTA}, SD_{THETA}, SD_{ALPHA}, and SD_{BETA} ranged in younger adults from rho=-
- 387 0.200 to rho=0.223 (Supplementary Table 7) and in older adults from rho=0.386 to
- 388 rho=0.349 (Supplementary Table 8). None of the pairwise associations between SD_{BOLD} and
- 389 SD_{EEG} remained significant after the correction for multiple comparison corrections.
- 390 Confirmatory multivariate sparse CCA further showed that correlations between SD_{BOLD} and
- 391 SD_{EEG} across all subjects were rather low, highly sparse, and non-significant (SD_{DELTA};
- 392 r=0.145, $p_{perm}=0.750$, $l_1=0.367$; SD_{THETA}; r=0.143, $p_{perm}=0.713$ $l_1=0.7$; SD_{ALPHA}; r=0.153,
- 393 $p_{perm}=0.528, l_1=0.1; SD_{BETA}; r=0.232, p_{perm}=0.096, l_1=0.633).$
- 394
- 395 Figure 4. Distribution of correlation coefficients (rho) for the association between SD_{BOLD}
- and SD_{EEG} for A) younger (N=135) and B) older (N=54) adults for different frequency bands
- 397 across each pair of 96 regions of interests. The correlations between SD_{BOLD} and SD_{EEG} were
- 398 tested using pairwise Spearman's rank correlation corrected for multiple comparison by false
- discovery rates (FDR; Benjamini and Hochberg, 1995).

- 401 *Cognition*. There was a significant interaction between age and SD_{BOLD} in PC2 on the TMT-B
- 402 performance (adjusted $R^2 = 0.395$, F(7,181) = 18.60, p <.001, interaction: $\beta = -0.002$, p =
- 403 0.027). For older, but not younger participants, stronger SD_{BOLD} was associated with faster
- 404 completion time in PC2, driven mainly by the left temporal gyrus as well as the left anterior
- 405 and posterior cingulate cortex (Figure 5). The regression analyses in SD_{DELTA} and SD_{THETA}
- 406 did not show a significant association between cognition and brain signal variability
- 407 measures. The contributions of selected ROIs to the PCs resulted from SVD analyses can be
- found in Supplementary Table 9. The complete multiple linear regression results can be foundin Supplementary Table 10.
- 410
- 411 **Figure 5.** Age-dependent relationship between cognitive performance and BOLD signal
- 412 variability.
- 413 The scatterplot shows the significant association between task completion time in TMT-B (x-
- 414 axis) and SD_{BOLD} (adjusted R² = 0.395, F(7,181) = 18.60, p <.001, interaction: $\beta = -0.002$, p =
- 415 0.027) in PC2, driven mainly by the left anterior and posterior temporal gyrus, bilateral
- 416 anterior and posterior cingulate cortex.

4. Discussion

420 Comparing healthy younger and older adults, we found widespread variability 421 reductions in BOLD signal as well as in the amplitude envelope of delta, theta, and alpha 422 frequency of rsEEG, whereas increased variability with aging was observed in the beta-band 423 frequency. As a complementary analysis, we also explored sex differences and found that 424 female subjects exhibited higher EEG signal variability than male subjects; no significant sex 425 differences were found in BOLD signal variability. There were no significant correlations 426 between hemodynamic (SD_{BOLD}) and electrophysiological (SD_{EEG}) measures of brain signal 427 variability, neither in the younger nor in the older adults. Our results suggest that variability 428 measures of rsfMRI and rsEEG – while both related to aging – are dominated by different 429 physiological origins and relate differently to age and sex.

- 430
- 431

4.1.BOLD Signal Variability

432 The first aim of our study was to investigate the effect of age on BOLD signal 433 variability, as measured by SD of spontaneous fluctuations during rsfMRI. Consistent with 434 recent rsfMRI studies demonstrating that BOLD signal variability decreases with age in large-435 scale networks (Grady and Garrett, 2018; Nomi et al., 2017), we found that older subjects had 436 reduced SD_{BOLD} in temporal and occipital brain regions but also in cortical midline structures 437 like the precuneus, anterior and posterior cingulate cortices, as well as orbitofrontal cortex 438 compared to younger adults. These age-related reductions in BOLD signal variability were 439 thus especially apparent in regions of the Default Mode (DMN) and the Fronto-Parietal 440 Network (FPN). The DMN is an intrinsically correlated network of brain regions, that is 441 particularly active during rest or fixation blocks (Biswal et al., 2010). It reflects the systematic 442 integration of information across the cortex (Margulies et al., 2016) and has been frequently 443 associated with psychological functions like self-referential thought or mind-wandering, and 444 also memory retrieval (Andrews-Hanna et al., 2014; Raichle, 2015). The FPN is involved in 445 cognitive control processes (Spreng et al., 2013), and closely interacts with the DMN, for 446 example during mind-wandering state (Golchert et al., 2017). Previous studies in healthy 447 aging noted that older subjects showed lower functional connectivity in DMN and FPN 448 regions (Damoiseaux, 2017; Damoiseaux et al., 2008; Meunier et al., 2009; Petersen et al., 449 2014). Similarly, an altered functional connectivity in the DMN has been found in different 450 pathologies, for example, in Alzheimer's disease (Greicius et al., 2004) or mild cognitive 451 impairment (Das et al., 2015). Further, we found a significant interaction between age and 452 SD_{BOLD} in temporal and cingulate cortices for performance on the cognitive task (TMT-B),

453 suggesting that the relationship between brain signal variability and cognitive performance 454 depends on the participants' age. We speculate that – in the elderly – reduced BOLD signal 455 variability in the DMN and the FPN, particularly in the overlapping frontal brain regions, 456 could be related to locally impaired function that is reflected in impaired cognitive 457 performance (Campbell et al., 2012). Such findings support the notion that local BOLD signal 458 variability may be a valuable biomarker of neurocognitive health (and disease) in aging. 459 Sex-specific differences in brain structure and function have been previously shown 460 (for a review see, Gong et al., 2011; Ruigrok et al., 2014; Sacher et al., 2013). For example, 461 larger total brain volume has been reported in male as compared to female subjects (Gong et 462 al., 2011), whereas higher cerebral blood flow (Gur et al., 1982; Rodriguez et al., 1988) and 463 stronger functional connectivity in the DMN (Tomasi and Volkow, 2012) were found in 464 females. In our exploratory analysis, we did not find significant sex differences in BOLD signal variability when controlling for total intracranial volume as an approximation of overall 465 466 brain size.

- 467
- 468

4.2. Electrophysiological Signal Variability

469 Measures of neural variability were derived from rsEEG for several main frequency 470 bands (delta, theta, alpha, beta) as the standard deviation of their amplitude of envelope time 471 series data, analogously to the BOLD signal variability. Multimodal imaging studies have 472 shown that the amplitude envelope of neural oscillatory activity across frequency bands 473 relates to different rsfMRI networks (Brookes et al., 2011; Deligianni et al., 2014), confirming 474 the neurophysiological origin of the resting state networks measured with BOLD fMRI. 475 Additionally, these studies also concluded that different frequency bands can be related to the 476 same functional network, but also differentially to distinct networks (Brookes et al., 2011; 477 Laufs et al., 2006; Mantini et al., 2007; Meyer et al., 2013). For instance, Mantini et. al. 478 (2007) reported that the visual network is associated with all frequency bands except gamma 479 rhythm, while the sensorimotor network is primarily associated with beta-band oscillations. 480 In our analysis, we found age-dependent EEG signal variability changes within 481 networks which were associated with more than one frequency band, thus confirming that 482 neurons generating oscillations at different frequencies may contribute to the same network. 483 More precisely, we found age-related reductions in SD_{DELTA} and SD_{ALPHA} mainly in a visual 484 network (including calcarine regions, cuneal cortex, and occipital pole), SD_{THETA} in posterior 485 DMN (e.g., posterior cingulate cortex), while an enhancement of SD_{BETA} was mainly seen in 486 the temporal (e.g., superior/middle temporal gyrus), and central/sensorimotor (e.g.,

487 supramarginal gyrus) regions. These results align with previous reports of age-dependent
488 changes of electrophysiological activity using spectral power (Dustman et al., 1993; Vlahou et
489 al., 2015), and signal variability (Dustman et al., 1999; Tsvetanov et al., 2015).

490 Age-related decreases of alpha amplitude and alpha band variability (measured by SD 491 of the oscillatory signal) were previously found in posterior and occipital brain regions 492 (Babiloni et al., 2006; Tsvetanov et al., 2015). Alpha rhythm is a classical EEG hallmark of 493 resting wakefulness (Laufs et al., 2003) that is modulated by thalamo-cortical and cortico-494 cortical interactions (Bazanova and Vernon, 2014; Goldman et al., 2002; Lopes Da Silva et 495 al., 1997; Moosmann et al., 2003). It has been suggested that the posterior alpha-frequency 496 plays an important role in the top-down control of cortical activation and excitability 497 (Klimesch, 1999). Accordingly, decreased alpha variability in occipital regions might be 498 associated with altered functioning of the cholinergic basal forebrain, affecting thalamo-499 cortical and cortico-cortical processing. Our finding of higher temporal and sensorimotor 500 SD_{BETA} in the elderly is in line with previous findings (Rossiter et al., 2014; Tsvetanov et al., 501 2015). Aging has previously been associated with an increase in movement-related beta-band 502 attenuation, suggesting an enhanced motor cortex GABAergic inhibitory activity in older 503 individuals (Rossiter et al., 2014). Similarly, beta-band activity is thought to play a key role in 504 signaling maintenance of the status quo of the motor system, despite the absence of 505 movement (Engel and Fries, 2010). Therefore, greater SD_{BETA} in sensorimotor brain regions 506 could be interpreted as a compensatory mechanism to account for a decline of motor 507 performance during aging (Quandt et al., 2016).

508 It should be noted that the present findings of age-related alterations of brain signal 509 variability at different frequencies might be influenced by several anatomical factors which 510 might influence EEG-generators such as reduced cortical gray matter (Babiloni et al., 2013; 511 Moretti et al., 2012), white-matter (Nunez et al., 2015; Valdés-Hernández et al., 2010), and 512 increased amount of cerebrospinal fluid (CSF; Hartikainen et al., 1992; Stomrud et al., 2010), 513 but also alterations of cerebral glucose metabolism (Dierks et al., 2000). Localized or global 514 disturbances of brain anatomy and function might lead to deviations in the EEG sources, 515 resulting in EEG amplitude changes. A methodological improvement for future studies will 516 therefore be the application of individual head models (Ziegler et al., 2014). 517 In addition to the effect of age on rsEEG signal variability, an exploratory analysis 518 showed sex differences in distinct brain regions and EEG frequencies. More precisely, we 519 found higher SD_{DELTA} and SD_{THETA} in occipito-temporal, SD_{ALPHA} in frontal, and SD_{BETA} in

520 frontal as well as occipito-temporal brain regions in female compared to male subjects. While

521 some studies demonstrated higher alpha (Aurlien et al., 2003), delta (Armitage, 1995), theta 522 (Carrier et al., 2001; Duffy et al., 1993), and beta power (Jaušovec and Jaušovec, 2010; 523 Matsuura et al., 1985; Veldhuizen et al., 1993) in female relative to male subjects, other 524 studies reported the opposite pattern (Brenner et al., 1995; Latta et al., 2005; Zappasodi et al., 525 2006). These differences in EEG signal variability could be a result of different mechanisms 526 (biological/hormonal, cultural or developmental) involved in shaping sex differences. 527 Unfortunately, based on our dataset we cannot differentiate which of these potential 528 mechanisms might be most relevant for the observed changes.

- 529
- 530

4.3. Association between BOLD and EEG Variability

531 We further assessed how neural variability in source-reconstructed rsEEG related to 532 the analogous parameters of BOLD signal variability in rsfMRI using univariate and 533 multivariate correlation analyses. Previously, simultaneous EEG-fMRI studies have shown 534 meaningful relationships between fluctuations in EEG power, frequency, phase, and local 535 BOLD changes (for a review see, Jorge et al., 2014; Ritter and Villringer, 2006). Due to age-536 related physiological (particularly cardiovascular) alterations in the brain, we expected the 537 relationship between BOLD and EEG signal variability to be stronger in younger than older 538 adults. However, in the present study, both univariate and multivariate analyses showed no 539 significant correlations between SD_{BOLD} and SD_{EEG} neither in the younger nor in the older 540 adults. This finding was supported by the distinct anatomical distributions of age-related 541 changes in BOLD and EEG signal variability, that barely showed a spatial overlap, suggesting 542 different underlying physiological processes. What could they be? Clearly, neuronal activity 543 is the main signal source for EEG- and MEG recordings as well as for EEG/MEG-based 544 variability measures. BOLD signal variability, however, can reflect both vascular and neural 545 processes (Garrett et al., 2017). While neuronal activity clearly contributes to the BOLD 546 signal at rest (Ma et al., 2016; Mateo et al., 2017), our results indicate, however, that neuronal 547 activity which is captured by EEG (or more specifically by our EEG-based measures), is not 548 the major determinant of BOLD variability in the resting state. Other factors that could 549 contribute to BOLD variability are (i) neuronal activity which is not captured by EEG and (ii) 550 non-neural factors such as vasomotion, or cardiac and respiratory signals (Murphy et al., 551 2013). In the elderly, additional factors related to the known morphological and functional 552 changes of blood vessels as well as age-related metabolic changes are known to affect CBF 553 (Ances et al., 2009; Martin et al., 1991), CMRO₂ (Aanerud et al., 2012), and CVR (Liu et al., 554 2013) and therefore are likely to also influence BOLD variability. Thus, given different

555 underlying physiology, joint EEG and fMRI variability studies might provide complementary 556 information for a comprehensive assessment of neuronal as well as vascular factors related to 557 aging.

558

5. Limitations

559 There are several limitations of our study: EEG and MRI scans were not recorded 560 simultaneously. Therefore, we could not directly relate the two signals in a cross-correlation 561 analysis. Furthermore, EEG and MRI were performed with different body postures (fMRI; 562 supine, EEG; seated) known to affect brain function, for example, changes in the amplitude of 563 the EEG signal have been related to different body postures presumably due to the shifts in 564 cerebrospinal fluid layer thickness (Rice et al., 2013). Similarly, other experimental (e.g., 565 visual display; Nir et al., 2006), environmental (e.g., acoustic noise in MRI; Andoh et al., 566 2017; Cho et al., 1998) and subject-related factors (e.g., changes of vigilance; Tagliazucchi 567 and Laufs, 2014; Wong et al., 2013) could have introduced unintended variations in our 568 results (Yan et al., 2013) and the influence of these factors is probably not the same for the 569 different methods, e.g., noise in MRI or poor "control" of vigilance in MRI. For instance, 570 given the well-known relationship between vigilance or arousal and fMRI signal fluctuations 571 (Bijsterbosch et al., 2017; Chang et al., 2016; Haimovici et al., 2017), it is likely that the 572 observed age-related differences in BOLD signal variability might be confounded by such 573 within-subject (state) variability. Therefore, future rsfMRI studies may benefit from obtaining 574 arousal-related (e.g., self-report) measures and an explicit measurement of eye movements 575 and eye opening/closure to account for the influence of arousal on the BOLD amplitude changes. Another option would be to combine EEG and fMRI simultaneously. Yet, resting 576 577 state measures of EEG (Näpflin et al., 2007) and fMRI (Shehzad et al., 2009; Zuo et al., 2010) 578 have been shown to be reliable within-individuals across time.

579 In our study, the computation of the source reconstructed rsEEG required the 580 parcellation of the brain into relatively large anatomical ROIs. It could well be that the 581 analysis with a higher spatial resolution (e.g., at the voxel-level) with individual head models 582 may provide additional insights about brain signal variability.

583 Finally, while our study aimed at comparing analogous variability measures in EEG 584 and fMRI, future research using rsEEG and rsfMRI in the same subjects would benefit from 585 the addition of connectivity-based measures including graph theory-based (Yu et al., 2016) or 586 sliding-window methods (Chang et al., 2013; Qin et al., 2019).

587	6. Conclusion
588	In this study, we report age and sex differences of brain signal variability obtained
589	with rsfMRI and rsEEG from the same subjects. We demonstrate extensive age-related
590	reduction of SD _{BOLD} , SD _{DELTA} , SD _{THETA} , and SD _{ALPHA} mainly in the DMN and the visual
591	network, while a significant increase of SD_{BETA} was mainly seen in temporal brain regions.
592	We could not demonstrate significant associations between SD_{BOLD} and SD_{EEG} . Our findings
593	indicate that measurements of BOLD and EEG signal variability, respectively, are likely to
594	stem from different physiological origins and relate differentially to age and sex. While the
595	two types of measurements are thus not interchangeable, it seems, however, plausible that
596	both markers of brain variability may provide complementary information about the aging
597	process.

7. Funding
This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.
8. Acknowledgements
We gratefully acknowledge the Mind-Body- Emotion group at the Max Planck Institute for

603 Human Cognitive and Brain Sciences.

604	9. References
605	Aanerud, J., Borghammer, P., Mallar Chakravarty, M., Vang, K., Rodell, A.B., Jónsdottir, K.Y.,
606	Møller, A., Ashkanian, M., Vafaee, M.S., Iversen, P., Johannsen, P., Gjedde, A., 2012. Brain
607	energy metabolism and blood flow differences in healthy aging. J. Cereb. Blood Flow Metab.
608	https://doi.org/10.1038/jcbfm.2012.18
609	Ances, B.M., Liang, C.L., Leontiev, O., Perthen, J.E., Fleisher, A.S., Lansing, A.E., Buxton, R.B.,
610	2009. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level
611	dependent responses to visual stimulation. Hum. Brain Mapp. 30, 1120-1132.
612	https://doi.org/10.1002/hbm.20574
613	Andoh, J., Ferreira, M., Leppert, I.R., Matsushita, R., Pike, B., Zatorre, R.J., 2017. How restful is it
614	with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional
615	imaging in resting-state fMRI. Neuroimage 147, 726–735.
616	https://doi.org/10.1016/j.neuroimage.2016.11.065
617	Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N., 2014. The default network and self-generated
618	thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci.
619	1316, 29–52. https://doi.org/10.1111/nyas.12360
620	Armbruster-Genc, D.J.N., Ueltzhoffer, K., Fiebach, C.J., 2016. Brain Signal Variability Differentially
621	Affects Cognitive Flexibility and Cognitive Stability. J. Neurosci. 36, 3978–3987.
622	https://doi.org/10.1523/JNEUROSCI.2517-14.2016
623	Armitage, R., 1995. The distribution of EEG frequencies in REM and NREM sleep stages in healthy
624	young adults. Sleep 18, 334-341. https://doi.org/10.1093/sleep/18.5.334
625	Aurlien, H., Gjerde, I., Aarseth, J., Eldøen, G., Karlsen, B., Skeidsvoll, H., Gilhus, N., 2003. EEG
626	background activity described by a large computerized database. Clin. Neurophysiol. 115, 665-
627	673. https://doi.org/10.1016/j.clinph.2003.10.019
628	Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C., 2011. A reproducible
629	evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54,
630	2033-2044. https://doi.org/10.1016/j.neuroimage.2010.09.025
631	Babayan, A., Erbey, M., Kumral, D., Reinelt, J.D., Reiter, A.M.F., Röbbig, J., Lina Schaare, H.,
632	Uhlig, M., Anwander, A., Bazin, P.L., Horstmann, A., Lampe, L., Nikulin, V. V., Okon-Singer,
633	H., Preusser, S., Pampel, A., Rohr, C.S., Sacher, J., Thöne-Otto, A., Trapp, S., Nierhaus, T.,
634	Altmann, D., Arelin, K., Blöchl, M., Bongartz, E., Breig, P., Cesnaite, E., Chen, S., Cozatl, R.,
635	Czerwonatis, S., Dambrauskaite, G., Dreyer, M., Enders, J., Engelhardt, M., Fischer, M.M.,
636	Forschack, N., Golchert, J., Golz, L., Guran, C.A., Hedrich, S., Hentschel, N., Hoffmann, D.I.,
637	Huntenburg, J.M., Jost, R., Kosatschek, A., Kunzendorf, S., Lammers, H., Lauckner, M.E.,
638	Mahjoory, K., Kanaan, A.S., Mendes, N., Menger, R., Morino, E., Näthe, K., Neubauer, J.,
639	Noyan, H., Oligschläger, S., Panczyszyn-Trzewik, P., Poehlchen, D., Putzke, N., Roski, S.,
640	Schaller, M.C., Schieferbein, A., Schlaak, B., Schmidt, R., Gorgolewski, K.J., Schmidt, H.M.,

- 641 Schrimpf, A., Stasch, S., Voss, M., Wiedemann, A., Margulies, D.S., Gaebler, M., Villringer, A.,
- 642 2019. Data descriptor: A mind-brain-body dataset of MRI, EEG, cognition, emotion, and
- 643 peripheral physiology in young and old adults. Sci. Data 6, 180308.
- 644 https://doi.org/10.1038/sdata.2018.308
- 645 Babiloni, C., Binetti, G., Cassarino, A., Dal Forno, G., Del Percio, C., Ferreri, F., Ferri, R., Frisoni, G.,
- 646 Galderisi, S., Hirata, K., Lanuzza, B., Miniussi, C., Mucci, A., Nobili, F., Rodriguez, G.,
- 647 Romani, G.L., Rossini, P.M., Forno, G.D., Percio, C. Del, Ferreri, F., Ferri, R., Frisoni, G.,
- 648 Galderisi, S., Hirata, K., Lanuzza, B., Miniussi, C., Mucci, A., Nobili, F., Rodriguez, G.,
- 649 Romani, G.L., Rossini, P.M., 2006. Sources of cortical rhythms in adults during physiological
- aging: A multicentric EEG study. Hum. Brain Mapp. 27, 162–172.
- 651 https://doi.org/10.1002/hbm.20175
- Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., Cavedo, E., Bozzao, A.,
 Buttinelli, C., Esposito, F., Giubilei, F., Guizzaro, A., Marino, S., Montella, P., Quattrocchi,
- 654 C.C., Redolfi, A., Soricelli, A., Tedeschi, G., Ferri, R., Rossi-Fedele, G., Ursini, F., Scrascia, F.,
- 655 Vernieri, F., Pedersen, T.J., Hardemark, H.G., Rossini, P.M., Frisoni, G.B., 2013. Resting state
- 656cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild657cognitive impairment and Alzheimer's disease. Hum. Brain Mapp. 34, 1427–1446.
- 658 https://doi.org/10.1002/hbm.22005
- Bazanova, O.M., Vernon, D., 2014. Interpreting EEG alpha activity. Neurosci. Biobehav. Rev. 44, 94–
 110. https://doi.org/10.1016/j.neubiorev.2013.05.007
- Bazin, P.L., Weiss, M., Dinse, J., Schäfer, A., Trampel, R., Turner, R., 2014. A computational
- framework for ultra-high resolution cortical segmentation at 7 Tesla. Neuroimage 93, 201–209.
 https://doi.org/10.1016/j.neuroimage.2013.03.077
- Behzadi, Y., Restom, K., Liau, J., Liu, T.T., 2007. A component based noise correction method
 (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101.
- 666 https://doi.org/10.1016/j.neuroimage.2007.04.042
- Bell, A.J., Sejnowski, T.J., 1995. An Information-Maximization Approach to Blind Separation and
 Blind Deconvolution. Neural Comput. 7, 1129–1159. https://doi.org/10.1162/neco.1995.7.6.1129
- Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate : A Practical and Powerful
- 670 Approach to Multiple Testing Author (s): Yoav Benjamini and Yosef Hochberg Source :
- Journal of the Royal Statistical Society . Series B (Methodological), Vol. 57, No. 1 Published
 by : J. R. Stat. Soc. 57, 289–300.
- Bijsterbosch, J., Harrison, S., Duff, E., Alfaro-Almagro, F., Woolrich, M., Smith, S., 2017.
- 674 Investigations into within- and between-subject resting-state amplitude variations. Neuroimage
 675 159, 57–69. https://doi.org/10.1016/j.neuroimage.2017.07.014
- Birn, R.M., Murphy, K., Bandettini, P.A., 2008. The effect of respiration variations on independent
 component analysis results of resting state functional connectivity. Hum. Brain Mapp. 29, 740–

- 678 750. https://doi.org/10.1002/hbm.20577
- Biswal, B.B., Mennes, M., Zuo, X.-N., 2010. Toward discovery science of human brain function.
 Proc. Natl. Acad. Sci. U. S. A. 107, 4734–4739. https://doi.org/10.1073/pnas.0911855107
- 681 Brenner, R.P., Ulrich, R.F., Reynolds, C.F., 1995. EEG spectral findings in healthy, elderly men and
- 682 women sex differences. Electroencephalogr. Clin. Neurophysiol. 94, 1–5.

683 https://doi.org/10.1016/0013-4694(94)00234-C

- Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson, M.C., Barnes, G.R.,
- 685 Smith, S.M., Morris, P.G., 2011. Investigating the electrophysiological basis of resting state
- networks using magnetoencephalography. Proc. Natl. Acad. Sci. 108, 16783–16788.

687 https://doi.org/10.1073/pnas.1112685108

- Burgess, A., Gruzelier, J., 1993. Individual reliability of amplitude distribution in topographical
 mapping of EEG. Electroencephalogr. Clin. Neurophysiol. 86, 219–223.
- 690 https://doi.org/10.1016/0013-4694(93)90101-Z
- 691 Caballero-Gaudes, C., Reynolds, R.C., 2017. Methods for cleaning the BOLD fMRI signal.
- 692 Neuroimage 154, 128–149. https://doi.org/10.1016/j.neuroimage.2016.12.018
- 693 Cabeza, R., 2001. Cognitive neuroscience of aging: Contributions of functional neuroimaging. Scand.
 694 J. Psychol. 42, 277–286. https://doi.org/10.1111/1467-9450.00237
- 695 Cabeza, R., Albert, M., Belleville, S., Craik, F.I.M., Duarte, A., Grady, C.L., Lindenberger, U.,
- 696 Nyberg, L., Park, D.C., Reuter-Lorenz, P.A., Rugg, M.D., Steffener, J., Rajah, M.N., 2018.
- Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev.
 Neurosci. 19, 701–710. https://doi.org/10.1038/s41583-018-0068-2
- Campbell, K.L., Grady, C.L., Ng, C., Hasher, L., 2012. Age differences in the frontoparietal cognitive
 control network: Implications for distractibility. Neuropsychologia 50, 2212–2223.
- 701 https://doi.org/10.1016/j.neuropsychologia.2012.05.025
- Carrier, J., Land, S., Buysse, D.J., Kupfer, D.J., Monk, T.H., 2001. The effects of age and gender on
 sleep EEG power spectral density in the middle years of life (ages 20-60 years old).

704 Psychophysiology 38, 232–242. https://doi.org/10.1017/S0048577201991838

- Chang, C., Cunningham, J.P., Glover, G.H., 2009. Influence of heart rate on the BOLD signal: The
 cardiac response function. Neuroimage 44, 857–869.
- 707 https://doi.org/10.1016/j.neuroimage.2008.09.029
- 708 Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., Ye, F.Q., Turchi,
- 709 J.N., Duyn, J.H., 2016. Tracking brain arousal fluctuations with fMRI. Proc. Natl. Acad. Sci.
- 710 113, 4518–4523. https://doi.org/10.1073/pnas.1520613113
- 711 Chang, C., Liu, Z., Chen, M.C., Liu, X., Duyn, J.H., 2013. EEG correlates of time-varying BOLD
- functional connectivity. Neuroimage 72, 227–236.
- 713 https://doi.org/10.1016/j.neuroimage.2013.01.049
- 714 Cho, Z., Chung, S., Lim, D., Wong, E.K., 1998. Effects of the Acoustic Noise of the Gradient Systems

- 715 on fMRI: Magn. Reson. Med. 39 331–335.
- 716 Cohen, M.X., 2017. Where Does EEG Come From and What Does It Mean? Trends Neurosci. 40,
- 717 208–218. https://doi.org/10.1016/j.tins.2017.02.004
- Cox, R.W., 1996. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance
 Neuroimages. Comput. Biomed. Res. 29, 162–173. https://doi.org/10.1006/cbmr.1996.0014
- 720 D'Esposito, M., Deouell, L.Y., Gazzaley, A., 2003. Alterations in the BOLD fMRI signal with ageing

and disease: a challenge for neuroimaging. Nat. Rev. Neurosci. 4, 863–872.

- 722 https://doi.org/10.1038/nrn1246
- Damoiseaux, J.S., 2017. Effects of aging on functional and structural brain connectivity. Neuroimage
 160, 32–40. https://doi.org/10.1016/j.neuroimage.2017.01.077
- Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J.S., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M.,
 Rombouts, S.A.R.B., 2008. Reduced resting-state brain activity in the "default network" in

normal aging. Cereb. Cortex 18, 1856–1864. https://doi.org/10.1093/cercor/bhm207

Das, S.R., Pluta, J., Mancuso, L., Kliot, D., Yushkevich, P.A., Wolk, D.A., 2015. Anterior and
 posterior MTL networks in aging and MCI. Neurobiol. Aging 36, S141–S150.

730 https://doi.org/10.1016/j.neurobiolaging.2014.03.041

- Deligianni, F., Centeno, M., Carmichael, D.W., Clayden, J.D., 2014. Relating resting-state fMRI and
 EEG whole-brain connectomes across frequency bands. Front. Neurosci. 8, 1–16.
 https://doi.org/10.3389/fnins.2014.00258
- Delorme, A., Makeig, S., 2004. EEGLAB: an open sorce toolbox for analysis of single-trail EEG
 dynamics including independent component anlaysis. J. Neurosci. Methods 134, 9–21.
 https://doi.org/10.1016/j.jneumeth.2003.10.009
- Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L.,
 Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated
- 739 labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions
- 740 of interest. Neuroimage 31, 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021
- 741 Dierks, T., Jelic, V., Pascual-Marqui, R.D., Wahlund, L.O., Julin, P., Linden, D.E.J., Maurer, K.,
- 742 Winblad, B., Nordberg, A., 2000. Spatial pattern of cerebral glucose metabolism (PET)
- 743 correlates with localization of intracerebral EEG-generators in Alzheimer's disease. Clin.
- 744 Neurophysiol. 111, 1817–1824. https://doi.org/10.1016/S1388-2457(00)00427-2
- 745 Duffy, F.H., McAnulty, G.B., Albert, M.S., 1993. The pattern of age-related differences in
- electrophysiological activity of healthy males and females. Neurobiol. Aging 14, 73–84.
 https://doi.org/10.1016/0197-4580(93)90025-7
- Dustman, R.E., Shearer, D.E., Emmerson, R.Y., 1999. Life-span changes in EEG spectral amplitude,
 amplitude variability and mean frequency. Clin. Neurophysiol. 110, 1399–1409.
 https://doi.org/10.1016/S1388-2457(99)00102-9
- 751 Dustman, R.E., Shearer, D.E., Emmerson, R.Y., 1993. EEG and event-related potentials in normal

- 752 aging. Prog. Neurobiol. 41, 369–401. https://doi.org/10.1016/0301-0082(93)90005-D
- 753 Engel, A.K., Fries, P., 2010. Beta-band oscillations-signalling the status quo? Curr. Opin. Neurobiol.

754 20, 156–165. https://doi.org/10.1016/j.conb.2010.02.015

- Failla, M., Grappiolo, A., Emanuelli, G., Vitale, G., Fraschini, N., Bigoni, M., Grieco, N., Denti, M.,
 Giannattasio, C., Mancia, G., 1999. Sympathetic tone restrains arterial distensibility of healthy
 and atherosclerotic subjects. J. Hypertens. 17, 1117–1123. https://doi.org/10.1097/00004872-
- 758 199917080-00011
- Farkas, E., Luiten, P.G.M., 2001. Cerebral microvascular pathology in aging and Alzheimer's disease,
 Progress in Neurobiology. https://doi.org/10.1016/S0301-0082(00)00068-X
- Fernández, A., Zuluaga, P., Abásolo, D., Gómez, C., Serra, A., Méndez, M.A., Hornero, R., 2012.
 Brain oscillatory complexity across the life span. Clin. Neurophysiol. 123, 2154–2162.
 https://doi.org/10.1016/j.clinph.2012.04.025
- 705 https://doi.org/10.1010/j.emph.2012.01.025
- 764 Fischl, B., 2012. FreeSurfer. Neuroimage 62, 774–781.
- 765 https://doi.org/10.1016/j.neuroimage.2012.01.021
- Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J., Turner, R., 1996. Movement-related
 effects in fMRI time-series. Magn. Reson. Med. 35, 346–355.
- 768 https://doi.org/10.1002/mrm.1910350312
- Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2013a. The modulation of BOLD
 variability between cognitive states varies by age and processing speed. Cereb. Cortex 23, 684–
 693. https://doi.org/10.1093/cercor/bhs055
- Garrett, D.D., Lindenberger, U., Hoge, R.D., Gauthier, C.J., 2017. Age differences in brain signal
 variability are robust to multiple vascular controls. Sci. Rep. 7, 10149.
- 774 https://doi.org/10.1038/s41598-017-09752-7
- Garrett, D.D., Nagel, I.E., Preuschhof, C., Burzynska, A.Z., Marchner, J., Wiegert, S., Jungehülsing,
 G.J., Nyberg, L., Villringer, A., Li, S.-C., Heekeren, H.R., Bäckman, L., Lindenberger, U., 2015.
 Amphetamine modulates brain signal variability and working memory in younger and older
- 778 adults. Proc. Natl. Acad. Sci. 112, 7593–7598. https://doi.org/10.1073/pnas.1504090112
- 779 Garrett, D.D., Samanez-Larkin, G.R., MacDonald, S.W.S., Lindenberger, U., McIntosh, A.R., Grady,
- C.L., 2013b. Moment-to-moment brain signal variability: A next frontier in human brain
 mapping? Neurosci. Biobehav. Rev. 37, 610–624.
- 782 https://doi.org/10.1016/j.neubiorev.2013.02.015
- Geerligs, L., Tsvetanov, K.A., Cam-CAN, Henson, R.N., 2017. Challenges in measuring individual
 differences in functional connectivity using fMRI: The case of healthy aging. Hum. Brain Mapp.
 38, 4125–4156. https://doi.org/10.1002/hbm.23653
- 786 Golchert, J., Smallwood, J., Jefferies, E., Seli, P., Huntenburg, J.M., Liem, F., Lauckner, M.E.,
- 787 Oligschläger, S., Bernhardt, B.C., Villringer, A., Margulies, D.S., 2017. Individual variation in
- intentionality in the mind-wandering state is reflected in the integration of the default-mode,

- fronto-parietal, and limbic networks. Neuroimage 146, 226–235.
- 790 https://doi.org/10.1016/j.neuroimage.2016.11.025
- Goldman, R.I., Stern, J.M., Engel, J., Cohen, M.S., 2002. Simultaneous EEG and fMRI of the alpha
 rhythm. Neuroreport 13, 2487–2492. https://doi.org/10.1097/00001756-200212200-00022
- 793 Gonçalves, S.I., De Munck, J.C., Pouwels, P.J.W., Schoonhoven, R., Kuijer, J.P.A., Maurits, N.M.,
- Hoogduin, J.M., Van Someren, E.J.W., Heethaar, R.M., Lopes Da Silva, F.H., 2006. Correlating
- the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage
 30, 203–213. https://doi.org/10.1016/j.neuroimage.2005.09.062
- Gong, G., He, Y., Evans, A.C., 2011. Brain connectivity: Gender makes a difference. Neuroscientist
 17, 575–591. https://doi.org/10.1177/1073858410386492
- Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., Ghosh, S.S.,
 2011. Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing
- 801 Framework in Python. Front. Neuroinform. 5, 13. https://doi.org/10.3389/fninf.2011.00013
- 802 Grady, C., 2012. The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13, 491–505.
- 803 https://doi.org/10.1038/nrn3256
- Grady, C.L., Garrett, D.D., 2018. Brain signal variability is modulated as a function of internal and
 external demand in younger and older adults. Neuroimage 169, 510–523.
 https://doi.org/10.1016/j.neuroimage.2017.12.031
- Grady, C.L., Garrett, D.D., 2014. Understanding variability in the BOLD signal and why it matters for
 aging. Brain Imaging Behav. https://doi.org/10.1007/s11682-013-9253-0
- 809 Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V., 2004. Default-mode network activity
- distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl.
 Acad. Sci. U. S. A. 101, 4637–42. https://doi.org/10.1073/pnas.0308627101
- 812 Gur, R.C., Gur, R.E., Obrist, W.D., Hungerbuhler, J.P., Younkin, D., Rosen, A.D., Skolnick, B.E.,
 813 Reivich, M., 1982. Sex and handedness differences in cerebral blood flow during rest and
- 814 cognitive activity. Science (80-.). 217, 659–661. https://doi.org/10.1126/science.7089587
- Haimovici, A., Tagliazucchi, E., Balenzuela, P., Laufs, H., 2017. On wakefulness fluctuations as a
 source of BOLD functional connectivity dynamics. Sci. Rep. 7. https://doi.org/10.1038/s41598017-06389-4
- 818 Hartikainen, P., Soininen, H., Partanen, J., Helkala, E.L., Riekkinen, P., 1992. Aging and spectral
- analysis of EEG in normal subjects: a link to memory and CSF AChE. Acta Neurol. Scand. 86,
 148–155. https://doi.org/10.1111/j.1600-0404.1992.tb05057.x
- 821 Haufe, S., Ewald, A., 2016. A Simulation Framework for Benchmarking EEG-Based Brain
- 822 Connectivity Estimation Methodologies. Brain Topogr. 1–18. https://doi.org/10.1007/s10548823 016-0498-y
- Hawkes, C.H., Prescott, R.J., 1973. EEG variation in healthy subjects. Electroencephalogr. Clin.
 Neurophysiol. 34, 197–199. https://doi.org/10.1016/0013-4694(73)90048-5

- Huang, Y., Parra, L.C., Haufe, S., 2016. The New York Head—A precise standardized volume
 conductor model for EEG source localization and tES targeting. Neuroimage 140, 150–162.
 https://doi.org/10.1016/j.neuroimage.2015.12.019
- Hudetz, A.G., Biswal, B.B., Shen, H., Lauer, K.K., Kampine, J.P., 1998. Spontaneous Fluctuations in
 Cerebral Oxygen Supply. Springer, Boston, MA, pp. 551–559. https://doi.org/10.1007/978-1-
- 831 4615-4863-8_66
- Immer, F.R., 1937. Correlation between Means and Standard Deviations in Field Experiments. J. Am.
 Stat. Assoc. 32, 525–531. https://doi.org/10.1080/01621459.1937.10502321
- Jacobson, S.C., Blanchard, M., Connolly, C.C., Cannon, M., Garavan, H., 2011. An fMRI
 investigation of a novel analogue to the Trail-Making Test. Brain Cogn. 77, 60–70.
 https://doi.org/10.1016/j.bandc.2011.06.001
- Jaušovec, N., Jaušovec, K., 2010. Resting brain activity: Differences between genders.
 Neuropsychologia 48, 3918–3925. https://doi.org/10.1016/j.neuropsychologia.2010.09.020
- B39 Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. Fsl.
- 840 Neuroimage 62, 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015
- 841 Jollife, I.T., Cadima, J., 2016. Principal component analysis: A review and recent developments.
- 842 Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150202.
- 843 https://doi.org/10.1098/rsta.2015.0202
- Jorge, J., Van der Zwaag, W., Figueiredo, P., 2014. EEG-fMRI integration for the study of human
 brain function. Neuroimage 102, 24–34. https://doi.org/10.1016/j.neuroimage.2013.05.114
- 846 Jurcak, V., Tsuzuki, D., Dan, I., 2007. 10/20, 10/10, and 10/5 systems revisited: Their validity as
- relative head-surface-based positioning systems. Neuroimage 34, 1600–1611.
- 848 https://doi.org/10.1016/j.neuroimage.2006.09.024
- Kielar, A., Deschamps, T., Chu, R.K.O., Jokel, R., Khatamian, Y.B., Chen, J.J., Meltzer, J.A., 2016.
 Identifying dysfunctional cortex: Dissociable effects of stroke and aging on resting state
- dynamics in MEG and fmri. Front. Aging Neurosci. 8. https://doi.org/10.3389/fnagi.2016.00040
- Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: A
 review and analysis. Brain Res. Rev. 29, 169–195. https://doi.org/10.1016/S01650173(98)00056-3
- 855 Labrenz, F., Ferri, F., Wrede, K., Forsting, M., Schedlowski, M., Engler, H., Elsenbruch, S., Benson,
- 856 S., Costantini, M., 2018. Altered temporal variance and functional connectivity of BOLD signal
- is associated with state anxiety during acute systemic inflammation. Neuroimage 184, 916–924.
 https://doi.org/10.1016/j.neuroimage.2018.09.056
- Latta, F., Leproult, R., Tasali, E., Hofmann, E., Van Cauter, E., 2005. Sex differences in delta and
 alpha EEG activities in healthy older adults. Sleep 28, 1525–1534.
- 861 https://doi.org/10.1093/sleep/28.12.1525
- Laufs, H., Kleinschmidt, A., Holt, J.L., Elfont, R., Krams, M., Paul, J.S., Krakow, K., 2006. Where the

- BOLD signal goes when alpha EEG leaves. Neuroimage 31, 1408–1418.
- 864 https://doi.org/10.1016/j.neuroimage.2006.02.002
- Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Kleinschmidt, A., 2003.
 Electroencephalographic signatures of attentional and cognitive default modes in spontaneous
 brain activity fluctuations at rest 100.
- 868 Lipsitz, L.A., Goldberger, A.L., 1992. Loss of 'Complexity' and Aging: Potential Applications of
- Fractals and Chaos Theory to Senescence. JAMA J. Am. Med. Assoc. 267, 1806–1809.
 https://doi.org/10.1001/jama.1992.03480130122036
- Liu, P., Hebrank, A.C., Rodrigue, K.M., Kennedy, K.M., Section, J., Park, D.C., Lu, H., 2013. Agerelated differences in memory-encoding fMRI responses after accounting for decline in vascular
 reactivity. Neuroimage 78, 415–425. https://doi.org/10.1016/j.neuroimage.2013.04.053
- Liu, T.T., 2013. Neurovascular factors in resting-state functional MRI. Neuroimage 80, 339–348.
 https://doi.org/10.1016/j.neuroimage.2013.04.071
- Logothetis, N.K., 2008. What we can do and what we cannot do with fMRI. Nature 453, 869–878.
 https://doi.org/10.1038/nature06976
- Logothetis, N.K., Wandell, B.A., 2004. Interpreting the BOLD Signal. Annu. Rev. Physiol. 66, 735–
 769. https://doi.org/10.1146/annurev.physiol.66.082602.092845
- Lopes Da Silva, F.H., Pijn, J.P., Velis, D., Nijssen, P.C.G., 1997. Alpha rhythms: Noise, dynamics and
 models. Int. J. Psychophysiol. 26, 237–249. https://doi.org/10.1016/S0167-8760(97)00767-8
- Lopez-Larson, M.P., Anderson, J.S., Ferguson, M.A., Yurgelun-Todd, D., 2011. Local brain
 connectivity and associations with gender and age. Dev. Cogn. Neurosci. 1, 187–197.
- 884 https://doi.org/10.1016/j.dcn.2010.10.001
- Ma, Y., Shaik, M.A., Kozberg, M.G., Kim, S.H., Portes, J.P., Timerman, D., Hillman, E.M.C., 2016.
 Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural
 activity in excitatory neurons. Proc. Natl. Acad. Sci. 113, E8463–E8471.
- 888 https://doi.org/10.1073/pnas.1525369113
- Malone, I.B., Leung, K.K., Clegg, S., Barnes, J., Whitwell, J.L., Ashburner, J., Fox, N.C., Ridgway,
 G.R., 2015. Accurate automatic estimation of total intracranial volume: A nuisance variable with
 less nuisance. Neuroimage 104, 366–372. https://doi.org/10.1016/j.neuroimage.2014.09.034
- 892 Maltez, J., Hyllienmark, L., Nikulin, V. V., Brismar, T., 2004. Time course and variability of power in
- different frequency bands of EEG during resting conditions. Neurophysiol. Clin. 34, 195–202.
 https://doi.org/10.1016/j.neucli.2004.09.003
- Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L., Corbetta, M., 2007. Electrophysiological
 signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. 104, 13170–
 13175. https://doi.org/10.1073/pnas.0700668104
- Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin, G.,
 Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Smallwood, J., 2016. Situating the

- 900 default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl.
- 901 Acad. Sci. 113, 12574–12579. https://doi.org/10.1073/pnas.1608282113
- Martin, J., Friston, K.J., Colebatch, J.G., Frackowiak, R.S.J., Unit, M.R.C.C., Hospital, H., 1991.
 Decreases in Regional Cerebral Blood Flow with Normal Aging 684–689.
- Mateo, C., Knutsen, P.M., Tsai, P.S., Shih, A.Y., Kleinfeld, D., 2017. Entrainment of Arteriole
- 905 Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent
- 906 "Resting-State" Connectivity. Neuron 96, 936-948.e3.
- 907 https://doi.org/10.1016/j.neuron.2017.10.012
- 908 Matsuura, M., Yamamoto, K., Fukuzawa, H., Okubo, Y., Uesugi, H., Moriiwa, M., Kojima, T.,
- 909 Shimazono, Y., 1985. Age development and sex differences of various EEG elements in healthy
- 910 children and adults Quantification by a computerized waveform recognition method.
- 911 Electroencephalogr. Clin. Neurophysiol. 60, 394–406. https://doi.org/10.1016/0013-
- 912 4694(85)91013-2
- 913 McBride, J.C., Zhao, X., Munro, N.B., Smith, C.D., Jicha, G.A., Hively, L., Broster, L.S., Schmitt,
- 914 F.A., Kryscio, R.J., Jiang, Y., 2014. Spectral and complexity analysis of scalp EEG
- 915 characteristics for mild cognitive impairment and early Alzheimer's disease. Comput. Methods
 916 Programs Biomed. 114, 153–163. https://doi.org/10.1016/j.cmpb.2014.01.019
- 917 McDonald, J.H., 2014. Handbook of Biological Statistics. Sparky House Publ. 180–185.
- 918 Meunier, D., Achard, S., Morcom, A., Bullmore, E., 2009. Age-related changes in modular
- 919 organization of human brain functional networks. Neuroimage 44, 715–723.
- 920 https://doi.org/10.1016/j.neuroimage.2008.09.062
- Meyer, M.C., Janssen, R.J., Van Oort, E.S.B., Beckmann, C.F., Barth, M., 2013. The Quest for EEG
 Power Band Correlation with ICA Derived fMRI Resting State Networks. Front. Hum. Neurosci.
- 923 7, 315. https://doi.org/10.3389/fnhum.2013.00315
- Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., Taskin, B., Obrig, H.,
 Villringer, A., 2003. Correlates of alpha rhythm in functional magnetic resonance imaging and
 near infrared spectroscopy. Neuroimage 20, 145–158. https://doi.org/10.1016/S1053-
- 927 8119(03)00344-6
- Moretti, D. V., Paternicò, D., Binetti, G., Zanetti, O., Frisoni, G.B., 2012. EEG markers are associated
 to gray matter changes in thalamus and basal ganglia in subjects with mild cognitive impairment.
 Neuroimage 60, 489–496. https://doi.org/10.1016/j.neuroimage.2011.11.086
- 750 Neuroimage 00, 469–490. https://doi.org/10.1010/j.neuroimage.2011.11.080
- 931 Murayama, Y., Bieβmann, F., Logothetis, N.K., Oeltermann, A., Müller, K.-R., Meinecke, F.C.,
- Augath, M., 2010. Relationship between neural and hemodynamic signals during spontaneous
- 933 activity studied with temporal kernel CCA. Magn. Reson. Imaging 28, 1095–1103.
- 934 https://doi.org/10.1016/j.mri.2009.12.016
- 935 Murphy, K., Birn, R.M., Bandettini, P.A., 2013. Resting-state fMRI confounds and cleanup.
- 936 Neuroimage 80, 349–359. https://doi.org/10.1016/j.neuroimage.2013.04.001

- 937 Näpflin, M., Wildi, M., Sarnthein, J., 2007. Test-retest reliability of resting EEG spectra validates a
- statistical signature of persons. Clin. Neurophysiol. 118, 2519–2524.
- 939 https://doi.org/10.1016/j.clinph.2007.07.022
- 940 Nguyen, L.H., Holmes, S., 2019. Ten quick tips for effective dimensionality reduction. PLOS Comput.
 941 Biol. 15, e1006907. https://doi.org/10.1371/journal.pcbi.1006907
- 942 Niessing, J., Ebisch, B., Schmidt, K.E., Niessing, M., Singer, W., Galuske, R.A.W., 2005.
- 943 Neuroscience: Hemodynamic signals correlate tightly with synchronized gamma oscillations.
 944 Science (80-.). 309, 948–951. https://doi.org/10.1126/science.1110948
- Nir, Y., Hasson, U., Levy, I., Yeshurun, Y., Malach, R., 2006. Widespread functional connectivity and
 fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30,
 1313–1324. https://doi.org/10.1016/j.neuroimage.2005.11.018
- 948 Nomi, J.S., Bolt, T.S., Ezie, C.E.C., Uddin, L.Q., Heller, A.S., 2017. Moment-to-Moment BOLD
- 949 Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan. J.
 950 Neurosci. 37, 5539–5548. https://doi.org/10.1523/JNEUROSCI.3408-16.2017
- Nomi, J.S., Schettini, E., Voorhies, W., Bolt, T.S., Heller, A.S., Uddin, L.Q., 2018. Resting-State
 Brain Signal Variability in Prefrontal Cortex Is Associated With ADHD Symptom Severity in
 Children. Front. Hum. Neurosci. 12, 90. https://doi.org/10.3389/fnhum.2018.00090
- Nunez, P.L., Srinivasan, R., Fields, R.D., 2015. EEG functional connectivity, axon delays and white
 matter disease. Clin. Neurophysiol. 126, 110–120. https://doi.org/10.1016/j.clinph.2014.04.003
- 956 Oken, B.S., Chiappa, K.H., 1988. Short-term variability in EEG frequency analysis.
- 957 Electroencephalogr. Clin. Neurophysiol. 69, 191–198. https://doi.org/10.1016/0013958 4694(88)90128-9
- Petersen, S.E., Savalia, N.K., Chan, M.Y., Park, D.C., Wig, G.S., 2014. Decreased segregation of
 brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. 111, E4997–E5006.
 https://doi.org/10.1073/pnas.1415122111
- 962 Qin, Y., Jiang, S., Zhang, Q., Dong, L., Jia, X., He, H., Yao, Y., Yang, H., Zhang, T., Luo, C., Yao,
 963 D., 2019. BOLD-fMRI activity informed by network variation of scalp EEG in juvenile
- 964 myoclonic epilepsy. NeuroImage Clin. 22, 101759. https://doi.org/10.1016/j.nicl.2019.101759
- 965 Quandt, F., Bönstrup, M., Schulz, R., Timmermann, J.E., Zimerman, M., Nolte, G., Hummel, F.C.,
- 966 2016. Spectral variability in the aged brain during fine motor control. Front. Aging Neurosci. 8.
 967 https://doi.org/10.3389/fnagi.2016.00305
- Raichle, M.E., 2015. The Brain's Default Mode Network. Annu. Rev. Neurosci. 38, 433–447.
 https://doi.org/10.1146/annurev-neuro-071013-014030
- Reitan, R.M., 1955. Certain differential effects of left and right cerebral lesions in human adults. J
 Comp Physiol Psychol 48, 474–477.
- Reitan, R.M., Wolfson, D., 1995. Category Test and Trail Making Test as Measures of Frontal Lobe
 Functions. Clin. Neuropsychol. 9, 50–56. https://doi.org/10.1080/13854049508402057

- 874 Rice, J.K., Rorden, C., Little, J.S., Parra, L.C., 2013. Subject position affects EEG magnitudes.
 875 Neuroimage 64, 476–484. https://doi.org/10.1016/j.neuroimage.2012.09.041
- Ritter, P., Moosmann, M., Villringer, A., 2009. Rolandic alpha and beta EEG rhythms' strengths are
 inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum. Brain
 Mapp. 30, 1168–1187. https://doi.org/10.1002/hbm.20585
- 879 Ritter, P., Villringer, A., 2006. Simultaneous EEG-fMRI. Neurosci. Biobehav. Rev. 30, 823–838.
 800 https://doi.org/10.1016/j.neubiorev.2006.06.008
- Rodriguez, G., Warkentin, S., Risberg, J., Rosadini, G., 1988. Sex differences in regional cerebral
 blood flow. J. Cereb. Blood Flow Metab. 8, 783–789. https://doi.org/10.1038/jcbfm.1988.133
- Rokem, a, Trumpis, M., Perez, F., 2009. Nitime: time-series analysis for neuroimaging data. Proc. 8th
 Python Sci. Conf. (SciPy 2009) 1–8.
- Rosenblum, M., Pikovsky, A., Kurths, J., Schäfer, C., Tass, P.A., 2001. Phase synchronization: From
 theory to data analysis. Handb. Biol. Phys. 4, 279–321. https://doi.org/10.1016/S13838121(01)80012-9
- Rossiter, H.E., Davis, E.M., Clark, E. V., Boudrias, M.H., Ward, N.S., 2014. Beta oscillations reflect
 changes in motor cortex inhibition in healthy ageing. Neuroimage 91, 360–365.
 https://doi.org/10.1016/j.neuroimage.2014.01.012
- 991 Ruigrok, A.N.V., Salimi-Khorshidi, G., Lai, M.C., Baron-Cohen, S., Lombardo, M. V., Tait, R.J.,
- 992 Suckling, J., 2014. A meta-analysis of sex differences in human brain structure. Neurosci.

993 Biobehav. Rev. 39, 34–50. https://doi.org/10.1016/j.neubiorev.2013.12.004

- Sacher, J., Neumann, J., Okon-Singer, H., Gotowiec, S., Villringer, A., 2013. Sexual dimorphism in
 the human brain: Evidence from neuroimaging. Magn. Reson. Imaging 31, 366–375.
- 996 https://doi.org/10.1016/j.mri.2012.06.007
- Scheeringa, R., Fries, P., Petersson, K.M., Oostenveld, R., Grothe, I., Norris, D.G., Hagoort, P.,
 Bastiaansen, M.C.M., 2011. Neuronal Dynamics Underlying High- and Low-Frequency EEG
 Oscillations Contribute Independently to the Human BOLD Signal. Neuron 69, 572–583.
- 1000 https://doi.org/10.1016/j.neuron.2010.11.044
- 1001 Seaquist, E.R., Chen, W., Benedict, L.E., Ugurbil, K., Kwag, J.H., Zhu, X.H., Nelson, C.A., 2007.
- Insulin reduces the BOLD response but is without effect on the VEP during presentation of a
 visual task in humans. J. Cereb. Blood Flow Metab. 27, 154–160.
- 1004 https://doi.org/10.1038/sj.jcbfm.9600316
- 1005 Shehzad, Z., Kelly, A.M.C., Reiss, P.T., Gee, D.G., Gotimer, K., Uddin, L.Q., Lee, S.H., Margulies,
- D.S., Roy, A.K., Biswal, B.B., Petkova, E., Castellanos, F.X., Milham, M.P., 2009. The Resting
 Brain: Unconstrained yet Reliable. Cereb. Cortex 19, 2209–2229.
- 1008 https://doi.org/10.1093/cercor/bhn256
- 1009 Sleimen-Malkoun, R., Perdikis, D., Muller, V., Blanc, J.-L., Huys, R., Temprado, J.-J., Jirsa, V.K.,
- 1010 2015. Brain Dynamics of Aging: Multiscale Variability of EEG Signals at Rest and during an

- 1011 Auditory Oddball Task. eNeuro 2. https://doi.org/10.1523/ENEURO.0067-14.2015
- 1012 Smits, F.M., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P.M., Tecchio, F., 2016.
- 1013 Electroencephalographic fractal dimension in healthy ageing and Alzheimer's disease. PLoS One
- 1014 11, 1–16. https://doi.org/10.1371/journal.pone.0149587
- 1015 Speelman, C.P., McGann, M., 2013. How mean is the mean? Front. Psychol. 4, 1–12.
- 1016 https://doi.org/10.3389/fpsyg.2013.00451
- 1017 Spreng, R.N., Sepulcre, J., Turner, G.R., Stevens, W.D., Schacter, D.L., 2013. Intrinsic Architecture
- 1018 Underlying the Relations among the Default, Dorsal Attention, and Frontoparietal Control
- 1019 Networks of the Human Brain. J. Cogn. Neurosci. 25, 74–86.
- 1020 https://doi.org/10.1162/jocn_a_00281
- Steriade, M., 2006. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137, 1087–
 1022 1106. https://doi.org/10.1016/j.neuroscience.2005.10.029
- Stomrud, E., Hansson, O., Minthon, L., Blennow, K., Rosén, I., Londos, E., 2010. Slowing of EEG
 correlates with CSF biomarkers and reduced cognitive speed in elderly with normal cognition
- 1025 over 4 years. Neurobiol. Aging 31, 215–223.
- 1026 https://doi.org/10.1016/j.neurobiolaging.2008.03.025
- Tagliazucchi, E., Laufs, H., 2014. Decoding Wakefulness Levels from Typical fMRI Resting-State
 Data Reveals Reliable Drifts between Wakefulness and Sleep. Neuron 82, 695–708.
- 1029 https://doi.org/10.1016/j.neuron.2014.03.020
- 1030 Thompson, G.J., 2018. Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 180,
 1031 448–462. https://doi.org/10.1016/j.neuroimage.2017.09.010
- 1032 Tibshirani, R., 2011. Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc.
 1033 Ser. B (Statistical Methodol. 73, 273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x
- 1034 Tomasi, D., Volkow, N.D., 2012. Aging and functional brain networks. Mol. Psychiatry 17, 549–558.
 1035 https://doi.org/10.1038/mp.2011.81
- 1036 Tsvetanov, K.A., Henson, R.N.A., Tyler, L.K., Davis, S.W., Shafto, M.A., Taylor, J.R., Williams, N.,
- 1037Cam-Can, Rowe, J.B., 2015. The effect of ageing on fMRI: Correction for the confounding1038effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Hum. Brain Mapp.
- 1039 36, 2248–2269. https://doi.org/10.1002/hbm.22768
- 1040 Vaillancourt, D.E., Newell, K.M., 2002. Changing complexity in human behavior and physiology
- 1041
 through aging and disease. Neurobiol Aging 23, 1–11. https://doi.org/10.1016/S0197

 1042
 4580(02)00052-0
- 1043 Valdés-Hernández, P.A., Ojeda-González, A., Martínez-Montes, E., Lage-Castellanos, A., Virués-
- 1044 Alba, T., Valdés-Urrutia, L., Valdes-Sosa, P.A., 2010. White matter architecture rather than
- 1045 cortical surface area correlates with the EEG alpha rhythm. Neuroimage 49, 2328–2339.
 1046 https://doi.org/10.1016/j.neuroimage.2009.10.030
- 1047 Veldhuizen, R.J., Jonkman, E.J., Poortvliet, D.C.J., 1993. Sex differences in age regression parameters

- 1048 of healthy adults-normative data and practical implications. Electroencephalogr. Clin.
- 1049 Neurophysiol. 86, 377–384. https://doi.org/10.1016/0013-4694(93)90133-G
- 1050 Villringer, A., Dirnagl, U., 1995. Coupling of brain activity and cerebral blood flow: basis of
 1051 functional neuroimaging. Cerebrovasc. Brain Metab. Rev. 7, 240—276.
- 1052 Vlahou, E.L., Thurm, F., Kolassa, I.-T., Schlee, W., 2015. Resting-state slow wave power, healthy
 1053 aging and cognitive performance. Sci. Rep. 4, 5101. https://doi.org/10.1038/srep05101
- Wang, R., Foniok, T., Wamsteeker, J.I., Qiao, M., Tomanek, B., Vivanco, R.A., Tuor, U.I., 2006.
 Transient blood pressure changes affect the functional magnetic resonance imaging detection of
- 1056 cerebral activation. Neuroimage 31, 1–11. https://doi.org/10.1016/j.neuroimage.2005.12.004
- Wheeler, R.E., 2016. lmPerm: Permutation tests for linear models. http://CRAN.Rproject.org/package=lmPerm. 24 p.
- Witten, D.M., Tibshirani, R., Hastie, T., 2009. A penalized matrix decomposition, with applications to
 sparse principal components and canonical correlation analysis. Biostatistics 10, 515–534.
 https://doi.org/10.1093/biostatistics/kxp008
- Wong, C.W., Olafsson, V., Tal, O., Liu, T.T., 2013. The amplitude of the resting-state fMRI global
 signal is related to EEG vigilance measures. Neuroimage 83, 983–990.
 https://doi.org/10.1016/j.neuroimage.2013.07.057
- Yan, C.G., Craddock, R.C., Zuo, X.N., Zang, Y.F., Milham, M.P., 2013. Standardizing the intrinsic
 brain: Towards robust measurement of inter-individual variation in 1000 functional
- 1067 connectomes. Neuroimage 80, 246–262. https://doi.org/10.1016/j.neuroimage.2013.04.081
- 1068 Yang, A.C., Huang, C.C., Yeh, H.L., Liu, M.E., Hong, C.J., Tu, P.C., Chen, J.F., Huang, N.E., Peng,
- 1069 C.K., Lin, C.P., Tsai, S.J., 2013. Complexity of spontaneous BOLD activity in default mode
 1070 network is correlated with cognitive function in normal male elderly: A multiscale entropy
 1071 analysis. Neurobiol. Aging 34, 428–438. https://doi.org/10.1016/j.neurobiolaging.2012.05.004
- 1072 Yu, Q., Wu, L., Bridwell, D.A., Erhardt, E.B., Du, Y., He, H., Chen, J., Liu, P., Sui, J., Pearlson, G.,
- 1073 Calhoun, V.D., 2016. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-
- 1074 fMRI Study. Front. Hum. Neurosci. 10, 1–17. https://doi.org/10.3389/fnhum.2016.00476
- 1075 Zakzanis, K., Mraz, R., Graham, S., 2005. An fMRI study of the trail making test. Neuropsychologia.
- 1076 Zappasodi, F., Marzetti, L., Olejarczyk, E., Tecchio, F., Pizzella, V., 2015. Age-related changes in
- 1077 electroencephalographic signal complexity. PLoS One 10, 1–13.
- 1078 https://doi.org/10.1371/journal.pone.0141995
- 1079 Zappasodi, F., Pasqualetti, P., Tombini, M., Ercolani, M., Pizzella, V., Rossini, P.M., Tecchio, F.,
- 1080 2006. Hand cortical representation at rest and during activation: Gender and age effects in the
- 1081 two hemispheres. Clin. Neurophysiol. 117, 1518–1528.
- 1082 https://doi.org/10.1016/j.clinph.2006.03.016
- 1083 Ziegler, E., Chellappa, S.L., Gaggioni, G., Ly, J.Q.M., Vandewalle, G., André, E., Geuzaine, C.,
- 1084 Phillips, C., 2014. A finite-element reciprocity solution for EEG forward modeling with realistic

- 1085 individual head models. Neuroimage 103, 542–551.
- 1086 https://doi.org/10.1016/j.neuroimage.2014.08.056
- 1087 Zöller, D., Schaer, M., Scariati, E., Padula, M.C., Eliez, S., Van De Ville, D., 2017. Disentangling
- 1088 resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome.
- 1089 Neuroimage 149, 85–97. https://doi.org/10.1016/j.neuroimage.2017.01.064
- 1090 Zuo, X.N., Di Martino, A., Kelly, C., Shehzad, Z.E., Gee, D.G., Klein, D.F., Castellanos, F.X.,
- 1091 Biswal, B.B., Milham, M.P., 2010. The oscillating brain: Complex and reliable. Neuroimage 49,
- 1092 1432–1445. https://doi.org/10.1016/j.neuroimage.2009.09.037
- 1093

109410. Supplementary Material

1095 Supplementary Figure 1. Flowchart of selecting participants from the Mind-Brain-Body1096 study.

Supplementary Figure 2. Spatial maps of mean SD_{BOLD} and SD_{EEG} for younger adults
 (N=135). We computed the mean SD_{BOLD} and SD_{EEG} by I) log-transforming the SD values,

1101 II) averaging separately for younger and older subjects, and III) then back-transforming the 1102 values (McDonald, 2014).

- 1104 **Supplementary Figure 3.** Spatial maps of mean SD_{BOLD} and SD_{EEG} for older adults (N=54).
- 1105 We computed the mean SD_{BOLD} and SD_{EEG} by I) log-transforming the SD values, II)
- 1106 averaging separately for younger and older subjects, and III) then back-transforming the
- 1107 values (McDonald, 2014).

- 1109 Supplementary Figure 4. Graphical distribution of the F-values for significant effects of age group or sex. The nonparametric ANCOVAs with
- 1110 SD_{BOLD} as dependent variable demonstrated that there was a significant main effect of age group in 72 ROIs, while no significant effect of sex
- 1111 was observed. We further found significant main effects of age group in all EEG frequency bands: SD_{DELTA} in 14 ROIs (F-values: 12.57–20.94),
- 1112 SD_{THETA} in 16 ROIs (F-values: 13.16–40.30), SD_{ALPHA} in 20 ROIs (F-values: 12.69–20.12), and SD_{BETA} in 69 ROIs (F-values: 12.50–21.61).
- 1113 There were also significant main effects of sex in all frequency bands: SD_{DELTA} in 21 ROIs (F-values: 13.24–26.63), SD_{THETA} in 74 ROIs (F-
- 1114 values: 12.68–30.06), SD_{ALPHA} in 4 ROIs (F-values: 12.88–16.51), and SD_{BETA} in 69 ROIs (F-values: 12.54–35.72).

1116 **Supplementary Table 1:** Table showing the mean (M) values of the SD_{BOLD} and SD_{EEG} for younger (N=135) and older (N=54) adults,

1117 respectively.

	SDB	OLD	SDDELTA		SD THETA		SDALPHA		SD beta	
ROI	Young	Old	Young	Old	Young	Old	Young	Old	Young	Old
Left Frontal Pole	1.336	1.085	0.028	0.027	0.019	0.016	0.015	0.016	0.014	0.021
Right Frontal Pole	1.304	1.029	0.027	0.027	0.020	0.018	0.026	0.026	0.015	0.021
Left Insular Cortex	1.583	1.213	0.023	0.019	0.021	0.014	0.022	0.016	0.014	0.018
Right Insular Cortex	0.845	0.728	0.024	0.022	0.019	0.015	0.021	0.018	0.016	0.023
Left Superior Frontal Gyrus	0.883	0.767	0.030	0.029	0.021	0.018	0.021	0.021	0.018	0.024
Right Superior Frontal Gyrus	0.735	0.651	0.028	0.029	0.021	0.018	0.022	0.023	0.018	0.026
Left Middle Frontal Gyrus	0.981	0.848	0.024	0.023	0.020	0.016	0.029	0.022	0.016	0.024
Right Middle Frontal Gyrus	0.868	0.789	0.029	0.030	0.020	0.019	0.021	0.024	0.015	0.020
Left Inferior Frontal Gyrus, pars triangularis	1.170	0.992	0.026	0.027	0.017	0.017	0.019	0.024	0.015	0.023
Right Inferior Frontal Gyrus, pars triangularis	0.977	0.848	0.024	0.025	0.016	0.016	0.020	0.024	0.014	0.022
Left Inferior Frontal Gyrus, pars opercularis	1.162	0.905	0.027	0.028	0.018	0.017	0.020	0.024	0.015	0.022
Right Inferior Frontal Gyrus, pars opercularis	1.077	0.949	0.025	0.026	0.017	0.017	0.021	0.025	0.014	0.022
Left Precentral Gyrus	0.710	0.646	0.024	0.023	0.017	0.016	0.024	0.025	0.013	0.019
Right Precentral Gyrus	0.875	0.766	0.028	0.028	0.019	0.018	0.022	0.025	0.015	0.020
Left Temporal Pole	0.733	0.741	0.027	0.026	0.019	0.018	0.023	0.026	0.014	0.021
Right Temporal Pole	0.761	0.746	0.027	0.025	0.019	0.018	0.027	0.027	0.015	0.019
Left Superior Temporal Gyrus, anterior division	1.089	1.028	0.022	0.021	0.017	0.015	0.029	0.023	0.015	0.023
Right Superior Temporal Gyrus, anterior division	1.041	0.921	0.020	0.017	0.016	0.013	0.030	0.022	0.013	0.020
Left Superior Temporal Gyrus, posterior division	0.485	0.447	0.019	0.019	0.015	0.014	0.025	0.022	0.014	0.022
Right Superior Temporal Gyrus, posterior division	0.748	0.693	0.020	0.019	0.015	0.014	0.026	0.023	0.013	0.020
Left Middle Temporal Gyrus, anterior division	0.457	0.507	0.020	0.019	0.015	0.014	0.026	0.023	0.012	0.019
Right Middle Temporal Gyrus, anterior division	1.255	1.019	0.024	0.019	0.017	0.014	0.033	0.023	0.013	0.017
Left Middle Temporal Gyrus, posterior division	0.432	0.458	0.026	0.022	0.019	0.016	0.029	0.024	0.014	0.017
Right Middle Temporal Gyrus, posterior division	1.148	1.078	0.029	0.024	0.021	0.019	0.038	0.026	0.014	0.016

Left Middle Temporal Gyrus, temporooccipital part	1.009	0.888	0.027	0.028	0.020	0.018	0.017	0.016	0.012	0.018
Right Middle Temporal Gyrus, temporooccipital part	0.776	0.720	0.026	0.022	0.024	0.017	0.029	0.020	0.015	0.019
Left Inferior Temporal Gyrus, anterior division	0.819	0.773	0.028	0.028	0.022	0.019	0.022	0.020	0.013	0.017
Right Inferior Temporal Gyrus, anterior division	0.982	0.821	0.024	0.022	0.020	0.015	0.017	0.014	0.012	0.016
Left Inferior Temporal Gyrus, posterior division	0.886	0.737	0.026	0.023	0.023	0.017	0.025	0.019	0.014	0.017
Right Inferior Temporal Gyrus, posterior division	1.052	0.891	0.030	0.024	0.023	0.019	0.040	0.026	0.015	0.019
Left Inferior Temporal Gyrus, temporooccipital part	1.224	1.080	0.029	0.022	0.021	0.018	0.040	0.026	0.015	0.019
Right Inferior Temporal Gyrus, temporooccipital part	1.052	0.947	0.029	0.022	0.021	0.018	0.041	0.025	0.014	0.016
Left Postcentral Gyrus	0.940	0.845	0.030	0.029	0.021	0.019	0.021	0.022	0.015	0.020
Right Postcentral Gyrus	1.089	0.946	0.030	0.029	0.021	0.020	0.026	0.025	0.013	0.017
Left Superior Parietal Lobule	1.309	1.174	0.033	0.029	0.023	0.021	0.033	0.028	0.014	0.017
Right Superior Parietal Lobule	1.282	1.093	0.030	0.026	0.021	0.020	0.035	0.027	0.014	0.017
Left Supramarginal Gyrus, anterior division	1.291	1.127	0.029	0.029	0.020	0.019	0.023	0.025	0.014	0.018
Right Supramarginal Gyrus, anterior division	1.213	1.051	0.030	0.027	0.021	0.019	0.027	0.027	0.014	0.019
Left Supramarginal Gyrus, posterior division	1.148	1.092	0.030	0.027	0.021	0.019	0.032	0.028	0.015	0.018
Right Supramarginal Gyrus, posterior division	1.100	0.968	0.029	0.025	0.021	0.019	0.032	0.026	0.015	0.017
Left Angular Gyrus	1.230	1.076	0.028	0.028	0.021	0.018	0.023	0.023	0.016	0.022
Right Angular Gyrus	1.323	1.149	0.025	0.026	0.018	0.017	0.024	0.025	0.015	0.022
Left Lateral Occipital Cortex, superior division	0.811	0.765	0.023	0.022	0.017	0.016	0.028	0.026	0.014	0.021
Right Lateral Occipital Cortex, superior division	1.072	0.981	0.027	0.028	0.019	0.018	0.022	0.025	0.014	0.021
Left Lateral Occipital Cortex, inferior division	0.890	0.861	0.026	0.025	0.019	0.018	0.027	0.027	0.013	0.019
Right Lateral Occipital Cortex, inferior division	1.100	0.892	0.024	0.023	0.018	0.016	0.027	0.026	0.013	0.020
Left Intracalcarine Cortex	1.072	0.863	0.030	0.023	0.021	0.018	0.041	0.026	0.014	0.016
Right Intracalcarine Cortex	0.885	0.893	0.028	0.023	0.020	0.017	0.034	0.024	0.014	0.015
Left Frontal Medial Cortex	0.946	0.945	0.029	0.027	0.019	0.016	0.017	0.016	0.016	0.022
Right Frontal Medial Cortex Left Justanositional Lobule Cortex (formerly Supplementary Motor	1.349	1.063	0.027	0.026	0.020	0.017	0.028	0.024	0.015	0.021
Cortex)	1.380	1.102	0.023	0.019	0.020	0.014	0.022	0.016	0.014	0.018

Right Juxtapositional Lobule Cortex (formerly Supplementary Motor										
Cortex)	0.925	0.784	0.024	0.020	0.019	0.014	0.023	0.018	0.017	0.023
Left Subcallosal Cortex	0.880	0.762	0.030	0.028	0.021	0.017	0.023	0.020	0.019	0.025
Right Subcallosal Cortex	0.984	0.846	0.028	0.027	0.021	0.017	0.024	0.021	0.019	0.025
Left Paracingulate Gyrus	1.251	0.902	0.023	0.021	0.019	0.015	0.029	0.022	0.016	0.023
Right Paracingulate Gyrus	0.942	0.822	0.029	0.028	0.019	0.018	0.021	0.022	0.015	0.021
Left Cingulate Gyrus, anterior division	1.487	1.213	0.024	0.026	0.015	0.016	0.020	0.022	0.014	0.022
Right Cingulate Gyrus, anterior division	1.459	1.201	0.023	0.024	0.015	0.016	0.022	0.024	0.013	0.020
Left Cingulate Gyrus, posterior division	1.412	1.163	0.025	0.027	0.016	0.016	0.020	0.023	0.014	0.021
Right Cingulate Gyrus, posterior division	1.579	1.281	0.024	0.025	0.016	0.016	0.023	0.025	0.014	0.020
Left Precuneous Cortex	0.978	0.878	0.024	0.021	0.017	0.015	0.029	0.025	0.013	0.016
Right Precuneous Cortex	1.120	1.041	0.027	0.027	0.018	0.017	0.022	0.023	0.014	0.019
Left Cuneal Cortex	0.793	0.764	0.027	0.026	0.018	0.017	0.027	0.026	0.014	0.019
Right Cuneal Cortex	0.894	0.837	0.028	0.024	0.020	0.017	0.033	0.027	0.015	0.017
Left Frontal Orbital Cortex	0.813	0.702	0.021	0.020	0.017	0.014	0.029	0.023	0.014	0.021
Right Frontal Orbital Cortex	1.166	0.850	0.021	0.017	0.016	0.013	0.030	0.022	0.013	0.018
Left Parahippocampal Gyrus, anterior division	0.853	0.733	0.019	0.018	0.014	0.013	0.027	0.023	0.013	0.020
Right Parahippocampal Gyrus, anterior division	1.129	0.975	0.020	0.017	0.015	0.013	0.029	0.023	0.013	0.018
Left Parahippocampal Gyrus, posterior division	1.101	0.943	0.021	0.017	0.016	0.013	0.030	0.022	0.013	0.016
Right Parahippocampal Gyrus, posterior division	0.459	0.455	0.024	0.018	0.018	0.014	0.035	0.022	0.013	0.016
Left Lingual Gyrus	0.550	0.554	0.027	0.021	0.019	0.016	0.034	0.024	0.015	0.015
Right Lingual Gyrus	0.558	0.544	0.030	0.023	0.021	0.019	0.041	0.026	0.015	0.016
Left Temporal Fusiform Cortex, anterior division	0.524	0.507	0.027	0.028	0.020	0.018	0.017	0.017	0.012	0.018
Right Temporal Fusiform Cortex, anterior division	0.929	0.807	0.026	0.021	0.024	0.016	0.029	0.020	0.015	0.019
Left Temporal Fusiform Cortex, posterior division	0.870	0.763	0.028	0.027	0.022	0.018	0.022	0.020	0.013	0.017
Right Temporal Fusiform Cortex, posterior division	1.387	1.244	0.024	0.022	0.020	0.015	0.017	0.015	0.013	0.017
Left Temporal Occipital Fusiform Cortex	1.258	0.961	0.027	0.023	0.023	0.017	0.025	0.019	0.014	0.018
Right Temporal Occipital Fusiform Cortex	1.367	1.187	0.031	0.024	0.023	0.019	0.040	0.027	0.015	0.019

Left Occipital Fusiform Gyrus	1.182	0.974	0.029	0.022	0.022	0.018	0.041	0.026	0.015	0.018
Right Occipital Fusiform Gyrus	1.416	1.169	0.029	0.022	0.021	0.018	0.042	0.025	0.015	0.016
Left Frontal Operculum Cortex	1.039	0.953	0.030	0.029	0.021	0.019	0.022	0.021	0.016	0.022
Right Frontal Operculum Cortex	1.299	1.207	0.031	0.028	0.021	0.019	0.027	0.025	0.014	0.018
Left Central Opercular Cortex	1.012	0.930	0.034	0.029	0.023	0.020	0.036	0.028	0.015	0.017
Right Central Opercular Cortex	1.032	0.976	0.031	0.026	0.022	0.020	0.037	0.027	0.015	0.017
Left Parietal Operculum Cortex	0.812	0.750	0.029	0.028	0.019	0.018	0.024	0.024	0.014	0.018
Right Parietal Operculum Cortex	1.072	0.988	0.030	0.028	0.021	0.019	0.031	0.027	0.015	0.018
Left Planum Polare	0.923	0.866	0.031	0.026	0.022	0.019	0.037	0.028	0.016	0.017
Right Planum Polare	1.339	1.024	0.029	0.024	0.021	0.018	0.036	0.026	0.016	0.017
Left Heschl's Gyrus (includes H1 and H2)	0.971	0.901	0.028	0.027	0.021	0.018	0.025	0.022	0.017	0.022
Right Heschl's Gyrus (includes H1 and H2)	0.917	0.841	0.024	0.025	0.017	0.016	0.026	0.024	0.014	0.021
Left Planum Temporale	0.994	0.912	0.024	0.022	0.017	0.016	0.032	0.026	0.014	0.020
Right Planum Temporale	1.429	1.176	0.026	0.027	0.017	0.016	0.023	0.022	0.014	0.020
Left Supracalcarine Cortex	1.340	1.098	0.027	0.026	0.019	0.018	0.030	0.027	0.013	0.018
Right Supracalcarine Cortex	1.135	0.953	0.024	0.023	0.018	0.016	0.030	0.026	0.013	0.019
Left Occipital Pole	1.180	0.954	0.030	0.023	0.021	0.018	0.042	0.026	0.014	0.016
Right Occipital Pole	1.284	1.025	0.028	0.022	0.019	0.017	0.036	0.023	0.014	0.015

1119 Supplementary Table 2: Table showing the F-values for main effect of age group for BOLD signal variability (SD_{BOLD}). Statistical significance

1120 was determined using nonparametric ANCOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and Hochberg,

1121 1995). The nonparametric ANCOVAs with SD_{BOLD} as dependent variable demonstrated that there was a significant main effect of age group in

1122 72 ROIs, while no significant effect of sex was observed.

DΩI				
	age			
Left.Angular.Gyrus	20.9868			
Left.Central.Opercular.Cortex	15.7773			
Left.Cingulate.Gyrusanterior.division	37.6699			
Left.Cingulate.Gyrusposterior.division	24.6328			
Left.Cuneal.Cortex	20.4775			
Left.Frontal.Medial.Cortex	16.5504			
Left.Frontal.Orbital.Cortex	59.1622			
Left.Frontal.Pole	27.4942			
Left.Heschls.Gyrusincludes.H1.and.H2.	15.867			
Left.Inferior.Frontal.Gyruspars.opercularis	42.0627			
Left.Inferior.Frontal.Gyruspars.triangularis	17.0069			
Left.Inferior.Temporal.Gyrusposterior.division	28.2274			
Left.Insular.Cortex	38.1285			
Left.Intracalcarine.Cortex	34.2193			
Left. Juxta positional. Lobule. Cortex formerly. Supplementary. Motor. Cortex.	40.0826			
Left.Middle.Frontal.Gyrus	35.6619			
Left.Middle.Temporal.Gyrustemporooccipital.part	24.0403			
Left.Occipital.Fusiform.Gyrus	35.3288			
Left.Occipital.Pole	43.1077			
Left.Paracingulate.Gyrus	54.3683			
Left.Parahippocampal.Gyrusanterior.division	60.2925			
Left.Parahippocampal.Gyrusposterior.division	38.4558			

Left.Parietal.Operculum.Cortex	25.0314
Left.Postcentral.Gyrus	29.5352
Left.Precuneous.Cortex	28.1132
Left.Subcallosal.Cortex	35.3522
Left.Superior.Frontal.Gyrus	16.076
Left.Superior.Temporal.Gyrusposterior.division	19.4259
Left.Supracalcarine.Cortex	25.8525
Left.Supramarginal.Gyrusanterior.division	15.3458
Left.Temporal.Fusiform.Cortexanterior.division	17.3434
Left.Temporal.Fusiform.Cortexposterior.division	37.6047
Left.Temporal.Occipital.Fusiform.Cortex	41.0751
Right.Angular.Gyrus	22.823
Right.Cingulate.Gyrusanterior.division	35.6207
Right.Cingulate.Gyrusposterior.division	28.4509
Right.Cuneal.Cortex	25.6256
Right.Frontal.Medial.Cortex	44.9473
Right.Frontal.Orbital.Cortex	61.1423
Right.Frontal.Pole	36.7283
Right.Inferior.Frontal.Gyruspars.opercularis	14.9685
Right.Inferior.Frontal.Gyruspars.triangularis	15.799
Right.Inferior.Temporal.Gyrusanterior.division	21.551
Right.Inferior.Temporal.Gyrusposterior.division	15.0549
Right.Insular.Cortex	18.3847
Right.Intracalcarine.Cortex	13.3254
Right. Juxta positional. Lobule. Cortex formerly. Supplementary. Motor. Cortex.	36.4605
Right.Lateral.Occipital.Cortex.inferior.division	33.6556
Right.Lateral.Occipital.Cortexsuperior.division	21.5155
Right.Lingual.Gyrus	25.0696

Right.Middle.Temporal.Gyrusanterior.division	42.8831
Right.Occipital.Fusiform.Gyrus	31.6213
Right.Occipital.Pole	31.9927
Right.Paracingulate.Gyrus	34.8449
Right.Parahippocampal.Gyrusanterior.division	37.5431
Right.Parietal.Operculum.Cortex	18.2991
Right.Planum.Polare	57.0714
Right.Planum.Temporale	25.7173
Right.Postcentral.Gyrus	20.1925
Right.Precentral.Gyrus	18.1681
Right.Precuneous.Cortex	24.8254
Right.Subcallosal.Cortex	41.1512
Right.Superior.Frontal.Gyrus	25.8665
Right.Superior.Parietal.Lobule	23.6064
Right.Superior.Temporal.Gyrusanterior.division	17.9951
Right.Superior.Temporal.Gyrusposterior.division	18.4805
Right.Supracalcarine.Cortex	28.7788
Right.Supramarginal.Gyrusanterior.division	18.6616
Right.Supramarginal.Gyrusposterior.division	23.6768
Right.Temporal.Fusiform.Cortexanterior.division	23.371
Right.Temporal.Fusiform.Cortexposterior.division	24.4233
Right.Temporal.Occipital.Fusiform.Cortex	31.6812

<u>R</u> 1124 Supplementary Table 3: Table showing the F-values for the main effect of age group for EEG signal variability (1-3 Hz, SD_{DELTA}). Statistical

significance was determined using nonparametric ANCOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and

1126 Hochberg, 1995). The nonparametric ANCOVAs with SD_{DELTA} as dependent variable demonstrated that there was a significant main effect of

1127 age group in 14 ROIs, and sex in in 20 ROIs.

POI		DOI	F-value:
ROI	age	ROI	sex
Left.Cingulate.Gyrusposterior.division	17.041	Left.Cuneal.Cortex	15.463
Left.Cuneal.Cortex	20.8528	Left.Intracalcarine.Cortex	20.018
Left.Intracalcarine.Cortex	12.579	Left.Lingual.Gyrus	13.828
Left.Juxtapositional.Lobule.Cortexformerly.Supplementary.Motor.Cortex.	13.1327	Left.Parietal.Operculum.Cortex	13.243
Left.Lateral.Occipital.Cortexsuperior.division	15.2747	Left.Supracalcarine.Cortex	21.285
Left.Precuneous.Cortex	19.2268	Right.Cuneal.Cortex	17.36
Left.Supracalcarine.Cortex	16.815	Right.Heschls.Gyrusincludes.H1.and.H2.	15.627
Right.Cingulate.Gyrusposterior.division	17.85	Right.Inferior.Temporal.Gyrusposterior.division	16.731
Right.Cuneal.Cortex	20.1038	Right.Inferior.Temporal.Gyrustemporooccipital.part	26.594
Right.Intracalcarine.Cortex	15.1102	Right.Intracalcarine.Cortex	26.625
Right.Juxtapositional.Lobule.Cortexformerly.Supplementary.Motor.Cortex.	13.7918	Right.Lateral.Occipital.Cortexinferior.division	24.394
Right.Lateral.Occipital.Cortexsuperior.division	19.2019	Right.Lingual.Gyrus	19.964
Right.Precuneous.Cortex	20.9403	Right.Middle.Temporal.Gyrustemporooccipital.part	24.628
Right.Supracalcarine.Cortex	17.4001	_ Right.Occipital.Fusiform.Gyrus	19.042
		Right.Occipital.Pole	14.198
		Right.Parahippocampal.Gyrusposterior.division	15.023
		Right.Parietal.Operculum.Cortex	15.099
		Right.Planum.Temporale	16.428
		Right.Supracalcarine.Cortex	24.14
		Right.Temporal.Fusiform.Cortexposterior.division	16.515
		Right.Temporal.Occipital.Fusiform.Cortex	23.004

1129 Supplementary Table 4: Table showing the F-values for the main effect of age group for EEG signal variability (4-7 Hz, SD_{THETA}). Statistical

1130 significance was determined using nonparametric ANCOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and

1131 Hochberg, 1995). The nonparametric ANCOVAs with SD_{THETA} as dependent variable demonstrated that there was a significant main effect of

1132 age group in 16 ROIs, and sex in in 74 ROIs.

DOI	F-value:	DΩI	F-value:
KOI	age	KOI	sex
Left.Cingulate.Gyrusanterior.division	33.5753	Left.Angular.Gyrus	18.207
Left.Cingulate.Gyrusposterior.division	19.2188	Left.Central.Opercular.Cortex	13.609
Left.Juxtapositional.Lobule.Cortexformerly.Supplem entary.Motor.Cortex.	39.3985	Left.Cingulate.Gyrusanterior.division	13.504
Left.Middle.Frontal.Gyrus	24.3858	Left.Cingulate.Gyrusposterior.division	17.748
Left.Paracingulate.Gyrus	22.3193	Left.Cuneal.Cortex	22.505
Left.Precentral.Gyrus	17.0336	Left.Frontal.Orbital.Cortex	13.146
Left.Precuneous.Cortex	13.1632	Left.Frontal.Pole	16.278
Left.Superior.Frontal.Gyrus	33.9343	Left.Inferior.Frontal.Gyruspars.opercularis	12.817
Right.Cingulate.Gyrusanterior.division	32.1706	Left.Inferior.Temporal.Gyrusposterior.division	13.732
Right.Cingulate.Gyrusposterior.division	18.9454	Left.Inferior.Temporal.Gyrustemporooccipital.part	16.711
Right.Juxtapositional.Lobule.Cortexformerly.Supple mentary.Motor.Cortex.	40.3098	Left.Intracalcarine.Cortex	27.158
Right.Middle.Frontal.Gyrus	23.3526	Left.Juxtapositional.Lobule.Cortexformerly.Supplementary.Motor. Cortex.	13.129
Right.Paracingulate.Gyrus	19.4883	Left.Lateral.Occipital.Cortexinferior.division	16.541
Right.Precentral.Gyrus	17.9796	Left.Lateral.Occipital.Cortexsuperior.division	13.959
Right.Superior.Frontal.Gyrus	33.4244	Left.Lingual.Gyrus	22.478
Right.Superior.Parietal.Lobule	13.5708	Left.Middle.Temporal.Gyrustemporooccipital.part	16.103
		Left.Occipital.Fusiform.Gyrus	18.143
		Left.Occipital.Pole	18.184
		Left.Parahippocampal.Gyrusposterior.division	14.667

Left.Parietal.Operculum.Cortex	21.209
Left.Planum.Temporale	18.513
Left.Postcentral.Gyrus	16.801
Left.Precentral.Gyrus	16.951
Left.Precuneous.Cortex	17.475
Left.Subcallosal.Cortex	13.415
Left.Supracalcarine.Cortex	27.108
Left.Supramarginal.Gyrusanterior.division	22.636
Left.Supramarginal.Gyrusposterior.division	18.42
Left.Temporal.Fusiform.Cortexposterior.division	12.846
Left.Temporal.Occipital.Fusiform.Cortex	18.695
Right.Angular.Gyrus	17.082
Right.Central.Opercular.Cortex	23.027
Right.Cingulate.Gyrusanterior.division	13.094
Right.Cingulate.Gyrusposterior.division	17.068
Right.Cuneal.Cortex	22.446
Right.Frontal.Operculum.Cortex	25.517
Right.Frontal.Orbital.Cortex	17.066
Right.Frontal.Pole	12.686
Right.Heschls.Gyrusincludes.H1.and.H2.	16.19
Right.Inferior.Frontal.Gyruspars.opercularis	25.941
Right.Inferior.Frontal.Gyruspars.triangularis	24.437
Right.Inferior.Temporal.Gyrusanterior.division	19.63
Right.Inferior.Temporal.Gyrusposterior.division	22.865
Right.Inferior.Temporal.Gyrustemporooccipital.part	28.425
Right.Insular.Cortex	22.486
Right.Intracalcarine.Cortex	29.957
Right.Juxtapositional.Lobule.Cortexformerly.Supplementary.Motor	13.499

Right.Lateral.Occipital.Cortexinferior.division	30.063
Right.Lateral.Occipital.Cortexsuperior.division	13.899
Right.Lingual.Gyrus	25.891
Right.Middle.Frontal.Gyrus	18.676
Right.Middle.Temporal.Gyrusanterior.division	13.832
Right.Middle.Temporal.Gyrusposterior.division	21.779
Right.Middle.Temporal.Gyrustemporooccipital.part	28.874
Right.Occipital.Fusiform.Gyrus	27.265
Right.Occipital.Pole	28.335
Right.Parahippocampal.Gyrusanterior.division	15.973
Right.Parahippocampal.Gyrusposterior.division	17.709
Right.Parietal.Operculum.Cortex	16.92
Right.Planum.Polare	17.124
Right.Planum.Temporale	17.351
Right.Postcentral.Gyrus	18.97
Right.Precentral.Gyrus	21.799
Right.Precuneous.Cortex	16.222
Right.Subcallosal.Cortex	14.188
Right.Superior.Temporal.Gyrusanterior.division	13.072
Right.Superior.Temporal.Gyrusposterior.division	19.288
Right.Supracalcarine.Cortex	27.779
Right.Supramarginal.Gyrusanterior.division	19.774
Right.Supramarginal.Gyrusposterior.division	15.411
Right.Temporal.Fusiform.Cortexanterior.division	18.158
Right.Temporal.Fusiform.Cortexposterior.division	21.228
Right.Temporal.Occipital.Fusiform.Cortex	26.317
Right.Temporal.Pole	16.482

1134 Supplementary Table 5: Table showing the F-values for the main effect of age group for EEG signal variability (8-12 Hz, SD_{ALPHA}). Statistical

1135 significance was determined using nonparametric ANCOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and

1136 Hochberg, 1995). The nonparametric ANCOVAs with SD_{ALPHA} as dependent variable demonstrated that there was a significant main effect of

1137 age group in 20 ROIs, and sex in in 4 ROIs.

DOI	F-value:	POI	F-value:
ROI	age	ROI	sex
Left.Cingulate.Gyrusanterior.division	14.2391	Left.Frontal.Pole	16.512
Left.Cingulate.Gyrusposterior.division	18.9122	Right.Frontal.Orbital.Cortex	13.217
Left.Cuneal.Cortex	19.5004	Right.Inferior.Frontal.Gyruspars.triangularis	14.278
Left.Intracalcarine.Cortex	13.9943	Right.Temporal.Pole	12.887
Left.Juxtapositional.Lobule.Cortexformerly.Supplementary.Motor.Cortex.	18.2498		
Left.Lateral.Occipital.Cortexsuperior.division	14.8073		
Left.Occipital.Pole	13.6297		
Left.Precuneous.Cortex	18.1658		
Left.Supracalcarine.Cortex	18.7095		
Right.Cingulate.Gyrusanterior.division	14.9683		
Right.Cingulate.Gyrusposterior.division	19.3745		
Right.Cuneal.Cortex	20.1265		
Right.Intracalcarine.Cortex	17.8042		
Right.Juxtapositional.Lobule.Cortexformerly.Supplementary.Motor.Cortex.	18.9006		
Right.Lateral.Occipital.Cortexsuperior.division	18.2382		
Right.Occipital.Pole	17.1219		
Right.Precuneous.Cortex	19.3677		
Right.Superior.Frontal.Gyrus	14.4975		
Right.Superior.Parietal.Lobule	13.8287		
Right.Supracalcarine.Cortex	19.6116	_	

1139 Supplementary Table 6: Table showing the F-values for the main effect of age group for EEG signal variability (15-25 Hz, SD_{BETA}). Statistical

1140 significance was determined using nonparametric ANCOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and

1141 Hochberg, 1995). The nonparametric ANCOVA analyses with SD_{BETA} as dependent variable demonstrated that there was a significant main

1142 effect of age group in 19 ROIs, and sex in 69 ROIs.

ROI	F-value:	ROI	F- value:
	age		sex
Left.Central.Opercular.Cortex	16.5945	Left.Angular.Gyrus	23.069
Left.Heschls.Gyrusincludes.H1.and.H2.	20.3049	Left.Cingulate.Gyrusanterior.division	12.198
Left.Inferior.Temporal.Gyrusposterior.division	15.6087	Left.Cingulate.Gyrusposterior.division	23.953
Left.Insular.Cortex	12.903	Left.Cuneal.Cortex	29.101
Left.Middle.Temporal.Gyrusposterior.division	13.2449	Left.Frontal.Medial.Cortex	20.926
Left.Parietal.Operculum.Cortex	21.6143	Left.Frontal.Operculum.Cortex	12.549
Left.Planum.Temporale	21.1029	Left.Frontal.Orbital.Cortex	22.762
Left.Superior.Temporal.Gyrusposterior.division	14.4852	Left.Frontal.Pole	19.186
Left.Supramarginal.Gyrusanterior.division	19.6781	Left.Heschls.Gyrusincludes.H1.and.H2.	18.878
Left.Supramarginal.Gyrusposterior.division	15.7818	Left.Inferior.Temporal.Gyrusposterior.division	14.641
Right.Central.Opercular.Cortex	17.2968	Left.Inferior.Temporal.Gyrustemporooccipital.part	24.317
Right.Heschls.Gyrusincludes.H1.and.H2.	13.1379	Left.Insular.Cortex	15.927
Right.Middle.Temporal.Gyrusanterior.division	15.6176	Left.Intracalcarine.Cortex	35.249
Right.Middle.Temporal.Gyrusposterior.division	15.253	Left.Lateral.Occipital.Cortexinferior.division	22.746
Right.Parietal.Operculum.Cortex	12.510	Left.Lateral.Occipital.Cortexsuperior.division	19.834
Right.Planum.Polare	14.949	Left.Lingual.Gyrus	32.404
Right.Planum.Temporale	12.617	Left.Middle.Temporal.Gyrustemporooccipital.part	17.782
Right.Superior.Temporal.Gyrusanterior.division	19.6635	Left.Occipital.Fusiform.Gyrus	24.141
Right.Superior.Temporal.Gyrusposterior.division	18.8534	Left.Occipital.Pole	23.17
		Paracingulate.Gyrus	14.818

Left.Parahippocampal.Gyrus..anterior.division 23.933

Left.Parahippocampal.Gyrusposterior.division	30.177
Left.Parietal.Operculum.Cortex	19.769
Left.Planum.Temporale	20.791
Left.Precuneous.Cortex	25.556
Left.Subcallosal.Cortex	22.89
Left.Superior.Parietal.Lobule	13.534
Left.Supracalcarine.Cortex	34.165
Left.Supramarginal.Gyrusposterior.division	19.854
Left.Temporal.Fusiform.Cortexanterior.division	17.146
Left.Temporal.Fusiform.Cortexposterior.division	25.091
Left.Temporal.Occipital.Fusiform.Cortex	30.718
Left.Temporal.Pole	15.41
Right.Angular.Gyrus	26.346
Right.Central.Opercular.Cortex	13.78
Right.Cingulate.Gyrusposterior.division	23.764
Right.Cuneal.Cortex	26.278
Right.Frontal.Medial.Cortex	16.911
Right.Frontal.Orbital.Cortex	13.877
Right.Heschls.Gyrusincludes.H1.and.H2.	16.353
Right.Inferior.Temporal.Gyrusanterior.division	15.577
Right.Inferior.Temporal.Gyrusposterior.division	18.262
Right.Inferior.Temporal.Gyrustemporooccipital.part	29.167
Right.Insular.Cortex	16.383
Right.Intracalcarine.Cortex	30.856
Right.Lateral.Occipital.Cortexinferior.division	35.716
Right.Lateral.Occipital.Cortexsuperior.division	19.643
Right.Lingual.Gyrus	27.537
Right.Middle.Temporal.Gyrusposterior.division	16.15

Right.Middle.Temporal.Gyrustemporooccipital.part	32.438
Right.Occipital.Fusiform.Gyrus	24.567
Right.Occipital.Pole	30.231
Right.Parahippocampal.Gyrusanterior.division	20.351
Right.Parahippocampal.Gyrusposterior.division	25.145
Right.Parietal.Operculum.Cortex	21.039
Right.Planum.Polare	14.552
Right.Planum.Temporale	21.152
Right.Postcentral.Gyrus	13.107
Right.Precuneous.Cortex	22.867
Right.Subcallosal.Cortex	18.68
Right.Superior.Parietal.Lobule	13.68
Right.Superior.Temporal.Gyrusposterior.division	14.929
Right.Supracalcarine.Cortex	30.665
Right.Supramarginal.Gyrusanterior.division	15.081
Right.Supramarginal.Gyrusposterior.division	22.485
Right.Temporal.Fusiform.Cortexanterior.division	17.436
Right.Temporal.Fusiform.Cortexposterior.division	21.616
Right.Temporal.Occipital.Fusiform.Cortex	28.231
Right.Temporal.Pole	14.486

1144 Supplementary Table 7. Spearman correlation of SD_{BOLD} with SD_{EEG} for each frequency

band in young subjects (N=135). None of the pairwise correlations between SD_{BOLD} and

1146 SD_{EEG} were statistically significant.

	rho	rho	rho	rho
ROI	SD _{DELTA}	SD _{THETA}	SD _{ALPHA}	SD _{BETA}
Left Angular Gyrus	0.005	0.015	0.014	0.071
Left Central Opercular Cortex	0.037	0.001	0.076	0.034
Left Cingulate Gyrus, anterior division	-0.090	-0.077	0.091	-0.028
Left Cingulate Gyrus, posterior division	-0.096	-0.048	-0.018	0.042
Left Cuneal Cortex	-0.166	-0.153	-0.040	-0.055
Left Frontal Medial Cortex	-0.009	-0.083	-0.105	-0.100
Left Frontal Operculum Cortex	-0.067	-0.128	0.074	-0.094
Left Frontal Orbital Cortex	0.035	-0.010	0.137	0.107
Left Frontal Pole	0.110	-0.018	-0.029	-0.052
Left Heschl's Gyrus (includes H1 and H2)	-0.019	0.029	0.112	-0.096
Left Inferior Frontal Gyrus, pars opercularis	0.040	-0.082	0.063	-0.091
Left Inferior Frontal Gyrus, pars triangularis	0.031	-0.114	0.064	-0.041
Left Inferior Temporal Gyrus, anterior division	0.035	0.023	0.099	0.012
Left Inferior Temporal Gyrus, posterior division	0.047	0.078	0.116	0.034
Left Inferior Temporal Gyrus, temporooccipital part	0.030	-0.002	0.025	-0.089
Left Insular Cortex	0.023	-0.134	-0.017	-0.077
Left Intracalcarine Cortex	0.018	0.028	0.072	0.032
Left Juxtapositional Lobule Cortex (formerly				
Supplementary Motor Cortex)	-0.050	-0.099	0.077	0.022
Left Lateral Occipital Cortex, inferior division	-0.048	-0.030	-0.078	-0.077
Left Lateral Occipital Cortex, superior division	-0.062	-0.081	0.018	-0.088
Left Lingual Gyrus	0.131	0.060	-0.022	-0.035
Left Middle Frontal Gyrus	0.041	-0.066	0.131	0.015
Left Middle Temporal Gyrus, anterior division	0.004	-0.063	-0.014	-0.173
Left Middle Temporal Gyrus, posterior division	0.115	0.005	-0.041	-0.029
Left Middle Temporal Gyrus, temporooccipital part	0.072	0.037	0.071	-0.092
Left Occipital Fusiform Gyrus	0.146	0.149	0.115	0.026
Left Occipital Pole	-0.017	0.052	0.036	0.035
Left Paracingulate Gyrus	-0.044	-0.087	-0.012	-0.036
Left Parahippocampal Gyrus, anterior division	0.024	0.021	0.121	0.027
Left Parahippocampal Gyrus, posterior division	-0.086	0.030	0.117	0.162
Left Parietal Operculum Cortex	-0.130	-0.064	0.039	-0.110
Left Planum Polare	0.030	0.018	0.073	-0.004
Left Planum Temporale	-0.066	0.009	0.120	-0.071
Left Postcentral Gyrus	-0.019	-0.032	0.139	-0.060
Left Precentral Gyrus	-0.015	-0.074	0.091	-0.056
Left Precuneous Cortex	-0.029	-0.070	0.107	-0.044
Left Subcallosal Cortex	-0.038	-0.087	0.034	-0.074
Left Superior Frontal Gyrus	-0.108	-0.139	0.027	-0.038

Left Superior Parietal Lobule	0.087	0.041	0.135	-0.084
Left Superior Temporal Gyrus, anterior division	-0.010	-0.074	0.033	0.064
Left Superior Temporal Gyrus, posterior division	-0.059	-0.045	-0.047	-0.087
Left Supracalcarine Cortex	-0.076	-0.071	0.036	0.016
Left Supramarginal Gyrus, anterior division	0.026	-0.060	0.001	-0.057
Left Supramarginal Gyrus, posterior division	-0.005	0.066	0.106	0.043
Left Temporal Fusiform Cortex, anterior division	0.188	0.120	0.051	0.031
Left Temporal Fusiform Cortex, posterior division	0.056	0.052	0.144	0.075
Left Temporal Occipital Fusiform Cortex	0.096	0.094	0.128	0.092
Left Temporal Pole	0.224	0.105	0.152	-0.010
Right Angular Gyrus	-0.010	0.025	0.010	0.046
Right Central Opercular Cortex	0.084	-0.015	0.068	-0.030
Right Cingulate Gyrus, anterior division	-0.079	-0.085	0.062	-0.046
Right Cingulate Gyrus, posterior division	-0.090	-0.048	-0.004	0.021
Right Cuneal Cortex	-0.118	-0.096	0.017	-0.074
Right Frontal Medial Cortex	0.042	-0.043	0.063	-0.050
Right Frontal Operculum Cortex	0.004	-0.017	0.089	-0.075
Right Frontal Orbital Cortex	0.085	-0.024	0.100	-0.032
Right Frontal Pole	0.149	-0.022	0.014	-0.061
Right Heschl's Gyrus (includes H1 and H2)	-0.085	-0.045	0.065	-0.071
Right Inferior Frontal Gyrus, pars opercularis	-0.020	-0.029	0.127	-0.138
Right Inferior Frontal Gyrus, pars triangularis	-0.047	-0.092	0.061	-0.170
Right Inferior Temporal Gyrus, anterior division	0.013	-0.018	0.058	0.028
Right Inferior Temporal Gyrus, posterior division	0.179	0.070	0.128	-0.048
Right Inferior Temporal Gyrus, temporooccipital	0.100	0.070	0 1 77	0.000
part Di lu lu Cut	0.106	0.068	0.177	0.093
Right Insular Cortex	-0.034	-0.08/	0.043	-0.054
Right Intracalcarine Cortex Pight Intracalcarine Labula Cortex (formerly	-0.063	-0.121	0.008	-0.065
Supplementary Motor Cortex)	-0.040	-0 142	0.015	-0 049
Right Lateral Occipital Cortex, inferior division	-0.025	0.005	0.081	0.026
Right Lateral Occipital Cortex, superior division	-0.008	-0.037	0.044	-0.113
Right Lingual Gyrus	0.040	0.033	0.058	0.034
Right Middle Frontal Gyrus	-0.167	-0.083	0.063	-0.143
Right Middle Temporal Gyrus, anterior division	0.135	0.049	0.054	-0.113
Right Middle Temporal Gyrus, posterior division	0.002	0.080	0.191	0.060
Right Middle Temporal Gyrus, temporooccipital				
part	0.026	0.011	0.094	0.049
Right Occipital Fusiform Gyrus	0.095	0.039	0.022	0.007
Right Occipital Pole	0.019	-0.050	0.025	-0.036
Right Paracingulate Gyrus	-0.063	-0.041	0.034	-0.012
Right Parahippocampal Gyrus, anterior division	-0.027	-0.005	0.071	0.102
Right Parahippocampal Gyrus, posterior division	0.020	-0.037	0.037	0.024
Right Parietal Operculum Cortex	-0.066	-0.039	0.124	-0.075

Right Planum Polare	0.186	0.073	0.105	-0.021	
Right Planum Temporale	-0.028	-0.043	0.074	0.070	
Right Postcentral Gyrus	0.070	0.026	0.133	-0.056	
Right Precentral Gyrus	-0.031	-0.047	0.134	-0.040	
Right Precuneous Cortex	-0.099	-0.145	0.053	-0.200	
Right Subcallosal Cortex	-0.084	-0.086	0.098	0.054	
Right Superior Frontal Gyrus	-0.100	-0.158	-0.026	-0.116	
Right Superior Parietal Lobule	-0.035	-0.067	0.080	-0.103	
Right Superior Temporal Gyrus, anterior division	0.144	0.056	0.050	0.021	
Right Superior Temporal Gyrus, posterior division	0.067	0.068	0.064	0.004	
Right Supracalcarine Cortex	-0.004	0.049	0.089	0.065	
Right Supramarginal Gyrus, anterior division	0.134	0.092	0.116	0.046	
Right Supramarginal Gyrus, posterior division	0.058	0.055	0.096	0.052	
Right Temporal Fusiform Cortex, anterior division	0.038	-0.019	0.013	0.142	
Right Temporal Fusiform Cortex, posterior division	0.012	0.011	0.075	0.103	
Right Temporal Occipital Fusiform Cortex	-0.013	0.018	0.115	0.098	
Right Temporal Pole	0.135	0.006	0.044	-0.129	
$p_{FDR} < 0.05; \ p_{FDR} < 0.01; \ p_{FDR} < 0.001, \ 2$ -tailed					

Supplementary Table 8. Spearman correlation of SD_{BOLD} with SD_{EEG} for each frequency band in old subjects (N=54). None of the pairwise correlations between SD_{BOLD} and SD_{EEG} were statistically significant. 1151

	rho	rho	rho	rho
ROI	SD _{DELTA}	SD _{THETA}	SD _{ALPHA}	SD _{BETA}
Left Angular Gyrus	-0.118	-0.100	-0.001	-0.192
Left Central Opercular Cortex	0.129	0.132	-0.006	0.204
Left Cingulate Gyrus, anterior division	-0.043	0.175	-0.034	0.010
Left Cingulate Gyrus, posterior division	0.014	-0.077	0.012	-0.301
Left Cuneal Cortex	-0.134	-0.157	-0.096	-0.387
Left Frontal Medial Cortex	-0.165	-0.129	-0.265	0.061
Left Frontal Operculum Cortex	0.173	0.168	0.063	0.029
Left Frontal Orbital Cortex	0.085	0.192	0.020	0.021
Left Frontal Pole	0.038	-0.009	-0.044	-0.080
Left Heschl's Gyrus (includes H1 and H2)	-0.066	-0.152	-0.166	0.027
Left Inferior Frontal Gyrus, pars opercularis	0.039	0.041	-0.039	0.177
Left Inferior Frontal Gyrus, pars triangularis	0.107	0.113	0.033	0.086
Left Inferior Temporal Gyrus, anterior division	0.111	0.153	0.088	0.278
Left Inferior Temporal Gyrus, posterior division	0.072	0.040	-0.035	0.040
Left Inferior Temporal Gyrus, temporooccipital part	0.016	0.074	0.034	-0.066
Left Insular Cortex	0.225	0.042	-0.079	0.026
Left Intracalcarine Cortex	0.102	0.130	0.254	0.172
Left Juxtapositional Lobule Cortex (formerly				
Supplementary Motor Cortex)	-0.054	-0.175	-0.035	-0.059
Left Lateral Occipital Cortex, inferior division	0.036	-0.027	-0.057	-0.184
Left Lateral Occipital Cortex, superior division	0.130	0.033	0.013	-0.083
Left Lingual Gyrus	-0.181	-0.101	-0.044	-0.130
Left Middle Frontal Gyrus	0.159	0.161	-0.009	-0.008
Left Middle Temporal Gyrus, anterior division	-0.004	0.000	-0.012	0.349
Left Middle Temporal Gyrus, posterior division	-0.007	-0.073	-0.197	0.077
Left Middle Temporal Gyrus, temporooccipital part	0.042	0.203	0.128	0.015
Left Occipital Fusiform Gyrus	0.105	0.118	0.088	0.086
Left Occipital Pole	-0.212	-0.082	0.070	-0.203
Left Paracingulate Gyrus	-0.109	-0.024	-0.042	0.065
Left Parahippocampal Gyrus, anterior division	0.048	0.086	-0.069	-0.146
Left Parahippocampal Gyrus, posterior division	-0.012	0.058	0.062	-0.116
Left Parietal Operculum Cortex	0.151	-0.030	-0.036	-0.101
Left Planum Polare	0.041	0.075	-0.010	0.219
Left Planum Temporale	0.139	0.000	-0.060	0.079
Left Postcentral Gyrus	-0.015	-0.118	-0.082	-0.060
Left Precentral Gyrus	-0.131	-0.007	-0.045	-0.060
Left Precuneous Cortex	0.059	0.007	-0.004	-0.101
Left Subcallosal Cortex	-0.065	-0.078	-0.140	-0.002

-0.020	-0.126	-0.050	0.026
-0.075	-0.023	0.028	-0.054
0.052	0.140	-0.072	0.148
-0.150	0.047	0.002	-0.093
-0.004	-0.077	0.181	-0.093
0.029	0.005	-0.033	0.114
0.167	0.100	0.090	-0.027
0.045	0.076	-0.059	0.062
-0.052	0.124	0.069	0.182
0.089	-0.049	-0.054	-0.100
0.015	0.073	0.025	0.187
-0.015	-0.032	0.063	-0.074
-0.120	-0.020	-0.063	-0.070
0.027	0.176	0.038	0.036
0.092	-0.058	0.051	-0.256
-0.111	-0.174	0.015	-0.224
-0.119	-0.072	-0.060	-0.011
-0.032	-0.015	-0.019	-0.056
-0.018	-0.040	-0.104	0.076
-0.018	-0.050	-0.095	0.058
-0.025	-0.084	-0.079	-0.138
-0.102	-0.050	-0.156	-0.094
-0.215	-0.062	-0.185	-0.128
0.038	-0.076	-0.097	-0.180
0.069	-0.002	-0.071	-0.128
-0.153	-0.115	-0.171	-0.217
-0.035	0.031	-0.006	-0.068
-0.078	-0.140	-0.117	-0.088
0.013	0 167	0.114	0 135
-0.015	-0.107	0.125	0.133
-0.035	-0.000	0.125	0.000
-0.035	-0.115	-0.096	-0.117
0.117	-0.113	0.102	0.055
-0.130	-0.068	-0.120	-0.126
-0.130	-0.000	-0.120	0.045
0.050	0.055	0.000	0.045
-0.008	-0.071	0.010	-0.109
0.115	0.249	0.163	0.237
-0.053	-0.067	0.074	-0.006
-0.062	0.123	0.042	-0.085
-0.093	-0.061	-0.033	-0.109
-0.105	-0.118	-0.103	-0.137
	$\begin{array}{c} -0.020\\ -0.075\\ 0.052\\ -0.150\\ -0.004\\ 0.029\\ 0.167\\ 0.045\\ -0.052\\ 0.089\\ 0.015\\ -0.052\\ 0.089\\ 0.015\\ -0.015\\ -0.015\\ -0.015\\ -0.012\\ 0.027\\ 0.092\\ -0.111\\ -0.119\\ -0.032\\ -0.018\\ -0.025\\ -0.102\\ -0.215\\ 0.038\\ 0.069\\ -0.153\\ -0.078\\ -0.013\\ -0.035\\ -0.078\\ -0.013\\ -0.055\\ -0.035\\ -0.078\\ -0.013\\ -0.055\\ -0.035\\ -0.035\\ -0.035\\ -0.035\\ -0.035\\ -0.035\\ -0.030\\ -0.008\\ 0.115\\ -0.053\\ -0.008\\ -$	-0.020 -0.126 -0.075 -0.023 0.052 0.140 -0.150 0.047 -0.004 -0.077 0.029 0.005 0.167 0.100 0.045 0.076 -0.052 0.124 0.089 -0.049 0.015 0.073 -0.015 -0.032 -0.120 -0.020 0.027 0.176 0.092 -0.058 -0.111 -0.174 -0.018 -0.040 -0.018 -0.040 -0.018 -0.040 -0.025 -0.084 -0.102 -0.050 -0.215 -0.062 0.038 -0.076 -0.055 -0.088 -0.153 -0.115 -0.035 -0.078 -0.153 -0.115 -0.035 -0.078 -0.153 -0.115 -0.035 -0.078 -0.153 -0.115 -0.035 -0.078 -0.035 -0.078 -0.036 -0.071 0.115 0.117 0.117 0.014 -0.008 -0.071 0.115 -0.062 0.033 -0.061 -0.093 -0.061 -0.093 -0.061	-0.020 -0.126 -0.050 -0.075 -0.023 0.028 0.052 0.140 -0.072 -0.150 0.047 0.002 -0.004 -0.077 0.181 0.029 0.005 -0.033 0.167 0.100 0.090 0.045 0.076 -0.059 -0.052 0.124 0.069 0.089 -0.049 -0.054 0.015 0.073 0.025 -0.015 -0.032 0.063 -0.120 -0.020 -0.063 0.027 0.176 0.038 0.092 -0.058 0.051 -0.111 -0.174 0.015 -0.119 -0.072 -0.060 -0.032 -0.015 -0.019 -0.018 -0.040 -0.104 -0.018 -0.040 -0.104 -0.018 -0.040 -0.104 -0.025 -0.084 -0.079 -0.102 -0.050 -0.156 -0.215 -0.062 -0.185 0.038 -0.076 -0.097 0.069 -0.002 -0.071 -0.153 -0.115 -0.171 -0.035 -0.078 0.433 -0.130 -0.068 -0.120 -0.030 -0.033 -0.008 -0.030 -0.033 -0.008 -0.008 -0.071 0.010 0.115 -0.067 0.074 -0.062 0.123 0.042 -0.033 -0.06

Right Parietal Operculum Cortex	0.105	-0.050	-0.019	-0.072	
Right Planum Polare	-0.033	0.050	-0.042	-0.148	
Right Planum Temporale	-0.064	-0.135	-0.057	-0.209	
Right Postcentral Gyrus	-0.071	0.014	0.047	0.051	
Right Precentral Gyrus	0.031	0.027	-0.039	-0.175	
Right Precuneous Cortex	0.077	0.071	0.010	-0.035	
Right Subcallosal Cortex	0.018	0.044	-0.007	-0.106	
Right Superior Frontal Gyrus	-0.159	-0.162	-0.149	-0.156	
Right Superior Parietal Lobule	-0.007	0.035	-0.001	-0.063	
Right Superior Temporal Gyrus, anterior division	-0.155	-0.045	-0.124	-0.175	
Right Superior Temporal Gyrus, posterior division	-0.133	-0.052	-0.127	-0.081	
Right Supracalcarine Cortex	-0.131	-0.153	0.138	-0.174	
Right Supramarginal Gyrus, anterior division	-0.101	-0.061	-0.078	-0.068	
Right Supramarginal Gyrus, posterior division	-0.149	-0.079	-0.022	-0.222	
Right Temporal Fusiform Cortex, anterior division	-0.005	0.064	-0.020	-0.041	
Right Temporal Fusiform Cortex, posterior division	-0.095	-0.036	0.030	-0.137	
Right Temporal Occipital Fusiform Cortex	-0.124	-0.080	0.002	-0.073	
Right Temporal Pole	-0.181	-0.112	-0.230	-0.284	
$p_{FDR} < 0.05; **p_{FDR}$					

1155 Supplementary Table 9. Contributions of selected region of interests (ROIs) to each principle components (PCs) resulted from of the Singular

1156 Value Decomposition (SVD) analyses for SD_{BOLD}, SD_{DELTA}, and SD_{THETA}. ROIs derived from the previous fMRI literature, and their

1157 corresponding ROIs in Harvard-Oxford atlas to investigate the age-dependent relationship between TMT and SD_{BOLD} or SD_{EEG} (See: Table 1).

1158 As a criterion, the minimum total variance explained over 70% was selected (Jollife and Cadima, 2016), resulting in three PCs in SD_{BOLD}

1159 (52.82%, 10.34%, and 7%), two PCs in SD_{DELTA} (67.37%, 10.95%), and one PC in SD_{THETA} (75.63%).

		SD BOLD		SDDF	SD THETA	
Regions of Interest	PC1	PC2	PC3	PC1	PC2	PC1
Left.Cingulate.Gyrusanterior.division	6.089654	10.83573301	0.57335642	6.293254	4.771	6.074438
Left.Cingulate.Gyrusposterior.division	5.157258	10.43198257	14.34970502	5.512103	8.818	5.977285
Left.Frontal.Medial.Cortex	2.291563	7.93654130	10.93536588	3.528656	0.025	4.072425
Left.Insular.Cortex	6.077573	2.00659998	14.77254088	6.299486	2.866	6.054641
Left.Middle.Frontal.Gyrus	7.236614	1.52487430	0.87793136	6.234210	0.0249	6.137876
Left.Middle.Temporal.Gyrusanterior.division	3.086762	17.51744070	6.19688362	5.172188	15.0212	5.003268
Left.Middle.Temporal.Gyrusposterior.division	4.406356	15.17712851	3.05589786	5.799520	10.474	5.435104
Left.Middle.Temporal.Gyrustemporooccipital.part	5.472472	0.04546836	2.61039871	4.196545	1.262	4.698550
Left.Precentral.Gyrus	6.217582	2.57399365	4.67714091	6.894773	0.0000	6.686272
Left.Superior.Frontal.Gyrus	7.381836	0.32612274	0.61245518	5.792227	5.0748	5.692948
Left.Superior.Temporal.Gyrusanterior.division	4.947440	0.05546047	0.03483502	4.491588	18.9260	4.466424
Left.Superior.Temporal.Gyrusposterior.division	5.338529	7.26165079	0.67087115	5.690691	12.248	5.451148
Right.Cingulate.Gyrusanterior.division	6.152739	9.90571267	0.90070689	6.200047	5.448	6.070030
Right.Cingulate.Gyrusposterior.division	5.192974	10.04779651	14.34718789	5.404548	9.346	5.913883
Right.Insular.Cortex	7.339789	0.25286095	0.58469394	6.523552	0.0871	6.381107
Right.Middle.Frontal.Gyrus	5.606567	0.89429285	1.19883860	5.608391	1.1479	5.755169
Right.Occipital.Fusiform.Gyrus	5.520859	1.04779909	16.02672218	3.929315	2.298	3.899637
Right.Precentral.Gyrus	6.483434	2.15854154	7.57446847	6.428907	2.1581	6.229797

Supplementary Table 10. Results of multiple linear regression analyses investigating the relationship between the principle components (PCs)

in SD_{BOLD}, SD_{DELTA}, and SD_{THETA} derived from Singular Value Decomposition (SVD) and task completion time in Trail Making Test (Reitan,
 1163 1955; Reitan and Wolfson, 1995) as the dependent variable.

	SD _{BOLD}					SD _{DELTA}				SD _{THETA}			
	ТМТ-А ТМТ-В		TMT-A TMT-B			TM	T-A	ТМТ-В					
	Beta	p-value	Beta	p-value	Beta	p-value	Beta	p-value	Beta	p-value	Beta	p-value	
PC1	0.004	0.254	0.004	0.922	0.005	1	0.006	1	-0.007	0.804	-0.007	< 0.001	
Age	0.009	< 0.001	0.015	< 0.001	0.012	< 0.001	0.009	< 0.001	0.008	< 0.001	0.01	< 0.001	
PC1 * Age	0.0002	0.592	0.0006	0.961	0.0001	0.481	-0.0002	0.325	0.0002	0.372	-0.0002	0.161	
PC2	-0.017	0.961	-0.017	0.186	-0.011	1	0.003	0.764					
PC2 * Age	-0.0009	0.296	-0.002	0.027	-0.0005	0.362	-0.001	0.08					
PC3	0.02	0.142	0.019	0.282									
PC3 * Age	-0.0002	0.824	0.0003	0.556									