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Rapid Extraction of Emotion Regularities from Complex 
Scenes in the Human Brain
Antonio Schettino*,†,§, Christopher Gundlach‡,§ and Matthias M. Müller‡

Adaptive behavior requires the rapid extraction of behaviorally relevant information in the environment, 
with particular emphasis on emotional cues. However, the speed of emotional feature extraction from 
complex visual environments is largely undetermined. Here we use objective electrophysiological recordings 
in combination with frequency tagging to demonstrate that the extraction of emotional information 
from neutral, pleasant, or unpleasant naturalistic scenes can be completed at a presentation speed of 
167 ms (i.e., 6 Hz) under high perceptual load. Emotional compared to neutral pictures evoked enhanced 
electrophysiological responses with distinct topographical activation patterns originating from different 
neural sources. Cortical facilitation in early visual cortex was also more pronounced for scenes with 
pleasant compared to unpleasant or neutral content, suggesting a positivity offset mechanism dominating 
under conditions of rapid scene processing. These results significantly advance our knowledge of complex 
scene processing in demonstrating rapid integrative content identification, particularly for emotional cues 
relevant for adaptive behavior in complex environments.
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Introduction
The prioritization of emotional stimuli is pivotal for fast 
behavioral reactions, for example in the case of threat or 
danger when the decision for fight-or-flight needs to be 
made almost instantaneously in order to survive. Appetitive 
and defensive neural systems, evolved to ensure survival 
and the continuation of the species (Lang & Bradley, 
2010), allow the organism to appraise environmental 
stimuli on the basis of common motivational parameters, 
such as valence and arousal (Cacioppo & Berntson, 1994; 
Cacioppo & Gardner, 1999; Öhman, Hamm, & Hugdahl, 
2000; Russell, 1980). In the cognitive electrophysiological 
literature, many studies have consistently reported 
enhanced electrical brain activity in response to emotional 
compared to neutral visual scenes (Olofsson, Nordin, 
Sequeira, & Polich, 2008), starting at around ~200 ms 
post-stimulus onset (Costa et al., 2014; Junghöfer, Bradley, 
Elbert, & Lang, 2001; Schupp, Junghöfer, Weike, & 
Hamm, 2003b) and presumably subtended by attention-
dependent enhancement of sensory input strength 
(Desimone & Duncan, 1995; Reynolds & Heeger, 2009).

While electrophysiological enhancement is typically 
interpreted as a consequence of the high relevance of 
valence and arousal features for adaptive behavior and 
survival (Frijda, 2016; Lang & Bradley, 2010), the speed at 
which these emotional cues are extracted from complex 
visual scenes is still unresolved. Most electrophysiological 
studies in the affective neuroscience literature have 
displayed visual stimuli on screen for a relatively long 
time – e.g., from 333 milliseconds (Schupp, Junghöfer, 
Weike, & Hamm, 2003a) up to 6 seconds (Hajcak, 
Dunning, & Foti, 2009) –, a methodological choice that 
gives the visual system ample opportunity to thoroughly 
process semantic content but, on the other hand, likely 
overestimates the time required for initial emotional 
cue extraction. One obvious solution is to shorten the 
presentation time of each individual stimulus, thus 
creating a train of identical images in rapid succession 
(rapid serial visual presentation; RSVP). Such a presentation 
typically elicits steady-state visually evoked potentials 
(SSVEPs), oscillatory posterior brain responses considered 
a continuous marker of stimulus processing in early visual 
cortex (Norcia, Appelbaum, Ales, Cottereau, & Rossion, 
2015; Regan, 1977; Vialatte, Maurice, Dauwels, & Cichocki, 
2010; Wieser, Miskovic, & Keil, 2016). Previous studies 
(A. Keil et al., 2003, 2009, 2008) used this technique by 
presenting identical images ten times per second (i.e., 
10 Hz) and found larger SSVEP amplitudes for emotional 
compared to neutral scenes, suggesting once again 
attention-dependent sensory enhancement for emotional 
material (Kim, Grabowecky, Paller, Muthu, & Suzuki, 2007; 
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M. M. Müller & Hübner, 2002; M. M. Müller, Malinowski, 
Gruber, & Hillyard, 2003). However, flickering the exact 
same picture at a specific frequency over the course of 
a trial makes it difficult to assess whether the observed 
increased occipital activity is driven by the extraction of the 
emotional content from each individual picture onset or a 
consequence of the integration of emotional information 
across the entire trial. To overcome this limitation, one 
can present a different image at every cycle (Alonso-Prieto, 
Belle, Liu-Shuang, Norcia, & Rossion, 2013; Bekhtereva & 
Müller, 2015; Retter & Rossion, 2016), with the important 
corollary that each image serves as a forward mask for 
the subsequent stimulus and as a backward mask for the 
preceding one (Keysers & Perrett, 2002). For instance, 
Bekhtereva and Müller (2015) employed an RSVP paradigm 
in which different images were presented at each cycle, 
while the emotional content of the stimuli switched only 
once per trial (e.g., from streams of neutral to unpleasant 
scenes and vice versa). Emotion-dependent amplitude 
modulations of occipito-temporal SSVEPs were observed 
when each stimulus was presented every ~167 ms (i.e., 
6 Hz), whereas no statistical difference was reported at a 
faster presentation rate (i.e., ~67 ms/image, 15 Hz). This is 
consistent with previous findings showing that the visual 
system is capable of extracting the emotional content 
of complex scenes from images presented as briefly as 
80 ms in a backward-masking paradigm (e.g., Codispoti, 
Mazzetti, & Bradley, 2009).

In the present study, we investigated whether the 
extraction of emotional features from each picture in the 
stream can be achieved in situations of greater variability. 
In other words, is the visual system able to reliably extract 
emotional information from rapidly presented complex 
images whose semantic content varies in a quick and 
unpredictable way? Consider this approach similar to 
“stress tests” performed on computer hardware or software 
to assess robustness and error handling under a heavy 
perceptual load, in order to ensure stability in normal 
environments. Capitalizing on the results of Bekhtereva 
and Müller (2015), we flickered different images every 

~167 ms (i.e., 6 Hz). Pleasant, unpleasant, or neutral 
content was presented in a pseudorandom fashion, to 
exclude the possibility that cortical facilitation could be 
based on the extraction of general valence rather than the 
processing of each individual image. The key manipulation 
was that, within each picture stream, a neutral, pleasant, 
or unpleasant picture was regularly presented once every 
three stimuli, thereby creating a semantic regularity at 2 
Hz. In addition, we controlled for the influence of low-
level visual properties by using the very same stimulation 
protocol with scrambled versions of the test images (see 
Materials and Methods for details). Given our previous 
findings, we hypothesized that, if the visual system were 
able to extract the general emotional content from images 
presented as briefly as ~167 ms, the regularity of emotional 
content within the presented stream of images should lead 
to a discernable neural signal of this extraction. Specifically, 
we predicted increased SSVEP amplitudes at 2 Hz only for 
original (non-scrambled) pictures when the regularity is 
conveyed by emotional compared to neutral scenes.

Results
Participants were required to keep fixation on a central cross 
and passively view an RSVP stream of pictures flickering 
at 6 Hz. A different picture was presented at each cycle, 
corresponding to ~167 ms presentation time per individual 
image. In the irregular condition, neutral, pleasant, and 
unpleasant scenes alternated in pseudorandom order. 
In the original regular conditions, a neutral, pleasant, or 
unpleasant picture was systematically presented once every 
3 stimuli during the stream, i.e., at 2 Hz. This regularity 
was strengthened by two additional methodological 
constraints: (i) we never used the same picture more 
than once within a trial; (ii) the order of the non-regular 
fillers (i.e., in between cycles of regular pictures) was 
pseudorandomized (e.g., unpleasant – pleasant – neutral 
– unpleasant – neutral – pleasant – unpleasant – …), thus 
creating completely unpredictable sequences. Scrambled 
regular conditions were additionally used to control 
whether any SSVEP amplitude enhancement at 2 Hz could 
be ascribed to the extraction of low-level features (e.g., 
color, contrast, or spatial frequency content) (see Figure 1). 
Scrambled images were preferred as control condition over 
picture inversion because identification times for upright 
and inverted scenes has been found to be similar (Rieger, 
Köchy, Schalk, Grüschow, & Heinze, 2008; Rousselet, Macé, 
& Fabre-Thorpe, 2003; Vuong, Hof, Bülthoff, & Thornton, 
2006), presumably because the main constituents of 
inverted scenes can quickly be identified through some 
“flipping compensation process” (J. E. Murray, 1997) 
matching the current object with memory templates 
(De Caro & Reeves, 2000).

Increased signal-to-noise ratio for original regular 
scenes
A necessary first step was to verify that 2 Hz amplitude 
during the presentation of original scenes was reliably 
larger than noise, i.e., amplitude at neighboring 
frequencies (Ding, Sperling, & Srinivasan, 2006; Gundlach 
& Müller, 2013; Sutoyo & Srinivasan, 2009). Therefore, 
we calculated the signal-to-noise ratio (SNR) of each 
condition by dividing amplitude at 2 Hz by the averaged 
amplitude at the following frequencies (in Hz): 1.00, 1.14, 
1.29, 1.43, 1.57, 1.71, 1.86, 2.14, 2.29, 2.43, 2.57, 2.71, 2.86, 
3.00. SNR values close to 1 would indicate close similarity 
between signal and noise. As can be seen in Table 1, SNR 
to original regular trials was consistently above 1, whereas 
SNR to irregular and scrambled regular pictures was close 
to (or below) 1.

One-tailed one-sample Wilcoxon signed-rank tests 
confirmed that the SSVEP signal at 2 Hz was statistically 
different from noise in response to regular original 
neutral (Z = 329, p = 3.99 × 10–5, Hedges’ g = 0.94, CI95% 
[0.58, 1.28]), original pleasant (Z = 345, p = 1.46 × 10–6, g 
= 1.11, CI95% [0.80, 1.45]), and original unpleasant scenes 
(Z = 340, p = 4.92 × 10–6, g = 0.97, CI95% [0.69, 1.26]). No 
statistically significant differences were observed for 
irregular (Z = 168, p = .999, g = –0.03, CI95% [–0.43, 0.37]), 
regular scrambled neutral (Z = 14, p = .999, g = –1.27, CI95% 
[–1.95, –0.63]; here noise is higher than signal, hence the 
large effect size but non-significant p-value), scrambled 



Schettino et al: Emotion Regularities Art. 20,	page 3	of	17

pleasant (Z = 178, p = .999, g = 0.14, CI95% [–0.25, 0.50]), 
or scrambled unpleasant conditions (Z = 177, p = .999, 
g = 0.12, CI95% [–0.29, 0.44]). Complementary one-tailed 
Bayesian t-tests against 1 (Rouder, Speckman, Sun, Morey, 
& Iverson, 2009) confirmed that the observed SNR 
was better explained by the alternative hypothesis (H1) 

for regular original neutral (BF10 = 1,182.36 ± 0.00%), 
original pleasant (BF10 = 9,662.62 ± 0.00%), and original 
unpleasant conditions (BF10 = 1,609.18 ± 0.00%), whereas 
the null hypothesis (H0) ought to be preferred for SNR 
in response to irregular (BF10 = 0.19 ± 0.00%), regular 
scrambled neutral (BF10 = 0.02 ± 0.00%), scrambled 
pleasant (BF10 = 0.40 ± 0.03%), and scrambled unpleasant 
conditions (BF10 = 0.37 ± 0.00%) (see Table 2). For a 
specification of H1 and H0, see Materials and Methods.

A direct comparison of SNR in regular original and 
scrambled conditions would provide compelling evidence 
that the SSVEP signal at 2 Hz is reliably reflecting cognitive 
processes not exclusively related to the extraction of 
low-level visual properties of the stimuli. Two-tailed 
paired-sample Wilcoxon signed-rank tests confirmed 
larger SNR in response to original vs. scrambled neutral 
(Z = 348, p = 4.47 × 10–7, g = 1.37, CI95% [0.98, 1.76]), 
pleasant (Z = 343, p = 1.49 × 10–6, g = 1.13, CI95% [0.76, 
1.48]), and unpleasant scenes (Z = 316, p = 1.26 × 10–4, 
g = 0.76, CI95% [0.26, 1.12]). Bayesian t-tests corroborated 
the NHST results: the difference between original and 
scrambled conditions was more likely under H1 for neutral 

Figure 1: Stimuli and procedure. Participants were presented with neutral, pleasant, and unpleasant scenes from the 
IAPS (Lang et al., 2008) and EmoPics (Wessa et al., 2010) databases (not shown here for copyright reasons; examples 
are taken from Google Images and published under Creative Commons licenses). In some trials, a neutral, pleasant, or 
unpleasant scene was regularly presented once every 3 stimuli, thus creating a predictable semantic regularity within 
the visual stream. The same presentation was used with scrambled pictures, to verify that the steady-state response 
elicited by such regularity would not exclusively be driven by low-level visual properties.

Table 1: Signal-to-noise ratio (SNR) and SSVEP amplitude 
values (in μV) at 2 Hz.

condition SNR amplitude

irregular 0.99 (0.10) 0.17 (0.02)

original regular neutral 1.85 (0.19) 0.33 (0.03)

original regular pleasant 2.46 (0.34) 0.46 (0.04)

original regular unpleasant 1.70 (0.14) 0.27 (0.02)

scrambled regular neutral 0.65 (0.05) 0.12 (0.01)

scrambled regular pleasant 0.98 (0.12) 0.19 (0.01)

scrambled regular unpleasant 1.00 (0.10) 0.18 (0.01)

Note: 20% trimmed means and standard errors (in parentheses).
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(BF10 = 100,128.86 ± 0.00%), pleasant (BF10 = 6,096.65 ± 
0.00%), and unpleasant scenes (BF10 = 65.88 ± 0.00%) (see 
Table 2).

These results show that the 2 Hz signal in response to 
original regular pictures was reliably larger than the signal 
in response to irregular or scrambled pictures and likely 
reflected post-perceptual brain processes. As 2 Hz signals 
for irregular and scrambled conditions did not reliably 
differ from noise, they were not further analyzed.

Amplitude modulations depend on emotional content
Our main prediction was that SSVEP amplitude at 2 Hz 
should be larger in response to emotional relative to 
neutral scenes. A one-way robust repeated measures 
ANOVA (rbANOVARM) (Field, Miles, & Field, 2012; Field & 
Wilcox, 2017) revealed a significant main effect of emotion 
(F1.68, 25.13 = 17.00, p = 4.79 × 10–5, ξ = .51, CI95% [.14, .82]). 
A complementary Bayesian ANOVARM (Rouder, Engelhardt, 
McCabe, & Morey, 2016; Rouder, Morey, Speckman, & 
Province, 2012; Rouder, Morey, Verhagen, Swagman, & 
Wagenmakers, 2017) confirmed that these amplitude 
values were more likely to be explained by the model 
with the main effect of emotion compared to the null 
model (BF10 = 13.45 ± 0.01%). We proceeded to qualify 
the direction of this difference by means of two-tailed 
paired-sample Wilcoxon signed-rank tests. Amplitude in 
response to pleasant scenes was reliably larger compared 
to neutral (Z = 60, p = .005, g = –0.64, CI95% [–1.08, –0.15]) 
and unpleasant scenes (Z = 43, p = .001, g = –0.87, CI95% 
[–1.36, –0.45]). The difference between neutral and 
unpleasant conditions was not statistically significant 
(Z = 219, p = .280, g = 0.20, CI95% [–0.20, 0.62]). Bayesian 
t-tests confirmed that H1 should be preferred when 
comparing pleasant to neutral (BF10 = 15.12 ± 0.00%) and 

unpleasant conditions (BF10 = 227.19 ± 0.00%), whereas 
the difference between neutral and unpleasant conditions 
leaned towards H0 (BF10 = 0.35 ± 0.03%) (see Table 2 and 
Figure 2).

We also found differences in the topographical 
distribution of the 2 Hz signal for the different emotion 
conditions (Lehmann & Skrandies, 1984; Michel & Murray, 
2012; M. M. Murray, Brunet, & Michel, 2008). While there 
was a significant dissimilarity between 2 Hz topographies 
for regularly presented neutral and pleasant images 
(Global Map Dissimilarity, GMD = 0.638, p < .001) as well 
as neutral and unpleasant images (GMD = 0.587, p = .033), 
there was no significant dissimilarity between regularly 
presented unpleasant and pleasant images (GMD = 
0.357, p = .317). These results point towards statistically 
similar topographic representations of the 2 Hz signal 
when emotional images are presented regularly, which is 
different from that of regularly presented neutral images 
(see Figure 3A).

This pattern was mirrored in the source estimates of 
the 2 Hz signals for the different emotional conditions 
(Friston et al., 2008; Litvak et al., 2011). In two clusters, 
source power estimates differed significantly as a function 
of emotional content of the regularly presented images 
(pvoxel < .001, pcluster < .05, whole-brain FWE-corrected; 
see Figure 3B). In one cluster, comprising of areas in 
right inferior temporal gyrus and fusiform gyrus, source 
power estimates were highest when neutral images were 
presented regularly while lower for emotional images 
(MNI coordinates of peak voxel: x = 52, y = –44, z = –26, 
Fpeakvoxel = 39.86, 704 voxels in cluster). Source power 
estimates in a second cluster – including more anterior 
areas in right fusiform and right inferior temporal gyrus, 
as well as right hippocampal regions and parts of the 

Table 2: Bayes Factors (BF10) and percentage of proportional errors (% pe) for each model relative to the null. The 
dependent variable is SSVEP amplitude values at 2 Hz.

comparison condition r = 1 r = .707 r = .5

BF10 % pe BF10 % pe BF10 % pe

2 Hz amplitude irregular 0.14 ±0.01 0.19 ±0.00 0.25 ±0.01

regular neutral 1,203.13 ±0.00 1,182.36 ±0.00 1,053.77 ±0.00

regular pleasant 10,404.17 ±0.00 9,662.62 ±0.00 8,182.60 ±0.00

vs. regular unpleasant 1,652.19 ±0.00 1,609.17 ±0.00 1,422.10 ±0.00

noise scrambled regular neutral 0.02 ±0.00 0.02 ±0.00 0.01 ±0.00

scrambled regular pleasant 0.30 ±0.00 0.40 ±0.03 0.51 ±0.00

scrambled regular unpleasant 0.27 ±0.02 0.37 ±0.00 0.48 ±0.00

scrambled neutral 115,028.63 ±0.00 100,128.86 ±0.00 80,480.92 ±0.00

vs. pleasant 6,601.58 ±0.00 6,096.65 ±0.00 5,138.10 ±0.00

original unpleasant 62.41 ±0.00 65.88 ±0.00 63.12 ±0.00

2 Hz amplitude, main effect emotion 10.04 ±0.01 13.45 ±0.00 15.66 ±0.01

pairwise neutral vs. pleasant 13.55 ±0.00 15.12 ±0.00 15.43 ±0.00

comparisons neutral vs. unpleasant 0.26 ±0.00 0.35 ±0.03 0.45 ±0.01

(original) unpleasant vs. pleasant 224.47 ±0.00 227.19 ±0.00 208.40 ±0.00
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right amygdala (MNI coordinates of peak voxel: x = 38, y = 
–10, z = –30, Fpeakvoxel = 38.17, 534 voxels in cluster) – were 
higher when emotional images were presented regularly 
as compared to regularly presented neutral images.

Discussion
The results of the “perceptual stress test” presented here 
demonstrate that the human brain is able to extract, 
within 170 ms post-stimulus onset, diagnostic cues from 
complex naturalistic scenes. Importantly, we show that 
the extracted information is not limited to basic semantic 
features, e.g., the presence of living or non-living objects 
(Grill-Spector, Kushnir, Hendler, & Malach, 2000; Johnson 
& Olshausen, 2003; Liu, Agam, Madsen, & Kreiman, 2009; 
Thorpe, Fize, & Marlot, 1996; VanRullen & Thorpe, 2001a), 
but encompasses motivationally relevant cues such as 
emotional valence and arousal (Lang & Bradley, 2010). 
The continuous stream of rapidly changing stimuli is 
known to produce clear masking effects, thereby making 
visual information available only for the presentation 
time of each image (Alonso-Prieto et al., 2013; Bekhtereva 
& Müller, 2015; Retter & Rossion, 2016), which was still 
sufficient for the extraction of emotional cues even during 
continuous presentation over 7 seconds. Of note, our 
stimulation protocol was different from recent studies 
that used regular presentations of faces, body parts, or 
houses within a stream of natural objects (Jacques, Retter, 
& Rossion, 2016; Retter & Rossion, 2016; Rossion, Torfs, 
Jacques, & Liu-Shuang, 2015) or expressive faces in a 
stream of neutral faces (Dzhelyova, Jacques, & Rossion, 
2017), in that it conveyed the regularity using the same 
stimulus type as the fillers, i.e., naturalistic scenes matched 

with respect to apparent contrast, subjective and objective 
complexity, and proportion of living/non- living objects 
(see Supplementary Materials for details). This strategy 
allowed us to circumvent several caveats associated 
with the exclusive use of faces to elicit regularity in the 
visual system. For instance, faces are perceptually simpler 
(M. S. Keil, 2008; VanRullen, 2006), over-trained (Bukach, 
Gauthier, & Tarr, 2006; Gauthier & Nelson, 2001; Tanaka, 
2001; Tarr & Gauthier, 2000), and more salient – because 
they typically convey important social signals (Calder & 
Young, 2005; Frith, 2009; Said, Haxby, & Todorov, 2011) 
– compared to non-face objects or naturalistic scenes. 
Even more relevant for the current study, emotional cue 
extraction occurs earlier for faces than scenes (Bekhtereva, 
Craddock, & Müller, 2015) and may be subserved by 
partially segregated neural circuits (Britton, Taylor, 
Sudheimer, & Liberzon, 2006; Haxby, Hoffman, & Gobbini, 
2000). Finally, this study complements existing literature 
suggesting rapid extraction of emotional information 
after short stimulus presentation (e.g., Codispoti et al., 
2009) by focusing on early visual cortex activity instead 
of late electrophysiological components, which are the 
by-product of several perceptual and cognitive processes 
(Hajcak, MacNamara, & Olvet, 2010).

Pleasant information is prioritized in early visual 
cortex
Nonparametric and Bayes factor analyses converged 
to show a robust 2 Hz SSVEP response to the regularly 
presented neutral, unpleasant, and pleasant pictures, 
but not their scrambled versions. This result excludes 
the possibility that our 2 Hz response for original scenes 

Figure 2: Results of the 2 Hz signals. (A) Grand average FFT-amplitude spectra derived from EEG signals at each par-
ticipant’s best four-electrode cluster for the 2 Hz signal for the different experimental conditions (blue: neutral; green: 
pleasant; red: unpleasant). The shaded areas around the means indicate 95% confidence intervals. The electrode 
cluster selected for the analysis is highlighted in the topography. (B) Amplitude values of the 2 Hz signals for each 
participant (single dots) and experimental condition. Mean amplitude values are marked by horizontal black lines and 
95% Bayesian highest density interval (HDI) represented as white boxes. **: p < .01; n.s.: not significant.
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could solely be ascribed to the rapid extraction of low-
level features such as spatial frequency, color, or contrast, 
which were matched between original and scrambled 
pictures.

Crucially, our paradigm highlighted robust amplitude 
differences between emotional conditions, with pleasant 
scenes eliciting larger 2 Hz amplitude compared to 
unpleasant and neutral pictures. These findings are 
consistent with a wealth of studies showing privileged 
processing of emotional visual stimuli (Carretié, 2014; 
Frijda, 2016; Lang & Bradley, 2010; Pessoa, 2008; Pourtois, 
Schettino, & Vuilleumier, 2013; Vuilleumier, 2005). 

Surprisingly, 2 Hz activity was specifically enhanced for 
pleasant scenes, suggesting preferential attentional 
capture for intrinsically hedonic stimuli. One plausible 
post-hoc explanation could be that, during such an 
effortless task (passive viewing) that would eventually 
lead to a reward (i.e., monetary compensation for 
participation), observers would be able to engage their 
cognitive resources towards a thorough exploration of 
the RSVP streams and focus on the rewarding information 
conveyed by pleasant scenes. This positivity offset, as 
termed within the Evaluative Space Model framework 
(Cacioppo, Gardner, & Berntson, 1997; Ito, Cacioppo, 

Figure 3: Results of the 2 Hz signals. (A) Grand Mean topographical representation of the 2 Hz signals for different 
emotion conditions. (B) Results of the source localization. Significant source amplitude modulations are shown for 
the factor emotion (whole brain family-wise-error-corrected, pvoxel < .001, pcluster < .05) in different axial slices projected 
to a standard brain. Numbers above slices represent MNI coordinates of axial slice. Effect estimates are shown for each 
cluster in bar graphs. Error bars represent SEM.
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& Lang, 1998; Norris, Gollan, Berntson, & Cacioppo, 
2010), refers to a stronger motivation to approach than 
avoid unfamiliar but non-threatening contexts. From an 
evolutionary perspective, this activation function enables 
organisms to explore novel environments, with the 
ultimate goal to find additional sources of nourishment 
and protection as well as occasions for mating and 
reproduction (Cacioppo & Berntson, 1994; Cacioppo 
& Gardner, 1999). Research has shown that positivity 
offset (as well as negativity bias) can be generalized 
across different kinds of stimuli (Norris, Larsen, Crawford, 
& Cacioppo, 2011), is temporally stable and trait-like 
consistent (Ito & Cacioppo, 2005), and can be used as a 
theoretical construct to interpret serotonergic function in 
healthy and clinical populations (Ashare, Norris, Wileyto, 
Cacioppo, & Strasser, 2013; Carver, Johnson, & Joormann, 
2009; Gollan et al., 2016).

During our task, positivity offset may have outweighed 
negativity bias because of the absence of proximal 
environmental danger which, in turn, promoted 
exploration (Ito & Cacioppo, 2005; Schettino, Loeys, Bossi, 
& Pourtois, 2012; Schettino, Loeys, Delplanque, & Pourtois, 
2011; Schettino, Loeys, & Pourtois, 2013). Furthermore, 
participants were probably inclined to thoroughly 
examine images carrying intrinsically rewarding 
information also because these pictures likely matched 
their motivational dispositions (Byrne & Eysenck, 1993; 
Niedenthal, Halberstadt, & Setterlund, 1997; Niedenthal 
& Setterlund, 1994; Raila, Scholl, & Gruber, 2015). Broadly 
speaking, positivity offset processes could underpin 
attentional biases towards pleasant stimuli frequently 
observed in healthy people (Pool, Brosch, Delplanque, & 
Sander, 2016; Sennwald et al., 2016). Intriguingly, positive 
stimuli seem to have their major impact during the 
initial stages of visual processing (Pool et al., 2016), when 
attentional shifts are more likely to be driven by stimulus 
properties rather than top-down goals (Theeuwes, 1994). 
Thus, pleasant images might show strongest attentional 
capture – and, consequently, largest electrophysiological 
effects – when briefly presented, like in our RSVP streams.

As we have shown in previous work (Bekhtereva & 
Müller, 2015), the modulation of SSVEPs for emotional 
as compared to neutral, rapidly presented visual images 
requires sufficient processing time for emotional cue 
extraction in the time range of the EPN (Junghöfer et 
al., 2001; Schupp, Flaisch, Stockburger, & Junghöfer, 
2006), thus potentially linking SSVEP modulations and 
the EPN. Intriguingly, the EPN seems to be modulated 
by stimulus valence in a similar manner, showing a 
larger deflection for pleasant as compared to unpleasant 
stimuli (Schupp, Junghöfer, Weike, & Hamm, 2004). 
Only recently we could show that the SSVEP amplitude 
modulation by the emotional content of the image 
stream differed for various stimulation frequencies and 
that these differences may be explained by a model that 
posits the SSVEP as a superposition of ERPs (Bekhtereva, 
Pritschmann, Keil, & Müller, 2018). It is thus tempting, 
but highly speculative, to link the modulations of SSVEP 
found here to known ERP modulations of the EPN by the 
emotional picture content.

Is the 2 Hz response a consequence of stimulus 
predictability?
Given the regular presentation of pictures of the same 
valence category, one could wonder whether the observed 
2 Hz SSVEP response is a consequence of predictability 
rather than perceptual categorization. Indeed, recent 
studies have shown that temporal expectations could aid 
visual facilitation of regularly presented items (Breska & 
Deouell, 2014; Cravo, Haddad, Claessens, & Baldo, 2013), 
and that perceptual expectations may influence recognition 
processes at different stages (Carlson, Grol, & Verstraten, 
2006; Ploran, Tremel, Nelson, & Wheeler, 2011; Summerfield 
& de Lange, 2014; Summerfield & Egner, 2009) depending 
on the emotional connotation of the stimuli (Barrett & Bar, 
2009). Temporal expectations might indeed have had an 
impact on previous studies (Peyk, Schupp, Keil, Elbert, & 
Junghöfer, 2009) reporting emotional cue extraction up to 
12 Hz (e.g., 83 ms per image), because of the presentation 
of simple and predictable stimulus sequences (e.g., 
pleasant – neutral – pleasant – neutral – …). Nonetheless, 
we consider the influence of temporal and perceptual 
expectations highly unlikely in our paradigm, for several 
reasons. First, in the regular conditions the pseudorandom 
stimulus presentation created completely unpredictable 
sequences (see Results section). Second, the regularity 
was always elicited by different pictures, which had little 
in common except emotional valence. Third, participants 
were not aware of any regularities in the RSVP stream, as 
post-experiment verbal reports confirmed. Fourth, a recent 
paper (Quek & Rossion, 2017) provided additional evidence 
that category-specific responses in RSVP streams are 
unlikely to be solely influenced by temporal expectations.

Distinct patterns of cortical activation for emotional 
vs. neutral content
The reported electrophysiological responses to emotional 
and neutral scenes also differed in the topographical 
distribution and estimated cortical sources of the 2 Hz 
SSVEP signal. Neutral images elicited higher activity in 
right inferotemporal and fusiform gyri, whereas more 
anterior portions of the right fusiform and temporal gyri 
as well as hippocampal regions responded more strongly 
to emotional scenes. Of note, no statistical differences 
were observed between pleasant and unpleasant scenes, 
presumably because these stimuli recruit the same 
neural circuits while modulating their intensity. Overall, 
these results point towards a general involvement of 
scene-selective cortical regions in the lateral occipital 
cortex (Grill-Spector, Kourtzi, & Kanwisher, 2001; Nasr 
et al., 2011). Emotional scenes seem to elicit enhanced 
activity in anterior occipitotemporal areas (Bradley et al., 
2003; Sabatinelli et al., 2011) and even the amygdala, a 
subcortical structure classically implicated in emotion 
detection and recognition (Adolphs, 2002; LeDoux, 2007; 
Phelps & LeDoux, 2005; Pourtois et al., 2013; Vuilleumier, 
2005). However, we prefer not to provide a strong 
interpretation of these findings, not only because of the 
exploratory nature of our analyses but, most importantly, 
due to the characteristics of the electrophysiological signal 
recorded on the scalp as well as the poor spatial resolution 
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of source localization algorithms without individual 
co-registration (Belardinelli, Ortiz, Barnes, Noppeney, & 
Preissl, 2012; Grech et al., 2008; López, Litvak, Espinosa, 
Friston, & Barnes, 2014; López, Penny, Espinosa, & Barnes, 
2012). Future studies using imaging techniques suited to 
precisely pinpoint activity in specific brain areas could 
provide more compelling evidence of the recruitment of 
deep brain structures in this experimental paradigm.

Conclusions
The present study significantly advances our knowledge 
of complex scene processing by showing that the 
human brain can rapidly extract motivationally relevant 
information within a perceptually challenging temporal 
succession of pictures. Despite limited visibility of each 
individual scene by forward and backward masking, 
emotional cues could quickly be extracted within the first 
167 ms post-stimulus onset. Greater neural facilitation for 
pleasant compared to neutral and unpleasant images may 
be due to a positivity bias that could dominate under such 
rapid categorical demands in non-threatening contexts. 
Whether the presentation time of 167 ms is the lowest 
limit for semantic categorization of complex naturalistic 
scenes is the subject of future studies but, on the basis 
of current models of object processing (Fabre-Thorpe, 
Delorme, Marlot, & Thorpe, 2001; Grill-Spector et al., 
2000; Johnson & Olshausen, 2003; VanRullen & Thorpe, 
2001b) as well as other studies employing a similar 
paradigm (Alonso-Prieto et al., 2013; Bekhtereva & Müller, 
2015), presentation frequencies around 6 Hz seem to be 
the upper bound for efficient semantic categorization.

Materials and Methods
Participants
Twenty-six Caucasian individuals (13M/13F, 25 right-
handed; median age 24 years, range 19–38) were recruited 
from the student population of the University of Leipzig and 
among the general public. An equal number of male and 
female participants was planned to avoid possible gender-
specific differences in emotion reaction and evaluation 
(Lithari et al., 2010; Proverbio, Adorni, Zani, & Trestianu, 
2009; Sabatinelli, Flaisch, Bradley, Fitzsimmons, & Lang, 
2004). All volunteers were German speaking, had normal 
or corrected-to-normal vision, and reported no history of 
neurological or psychiatric disorders. This sample size was 
chosen based on available time and economic resources 
(no statistical a priori power analysis was conducted).

The experimental protocol was approved by the ethics 
committee of the University of Leipzig (ethical approval 
#415/17-ek). The study was conducted in accordance with 
the guidelines of the ethics committee of the University 
of Leipzig and the Code of Ethics of the World Medical 
Association. All volunteers gave written informed consent 
prior to participation. At the end of the experiment, they 
were fully debriefed and received 12 € (6 € per hour).

Stimuli
One-hundred and fifty pictures were selected from the 
IAPS (Lang, Bradley, & Cuthbert, 2008) and EmoPics (Wessa 
et al., 2010) databases, equally divided into three emotion 

categories – neutral, unpleasant, and pleasant – according 
to their normative valence and arousal ratings. These 
stimuli were resized to 419 × 314 pixels (to minimize eye 
movements) and comparable with respect to a number of 
low-level visual properties (for a complete description, see 
the Supplementary Materials). A separate set of scrambled 
images was additionally created: each original picture was 
modified by applying a spatial discrete Fourier transform 
to each RGB-color channel, replacing the phase spectrum 
with random values, and reconstructing the image by 
applying an inverse Fourier transform. This procedure 
disrupts picture content while keeping color, contrast, and 
spatial frequency content intact (Hindi Attar, Andersen, & 
Müller, 2010; Hindi Attar & Müller, 2012; M. M. Müller, 
Andersen, & Hindi Attar, 2011; Schettino, Keil, Porcu, & 
Müller, 2016). In sum, a total of 300 pictures were used, 
50 for each stimulus type: (i) original neutral; (ii) original 
pleasant; (iii) original unpleasant; (iv) scrambled neutral; 
(v) scrambled pleasant; (vi) scrambled unpleasant. An 
example of each stimulus type is provided in Figure 1.

Procedure
Upon arrival at the laboratory, participants signed the 
informed consent, had EEG sensors placed on the scalp, 
and were seated in a dimly lit Faraday cage at approximately 
80 cm from a 19” CRT monitor (Samsung Samtron 98PDF 
(L) L, 1024 × 768 pixels screen resolution, 16-bit color, 60 
Hz refresh rate) connected to a PC running Matlab v7.5.0 
(The Mathworks, Inc, Natick, MA) and the Cogent toolbox 
(v1.32; http://www.vislab.ucl.ac.uk/cogent.php).

The experimenter ensured that the task was understood 
by providing verbal and written instructions. After a 
practice session with 14 trial pictures (not included in the 
experimental picture set), the main experiment started. 
On each trial, a central white fixation cross (1° × 1° degrees 
of visual angle) was presented on a gray background for 
250 ms. The stimuli (10.5° × 7.9°) were subsequently 
presented in the center of the screen – time-locked to the 
refresh rate of the monitor – as an RSVP stream flickering 
at 6 Hz (i.e., ~167 ms on-presentation time per image). 
Participants were asked to simply focus on the content 
of each picture. In the main experimental conditions, a 
neutral, pleasant, or unpleasant picture (regular neutral, 
regular pleasant, and regular unpleasant conditions, 
respectively) was regularly presented once every 3 stimuli 
during the stream, i.e., at 2 Hz. The second and third images 
of each image triplet was randomly drawn from the two 
remaining emotional content categories, so that for each 
triplet each emotional content category was presented 
once. Please note that, to create such regularity, we never 
used the same picture more than once within a stream: 
every 2 Hz cycle contained a different scene, and the only 
common feature of all images within the other cycles was 
the emotional content. To verify that the hypothesized 
enhancement of the electrophysiological signal was not 
due to the influence of low-level features (e.g., color, 
contrast, or spatial frequency content), the same regular 
presentation scheme was employed for scrambled images 
(scrambled regular neutral, scrambled regular pleasant, 
and scrambled regular unpleasant conditions). In the last 
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condition (irregular), the original pictures were presented 
randomly, i.e., no regularity at 2 Hz was imposed (see 
Figure 1 for examples). Each trial lasted 7,000 ms, with 
42 pictures shown at the driving frequency of 6 Hz and 
14 presentations at 2 Hz in the regular conditions. During 
the inter-trial interval, randomly varying between 1,500 
and 2,000 ms, a white ‘X’ signaled that participants could 
blink. The experiment consisted of 490 trials subdivided 
in 14 blocks (i.e., 35 trials per block), with 70 trials per 
condition.

To ensure that our pre-selected pictures were processed 
by participants in accordance with our categorization, 
valence and arousal ratings were collected at the end of 
the main task via the Self-Assessment-Manikin (Bradley 
& Lang, 1994), ranging from 1 (low arousal – unpleasant 
valence) to 9 (high arousal – pleasant valence) (see results 
in the Supplementary Materials). Responses were given 
on the numeric pad of a standard QWERTZ keyboard 
connected via USB.

EEG recording and pre-processing
Electroencephalographic activity (EEG) was recorded with 
an ActiveTwo amplifier (BioSemi, Inc., The Netherlands) at 
a sampling rate of 512 Hz. Sixty-four Ag/AgCl electrodes 
were fitted into an elastic cap, following the international 
10/10 system (Oostenveld & Praamstra, 2001) except 
electrodes T7 and T8, which were moved in position I1 
and I2 to increase spatial resolution at occipital sites. 
The common mode sense (CMS) active electrode and 
the driven right leg (DRL) passive electrode were used as 
reference and ground electrodes, respectively. Horizontal 
and vertical electrooculogram (EOGs) were monitored 
using four facial bipolar electrodes placed on the outer 
canthi of each eye and in the inferior and superior areas 
of the left orbit.

Data preprocessing was performed offline with custom 
MATLAB scripts and functions included in EEGLAB 
v14.0.0b (Delorme & Makeig, 2004), FASTER v1.2.3b 
(Nolan, Whelan, & Reilly, 2010), and SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12/) toolboxes. 
After subtracting the mean value of the waveform (DC 
offset), the continuous EEG data were epoched between 
0 and 7,000 ms, corresponding to the beginning and end 
of the picture streams, respectively. After referencing to 
Cz, FASTER functions were used to label data exceeding 
a z-score of ±3 standard deviations as contaminated 
by artifacts (for details, see our script at https://osf.io/
vb8a4/). Noisy channels were interpolated via a spherical 
spline procedure (Perrin, Pernier, Bertrand, & Echallier, 
1989). Epochs containing artifacts and/or more than 12 
interpolated channels were discarded. After preprocessing, 
the average number of interpolated channels was 3.12 
(SD = 1.53, range 0–7) and the mean percentage of 
rejected epochs was 5.81% (SD = 3.81, range 1.02–15.51). 
After re-referencing to the average amplitude of all scalp 
electrodes, 7 grand-averages were computed: (i) irregular 
(number of averaged trials: M = 65.54, SD = 2.77); (ii) 
regular neutral (M = 64.85, SD = 2.77); (iii) regular pleasant 
(M = 65.69, SD = 2.38); (iv) regular unpleasant (M = 65.92, 
SD = 2.68); (v) scrambled regular neutral (M = 65.08, 

SD = 3.07); (vi) scrambled regular pleasant (M = 65.65, 
SD = 2.48); (vii) scrambled regular unpleasant (M = 66.23, 
SD = 2.52).

Confirmatory analysis: Amplitude of SSVEP signal
Amplitude at 6 Hz was analyzed only to confirm that the 
main stimulation frequency elicited a robust entrained 
signal in the brain. The results can be found in the 
Supplementary Materials.

With respect to 2 Hz, electrodes with maximum SSVEP 
amplitudes were identified by calculating isocontour 
voltage maps based on grand-averaged data collapsed 
across all conditions. As shown in Figure 2, activity was 
mainly localized at right occipito-temporal channels (e.g., 
PO10, PO8, P8). To account for inter-individual variations 
in topographical SSVEP amplitude distributions, we 
identified and averaged activity from the four electrodes 
displaying, for each participant, the largest frequency-
specific amplitude. After removing linear trends, we 
extracted SSVEP amplitude at 2 Hz from each individual 
electrode cluster, separately for each condition (averaged 
across trials). Fast Fourier Transforms on the EEG signal 
in a time window from 500 ms (to exclude the typically 
strong phasic visual evoked response to picture onset) to 
7,000 ms after stimulus onset was applied, and amplitudes 
were obtained by extracting the absolute values of the 
resulting complex Fourier coefficients.

Given that the data in some conditions violated the 
assumption of normality (verified via Shapiro-Wilk and 
Anderson-Darling tests), we compared SSVEP amplitudes 
across conditions using robust nonparametric methods 
(Field et al., 2012; Field & Wilcox, 2017). When comparing 
more than two conditions, we employed repeated 
measures ANOVAs on 20% trimmed means (rbANOVARM), 
accompanied by an explanatory measure of effect size 
ξ and its respective 95% bootstrapped confidence 
intervals (5,000 samples). One-sample and paired-sample 
comparisons were conducted via Wilcoxon signed-rank 
test, complemented by bootstrapped Hedges’ g (and 
respective 95% confidence intervals) as a measure of 
effect size (Fritz, Morris, & Richler, 2012; Lakens, 2013). 
The significance level for all tests was set at p = .05, 
corrected for multiple comparisons via Bonferroni-Holm 
procedure (Holm, 1979).

Given the problems inherent in accepting the null 
hypothesis with classical frequentist procedures (Kruschke, 
2010; Morey, Romeijn, & Rouder, 2016; Rouder, Morey, 
Verhagen, Province, & Wagenmakers, 2016; Wagenmakers, 
2007), we additionally calculated Bayes Factors (Jeffreys, 
1961; Kass & Raftery, 1995). With Bayesian ANOVAs, Bayes 
Factors (BF10) were estimated – using Markov-chain Monte 
Carlo sampling (100,000 iterations) – to quantify the 
evidence in favor of each model of interest relative to the 
null model (Rouder, Engelhardt, et al., 2016; Rouder et al., 
2012, 2017). With respect to Bayesian t-tests, BF10 were 
calculated to estimate the degree of evidence in favor 
of a model assuming differences between two specified 
conditions relative to a model assuming no differences 
(Rouder et al., 2009). For all analyses, the null hypothesis 
was specified as a point-null prior placed on standardized 
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effect size (i.e., δ = 0) whereas, for the alternative 
hypothesis, Jeffrey-Zellner-Siow (JZS) priors were used, 
i.e., a folded Cauchy distribution centered around δ = 0 
with various scaling factors (r = 1, r = 0.707, r = 0.5). This 
sensitivity analysis is useful to verify the robustness of the 
results regardless of changes in the prior (Schönbrodt, 
Wagenmakers, Zehetleitner, & Perugini, 2017). The BF10 
with JSZ prior Cauchy(0, 0.707) is reported in the main 
text, but the reader is referred to the corresponding tables 
for details.

Exploratory analysis: Topographic distribution of 
SSVEP signal
To quantify the observed differences in the 
topographic distribution of SSVEP amplitude values 
between conditions of interest, we used the Global 
Map Dissimilarity index (GMD). Mean topographic 
distributions for each condition were first normalized 
by the Global Field Power (GFP), a time-dependent 
measure of the electric field strength that reflects the 
amount of synchronized activity across all electrodes 
(Michel & Murray, 2012). The dissimilarity between any 
two normalized topographies was then calculated as the 
square root of the averaged differences in amplitudes 
between these two topographies at each channel 
(Lehmann & Skrandies, 1984; M. M. Murray et al., 2008). 
The resulting GMD – ranging from 0 (topographic 
homogeneity) to 2 (maximal topographic inversion) – was 
then statistically evaluated with a permutation approach. 
By comparing the actual GMD with the distribution of 
permutation-based chance GMDs, a Monte Carlo based 
p-value was calculated. Specifically, topographies across 
the two compared conditions were treated as if they 
belonged to the same distribution. The resulting p-value 
represents the likelihood of getting a GMD as large as 
the one observed purely by chance (i.e., by randomly 
assigning the condition labels to the topographies). For 
a p-value < .05, one would assume the observed GMD to 
be due to the fact that topographies for the conditions of 
interest belong to two different distributions rather than 
one, i.e., to be significantly different from each other.

Exploratory analysis: Source localization of SSVEP 
signal
Sources of SSVEPs were modelled using source 
reconstruction algorithms implemented in SPM12. A 
standardized forward model was constructed using a 
template cortical mesh with 8,196 vertices co-registered 
to standard EEG positions. The lead field for the forward 
model was computed using the three-shell BEM EEG head 
model implemented in SPM12. The preprocessed EEG 
data were filtered with a 1.5–2.5 Hz Hamming windowed-
sinc FIR filter (filter order 4096), and trials were averaged 
for each condition. Sources were estimated using multiple 
sparse priors (Friston et al., 2008). For each participant 
and condition, three-dimensional source power estimates 
were extracted. These source power images could then be 
statistically analyzed on a group level using conventional 
SPM t-tests and regression statistics. Statistical parametric 
maps were thresholded at p < .001 on a voxel level and 

corrected on the cluster level using random field theory 
(pcluster < .05, whole-brain FWE corrected).

To estimate potential source power differences for 
the processing of images of different emotional quality, 
the source power images for the 2 Hz signal of the 
regularly presented original images were tested with 
a one-way repeated measures ANOVA (ANOVARM) with 
factor emotion (neutral, pleasant, unpleasant). The 
model comprised only regular conditions because 2 Hz 
signals for these conditions were different from noise 
(see Results section). For an estimation of the effects, the 
averaged beta coefficients of the effects of interest from 
the ANOVARM model were extracted for each significant 
cluster with the help of the MarsBaR toolbox (Brett, 
Anton, Valabregue, & Poline, 2002). To relate results to 
cytoarchitectonic references, the SPM anatomy toolbox 
(Eickhoff et al., 2005) was used whenever possible and 
images for publication were created using MRIcron 
(Rorden & Brett, 2000).

Software
Data visualization and statistical analyses were performed 
using R v3.4.3 (R Core Team, 2017) via RStudio v1.1.419 
(RStudio Team, 2015). We used the following packages 
(and their respective dependencies):

• data manipulation: tidyverse v1.2.1 (Wickham, 2017b), 
magrittr v1.5 (Bache & Wickham, 2014), broom v0.4.3 
(Robinson, 2017);

• statistical analyses: Rmisc v1.5 (Hope, 2013), 
 nortest 1.0-4 (Gross & Ligges, 2015), WRS2 0.9-2 
(Mair,  Schönbrodt, & Wilcox, 2017), bootES v1.2 
(Gerlanc & Kirby, 2015), BayesFactor v0.9.12-2 (Morey 
& Rouder, 2015), userfriendlyscience v0.7 (Peters, 
2017);

• visualization: ggplot2 v2.2.1 (Wickham, 2009), ggth-
emes v3.4 (Arnold, 2017), akima v0.6-2 (Akima & 
 Gebhardt, 2016), scales v0.5 (Wickham, 2017a), mgcv 
v1.8-23 (Wood, 2017), gridExtra 2.3 (Auguie, 2017), 
yarrr v0.1.5 (Phillips, 2017);

• report generation: pacman v0.4.6 (Rinker &  Kurkiewicz, 
n.d.), knitr v1.19 (Xie, 2018), here v0.1 (K. Müller, 2017), 
kableExtra v0.7 (Zhu, 2018).

Amplitude spectra and EEG topographies were created 
by adapting the scripts by Dr. Matt Craddock (https://
github.com/craddm/eegUtils). Topographic and source 
estimation analyses were carried out in Matlab v7.5.0 (The 
Mathworks, Inc, Natick, MA). 

Data Accessibility Statement
Raw and pre-processed data, materials, and analysis scripts 
are available on https://osf.io/9dcsm/.

Additional File
The additional file for this article can be found as follows:

• Text S1. Rapid extraction of emotion regularities 
from complex scenes in the human brain. DOI: 
https://doi.org/10.1525/collabra.226.s1
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