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Abstract

With the advent of advanced MRI techniques it has become possible to study axonal white

matter non-invasively and in great detail. Measuring the various parameters of the long-

range connections of the brain opens up the possibility to build and refine detailed models of

large-scale neuronal activity. One particular challenge is to find a mathematical description

of action potential propagation that is sufficiently simple, yet still biologically plausible to

model signal transmission across entire axonal fibre bundles. We develop a mathematical

framework in which we replace the Hodgkin-Huxley dynamics by a spike-diffuse-spike

model with passive sub-threshold dynamics and explicit, threshold-activated ion channel

currents. This allows us to study in detail the influence of the various model parameters on

the action potential velocity and on the entrainment of action potentials between ephaptically

coupled fibres without having to recur to numerical simulations. Specifically, we recover

known results regarding the influence of axon diameter, node of Ranvier length and inter-

node length on the velocity of action potentials. Additionally, we find that the velocity

depends more strongly on the thickness of the myelin sheath than was suggested by previ-

ous theoretical studies. We further explain the slowing down and synchronisation of action

potentials in ephaptically coupled fibres by their dynamic interaction. In summary, this study

presents a solution to incorporate detailed axonal parameters into a whole-brain modelling

framework.

Author summary

With more and more data becoming available on white-matter tracts, the need arises to

develop modelling frameworks that incorporate these data at the whole-brain level. This

requires the development of efficient mathematical schemes to study parameter depen-

dencies that can then be matched with data, in particular the speed of action potentials

that cause delays between brain regions. Here, we develop a method that describes the for-

mation of action potentials by threshold activated currents, often referred to as spike-dif-

fuse-spike modelling. A particular focus of our study is the dependence of the speed of

action potentials on structural parameters. We find that the diameter of axons and the

thickness of the myelin sheath have a strong influence on the speed, whereas the length of
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open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: This is a purely

computational study, and all relevant data are

within the paper.

Funding: HS and TRK were supported by the

German Research Foundation (DFG [KN 588/7-1]

within priority programme “Computational

Connectomics” [SPP 2041]). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-2264-0821
http://orcid.org/0000-0001-9668-3261
https://doi.org/10.1371/journal.pcbi.1007004
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007004&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007004&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007004&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007004&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007004&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007004&domain=pdf&date_stamp=2019-10-17
https://doi.org/10.1371/journal.pcbi.1007004
https://doi.org/10.1371/journal.pcbi.1007004
http://creativecommons.org/licenses/by/4.0/


myelinated segments and node of Ranvier length have a lesser effect. In addition to exam-

ining single axons, we demonstrate that action potentials between nearby axons can syn-

chronise and slow down their propagation speed.

Introduction

Neurons communicate via chemical and electrical signals, and an integral part of this commu-

nication is the transmission of action potentials along their axons. The velocity of action

potentials is crucial for the right timing in information processing and depends on the dynam-

ics of ion channels studding the axon, but also on its geometrical properties. For instance, the

velocity increases approximately linearly with the diameter of myelinated axons [1]. Myelin

sheaths around axons are an evolutionary trait in most vertebrates and some invertebrates,

which developed independently in several taxa [2]. The presence of a myelin sheath increases

the velocity of action potentials by enabling saltatory conduction [3]. Long-term, activity-

dependent changes in the myelination status of axons are related to learning [4]. The func-

tional role of differentiated myelination is to regulate and synchronise signal transmission

across different axonal fibres to enable cognitive function, sensory integration and motor skills

[5]. White-matter architecture has also been found to affect the peak frequency of the alpha

rhythm [6]. Axons and their supporting cells make up the white matter, which has, for a long

time, only been accessible to histological studies [7, 8]. With the advent of advanced MRI tech-

niques, some of the geometric parameters of axonal fibre bundles have become accessible to

non-invasive methods. Techniques have been proposed to determine the orientation of fibre

bundles in the white matter [9] as well as to estimate the distribution of axonal diameters [10],

the packing density of axons in a fibre bundle [11, 12], and the ratio of the diameters of the

axon and the myelin sheath (g-ratio) [13].

First quantitative studies were done by Hursh [14] who established the (approximately) lin-

ear relationship between action potential velocity and axonal radius in myelinated axons, and

Tasaki [3] who first described saltatory conduction in myelinated axons. Seminal work on ion

channel dynamics was later done by Hodgkin and Huxley, establishing the voltage-depen-

dence of ion channel currents [15]. The general result of voltage-dependent gating has been

confirmed in vertebrates [16], yet a recent result for mammals suggests that the gating dynam-

ics of sodium channels is faster than described by the original Hodgkin-Huxley model, thereby

enabling faster generation and transmission of action potentials [17]. In general, parameters

determining channel dynamics differ widely across neuron types [18].

Seminal studies into signal propagation in myelinated axons using computational tech-

niques were done by FitzHugh [19] and Goldman and Albus [20]. Goldman and Albus gave

the first computational evidence for the linear increase of the conduction velocity with the

radius of the axon, provided that the length of myelinated segments also increases linearly with

the axonal radius. The linear relationship is supported by experimental evidence [21], although

other studies suggest a slightly nonlinear relationship [22]. More recently, computational stud-

ies have investigated the role of the myelin sheath and the relationship between models of dif-

ferent complexity with experimental results [23]. One of the key findings here was that only a

myelin sheath with finite capacitance and resistance reproduced experimental results for axo-

nal conduction velocity. Other studies investigated the role of the width of the nodes of Ran-

vier on signal propagation [24, 25], or the effect of ephaptic coupling on signal propagation

[26–33].

Action potential propagation and synchronisation in myelinated axons
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Most computational studies employ numerical schemes, i.e. they discretise the mathemati-

cal problem in space and time and use numerical integration methods to investigate the propa-

gation of action potentials. One problem that arises here is that the spatial discretisation must

be relatively coarse to ensure numerical stability, which can be remedied to some extent by

advanced numerical methods and computational effort [34]. The other problem, however,

cannot be remedied that easily: it is the lack of insight into how the model parameters influ-

ence the results, since there is a large number of parameters involved. A way to illustrate

parameter dependencies in an efficient manner is to use analytical techniques all the while sim-

plifying the model equations and extracting essential features. Studies that use analytical meth-

ods are few and far between [35–38]; yet it is also worth noting that from a mathematical

perspective, myelinated axons are similar to spine-studded dendrites, in the sense that active

units are coupled by passive leaky cables. An idea that we pick up from the latter is to simplify

the ionic currents crossing the membrane [39, 40], there at dendritic spines mediated by neu-

rotransmitters, here at nodes of Ranvier mediated by voltage-gated dynamics.

The goal of this article is to use analytical methods to study the influence of parameters con-

trolling action potential generation, and geometric and electrophysiological parameters of the

myelinated axon, on the speed of action potentials. The main focus here is on parameters

determining the axonal structure. This will be achieved by replacing the Hodgkin-Huxley

dynamics with a spike-diffuse-spike model for action potential generation, i.e. ion currents are

released at nodes of Ranvier when the membrane potential reaches a certain threshold. These

ion channel currents are considered voltage-independent, but we investigate different forms of

currents, ranging from instantaneous currents to currents that incorporate time delays. We

also investigate ion currents that closely resemble sodium currents measured experimentally.

Our aim is to derive closed-form solutions for the membrane potential along an axon, which

yields the relationship of action potential velocity with model parameters.

The specific questions we seek to answer here are the following. First, we query how physio-

logical parameters can be incorporated into our mathematical framework, especially parame-

ters that control the dynamics of the ionic currents. We test if parameters from the literature

yield physiologically plausible results for the shape and amplitude of action potentials, and test

how the ionic currents from multiple nearby nodes of Ranvier contribute to the formation of

action potentials. Secondly, we ask how geometric parameters of an axon affect the transmis-

sion speed in a single axon, and how sensitive the transmission speed is to changes in these

parameters. We seek to reproduce known results from the literature, such as the dependence

of the velocity on axon diameter. We also explore other dependencies, such as on the g-ratio,

and other microscopic structural parameters resulting from myelination. We compare the

results of our spike-diffuse-spike model with the results from a detailed biophysical model

recently used to study the effect of node and internode length on action potential velocity [24].

Thirdly, we investigate how ephaptic coupling affects the transmission speed of action poten-

tials, and what the conditions are for action potentials to synchronise. In particular, we exam-

ine how restricted extra-axonal space leads to coupling between two identical axons, and how

action potentials travelling through the coupled axons interact.

Results

For the mathematical treatment of action potential propagation along myelinated axons, we

consider active elements periodically placed on an infinitely long cable. The latter represents

the myelinated axon and is appropriately described as leaky cable, whereas the active elements

represent the nodes of Ranvier. In mathematical terms, the governing equation is an inhomo-

geneous cable equation, which describes the membrane potential V(x, t) of a leaky cable in

Action potential propagation and synchronisation in myelinated axons
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space x (scalar, longitudinal to the cable) and time t in response to input currents:

Cm
@V
@t
¼

1

Rc

@
2V
@x2
�

V
Rm
þ IchanðV; tÞ: ð1Þ

Here, Cm and Rm are the (radial) capacitance and resistance of a myelinated fibre, and Rc is

its axial resistance. The term Ichan represents the ion channel currents triggered at nodes of

Ranvier. The cable Eq (1) can be reformulated into

t
@V
@t
¼ l

2 @
2V
@x2
� V þ RmIchanðtÞ; ð2Þ

by multiplying both sides of (1) with Rm. The time constant τ and the cable constant λ are

parameters determined by the electrophysiological properties of myelin. We choose these

parameters in accordance with experimental results and keep them fixed throughout our anal-

ysis, see the Methods section for details.

The input currents generated by the ion channel dynamics at the nodes of Ranvier is com-

monly described by a Hodgkin-Huxley framework. However, the Hodgkin-Huxley equations

are a challenge to solve analytically, and in order to proceed with our mathematical treatment

we opt for a simplified description using threshold-activated currents with standardised cur-

rent profiles. We analyse different current profiles, ranging from delta-spikes to combinations

of exponentials which give a good approximation of the ion currents observed experimentally.

We solve the cable equation for these currents analytically which yields the dynamics of the

membrane potential describing the resulting depolarisation / hyperpolarisation along the

axon. The linearity of the cable equation in V allows us to describe the response to multiple

input currents by the superposition of solutions for single currents. A sketch of the framework

is shown in Fig 1.

Ion channel dynamics

The classical Hodgkin-Huxley model is described by a set of nonlinear equations which need

to be solved numerically. Over the years, it has seen several modifications and improvements

such as the one by Frankenhaeuser and Huxley [16], or the incorporation of additional ion

currents [41] given the multitude of ion channel types [42, 43]. Also, attempts were made to

provide better fits by modifying the exponents of the gating variables [44]. In essence, it is diffi-

cult to determine what is the ‘right’ Hodgkin-Huxley model for specific neuron types. For this

reason, it seems prudent to go into the opposite direction and to try to simplify the description

of the ion channel dynamics.

Two important contributions into this direction are the one by Fitzhugh [45, 46] and

Nagumo [47], and the one by Morris and Lecar [48]. They provide a framework in which the

slow and the fast variables are lumped and thus yield a two-dimensional reduction of the

Hodgkin-Huxley model. The ion currents here are still voltage-dependent.

A crucial simplification towards analytically treatable models is the separation of sub-

threshold dynamics and spike generation in integrate-and-fire models [49, 50]. For instance,

in the leaky integrate-and-fire model and the quadratic integrate-and-fire model, the time-to-

spike can be computed analytically, given initial conditions and a threshold value for the mem-

brane potential. The ion currents are then often modelled as delta-spikes since the ion dynam-

ics is fast in comparison to the (dendritic and somatic) membrane dynamics. The spatial

extension of the leaky integrate-and-fire model is the spike-diffuse-spike model, in which

activity spreads via passive cables.

Action potential propagation and synchronisation in myelinated axons
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Here, we consider four forms of channel current models. All of these have in common that

the ion current is initiated after the membrane potential has crossed a threshold Vthr, and has a

predetermined profile. We denote the four scenarios by the letters A, B, C, and D. In scenario

A, the ion channel current is released immediately and instantaneously, i.e.

IchanðtÞ ¼ I0dðt � t0Þ: ð3Þ

Here, I0 denotes the overall ion current, t0 denotes the time when the membrane potential

crosses the threshold, and δ(�) is the delta-distribution, or Dirac’s delta. In scenario B, the ion

current is also released instantaneously, but with a delay Δ:

IchanðtÞ ¼ I0dðt � t0 � DÞ; ð4Þ

In scenario C, the ionic current is exponential:

IchanðtÞ ¼ I0e� ðt� t0Þ=tspYðt � t0Þ: ð5Þ

Here, τsp is the decay time, and Θ(�) is the Heaviside step function. With scenario D we aim

to approximate the ion currents as measured in mammals such as the rabbit [51] and in the rat

[52], which can be described by a superposition of exponential currents:

IchanðtÞ ¼ I0

XN

n¼1

An exp ð� ðt � t0Þ=tnÞYðt � t0Þ; ð6Þ

Fig 1. Action potential propagation in a myelinated axon. A: The axon is made of myelinated segments

(internodes), with the nodes of Ranvier forming periodic gaps in the myelin sheath. B: The nodes of Ranvier constitute

active sites at which threshold-triggered ion channel currents are released. C: The currents entering nearby nodes of

Ranvier determine the membrane potential at each node, thus forming an action potential. D The velocity of an action

potential is determined by the distance L between two consecutive nodes, and the time difference tsp it takes to reach a

given threshold value.

https://doi.org/10.1371/journal.pcbi.1007004.g001
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A sketch of all these scenarios is shown in Fig 2, alongside typical depolarisation curves of

the membrane potential.

Current influx and separation

According to Kirchhoff’s first law, the channel current that flows into the axon, Ichan(t) is

counter-balanced by currents flowing axially both ways along the axon, Icable(t), and a radial

current that flows back out across the membrane of the node, Inode, see Fig 3A for a graphical

representation. The ratio of currents that pass along the cable and back across the nodal mem-

brane is determined by the respective resistances:

Icable ¼
Ichan

1þ
Rl

2Rnode

; ð7Þ

with Rλ = Rm/λ. Throughout the manuscript, the ratio between Icable and Ichan is expressed by

β:

b ¼
1

1þ
Rl

2Rnode

: ð8Þ

Based on experimental findings, we assume that the channel density is constant [52], which

implies that the total channel current increases linearly with the node length. This is counter-

balanced by the fact that the inverse of the resistance of a node, R� 1
node, also increases linearly

with its length. At large node lengths, the current that enters the axon saturates, see Fig 3B. We

will examine further below how the node length influences the propagation speed.

Fig 2. Sketch of ion channel currents considered here, with representative profiles of membrane potential in nearby nodes.

After the membrane potential V reaches the threshold value Vthr, the current I is released. A: The instantaneous current is described

by a delta-peak at t0, when the threshold value is reached. B: The simplest way to accommodate delays or refractoriness is to

introduce a refractory period Δ, after which the instantaneous current is released. C: Exponential current with characteristic time

scale τsp. D: A combination of exponential currents describes a realistic current profile.

https://doi.org/10.1371/journal.pcbi.1007004.g002
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Influence of nearby nodes

During the propagation of an action potential, ion channel currents are released at multiple

nearby nodes that affect the shape and amplitude of the action potential. Because of the linear

nature of the cable equation, the effect of multiple input currents can be described by linear

superposition:

Vðx; tÞ ¼
XN

n¼� N

Uðjx � nðLþ lln=lÞj; t � ntspÞ; ð9Þ

where U describes the depolarisation due to the current at a single node with index n. The

internode length L, node length l, cable constant λ and cable constant at a node λn determine

the electrotonic distance between nodes. Node indices n are chosen such that the node with

n = 0 is centred at x = 0. Nodes with negative n are the ones the action potential has travelled

past, and nodes with positive n are the ones the action potential will travel into. Although we

consider infinitely long axons, we cut off the sum at n = −N and n = N for computational feasi-

bility, with N = 103. The action potential is not only shaped by the currents from preceding

nodes, but also by currents from subsequent nodes that travel back along the axon. Due to the

periodic nature of saltatory conduction, the time difference between any two consecutive

nodes is assumed to be the same unknown parameter tsp.
The effect of distant nodes is dampened by the fact that in addition to passing along myelin-

ated segments, currents from distant sources also pass by unmyelinated nodes, and therefore

further lose amplitude. If nodes are relatively short, the current outflux can be regarded as

instantaneous across the node as compared to changes in the current, and the total electrotonic

distance between two consecutive nodes (measured in units of λ) is then given by L + lλ/λn,

which is already included in Eq (9). Here, λn denotes the cable constant at a node. Eq (9)

describes the temporal evolution of an action potential in a specific location x. In Fig 4 we dis-

sect an action potential using scenario D for the ion channel model, by colour-coding the

depolarisation due to individual nodes. It is apparent that the action potential propagation is a

collective process with each node regenerating the action potential by a small fraction.

Velocity of action potentials

We now consider the node at x = 0 (n = 0) to reach the firing threshold Vthr at t = 0. The rela-

tionship between the firing threshold Vthr and the time-to-spike tsp is then given by

Vthr ¼
XN

n¼1

UðnðLþ lln=lÞ; ntspÞ; ð10Þ

Fig 3. Channel currents divide into a current entering the axon and a current flowing back across the node of Ranvier. A:

Sketch of currents entering and leaving a node of Ranvier. B: Plot of currents as function of node length. Since we assume constant

channel density, the channel current increases linearly with the node length.

https://doi.org/10.1371/journal.pcbi.1007004.g003
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where we have changed the sign of the summation index, i.e. −n! n. The choice of x = 0 and

t = 0 is without loss of generality. Eq (10) is an implicit equation for tsp, which we solve here

numerically using Newton’s method. The velocity of an action potential is then given by the

physical distance between two consecutive nodes, L + l, and tsp:

v ¼
Lþ l
tsp

: ð11Þ

Here we still assume that the activation process at a node is uniform across its entire length.

Since a node represents a short section of unmyelinated axon, we estimate the action potential

velocity within a node by the action potential velocity in an unmyelinated axon, vn (see Meth-

ods section). The resulting velocity then reads

v ¼
Lþ l

L=vþ l=vn
: ð12Þ

We use Eq (12) throughout the manuscript.

Analytical solutions

In mathematical terms, the depolarisation U resulting from the ion channel current at a single

site, is a convolution of the current entering the cable with the Green’s function of the homo-

geneous cable equation G(x, t), which describes the propagation of depolarisation along the

Fig 4. Contribution of ion currents from nearby nodes to action potential profile. A: Sodium currents contributing

to action potential, and B: same for potassium. Depolarising effect is color-coded by node index, larger indices are

lumped. Total effect is indicated by black line. C: Action potential composed of both currents. D: Contribution of

sodium currents to reaching threshold value. Standard parameters are used here (Table 1 in Methods).

https://doi.org/10.1371/journal.pcbi.1007004.g004
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myelinated segment:

Uðx; tÞ ¼ Rm

Z t

0

Icableðt � sÞGðx; sÞds: ð13Þ

Here, x denotes the distance between the site where the current is injected and the site

where the membrane potential is recorded. In the following we present the analytical solutions

for all the current types.

Scenario A—Fast current. Since the fast current is described by a delta function, the con-

volution integral turns into the Green’s function up to a prefactor:

Uðx; tÞ ¼
ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffi
4pt
p exp �

x2t

4l
2t
�

t
t

� �

: ð14Þ

Here, I0 = 6.6pA/μm2 is the amplitude of the input current, Rλ = Rm/λ, and β is the ratio

between the current entering the cable and the channel current, as given by Eq (8).I0 is chosen

such that the amplitude of an action potential is approximately 100mV, with all the other

parameters chosen as for scenario D with standard parameters, see Methods section.

Inserting Eq (14) into Eq (9), we obtain the spatio-temporal evolution of an action potential

for this scenario:

Vðx; tÞ ¼
XN

n¼� N

ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðt � ntspÞ

q exp �
ðx � nðLþ lln=lÞÞ

2
t

4l
2
ðt � ntspÞ

�
t � ntsp
t

 !

Yðt � ntspÞ; ð15Þ

with Θ being the Heaviside step function to ensure causality. The threshold condition (Eq 10)

then reads

Vthr ¼
XN

n¼1

ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffiffiffiffiffiffi
4pntsp

p exp �
nðLþ lln=lÞ

2
t

4l
2tsp

�
ntsp
t

 !

: ð16Þ

Although this is the simplest scenario, it is not obvious how to invert the r.h.s. of Eq (16) to

obtain an explicit expression for tsp. In the Methods section we present a linearisation

approach, but it is convenient to solve Eq (16) numerically using Newton’s method.

Scenario B—Delayed fast current. The membrane dynamics in scenario B is exactly the

same as in scenario A, except for an additional offset Δ:

Uðx; tÞ ¼
ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðt � DÞ

p exp �
x2t

4l
2
ðt � DÞ

�
t � D
t

� �

Yðt � DÞ: ð17Þ

The spatio-temporal evolution of an action potential is now given by

Vðx; tÞ ¼

XN

n¼� N

ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðt � ntsp � DÞ

q exp �
ðx � nðLþ lln=lÞÞ

2
t

4l
2
ðt � ntsp � DÞ

�
t � ntsp � D

t

 !

Yðt � ntsp � DÞ;
ð18Þ

and the threshold condition reads

Vthr ¼
XN

n¼1

ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðntsp � DÞ

q exp �
n2ðLþ lln=lÞ

2
t

4l
2
ðntsp � DÞ

�
ntsp � D

t

 !

Yðntsp � DÞ: ð19Þ

Because multiple nodes contribute to the depolarisation, it is possible to find tsp< Δ.
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Scenario C—Exponential current. Here we have to solve the convolution integral of the

cable equation with an exponential function, which yields

Uðx; tÞ ¼ e� t=tc
RlbI0

ffiffiffiffiffi
tt̂
p

2t
I exp i

x
ffiffiffi
t
p

l
ffiffiffi
t̂
p

� �

erf
x
ffiffiffi
t
p

2l
ffiffi
t
p þ i

ffiffiffi
t
t̂

r !

� 1

 !" #

; ð20Þ

with t̂ ¼ ðt� 1 � t� 1
c Þ
� 1

, I representing the imaginary part of the argument, and erf being the

error function. In the Methods section we show how to obtain this solution. Eq (20) thus rep-

resents solutions for ion currents with instantaneous onset and exponential decay. Hence, the

spatio-temporal evolution of an action potential is expressed by

Vðx; tÞ ¼
XN

n¼� N

e� ðt� ntspÞ=tc
RlbI0

ffiffiffiffiffi
tt̂
p

2t
I exp i

ðx � nðLþ lln=lÞÞ
ffiffiffi
t
p

l
ffiffiffi
t̂
p

� ��

erf
ðx � nðLþ lln=lÞÞ

ffiffiffi
t
p

2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � ntsp

p þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � ntsp
t̂

r !

� 1

 !#

Yðt � ntspÞ;

ð21Þ

and the threshold condition to determine tsp is

Vthr ¼
XN

n¼1

e� ntsp=tc
RlbI0

ffiffiffiffiffi
tt̂
p

2t
I exp i

nðLþ lln=lÞ
ffiffiffi
t
p

l
ffiffiffi
t̂
p

� ��

erf
nðLþ lln=lÞ

ffiffiffi
t
p

2l
ffiffiffiffiffiffiffi
ntsp

p þ i
ffiffiffiffiffiffiffi
ntsp
t̂

r !

� 1

 !#

:

ð22Þ

Scenario D—Combination of exponentials. The linearity of the cable equation allows us

to recur to the solution for scenario C to describe the response to currents described by multi-

ple exponentials. Denoting the solution for one exponential input current with time constant

τs by

�ðx; t; tsÞ ¼ e� t=ts
RlbI0

2t

ffiffiffiffiffi
tt̂
p

I exp i
x
ffiffiffi
t
p

l
ffiffiffi
t̂
p

� �

erf
x
ffiffiffi
t
p

2l
ffiffi
t
p þ i

ffiffiffi
t
t̂

r !

� 1

 !" #

; ð23Þ

we express the solution to M superimposed exponential currents by

Uðx; tÞ ¼
XM

s¼1

As�ðx; t; tsÞ: ð24Þ

We use this formulation to describe both sodium currents and potassium currents with ris-

ing and falling phase. The sodium current is expressed as follows:

Ichan;Na ¼ I0;NaC� 1
Na;gð1 � exp ð� t=tmÞÞ

g exp ð� t=thÞ: ð25Þ

For simplicity, we focus on the case γ = 1, i.e. the biexponential case. Increasing γ would

result in increased initial delays, and therefore lower propagation velocities. The parameter

γ also affects the normalisation constant CNa,γ, which ensures that the maximum of Ichan,Na is
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I0,Na. The potassium current is modeled as

Ichan;K ¼ I0;KC� 1
K ð1 � exp ð� t=tnÞÞ

4 exp ð� t=tkÞ; ð26Þ

throughout the manuscript. In the Methods section we describe how to compute the normali-

sation constants CNa,γ and CK, and how to convert Eqs (25) and (26) into a sum of exponen-

tials. Hence, the spatio-temporal evolution of an action potential is expressed by

Vðx; tÞ ¼ C
XM

s¼1

As

XN

n¼� N

e� ðt� ntspÞ=ts
RlbI0

ffiffiffiffiffi
tt̂
p

2t
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ðx � nðLþ lln=lÞÞ
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t
p

l
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t̂
p

� ��

erf
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ffiffiffi
t
p

2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � ntsp

p þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � ntsp
t̂

r !

� 1

 !#

Yðt � ntspÞ;

ð27Þ

with t̂ ¼ ðt� 1 � t� 1
s Þ
� 1

, and C is the problem-specific normalisation constant. The threshold

condition to determine tsp is

Vthr ¼ C
XM

s¼1

As

XN

n¼1

e� ntsp=ts
RlbI0

ffiffiffiffiffi
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p

2t
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 !#

:

ð28Þ

Anticipating results from the next subsection, we found that scenarios A and C yield

velocities that are too fast compared with experimental results. Scenario B allows to adjust the

propagation speed by tuning the parameter Δ, yet the shape of the action potential is only

determined by the parameters from the cable equation, and thus cannot be adjusted to match

experimental results. As it is the most realistic and most flexible model for ion channel cur-

rents, we decided to select scenario D to study the sensitivity of the propagation speed to struc-

tural parameters.

Sensitivity to parameters

Axon diameter. There is a wide consensus that the propagation velocity in myelinated

axons is proportional to the axon diameter. This is mostly due to the fact that both the inter-

node length as well as the electrotonic length constant increase with the diameter. One quan-

tity that does not scale linearly with the axonal diameter is the node length, which determines

the amount of current that flows into the axon, as well as setting a correction term for the phys-

ical and electrotonic distance between two nodes. We find that the latter introduces a slight

nonlinearity at small diameters, although at larger diameters the linear relationship is well pre-

served, see Fig 5A.

In Fig 5A we compare the four ion channel scenarios with experimental results obtained by

Boyd and Kalu [53]. Scenario A (instantaneous ion channel current) yields velocities that are

about one order of magnitude larger than the experimental results. This suggests that the main

bottleneck for faster action potential propagation is indeed ion channel dynamics and their

associated delays. Introducing a hard delay with scenario B, we find that we can reproduce the

experimentally observed range of velocities. With scenarios C and D we introduce temporally

distributed ion channel dynamics. The instantaneous onset and exponential decay of scenario

C yields velocities that are slightly faster than experimental results.

In scenario D we explore two sets of parameters. The first set of parameters is obtained by

using electrophysiological parameters found in the literature. As it is not obvious how to

Action potential propagation and synchronisation in myelinated axons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007004 October 17, 2019 11 / 33

https://doi.org/10.1371/journal.pcbi.1007004


choose the time constants governing the temporal profile of the ion channel currents, we

decided to choose them such that the shape of action potentials of our spike-diffuse-spike

model match the shape of action potentials of the biophysical model used by Arancibia-Car-

camo et al. [24]. The velocities obtained with this set of parameters fall within the range of

experimental results. The second set of parameters is obtained by fitting the model parameters

to data generated by the same biophysical model (see Methods). The latter yields velocities

slightly below the experimental range, but it matches well the results from the biophysical

model.

The present framework also enables us to study unmyelinated axons, in which case the cur-

rent influx must be adapted, in addition to the physical and electrotonic distance between two

neighbouring nodes, which is l and l/λn, respectively. Since λn is proportional to
ffiffiffi
d
p

, the result-

ing velocity is also to be expected to scale with
ffiffiffi
d
p

, see Fig 5B. Making the assumption that

the membrane conductivity scales linearly with the ion channel density ρ (ρ is measured rela-

tive to the ion channel density of a node), the time constant of the unmyelinated axon scales

with τ = τn/ρ, and the cable constant scales with l ¼ ln=
ffiffiffi
r
p

. We study different ion channel

densities, beginning with the same density as in nodes in the myelinated axon, and then reduc-

ing the density to 10% and 2% of the original density. We find that reducing the ion channel

density also decreases the propagation velocity. For ρ = 1 we find that the propagation velocity

is considerably faster than in myelinated axons at small diameters.

Node and internode length. Two geometric parameters that are not readily accessible to

non-invasive MRI techniques are the length of the nodes of Ranvier, and the length of inter-

nodes. Here we examine the effect of the node and internode length on the speed of action

potentials. We assume that the channel density in a node is constant, which is in agreement

with experimental results [52]. The channel current that enters the node is proportional to its

length, yet the increase of the node length also means that more of this current flows back

across the node rather than entering the internodes. Another effect of the node length is the

additional drop-off of the amplitude of axonal currents. Node lengths are known to vary

between 1μm and 3μm [24].

Fig 5. Propagation velocity as function of fibre diameter and axon diameter. A: In myelinated axons, the

relationship between velocity and fibre diameter is nearly linear, with a slightly supralinear relationship at small

diameters. Here we compare the different scenarios with experimental results (grey-shaded area).B: In unmyelinated

axons, the propagation speed increases approximately with the square root of the axon diameter. Here, ρ indicates the

relative ion channel density compared with a node of Ranvier. Decreasing the ion channel density results in slower

action potential propagation.

https://doi.org/10.1371/journal.pcbi.1007004.g005
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The length of internodes is known to increase with the fibre diameter [21, 22]. This increase

can be understood in light of the fact that the cable constant λ is proportional to the fibre

diameter, and therefore increasing the internode length ensures that the ratio L/λ remains at a

suitable point for signal transmission.

We restrict the analysis to the activation by sodium currents, since potassium currents are

slow and only play a minor role in the initial depolarisation to threshold value. The results are

shown graphically for scenario D with standard parameters in Fig 6A, and for parameters fit-

ted to the biophysical model by Arancibia-Carcamo et al. [24] in Fig 6B. Changing the thresh-

old value did have a small effect on the maximum velocity, but did not change the relative

dependence on the other parameters.

We find that the propagation velocity varies relatively little with changes in the nodal and

internodal length. For scenario D with standard parameters, we find that velocities across the

investigated range of parameters are above 70% of the maximum, and for the parameters fitted

to the biophysical model the sensitivity is even less. Interestingly, we find that decreasing node

length and internode length simultaneously, the velocity increases steadily.

In Fig 6C and 6D we show cross-sections of Fig 6B, and compare these results with the

numerical results from the the cortex model used in [24]. There is a good agreement between

our model and the biophysical model, with the biggest discrepancies occuring at short node

and internode lengths. We assume that these discrepancies arise due to the fact that the bio-

physical model only uses 50 nodes, whereas we consider N = 1000 nodes to determine the

Fig 6. Velocity dependence on node length and internode length. A: Propagation velocity plotted against node

length and internode length. Contours indicate percentages of maximum velocity. (Scenario D with standard

parameters.) B: Same as A, with fitted parameters.C: Propagation velocity as function of internode length (scenario D

with fitted parameters), and comparison with numerical results from biophysical model.D: Propagation velocity as

function of node length, and comparison with the model by Arancibia-Carcamo et al. [24].

https://doi.org/10.1371/journal.pcbi.1007004.g006
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velocity. In the Methods section, we show that reducing the number of nodes significantly

alters the results at short node and internode lengths (Fig 13 in Methods section).

Myelin thickness. The relative thickness of the myelin layer is given by the g-ratio, which

is defined as the ratio of inner to outer radius. Hence, a smaller g-ratio indicates a relatively

thicker layer of myelin around the axon. In humans, the g-ratio is typically 0.6–0.7, although it

is also known to correlate with the axon diameter [54]. In our mathematical framework, the g-

ratio affects the electrotonic length constant λ of the internodes, which scales with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1=gÞ

p
.

A classical assumption is that the propagation velocity scales in the same manner [1]. Our

results suggest (see Fig 7A) that the velocity depends more strongly on the g-ratio. We there-

fore generalised this relationship to v = κ(ln(1/g))α, and find (fitting both κ and α) our results

best match α = 0.68 (scenario D with fitted parameters). However, the fitted coefficient α also

depends on the ratio of internode length and node length, L/l. We find that α increases mono-

tonically with this ratio (see Fig 7B), and approaches zero when L/l approaches zero. The latter

represents the case of an unmyelinated axon.

In Fig 8 we present two-parameter plots of the velocity as function of the g-ratio and axon

diameter (Fig 8A), and g-ratio and fibre diameter (Fig 8B). If the axon diameter is held con-

stant, the velocity increases monotonously with decreasing g-ratio. However, if the fibre diam-

eter is held constant, then the velocity saturates at around g = 0.5, because decreasing g at

constant fibre diameter means decreasing the axon diameter.

Ephaptic coupling and entrainment

We demonstrate here that it is possible to study the effects of ephaptic coupling on action

potential propagation within our framework. We choose two axonal fibres as a simple test

case, but more complicated scenarios could also be considered using our analytical approach.

Ephaptic coupling occurs due to the resistance and finite size of the extra-cellular space. We

follow Reutskiy et al. [31] in considering the axonal fibres to be embedded in a finite sized

extra-cellular medium (the space between the axons within an axonal fibre bundle). The result-

ing cable equation for the nth axon reads

Cm
@ðVn � VeÞ

@t
¼

1

Rax;n

@
2Vn

@x2
�
ðVn � VeÞ

Rm
þ Ichann ðtÞ; ð29Þ

Fig 7. Relative propagation velocity as function of g-ratio. A: Result of our spike-diffuse-spike model, and v = κ(ln

(1/g))α fitted to this result (first with α = 0.5 fixed, and then with κ and α fitted).B: Fitted α changes with the ratio of

internode length to node length in the spike-diffuse spike model (lines), and in the biophysical model (dots).

Parameters: fitted parameters (see Table 1 in Methods section).

https://doi.org/10.1371/journal.pcbi.1007004.g007

Action potential propagation and synchronisation in myelinated axons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007004 October 17, 2019 14 / 33

https://doi.org/10.1371/journal.pcbi.1007004.g007
https://doi.org/10.1371/journal.pcbi.1007004


with Ve being the potential of the extra-cellular medium. In the Methods section we describe

how to obtain solutions to this set of equations.

We explore solutions to Eq (29) in a number of ways, which are graphically represented in

Fig 9. We focus on sodium currents as described by scenario D with standard parameters.

First, we study how the coupling could lead to entrainment, i.e. synchronisation of action

potentials. To this end, we compare the time courses of V1(t) and V2(t) in a pair of axons,

where an action potential is emitted in the first axon at t = 0, and in the second axon at t = Δt.
We then compare the tsp in the neighbouring nodes, and find that for any low threshold values

Vthr the difference between the tsp is less than Δt, meaning the two action potentials are re-syn-

chronising, see Fig 9A. Next, we asked how the coupling affects the speed of two entrained

action potentials. Now we set Δt = 0, in which case V1(t) = V2(t). We compare the depolarisa-

tion curves of the simultanously active axons with when only one axon is active, and find that

the voltages rise more slowly if two action potentials are present, thus increasing tsp and

decreasing the speed of the two action potentials, see Fig 9B. Thirdly, we considered the case

when there is an action potential only in one axon, and computed the voltage in the second,

passive axon. We find that the neighbouring axon undergoes a brief spell of hyperpolarisation,

with a half-width shorter than that of the action potential. This hyperpolarisation explains why

synchronous or near-synchronous pairs of action potentials travel at considerably smaller

velocities than single action potentials. The hyperpolarisation is followed by weaker

depolarisation.

Fig 8. Effect of diameter and g-ratio on propagation velocity. A: Velocity plotted against g-ratio and axon diameter.

B: Velocity plotted against g-ratio and fibre diameter.

https://doi.org/10.1371/journal.pcbi.1007004.g008

Fig 9. Ephaptic coupling reduces AP speed and leads to AP synchronisation. A: Depolarisation curves for a pair of action

potentials with initial offset of 0.02ms converge, reducing the time difference between action potentials. B: Depolarisation of a

synchronous pair of action potentials is slower than for a single action potential. C: An action potential induces initial

hyperpolarisation and subsequent depolarisation in an inactive neighbouring axon. Parameters: standard parameters, R� 1
ex ¼ 0.

https://doi.org/10.1371/journal.pcbi.1007004.g009
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Discussion

We have developed an analytic framework for the investigation of action potential propagation

based on simplified ion currents. Instead of modelling the detailed dynamics of the ion chan-

nels and its resulting transmembrane currents, we have adopted a simpler notion by which a

threshold value defines the critical voltage for the ion current release. Below that threshold

value the membrane dynamics is passive, and once the threshold value is reached the ion cur-

rent is released in a prescribed fashion regardless of the exact time-dependence of the voltage

before or after. We studied four different scenarios, of which the simplest was described by a

delta-function representing immediate and instantaneous current release. The three other sce-

narios incorporated delays in different ways, from a shift of the delta function to exponential

currents and, lastly, combinations thereof. The latter seemed most appropriate considering

experimental results.

The simplified description of the ion currents permitted the use of analytical methods to

derive an implicit relationship between model parameters and the time the ion current would

depolarise a neighbouring node up to threshold value. This involved the solution of the convo-

lution integral of the ion current with the Green’s function of the passive cable equation. From

the length of nodes and internodes and the time to threshold value between two consecutive

nodes (tsp) resulted the velocity of the action potential.

We only obtained an implicit relationship between the threshold value Vthr and the parame-

ter tsp, which needed to be solved for tsp using root-finding procedures. However, in compari-

son to full numerical simulations, our scheme still confers a computational advantage, as the

computation time is about three orders of magnitude faster than in the biophysical model by

Arancibia-Carcamo et al. [24]. In the Methods section we have shown that one can achieve a

good approximation by linearising the rising phase of the depolarisation curve. We did not

explore this linearisation further, but in future work it might serve as a simple return-map

scheme for action potential propagation, in which parameter heterogeneities along the axon

could be explored.

We used our scheme to study the shape of action potentials, and we found that the ion cur-

rents released at multiple nearby nodes contribute to the shape and amplitude of an action

potential. This demonstrates that action potential propagation is a collective process, during

which individual nodes replenish the current amplitude without being critical to the success or

failure of action potential propagation. Specifically, the rising phase of an action potential is

mostly determined by input currents released at backward nodes, whereas the falling phase is

determined more prominently by forward nodes (cf. Fig 4).

Our scheme allowed us to perform a detailed analysis of the parameter dependence of the

propagation velocity. We recovered previous results for the velocity dependence on the axon

diameter, which were an approximately linear relationship with the diameter in myelinated

axons, and a square root relationship in unmyelinated axons. Although the node and inter-

node length are not accessible to non-invasive imaging methods, we found it pertinent since a

previous study [24] looked into this using numerical simulations. Our scheme confirms their

results qualitatively and quantitatively, and by performing a more detailed screening of the

node length and the internode length revealed that for a wide range the propagation velocity is

relatively insensitive to parameter variations.

We also studied the effect of the g-ratio on the propagation velocity, which was stronger

than previously reported, as we find that the velocity is proportional to (ln(−g))α with α� 0.7,

whereas the classical assumption was α = 0.5 [1]. Furthermore, we found that α depends on

the ratio between node length and internode length, which to the best of our knowledge has
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not been reported before. Intuitively, changing the thickness of the myelin sheath of relatively

short internodes has a smaller effect than changing the myelin thickness around long inter-

nodes (relative to the node length).

The main results of our spike-diffuse-spike model were compared with the biophysically

detailed model recently presented by Arancibia-Carcamo et al. [24]. The latter uses the

Hodgkin-Huxley framework and models the myelin sheath in detail, including periaxonal

space and individual myelin layers. To enable the comparison between the two models, we

fitted parameters of our spike-diffuse-spike model to output of the biophysical model. In

spite of the differences in the model setup, we find that the results of the two models agree

well.

The framework developed here also allowed us to study the effect of ephaptic coupling

between axons on action potential propagation. We found that the coupling leads to the con-

vergence between sufficiently close action potentials, also known as entrainment. It has been

hypothesised that the functional role of entrainment is to re-synchronise spikes of source

neurons. We also found that ephaptic coupling leads to a decrease in the wave speed of two

synchronous action potentials. Since the likelihood of two or more action potentials to syn-

chronise in a fibre bundle increases with the firing rate, we hypothesise that a potential effect

could be that delays between neuronal populations increase with their firing rate, and thereby

enable them to actively modulate delays. In addition, we examined the temporal voltage profile

in a passive axon coupled to an axon transmitting an action potential, which led to a brief spell

of hyperpolarisation in the passive axon, and subsequent depolarisation. This prompts the

question whether this may modulate delays in tightly packed axon bundles without necessarily

synchronising action potentials. The three phenomena we report here were all observed by

Katz and Schmitt [55] in pairs of unmyelinated axons. Our results predict that the same phe-

nomena occur in pairs (or bundles) of myelinated axons.

There are certain limitations to the framework presented here. First of all, we calibrated

the ion currents with data found in the literature. This ignores detailed ion channel dynamics,

and it is an open problem how to best match ion currents produced by voltage-gated dynam-

ics with the phenomenological ion currents used in this study. Secondly, we assumed that the

axon is periodically myelinated, with constant g-ratio and diameter along the entire axon.

The periodicity ensured that the velocity of an action potential can be readily inferred from

the time lag between two consecutive nodes. In an aperiodic medium, the threshold times

need to be determined for each node separately, resulting in a framework that is computa-

tionally more involved. Here it might prove suitable to exploit the linearised expressions for

the membrane potential to achieve a good trade-off between accuracy and computational

effort. Heterogeneities in the g-ratio or the axon diameter would be harder to resolve, as the

corresponding cable equation and its Green’s function would contain space-dependent

parameters. If individual internodes are homogeneous, then one could probably resort to

methods used in [36] to deal with (partially) demyelinated internodes. Thirdly, we studied

ephaptic coupling between two identical fibres as a test case. Our framework is capable of

dealing with axons of different size too, as well as large numbers of axons. In larger axon bun-

dles, however, it might be necessary to compute the ephaptic coupling from the local field

potentials, as the lateral distance between axons may no longer allow for the distance-inde-

pendent coupling we used here. Nevertheless, it would be interesting to extend our frame-

work to realistic axon bundle morphologies, and test if the predictions we make here, i.e.

synchronisation of action potentials and concurrent increase in axonal delay, still hold. If yes,

then there may also be the possibility that delays are modulated by the firing rates of neuronal

populations.
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Methods

The cable equation

To model action potential propagation along myelinated axons, we consider a hybrid system

of active elements coupled by an infinitely long passive cable. The latter represents the myelin-

ated axon and is appropriately described by the cable equation, whereas the active elements

represent the nodes of Ranvier whose dynamics are governed by parametrically reduced,

phenomenological dynamics.

In general, a myelinated axon can be described by the following cable equation:

Cm
@V
@t
¼

1

Rc

@
2V
@x2
�

V
Rm
þ IchanðV; tÞ; ð30Þ

where V(x, t) is the trans-membrane potential, Ichan(V, t) represents the ionic currents due to

the opening of ion channels, and x represents the spatial coordinate longitudinal to the cable.

Cm and Rm are the capacitance and resistance of myelinated segments of the cable. Multiplying

both sides of (30) with Rm yields

t
@V
@t
¼ l

2 @
2V
@x2
� V þ RmIchanðtÞ; ð31Þ

where τ = CmRm and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Rm=Rc

p
are the time constant and cable constant pertaining to the

internodes. All model parameters are listed in Table 1.

Table 1. List of model parameters used in this manuscript.

Parameter standard values fitted values (AC model)

Cm 3.6/ln(1/g)pFcm−1 N.A.

Rm 130MOcm ln(1/g) 130MOcm ln(1/g)

Rc 140Ocm/d2 N.A.

τ 0.47ms 1.45ms
τn 33μs 20μs
λ 9:65� 102d

ffiffiffiffiffiffiffiffiffiffiffi
ln g � 1

p
12� 102d

ffiffiffiffiffiffiffiffiffiffiffi
ln g � 1

p

λn 38:9
ffiffiffiffiffiffiffiffiffiffiffiffi
d=mm

p
mm 48:1

ffiffiffiffiffiffiffiffiffiffiffiffi
d=mm

p
mm

d 1μm 0.73μm
g 0.6 0.81

l 1μm 1μm
L 100d 100d
τm 20μs 70μs
τh 40μs 160μs
τn 150μs 150μs
τk 300μs 300μs
I0 50pA/μm2 200pA/μm2

Vthr 15mV 4mV

Unless explicitly stated, we use the parameters presented in this list. For most figures we use the standard parameters,

and where stated we use parameters fitted to the Arancibia-Carcamo cortex model. The fitting procedure is described

in the subsection ‘Fitting parameters to biophysical model’.

https://doi.org/10.1371/journal.pcbi.1007004.t001
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Cable parameters. The capacitance of a cylindrical capacitor (such as a myelin sheath, or

the insulating part of a coaxial cable) can be found by considering the following relationship,

Cm ¼
2p�

ln ð1=gÞ
; ð32Þ

with g being the g-ratio, i.e. the ratio between axon diameter and fibre diameter. The parame-

ter � denotes the permittivity of the medium. The radial resistance of the cylinder is given by:

Rm ¼
r

2p
ln

1

g
: ð33Þ

The parameter ρ describes the resistivity of the cylindrical medium.

Experimental values for the capacitance and radial resistance of a myelinated axon are

reported in Goldman and Albus [20],

Cm ¼ k1 ln � 1
1

g
; Rm ¼ k2 ln

1

g
; ð34Þ

with (taking values from [56] and assuming g = 0.8 in the frog)

k1 ¼ 3:6pFcm� 1; k2 ¼ 130MOcm: ð35Þ

The values for k1 and k2 correspond to the following values for permittivity and resistivity:

� ¼ 5:7� 10� 11sO� 1m� 1; r ¼ 8:16� 106Om: ð36Þ

Finally, the axial resistance per unit length along the inner medium of the cylinder is given

by

Rc ¼
4rax

pd2
; ð37Þ

where ρax = 110Ocm [20] is the resistivity of the inner-axonal medium, and πd2/4 its cross-sec-

tional area.

With these constants at hand, we can now define the parameters of Eq (31):

l � 9:65� 102d
ffiffiffiffiffiffiffiffiffiffiffiffi
ln g � 1

p
; t ¼ 0:47ms: ð38Þ

We treat the axonal diameter d and the g-ratio g as free parameters, and ρax, k1 and k2 are

treated as constants.

Analytical solution. The inhomogenenous cable equation can be written in compact

form:

t _V ¼ l
2V@ � V þ I; ð39Þ

with _V indicating the time derivative of V, and V@ indicating the second spatial derivative of

V. Fourier transformation in x yields an ordinary differential equation of the form,

t
_~V ¼ � ðl

2k2 þ 1Þ~V þ ~I ; ð40Þ

where ~ indicates the Fourier transformed quantity. The homogeneous part of Eq (40) has the

solution

~V ¼ C exp ð� ðl2k2 þ 1Þt=tÞ: ð41Þ
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The inhomogeneous solution in t can be found by the method of variation of the constant,

which yields the following convolution integral in t:

~V ¼
Z t

0

1

t
exp ð� ðl2k2 þ 1Þðt � sÞ=tÞ~Iðk; sÞds: ð42Þ

The inverse Fourier transform of Eq (42) then yields the following double convolution inte-

gral in x and t:

Vðx; tÞ ¼
1
ffiffiffiffiffiffiffiffi
2pt
p

Z t

0

Z 1

� 1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l
2
ðt � sÞ

q exp �
ðx � yÞ2t
4l

2
ðt � sÞ

�
t � s
t

� �

Iðy; sÞdyds: ð43Þ

Since we assume the nodes of Ranvier to be discrete sites described by delta functions in x,

this integral becomes ultimately a convolution integral in time only.

Thus, we can identify the Green’s function of the cable Eq (1) as

Gðx; tÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl

2
tt

p exp �
x2t

4l
2t
�

t
t

� �

: ð44Þ

This is Green’s function representing the time evolution of the voltage in a cable due to an

instantaneous, normalised input current at distance x at time t = 0. A graphical representation

of G(x, t) is given in Fig 10A for various values of x.

We note here that the Green’s function contains two time scales. The first is the characteris-

tic time scale of the cable, τ, which indicates the voltage decay across the myelin sheeth. The

second time constant is x2τ/4λ2, which is the time it takes exp(−x2τ/4λ2t) to reach 1/e� 0.37.

This time depends on all cable parameters, and if x/λ< 1 it is significantly faster than τ.

Hence, if t� τ, the cable equation can be approximated by

Gðx; tÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl

2
tt

p exp �
x2t

4l
2t

� �

; ð45Þ

or, conversely, in the limit t� τ, it can be approximated by

Gðx; tÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl

2
tt

p exp �
t
t

� �

: ð46Þ

See Fig 10B for a comparison.

Fig 10. Green’s function of the cable equation. A: Green’s function for various distances x. B: Green’s function for

x = 1mm, showing the slow (dotted) and fast (dash-dotted) approximation.

https://doi.org/10.1371/journal.pcbi.1007004.g010
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Nodal properties

Like the myelinated parts of the axon, the Ranvier nodes are characterised by their electrophys-

iological properties through the membrane resistance and membrane capacitance, denoted by

Rn and Cn, which result in a characteristic length scale λn and a characteristic time scale τn. We

use the following values for Rn [20] and Cn [57]:

Rn ¼ 33Ocm2; Cn ¼ 1mFcm� 2; ð47Þ

where Rn ¼ g � 1
L , i.e. the inverse leak conductance. With τn = CnRn we obtain a characteristic

time of τn = 33μs. This value is striking, since typical time constants for neurons at dendrites

and the soma range from 10ms to 100ms. This can be explained by the higher density of

sodium channels at the nodes of Ranvier than at the soma. As reported in [58], there are

approximately 1200 channels per μm2 at nodal segments, and only about 2.6 channels per μm2

at the soma. Thus, the ratio of ion channel densities between node and soma is nearly 500. We

assume here that the conductance scales linearly with the channel density, which is supported

by the fact that the membrane resistance is approximately 10kOcm2 at the soma.

Current influx and separation. The channel current that flows into the axon, Ichan(t) is

counter-balanced by currents flowing axially both ways along the axon, Icable(t), and a radial

current that flows back out across the membrane of the node, Inode:

IchanðtÞ ¼ InodeðtÞ þ IcableðtÞ: ð48Þ

The ratio of currents that pass along the cable and back across the nodal membrane is deter-

mined by the respective resistances:

RnodeInode ¼
Rl

2
Icable; ð49Þ

where Rλ is the longitudinal resistance of the axon, defined by Rλ = Rm/λ. This relationship

yields

Icable ¼
Ichan

1þ
Rl

2Rnode

: ð50Þ

Hence, with the maximum amplitude of the channel current being I0, the maximum ampli-

tude of current entering the cable is βI0, where we abbreviate

b ¼
1

1þ
Rl

2Rnode

: ð51Þ

Approximations and analytical solutions

It is, in general, not possible to find closed-form solutions to the Hodgkin-Huxley model due

to the nonlinear dependence of the gating variables on the voltage. We therefore focus here on

idealisations of the currents generated by the ion channel dynamics, which is described by a

function Ichan(t).
In mathematical terms, the depolarisation of the neighbouring node is a convolution of the

current entering the cable with the solution of the homogeneous cable equation G(x, t), which
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describes the propagation of depolarisation along the myelinated axon:

Vcableðx; tÞ ¼ Rm

Z t

0

Icableðt � sÞGðx; sÞds: ð52Þ

In the following we present the mathematical treatment for the scenarios introduced in the

Results section, and we focus here on an input current at a single site.

Scenario A—Fast current. The (in mathematical terms) simplest scenario is the one in

which the ion current is described by the Dirac delta function:

IchanðtÞ ¼ I0dðt � t0Þ: ð53Þ

Without loss of generality we set the time of the current, t0, to zero. The depolarisation

along the cable, and specifically at the neighbouring node at distance x is then given by the

Green’s function of the cable equation itself:

Vðx; tÞ ¼
ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffi
4pt
p exp �

x2t

4l
2t
�

t
t

� �

: ð54Þ

If only one current is injected into the cable, the time tsp when the threshold value Vthr is

reached is given implicitly by

Vthr ¼

ffiffiffi
t
p

RlbI0ffiffiffiffiffiffiffiffiffiffi
4ptsp

p exp �
x2t

4l
2tsp
�

tsp
t

 !

: ð55Þ

Eq 55 yields an implicit relation for tsp and the model parameters. There is no obvious way

of solving 55 for tsp explicitly. One can solve it using Newton’s method, and test various param-

eter dependencies by arc-length continuation. However, we explore here the possibility to

derive an approximate solution for tsp, and consequently for the axonal propagation speed v,

by linearisation of (55).

A suitable pivot for the linearisation is the inflection point on the rising branch, i.e. €V ¼ 0

and _V > 0. This ensures that the linearisation around this point is accurate up to order Oðt2Þ,

and error terms are of order Oðt3Þ and higher. It also provides an unambiguous pivot for the

linearisation. Differentiating (54) twice yields

€V ¼
x4t2

16l
4t4
�

3x2t

4l
2t3
þ

3 � 2x2=l
2

4t2
þ

1

tt
þ

1

t2

� �

V: ð56Þ

We multiply all terms by t4 such that the lowest order term in t is of order zero. Since τ is

much larger than the rise time of the depolarisation, we disregard terms of order Oðt3Þ and

higher. The resulting quadratic equation for the inflection point, ti, yields two positive roots,

the smaller of which is

ti ¼
3x2t

2l
2
ð3 � 2x2=l

2
Þ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
1

9
ð3 � 2x2=l

2
Þ

r !

: ð57Þ

In the limit of x/λ� 1 we can further simplify this expression to give

ti ¼ z
x2t

l
2
; ð58Þ

with z ¼ 1=2 � 1=
ffiffiffi
6
p

. The linear equation for the time-to-spike and the firing threshold is

Action potential propagation and synchronisation in myelinated axons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007004 October 17, 2019 22 / 33

https://doi.org/10.1371/journal.pcbi.1007004


then given by

tsp ¼ ti þ
Vthr � VðtiÞ

_V ðtiÞ
: ð59Þ

The quantities V(ti) and _V ðtiÞ can be approximated to be

VðtiÞ �
RlbI0ffiffiffiffiffiffiffiffi

4pz
p

l

x
exp �

1

4z

� �

; ð60Þ

and

_V ðtiÞ �
2ffiffi
6
p l

2

4z
2x2t

VðtiÞ: ð61Þ

A comparison of the full nonlinear solution with the linear approximation is shown in Fig

11A.

Scenario B—Delayed fast current. Again we consider a fast current, but one which is

emitted with a delay Δ after the membrane potential has reached the threshold value. If we

denote by t0 the time of the threshold crossing, then the ionic current is given by

IchanðtÞ ¼ I0dðt � t0 � DÞ: ð62Þ

However, by simple linear transformation we may also use t0 to denote the time of the

spike. In this case, a spike will be generated after tsp + Δ in the adjacent node, where tsp is the

time to the threshold crossing in the same node, given by Eq (55). The speed of a propagating

action potential is then given by

v ¼
Lþ l
tsp þ D

; ð63Þ

neglecting finite transmission speeds at nodes. In the limit of tsp! 0 we obtain the result

v ¼
Lþ l
D

; ð64Þ

Fig 11. Depolarisation curves and their linear approximation. A: Depolarisation curve for instantaneous input current (scenario

A). B: Depolarisation curve for exponential input current (τs = 100μs).

https://doi.org/10.1371/journal.pcbi.1007004.g011
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which implies that action potentials can never travel faster than (L + l)/Δ. However, if multiple

neighbours are taken into account, the velocity can be faster than this estimate. For example,

in Fig 5A we show results for this scenario with Δ = 30μs. For an axon diameter of d = 1μm

(which corresponds to D� 1.67μm with g = 0.6), we obtain a velocity of about 6m/s, whereas

(L + l)/Δ is approximately 3.3m/s (with L = 100μm).

Scenario C—Exponential current. At this point, we make the assumption that the chan-

nel current rises infinitely fast, and drops off exponentially. In mathematical terms, the cur-

rents generated by an action potential at a particular node have the following form:

IchanðtÞ ¼ I0 exp ð� ðt � t0Þ=tcÞYðt � t0Þ; ð65Þ

where I0 denotes the amount of current generated by the channel dynamics, and t0 denotes the

time the spike is generated. The Heaviside step function Θ ensures that Ichan(t) = 0 for t< t0.

Without loss of generality we set t0 = 0.

The propagated depolarisation is now given by the convolution of the exponential function

with the Green’s function of the cable equation:

Vðx; tÞ ¼ e� t=tcRlbI0

Z t

0

1
ffiffiffiffiffiffiffiffiffi
4pts
p exp �

x2t

4l
2s
þ

s
t̂

� �

ds: ð66Þ

Here we use t̂ � 1 ¼ � t� 1 þ t� 1
c . We now briefly sketch how to solve this integral. Disregard-

ing prefactors, the integral I to be solved here is of the form

I ¼
Z t

0

1
ffiffi
s
p exp �

a
s
þ

s
b

� �
ds: ð67Þ

Using the transform r ¼
ffiffi
s
p

yields

I ¼ 2

Z ffi
t
p

0

exp �
a
r2
þ

r2

b

� �

dr: ð68Þ

In addition, we define a second integral of the form

I2 ¼ 2

Z ffi
t
p

0

1

r2
exp �

a
r2
þ

r2

b

� �

dr: ð69Þ

Next, we apply the transform w� ¼
ffiffiffi
a
p

r � ir=
ffiffiffi
b
p

to these two integrals, which yields

I ¼ 2

Z
ffiffi
a
p

ffi
t
p �i

ffi
t
p

ffiffi
b
p

1

r2

�
ffiffiffi
a
p
� ir2=

ffiffiffi
b
p exp �2i

ffiffiffi
a
b

r� �

exp � w2

�

� �
dw�; ð70Þ

and

I2 ¼ 2

Z
ffiffi
a
p

ffi
t
p �i

ffi
t
p

ffiffi
b
p

1

1

�
ffiffiffi
a
p
� ir2=

ffiffiffi
b
p exp �2i

ffiffiffi
a
b

r� �

exp � w2

�

� �
dw�: ð71Þ

The two integrals can be combined as follows:

�
i
ffiffiffi
b
p I �

ffiffiffi
a
p

I2 ¼ 2

Z
ffiffi
a
p

ffi
t
p �i

ffi
t
p

ffiffi
b
p

1

exp �2i
ffiffiffi
a
b

r� �

exp � w2

�

� �
dw�: ð72Þ
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The integral on the right is straightforward to evaluate:

�
i
ffiffiffi
b
p I �

ffiffiffi
a
p

I2 ¼
ffiffiffi
p
p

exp �2i
ffiffiffi
a
b

r� �

erf
ffiffiffi
a
p

ffiffi
t
p � i

ffiffi
t
p

ffiffiffi
b
p

� �

� 1

� �

: ð73Þ

Eliminating I2 then yields

I ¼
ffiffiffiffiffi
pb
p

I exp 2i
ffiffiffi
a
b

r� �

erf
ffiffiffi
a
p

ffiffi
t
p þ i

ffiffi
t
p

ffiffiffi
b
p

� �

� 1

� �� �

: ð74Þ

Using the appropriate prefactor and the expressions for a and b, we finally obtain

Vðx; tÞ ¼ e� t=tc
RlbI0

ffiffiffi
t̂
p

2
ffiffiffi
t
p I exp i

x
ffiffiffi
t
p

l
ffiffiffi
t̂
p

� �

erf
x
ffiffiffi
t
p

2l
ffiffi
t
p þ i

ffiffiffi
t
t̂

r !

� 1

 !" #

: ð75Þ

Here, I represents the imaginary part of the argument. The complex argument of the error

function arises due to τc< τ, but this equation also holds if τc> τ provided that t̂ is redefined

as t̂ � 1 ¼ t� 1 � t� 1
c .

Once more, we aim to linearise this implicit solution around the inflection point, which in

this scenario is identified as €V ðtiÞ ¼ 0. Differentiating V(t) twice yields

€V ¼
1

t2
c

V � e� t=tc
RlbI0

ffiffiffi
t̂
p

2
ffiffiffi
t
p I P exp i

x
ffiffiffi
t
p

l
ffiffiffi
t̂
p

� �

exp
x
ffiffiffi
t
p

2l
ffiffi
t
p þ i

ffiffiffi
t
t̂

r !2 !" #

; ð76Þ

with

P ¼
x4t2

16l
4t4
�

x2t

2l
2t3
þ

x2t

2l
2
t̂t2
�

x2t

2l
2
tct2
þ

1

t̂2
�

1

tct̂
: ð77Þ

Since the inflection point occurs at small t, the terms in P(t) dominate the curvature of the

rising phase of V(t). Multiplying P with t4 and carrying on terms up to quadratic order then

yields the following equation for ti:

x2t

4l
2
� 2ti þ 2

1

t̂
�

1

tc

� �

t2

i ¼ 0: ð78Þ

For τc< τ, this then leads to

ti ¼
1

2ðt� 1 � 2t� 1
c Þ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
2x2t

l
2

1

t
�

2

tc

� �s !

: ð79Þ

In the limit of τc� τ, this expression reduces to

ti ¼
tc
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4x2t

l
2
tc

s

� 1

 !

: ð80Þ

Conversely, if τc> τ, we find

ti ¼
t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
2x2

l
2

s

� 1

0

@

1

A: ð81Þ
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A comparison of the linear approximation with the full nonlinear problem is shown in

Fig 11B.

Scenario D—Combination of exponentials. Scenario C involved a single exponential

function to describe the time course of the channel currents. We now explore more complex

time-profiles of channel currents, which can be realised by the sum over M exponential time

courses with different amplitudes As and time constants τs:

IchanðtÞ ¼ I0

XM

s¼1

As exp ð� ðt � t0Þ=tsÞ: ð82Þ

In particular, we consider current profiles of the form

IchanðtÞ ¼ I0C� 1ð1 � exp ð� t=t1ÞÞ
g exp ð� t=t2Þ: ð83Þ

The normalising factor C ensures that the maximum value of Ichan(t) is I0, which can be deter-

mined experimentally. For the sodium current, we use the current density iNa = 50pA/μm2, mul-

tiplied by the surface area of the node, throughout the manuscript. This current density yields

an amplitude of approximately 100mV for action potentials with standard parameters, although

it is twice as high as reported in an experimental study [52]. The reason for the experimental val-

ues to be lower might be that for the electrophysiological recordings the axons are severed [59],

and ion channels are likely to reorganise and redistribute under such conditions.

Eq 83 can be recast in the form

IchanðtÞ ¼ I0C� 1
Xg

s¼0

g

s

 !

ð� 1Þ
s exp �

s
t1

þ
1

t2

� �

t
� �

: ð84Þ

The maximum current is reached at

tmax ¼ t1 ln g
t2

t1

þ 1

� �

; ð85Þ

and has the amplitude

IchanðtmaxÞ ¼ I0C� 1 ¼ I0

g
t2
t1

g
t2
t1
þ 1

 !g

1

g
t2
t1
þ 1

 !t1
t2

: ð86Þ

To construct realistic action potentials, we include both sodium and (fast) potassium chan-

nels. The sodium gating dynamics of the original Hodgkin Huxley model are governed by a

term m3h, where m is the activating gating variable, and h is the inactivating gating variable.

Schwarz et al. [60] assume that the dynamics of the resulting ion channel currents can be

approximated by

Ichan;Na ¼ I0;NaC� 1
Na;3ð1 � exp ð� t=tmÞÞ

3 exp ð� t=thÞ; ð87Þ

with CNa,3 being the normalisation constant. Baranauskas and Martina [17] presented data

that best fit the Hodgkin-Huxley model with mh, i.e. a linear relationship with the activating

gating variable m. In this case, the activation current in our framework reads

Ichan;Na ¼ I0;NaC� 1
Na;1ð1 � exp ð� t=tmÞÞ exp ð� t=thÞ; ð88Þ

with CNa,1 being the normalisation constant for γ = 1. The parameters τm and τh represent the

time constants of the activation and inactivation of the sodium ion channels. The time
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constants are voltage-dependent [60], but for simplicity we assume here that they remain con-

stant throughout the formation of the action potential. Throughout this article we use Eq (88)

to describe the sodium channel dynamics. The time constants are chosen such that the result-

ing action potential fits best the numerical results for the cortex model in [24], see Fig 12 for a

graphical comparison.

Likewise, we can define the potassium current as follows:

Ichan;K ¼ I0;KC� 1
K ð1 � exp ð� t=tnÞÞ

4 exp ð� t=tkÞ; ð89Þ

with

CK ¼
4
tk
tn

4
tk
tn
þ 1

 !4

1

4
tk
tn
þ 1

 !tn
tk

: ð90Þ

Here, τn represents the time scale of the activation of the potassium ion channels. Although

there is no inactivating current for potassium in the Hodgkin-Huxley model, we define τk as

characteristic time with which the potassium current decays. The peak current density iK =

3.75pA/μm2 is 7.5% of iNa, a ratio we derive from the sodium and potassium conductances

used for myelinated axons in [61] (�gNa ¼ 1:2S=cm2 and �gK ¼ 0:09S=cm2).

Finally, denoting the solution to an exponential input current with time constant τs by

�ðx; t; tsÞ ¼ e� t=ts
RlbI0

2

ffiffiffiffiffi
tt̂
p

I exp i
x
ffiffiffi
t
p

l
ffiffiffi
t̂
p

� �

erf
x
ffiffiffi
t
p

2l
ffiffi
t
p þ i

ffiffiffi
t
t̂

r !

� 1

 !" #

; ð91Þ

Fig 12. Comparison of action potentials in spike-diffuse-spike model and biophysical model. We chose the time

scales τm = 20μs and τh = 40μs such that the profile, and in particular the rising phase of the action potential in the

spike-diffuse-spike model matches well the action potential of the cortical axon model by Arancibia-Càrcamo et al. [24].

https://doi.org/10.1371/journal.pcbi.1007004.g012
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we express the solution to combinations of exponential currents by

Vðx; tÞ ¼
Xg

s¼0

As�ðx; t; tsÞ; ð92Þ

with

As ¼ C
g

s

 !

ð� 1Þ
s
; ts ¼

s
t1

þ
1

t2

� �� 1

: ð93Þ

Once more we seek to identify the inflection point, i.e. where €V ¼ 0. The different time

scales τs make it difficult to find a closed-form solution, like the ones we found for the previous

scenarios. However, we find that a suitable approximation for the inflection point is

ti ¼ ti;cab þ ti;chan; ð94Þ

where ti,cab is the inflection point of the Green’s function of the cable equation in the limit of

x/λ� 1, and ti,chan is the inflection point of the rising phase of the ion current. ti,cab can be

derived from Eq 57,

ti;cab ¼
ffiffiffi
2
p

xt
4l

; ð95Þ

and ti,chan is found to be

ti;chan ¼ � t1 ln
g

t2
1

þ 2g

t1t2
þ 2

t2
2

2 g

t1
þ 1

t2

� �2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �

4
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2
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þ 1
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� �2
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1
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� �2

v
u
u
u
u
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0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A; ð96Þ

with γ, τ1, and τ2 as in Eq 83.

Influence of distant nodes

Action potentials are driven by the ionic currents generated at multiple nodes along the axon.

Due to the linear nature of the cable equation, the effect of multiple input currents can be

described by linear superposition:

Vðx; tÞ ¼
XN

n¼� N

Uðjx � nLj; t � ntspÞ; ð97Þ

where U is the r.h.s. of the respective scenario considered, i.e. U(x, t) describes the depolarisa-

tion due to the current at a nearby node. To keep with our previous definition, time is defined

by setting t = 0 when the neighbouring node depolarises. The relationship between the firing

threshold Vthr and the time-to-spike tsp is therefore given by

Vthr ¼
XN

n¼1

UðnL; ntspÞ: ð98Þ

The effect of distant nodes is dampened by the fact that in addition to passing along myelin-

ated segments, currents from distant sources also pass by unmyelinated nodes, and thereby

further lose amplitude. Because the distance between two points on the cable is given by L/λ in

the cable equation, the added distance due to a node with finite length is l/λn. Therefore, the

physical distance between two consecutive nodes is L + l, and their electrotonic distance is
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L + (λ/λn)l in units of λ. This leads to the updated equation for the membrane potential, Eq (9)

in the Results section.

As we have shown in Fig 4, the formation of an action potential is a collective process that

incorporates ion channel currents from multiple nearby nodes. Throughout the manuscript

we set N = 103 to ensure all currents are incorporated, although for the standard parameters

N = 20 would produce very similar results. However, as we show in Fig 13, reducing N can

lead to a considerable reduction of the propagation velocity at short internode lengths.

This framework allows us to describe unmyelinated axons as well. Since the internode

length is zero in this case, the node length l is now an arbitrary discretisation of the axon. The

membrane potential is now described by

Vðx; tÞ ¼
XN

n¼� N

Uðjx � nlj; t � ntspÞ; ð99Þ

where the length constant λ in U needs to be replaced by a length constant ~l that characterises

the electrotonic length of the unmyelinated axon. We introduce a parameter ρ that describes

the channel density of the unmyelinated axon relative to the channel density of a node of Ran-

vier. We assume that the conductivity of the axonal membrane scales linearly with the channel

density, which implies that the electrotonic length constant of an unmyelinated axon is

~l ¼ ln=
ffiffiffi
r
p

, and its time constant is ~t ¼ tn=r. The velocity of an action potential is now

defined as v = l/tsp.
In addition to the correction terms introduced in Eq (9), we also investigate delays that

occur at the nodes due to finite transmission speeds. We assume that action potentials travel

with velocities v determined by Eq (9) along myelinated segments, and with velocities vn
inferred from Eq (99) at nodes. The corrected velocity is then given by Eq (12) in the Results

section.

Ephaptic coupling and entrainment

Here we explain how to solve Eq (29) with non-zero extra-cellular potential. The potential

between intra-cellular medium and extra-cellular medium is Pn = Vn − Ve, which determines

the channel dynamics. It follows from the electric decoupling of the fibre bundle from the

external medium that the sum of longitudinal currents within the fibre bundle is zero [31]:

R� 1
ex
@

2Ve

@x2
þ
X

n

R� 1

ax;n
@

2Vn

@x2
¼ 0: ð100Þ

Fig 13. Effect of number of nearest nodes on velocity. We demonstrate here that considering only a small number of nodes can

lead to considerable discrepancies in the computed velocity at small node and internode lengths. A: N = 1000, as in Fig 6A. B: N = 30.

C: N = 10.

https://doi.org/10.1371/journal.pcbi.1007004.g013
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Rex denotes the axial resistance of the extra-cellular medium, which depends inversely on its

cross-sectional area. As a result, we obtain the cable equation in terms of Pn:

t _Pn þ Pn � l
2

n
@

2Pn

@x2
þ RmI

ion
n ðtÞ þ al

2

n

X

m

R� 1

ax;m
@

2Pm

@x2
¼ 0; ð101Þ

where α is the coupling parameter:

a ¼
1

R� 1
ex þ

P
mR� 1

ax;m

: ð102Þ

This is a general result, but in the following we focus on two fibres.

Since these equations are linear, they can be decoupled (using orthogonalisation) into

t
@~P1;2

@t
¼ ~l2

1;2

@
2 ~P1;2

@x2
� ~P1;2 þ

~I ion
1;2
ðtÞ; ð103Þ

with ~P1;2 ¼ P1 þ c1;2P2, ~I ion
1;2
¼ Iion

1
þ c1;2Iion2

, ~l2
1
¼ l

2

1
þ aR� 1
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2

2
Þ, and
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In the case of identical axons, this expression simplifies to c1,2 = ±1. These equations

can be solved as above, and the solutions of the coupled equations can be recovered using

P2 ¼ ð
~P1 �

~P2Þ=ðc1 � c2Þ and P1 ¼ � ðc2
~P1 � c1

~P2Þ=ðc1 � c2Þ.

In the limit of small extra-cellular volume and/or highly resistive extra-cellular medium

(R� 1
ex ! 0), the coupling parameter is a ¼ 1=

P
mR
� 1
ax;m. We explore this case in the Results

section.

Fitting parameters to biophysical model

In order to compare the spike-diffuse-spike model with the biophysical model presented in

[24], we generate data points using the biophysical model for the parameters reported therein

for the cortex model, and fit our model parameters to these data points. We define a grid of

3 × 3 data points in L − l-space at L = 27μm, L = 82μm and L = 152μm, and l = 0.5μm,

l = 1.5μm and l = 3.5μm. On this grid we determine the action potential velocity of the bio-

physical model, which is treated as data for the fitting procedure. Next, we use the least squares

curve fit as implemented in MATLAB to fit the following eight parameters of the spike-dif-

fuse-spike model to the data: λ, τ, λn, τn, τm, τh, I0, and Vthr. We use this fitting procedure

because there is no direct correspondence between our model and the biophysical model. The

latter implements a Hodgkin-Huxley formalism, as well as a detailed model of the myelin

sheath that models each membrane individually and includes periaxonal space. We used the

code made available on github by the authors of [24].
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