
  221
2019

Berichte zur Erdsystemforschung
Reports on Earth System Science

Internal variability in
summertime heat extremes

under global warming

Laura Suárez Gutiérrez
Hamburg 2019



Hinweis

Die Berichte zur Erdsystemforschung werden 
vom Max-Planck-Institut für Meteorologie in 
Hamburg in unregelmäßiger Abfolge heraus-
gegeben.

Sie enthalten wissenschaftliche und technische 
Beiträge, inklusive Dissertationen.

Die Beiträge geben nicht notwendigerweise die 
Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung" führen 
die vorherigen Reihen "Reports" und "Examens-
arbeiten" weiter.

Anschrift / Address

Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Deutschland

Tel./Phone: +49 (0)40 4 11 73 - 0
Fax:  +49 (0)40 4 11 73 - 298

name.surname@mpimet.mpg.de
www.mpimet.mpg.de

Notice

The Reports on Earth System Science are 
published by the Max Planck Institute for 
Meteorology in Hamburg. They appear in 
irregular intervals.

They contain scientific and technical contribu-
tions, including Ph. D. theses.

The Reports do not necessarily reflect the 
opinion of the Institute.

The "Reports on Earth System Science" continue 
the former "Reports" and "Examensarbeiten" of 
the Max Planck Institute.

Layout

Bettina Diallo and Norbert P. Noreiks
Communication

Copyright

Photos below: ©MPI-M
Photos on the back from left to right:
Christian Klepp, Jochem Marotzke,
Christian Klepp, Clotilde Dubois,
Christian Klepp, Katsumasa Tanaka



Laura Suárez Gutiérrez
Hamburg 2019

Internal variability in
summertime heat extremes

under global warming



Berichte zur Erdsystemforschung / Max-Planck-Institut für Meteorologie 221
Reports on Earth System Science / Max Planck Institute for Meteorology 2019

ISSN 1614-1199

Laura Suárez Gutiérrez
from León, Spain

Max-Planck-Institut für Meteorologie
The International Max Planck Research School on Earth System Modelling
(IMPRS-ESM)
Bundesstrasse 53
20146 Hamburg

Universität Hamburg
Geowissenschaften
Meteorologisches Institut
Bundesstr. 55
20146 Hamburg

Tag der Disputation:18. Juni 2019

Folgende Gutachter empfehlen die Annahme der Dissertation:
Dr. Wolfgang A. Müller
Prof. Dr. Johanna Baehr

Vorsitzender des Promotionsausschusses: 
Prof. Dr. Dirk Gajewski 

Dekan der MIN-Fakultät:
Prof. Dr. Heinrich Graener



ABSTRACT

In this dissertation, I study how internal climate variability shapes the changing
characteristics of summertime heat extremes both in Europe and globally as the world
warms. A substantial sampling of internal variability is crucial to capture the most ex-
treme events and determine how their magnitude and frequency change in a warming
world, and is hence a vital requirement for this evaluation. To achieve this, I use the
largest existing ensemble of a comprehensive climate model: The Max Planck Institute
Grand Ensemble (MPI-GE). Due to the large ensemble size, MPI-GE is the best tool
available to precisely sample the simulated internal variability in a changing climate.

First, I quantify the contribution of different driving mechanisms to extreme sum-
mertime heat over Europe, and how changes in these contributions cause an increase
of variability of summertime heat in a warmer world. With a multiple regression
approach, that simultaneously considers all relevant sources of variability, I identify
the large-scale atmospheric dynamics as the main driver of heat extremes over Europe;
while the local thermodynamic effect of soil moisture limitation plays a secondary role.
Most heat extremes occur under extreme atmospheric conditions, both in current and
future climates. However, in the regions where variability increases, heat extremes
occur 10-40% less frequently under extreme atmospheric conditions in 21st century,
and 40% more frequently under extreme moisture limitation. An increasing number of
extremes are driven by moisture limitation under warming, and occur even under a
neutral or unfavorable atmospheric state, confirming that the increase in European
heat extremes and associated variability increase are dominated by the the thermody-
namic effect of moisture limitation.

Second, I evaluate to what extent the increase in extreme European summer heat
can be controlled by maintaining global warming below the limits in the UNFCCC
Paris Agreement. Due to internal climate variability, only 40% of the summer months
over Europe in a 2◦C warmer world would exhibit mean temperatures distinguish-
able from those in a 1.5◦C world. This distinguishability is largest over Southern
Europe, and decreases to around 10% of the summer months over Eastern Europe.
Furthermore, the irreducible uncertainty arising from internal variability narrows the
controllability of extreme maximum temperatures to the point that, by limiting global
warming to 1.5◦C, only the 10% most extreme summer maximum temperatures in a
2◦C world could be averted.

Lastly, I investigate where the major risk hotspots emerge under global warming
for the main factors defining our vulnerability to extreme heat: maximum temper-
atures, return periods of extreme temperatures, maximum temperature variability,
sustained tropical night temperatures, and extreme wet bulb temperatures. My find-
ings indicate that maintaining global warming below 2◦C is vital to minimize the risk
of extreme heat and limit the exposure of non-adapted regions to harmful heat levels.
However, each metric produces different major risk hotspots — from the highest
maximum temperatures over the Arabic Peninsula, to the largest variability increase
over India or Central Europe — highlighting the different potential risks and related
adaptation measures that need to be considered over different regions.
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ZUSAMMENFASSUNG

In dieser Dissertation untersuche ich, wie die interne Klimavariabilität Einfluss
auf die sich ändernden Merkmale extremer Hitzeereignisse in Europa und global bei
steigenden Treibhausgaskonzentrationen nimmt. Eine umfangreiche Stichprobe der
internen Klimavariabilität ist eine unerlässliche Bedingung für die Beschreibung der
Extremereignisse und deren sich veränderter Frequenz und Intensität in einer erwär-
menden Welt. Um dies zu erreichen, verwende ich das größte existierende Ensemble
eines globalen Klimamodells: Das Max-Planck-Institut Grand Ensemble (MPI-GE).
Hinsichtlich der Ensemblegröße ist das MPI-GE derzeit das am besten geeignete Werk-
zeug, um eine repräsentative Stichprobe der simulierten internen Klimavariabilität zu
erhalten.

Zuerst quantifiziere ich die Beiträge unterschiedlicher Antriebsmechanismen für
extreme Hitzeereignisse über Europa und untersuche wie Änderungen der jewei-
ligen Beiträge, bedingt durch eine Klimaerwärmung, sich auf die Variabilität der
Hitzeereignisse auswirken. Mittels einer multiplen Regression, die gleichzeitig alle
relevanten Quellen der Variabilität der Hitzeereignisse berücksichtigt, identifiziere ich
die großskalige, atmosphärische Dynamik als den Hauptantrieb für Hitzeereignisse
über Europa, während die lokalen thermodynamischen Effekte der Bodenfeuchte
von zweiter Ordnung sind. Die meisten Hitzeereignisse werden begünstigt durch
extreme atmosphärische Grundzustände, im gegenwärtigen wie auch im zukünftigen
Klima. In Regionen, in denen die Variabilität von Hitzeereignissen bedingt durch die
Klimaerwärmung ansteigt, reduziert sich allerdings der Beitrag des atmosphärischen
Grundzustandes auf extreme Hitzeereignisse um 10-40%, während der Beitrag des
lokalen thermodynamischen Effektes durch extreme Bodenfeuchte um 40% ansteigt.
Diese, durch Bodenfeuchte verursachten Hitzeereignisse, entstehen sogar dann, wenn
die atmosphärischen Grundzustände neutral oder ungeeignet für Extremereignisse
sind. Dadurch wird deutlich, dass der Anstieg der extremen Hitzeereignisse über Eu-
ropa im zukünftigen Klima durch lokale thermodynamische Effekte der Bodenfeuchte
dominiert wird.

In einem zweiten Schritt untersuche ich, inwieweit der Anstieg extremer Hit-
zeereignisse über Europa durch die Einhaltung der Klimaziele des UNFCCC Paris
Abkommens kontrollierbar ist. Die interne Klimavariabilität führt dazu, dass sich nur
für 40% der Sommermonate über Europa die mittleren Temperaturen bei einer 2◦C
globalen Erwärmung von jenen einer 1.5◦C globalen Erwärmung unterscheiden. Diese
Unterscheidbarkeit ist am größten über Südeuropa und reduziert sich auf 10% der
Sommermonate für Osteuropa. Zudem beschränkt die nichtreduzierbare Unsicherheit,
die durch interne Klimavariabilität entsteht, die Kontrollierbarkeit von Temperatur-
extremen nur soweit, dass die Reduktion der globalen Klimaerwärmung auf 1.5◦C
lediglich 10% der extremen Sommermaximaltemperaturen einer 2◦C Erwärmung ver-
hindern würde.

In einem letzten Schritt analysiere ich, wo die größten Hotspots bezogen auf
die globale Erwärmung und den Hauptfaktoren unserer Anfälligkeit gegenüber ex-
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tremen Hitzeereignissen zu finden sind. Hierfür untersuche ich folgende Faktoren:
Maximaltemperaturen, Wiederkehrperioden extremer Temperaturen, maximale Tem-
peraturvariabilität, tropische Nachttemperaturen und extreme Feuchtlufttemperaturen.
Meine Resultate zeigen, dass die Begrenzung der globalen Erwärmung auf unter 2◦C
entscheidend für eine Minimierung der Risiken durch extreme Hitzeereignisse ist
und die Gefahr von schädlichen Hitzeereignissen in nicht-angepassten Regionen ein-
schränkt. Allerdings produziert jeder Faktor unterschiedliche regionale Hotspots —
zum Beispiel die höchste Maximaltemperatur über der arabischen Halbinsel oder die
größte Temperaturvariabilität über Indien und Zentraleuropa. Dies unterstreicht die
unterschiedlichen potentiellen Risiken und Anpassungsstrategien, die für verschiede-
ne Regionen berücksichtigt werden müssen.
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INTERNAL VARIABILITY IN
SUMMERTIME HEAT EXTREMES

INTRODUCTION

Whatever can happen will happen, if we make trials enough.

— Early version of Murphy’s Law,

Augustus De Morgan (1866)

As temperatures continue to rise globally due the accumulation of anthropo-

genic greenhouse gases in the atmosphere, extreme heat will become more likely, and

more extreme (IPCC, 2013; Meehl and Tebaldi, 2004; Russo et al., 2014). Instances

of extreme heat lead to increased heat-related mortality and illness, worsening the

risk of heat exhaustion, dehydration, and cardio-vascular and kidney diseases (Kjell-

strom et al., 2010). Additionally, extreme heat can cause substantial ecological and

socio-economical impacts, such as decreased labour productivity, increased risk of

wildfires, habitat loss, crop failure, decreased agricultural efficiency, and increased

risk of environmental refugees by rendering some regions partially inhabitable (IPCC,

2014; Sherwood and Huber, 2010; Dunne et al., 2013). Already under current global

warming levels, the deadly combination of extreme heat and humidity, together with

insufficient infrastructure caused the death of thousands in the 2015 heatwaves in India

and Pakistan (Wehner et al., 2016). In Europe, the combination of extreme daytime

temperatures and lack of nighttime cooling caused more than 70.000 additional deaths

over 16 countries during the 2003 summer (Robine et al., 2008; Laaidi et al., 2012); and

55.000 people died due to the 2010 heatwave in Russia alone (Barriopedro et al., 2011).

In a world 2◦C warmer than preindustrial levels, conditions equivalent to the 2015

heatwave could occur every year over some regions in India and Pakistan (Matthews

et al., 2017); and one out of every two summer months are projected to be on average

warmer than the 2010 summer over Europe (Suarez-Gutierrez et al., 2018).

Extreme events are, by definition, large deviations from the mean climate state.

These quasi-random deviations are implicitly caused by chaotic internal variability,

that emerges from spontaneously generated mechanisms and feedbacks occurring

1



2 INTERNAL VARIABILITY IN SUMMERTIME HEAT EXTREMES

across all components of the climate system. By chance, some of these deviations

are so large that they become extreme events. As the mean climate shifts towards a

warmer state, these deviations are projected to reach more extreme levels, and events

that were extreme in the past are projected to occur at a higher frequency. Given

their substantial societal impacts, an extensive evaluation of how global warming

exacerbates the strength and frequency of extreme heat events is required. In this

dissertation, I go one step further and I evaluate how the irreducible uncertainty emer-

ging from internal variability determines to what extent the risk of extreme heat can

be controlled by maintaining global warming below fixed limits. For this evaluation,

a substantial sampling of internal variability that captures up to the most extreme of

these deviations as the climate changes is crucial. To achieve this, I use a 100-member

ensemble of single-model simulations — the Max Planck Institute Grand Ensemble

(MPI-GE) — that offers a precise and substantial sampling of the simulated internal

variability and allows me to cleanly separate between the changes caused by the forced

warming response and the quasi-random fluctuations due to internal variability.

To illustrate the scale of the fluctuations emerging from internal variability in com-

parison to the response to anthropogenic forcing changes, I use summertime temperat-

ures over Europe (Fig. I.1). European summer temperatures have increased by 1◦C on

average in the last three decades, illustrating a mean shift towards warmer European

summers, that is largely attributed to anthropogenic global warming. Whereas this

shift represents the forced effect of anthropogenic global warming, the amplitude of

temperature fluctuations on inter-annual to multi-decadal timescales represents the in-

ternal variability. Due to this internal variability, the decadal probability distributions

of European summer temperature anomalies drawn from the hundred realizations of

MPI-GE have a width of more than 4◦C. When drawn from observations, which repres-

ent the one realization of the real-world climate, the decadal probability distributions

are narrower, yet cover generally more than two thirds of the ensemble distributions.

Furthermore, observed European summer temperatures not only exhibit large decadal

variability, but also large variability on longer and shorter timescales. In some cases,

internal variability on multi-decadal timescales drives observed temperature distribu-

tions to fluctuate from the upper to the lower tail of simulated distribution from one

decade to the next. On inter-annual timescales, internal variability can cause month-to-

month differences in observed mean temperatures that are more than twice as large

as the 1◦C mean increase due to anthropogenic climate change. This is demonstrated

in 2010, where an observed mean temperature anomaly at the center of the decadal

probability distribution in June, developed into the highest ever recorded European

summertime temperature anomaly in July.
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Figure I.1: Decadal variability in European summer temperatures. Probability distribution
functions (PDFs) of summer (JJA) monthly mean 2m air temperature anomalies for
decades starting from 1940–1949 to 2010–2019 simulated by MPI-GE (red) compared
to CRUTEM4 (Jones et al., 2012) observations for the period of 1940–2017 (white).
Simulations are historical runs for the period 1850–2005 and RCP4.5 for the period
2006–2019. Spatially averaged anomalies are calculated over the land points in
the region over Europe defined by the [10◦W–50◦E, 35–68◦N] domain. Anomalies
are calculated with respect to the climatological baseline defined by the period of
1961–1990. Bin size is 0.2◦C. For visualization purposes, the frequency in MPI-GE
PDFs is shown as percentage of ensemble months per decade; while the frequency
in the observed PDFs is shown in total months per decade.
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The core purpose of this dissertation is to understand how these quasi-random

fluctuations arising from chaotic internal variability shape the changing characteristics

of summertime heat extremes, both in Europe and globally, as the world warms. In

Chapter 1 I investigate which driving mechanisms control the variability in extreme

European summertime heat, causing some summers to be much warmer than others.

For this, I quantify the contributions from both dynamical and thermodynamical

sources of variability in driving extreme temperatures simultaneously, separating

circumstantial from necessary conditions that lead to extreme heat. Furthermore, I

determine how these contributions may change to cause an increase in extreme tem-

perature variability in a warmer world. In Chapter 2, I evaluate how the irreducible

uncertainty arising from internal variability defines to what extent an increase in ex-

treme European summertime heat can be averted by limiting global warming to fixed

temperature targets. Lastly, in Chapter 3 I investigate where the major risk hotspots

for extreme heat occur globally as the world warms. I evaluate how global warming

aggravates several relevant elements of extreme summertime heat, and identify the

maximum global warming level that allows us to avert dangerous heat levels confid-

ently, once the large irreducible uncertainty introduced by chaotic internal variability

is considered.

In the following sections, I provide a more in-depth introduction to the topics

discussed in each chapter, and pose the six main research questions that guide this

dissertation. But first, I wish to dedicate the next paragraphs of this introduction to the

modelling experiment that serves as foundation for this study, the Max Planck Institute

Grand Ensemble. New scientific advantages such as large ensemble experiments allow

us to not only repeat old methods in new frameworks, but also to expand, and in

some cases completely rethink our methodologies. In this spirit, in this dissertation I

introduce several novel methodologies that illustrate how the power of large ensemble

experiments can be fully exploited beyond custom.

MPI-GE is currently the largest existing single-model ensemble using a com-

prehensive, fully-coupled Earth System Model, both in terms of forcing scenarios

represented and in terms of independent members (Maher et al., 2019). The ensemble

consists of sets of 100 independent simulations that evolve under the same forcing

conditions and model configuration, but start from different initial climate states. This

design generates one hundred potential Earths that might have been, that differ from

each other only due to the effect of internal variability. Thus, the large ensemble size

provides an accurate estimate of the average response to external forcing, that can

be cleanly separated from the quasi-random fluctuations caused by chaotic internal

variability. Furthermore, the large ensemble size in MPI-GE allows a precise and sub-
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stantial sampling of the simulated internal variability. This ensures that very extreme

events that occur for example once every hundred years, occur on average every simu-

lated year across the hundred ensemble realizations. This is a vital requirement for

this study because it generates large samples of very extreme events that evolve under

the changing climate, needed both to empirically evaluate the statistical significance of

changes in very rare events, and to robustly characterize the irreducible uncertainty

that arises from internal variability.

A more in-depth description of MPI-GE experimental design and how it com-

pares to other large ensemble experiments, as well as some examples demonstrating

its power, can be found in Appendix A. In Appendix B, I introduce a new model-

evaluation approach to investigate the model’s ability to simulate the estimated real-

world internal variability. This method is one example of how large-ensemble experi-

ments allow us to expand and rethink our methodologies beyond customary practices.

The first advantage of this method, as opposed to other evaluation techniques based

on comparisons of mean values or standard deviations, lies in focusing on the eval-

uation of the higher-order moments of the distribution, offering a more appropriate

evaluation of the simulated representation of the magnitude and frequency of extreme

events. Second, it allows me to directly identify whether differences between observed

and simulated values are due to an incorrect simulation of the mean climate, its re-

sponse to external forcings, or rather due to an incorrect representation of internal

variability. After giving a more detailed explanation of this novel approach, I apply

it to evaluate the ability of MPI-GE to capture the estimated real-world variability in

mean and maximum surface temperatures in the summer months. In Appendix C, I

apply this and other methods to evaluate how MPI-GE simulates the mean and the

variability of surface temperatures both globally and, in particular, over Europe.

Due to its unique experimental design, MPI-GE is an unparalleled tool to study

extreme events, which mechanisms lead to their development, and how their charac-

teristics change in a changing climate. In the following sections I will formulate the

specific scientific questions that motivate each chapter of this dissertation based on

these ideas, and how MPI-GE can be utilized to best answer these questions.
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Chapter 1:

Drivers of internal variability in European heat extremes

In Europe, as well as in other regions of the world, the frequency and the intensity

of extreme summer heat are projected to increase not only as a response to rising

global mean temperatures (Stott et al., 2004; Russo et al., 2014; Christidis et al., 2014),

but also as a response to increasing summer temperature variability, that results from

changes in the driving mechanisms of extreme summer temperatures under warming

(Meehl and Tebaldi, 2004; Schär et al., 2004; Fischer et al., 2012; Bathiany et al., 2018).

However, it remains unclear which of the two main driving mechanisms of extreme

summer temperatures over Europe — either the large-scale dynamical atmospheric

state or the local thermodynamic effects of moisture limitation — controls the increase

in European summer temperature variability. Several studies attribute this increase

to the local thermodynamical effects of limited moisture availability (Seneviratne

et al., 2006; Diffenbaugh et al., 2007; Fischer and Schär, 2009; Bathiany et al., 2018).

In contrast, other studies attribute it to the large-scale dynamical atmospheric state

changing towards more anticyclonic conditions (Meehl and Tebaldi, 2004; D. E. Horton

et al., 2015; Holmes et al., 2016; Mann et al., 2018). However, these studies focus on

attributing the changing variability in extreme temperatures to either only dynamical

or only thermodynamical drivers, and do not quantify the contribution from both

types of drivers simultaneously. Thus, it remains unclear how both the dynamical

large-scale atmospheric state and local thermodynamical mechanisms simultaneously

contribute to heat extremes over Europe, and which of these contributions dominates

the increase in extreme temperature variability under warming.

These are the questions that I wish to answer in this chapter. The large ensemble

framework of MPI-GE allows me to cleanly separate the changes in heat extremes

caused by a shift towards a warmer mean state from those caused by an increase

in variability. The latter results in temperature deviations from the mean state that

are larger than those in our current climate, caused by changes in the underlaying

driving mechanisms of extreme temperatures. To achieve this separation I introduce a

novel definition of extreme events, based on a moving threshold with respect to the

evolving decadal-mean climate state. This extreme event characterization relies on an

accurate characterization of internal variability, and is only well-defined when both the

evolving decadal-mean climate and its probability distribution in a transient climate

are known accurately, as occurs in large ensemble experiments. I then use these large

samples of extreme events under a wide range of background conditions to under-

stand the variability in the response in extreme temperatures to their different driving

mechanisms, separating circumstantial from necessary conditions in the development
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of heat extremes.

For this purpose I first construct a multiple linear regression model with the dy-

namical and thermodynamical driving mechanisms as predictors. Using this approach,

I can directly quantify how much of the variability in extreme summer temperatures

can be explained by each driving mechanism, and by how much the importance of

each set of drivers can be overestimated by not considering both sources of variability

simultaneously. Second, to identify which driving mechanisms dominate the change

in extreme summer temperature variability, I evaluate how often heat extremes de-

velop under extreme atmospheric conditions as opposed to under extreme moisture

limitation, and how these frequencies may change under global warming. Based on

these two approaches, in chapter 1 of this thesis I answer the two following research

questions:

1.1 What are the contributions from large-scale dynamical atmospheric

mechanisms and local thermodynamical effects of moisture limita-

tion as drivers of variability in extreme summertime temperatures?

1.2. How do these dynamical and thermodynamical driving contribu-

tions change to cause an increase in extreme summer temperature

variability in a warmer world?

Chapter 2:

Controllability of European temperatures under warming

Considering the large internal variability in European summer temperatures, and

that this variability is projected to increase under further global warming, the next step

is to evaluate to what extent the risk of extreme European summer temperatures can

be averted by maintaining global warming below fixed limits. I define these limits as

1.5◦C and 2◦C of global mean surface temperature above pre-industrial levels, as stated

in the Paris Agreement at the 21st Conference of the Parties of the United Nations

Framework Convention on Climate Change (UNFCCC). For this evaluation I take

advantage of both the large number of independent members and the diversity of

forcing conditions in MPI-GE, that allows me to use transient climate simulations

to construct quasi-stationary samples of the climate conditions at different warming

levels. I use a time-slice method similar to the methods used in Schleussner et al. (2016)

or King and Karoly (2017), with the advantage of being performed on a single-model

large ensemble. The large ensemble size of MPI-GE combined with the assumption of
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quasi-stationarity allows me to calculate the probability distributions that define the

climate conditions at different warming levels empirically, without explicitly paramet-

rizing the tails of the distributions with extreme value statistics. Using these empirical

probability distributions based on 3000 simulated years for each climate condition, I

can directly calculate maximum temperature levels for extreme events that are well

defined for return periods up to 500 years.

To compare European summertime temperatures at 1.5◦C of global warming above

pre-industrial conditions with those at 2◦C of warming, I evaluate changes in summer

monthly mean, block maximum, and extreme European summer temperatures, and

quantify for the first time changes in extreme events with return periods up to 500 years.

However, the most novel aspect of this evaluation emerges from the quantification

of the distinguishability and controllability of European summertime temperatures

for different levels of global warming. To quantify the distinguishability between

two climate states I introduce a novel approach based on the areal overlap of the

probability distributions that define each climate. This distinguishability metric allows

me to directly quantify how often summer months in a 2◦C world could also occur in

a 1.5◦C world. Furthermore, I examine the controllability of extreme temperatures, by

determining to what extent the most extreme European summer temperatures at 2◦C

of global warming could be avoided in a 1.5◦C warmer world. These two concepts

are key to determine how the irreducible uncertainty introduced by chaotic internal

variability regulates to what extent increases in extreme European summertime heat

can be averted by maintaining global warming below fixed limits. In line with this

reasoning, Chapter 2 of this thesis concentrates on the following two central questions:

2.1 To what extent are European summer temperatures at 1.5◦C of global

warming distinguishable from those at 2◦C of warming?

2.2. To what extent can the risk an increase in extreme European sum-

mer temperatures be controlled by maintaining global warming be-

low fixed global mean temperature limits?



INTERNAL VARIABILITY IN SUMMERTIME HEAT EXTREMES 9

Chapter 3:

Heat hotspots under global warming

Globally, some of the regions that will suffer the effects of extreme heat the most

are highly-populated developing regions, where society is most vulnerable due to

scarce infrastructure and relatively low adaptive capacity (Coffel et al., 2018). In the last

chapter of this dissertation, I identify where major risk hotspots for extreme heat occur

globally under further warming, and what maximum global warming levels allow

us to confidently avoid these risks. To investigate how global warming aggravates

extreme summertime heat in a global perspective, I consider all of the most relevant

elements of our vulnerability to extreme heat. The foremost of these elements are

maximum temperatures. However, some of the events with the largest impacts to

date, were events that combined the effect of extreme maximum temperatures with

other conditions that exacerbate heat stress, such as high humidity or high nighttime

temperatures (Laaidi et al., 2012; Wehner et al., 2016). To combine all of these aspects, I

evaluate how global warming aggravates five different metrics: maximum reachable

temperatures, return periods of very extreme events, maximum temperature variabil-

ity, sustained tropical night temperatures, and extreme wet bulb temperatures.

Most previous studies which evaluate how some of these heat stress indicators

change under global warming are based on smaller multi-model ensembles (e.g.,

Fischer and Knutti, 2013; Russo et al., 2014; Russo et al., 2017; Matthews et al., 2017;

Coffel et al., 2018; Bathiany et al., 2018) or on smaller single-model ensembles (e.g.,

Sherwood and Huber, 2010). Also, most studies explore changes linked to different

forcing scenarios (e.g., Fischer and Knutti, 2013; Russo et al., 2014; Matthews et al.,

2017; Coffel et al., 2018; Bathiany et al., 2018), as opposed to changes between different

warming levels (e.g., Russo et al., 2017). In contrast, I base my analysis on one very large

single-model ensemble, MPI-GE. In addition to the large ensemble size, the diversity

of forcing conditions represented by MPI-GE allows me to robustly characterize and

compare the climates of five different worlds with global warming levels of 0◦C,

1.5◦C, 2◦C, 3◦C and 4◦C above pre-industrial conditions, providing a precise sample

of the simulated internal variability for each level. A robust sampling of internal

variability is key to capturing how the most extreme events reachable under each

climate conditions change. Using MPI-GE, I can construct five different heat metrics

and five different global warming levels to robustly evaluate the maximum global

warming level that allows us to avert dangerous heat levels confidently, considering

the irreducible uncertainty introduced by chaotic internal variability. Thus, in Chapter

3, I focus on the following central questions:



10 INTERNAL VARIABILITY IN SUMMERTIME HEAT EXTREMES

3.1 Which regions become summertime heat stress hotspots for these dif-

ferent extreme heat metrics under global warming?

3.2. For which maximum global warming level can the risk of extreme

heat conditions under these different metrics be confidently averted?

Chapters 1 and 3 are based on work currently being prepared for publication.

Chapter 2 is based on work previously published, jointly with several co-authors

(Suarez-Gutierrez et al., 2018), and has been slightly adapted to fit the structure of this

dissertation.



CHAPTER 1

DRIVERS OF INTERNAL VARIABILITY
IN EUROPEAN SUMMER HEAT
EXTREMES

1.1. Summary

We use the 100-member Max Planck Institute Grand Ensemble (MPI-GE) to disen-

tangle the contributions from large-scale dynamic atmospheric conditions and local

thermodynamic effects of moisture limitation as drivers of variability in European

summer heat extremes. Using a novel extreme event definition we find a 70% increase

in heat extremes with respect to the evolving mean decadal climate under a moderate

warming scenario, accompanied by a maximum increase in summer temperature vari-

ability of 35% during the 21st century. With a multiple regression approach, we find

the dynamical mechanisms representing blocking and anticyclonic conditions are the

main driver of variability in extreme European summer temperatures, both in past and

future climate conditions. By contrast, local thermodynamic drivers play a secondary

role in explaining the total variability in extreme temperature. However, considering

both sources of variability simultaneously is crucial; assessing the contribution from

only one type of driver can explain much less of the extreme temperature variance

and leads to an overestimation of its effect on extreme temperatures, particularly

when only considering local thermodynamical drivers. Finally, we find that although

most European summer heat extremes occur under extreme atmospheric conditions,

extremes develop 40% more frequently during the 21st century as a result of extreme

moisture limitation, even under neutral or unfavorable atmospheric conditions, con-

firming that the local thermodynamic effect of moisture limitation dominates the

increase in European summer temperature variability and heat extremes with respect

to the evolving climate.

11
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1.2. Introduction

The frequency and intensity of extreme summer heat events are projected to in-

crease over Europe as a response to rising global mean temperatures (Stott et al., 2004;

Christidis et al., 2014; Suarez-Gutierrez et al., 2018). On the other hand, the frequency

and intensity of heat extremes could also be further exacerbated as a response to

changes in the driving mechanisms of extreme summer temperatures under global

warming, resulting in an increase in summer temperature variability (Schär et al., 2004;

Meehl and Tebaldi, 2004; Fischer et al., 2012; Lustenberger et al., 2014; Donat et al.,

2017; Bathiany et al., 2018). Although some studies argue that European summer

extreme temperatures mostly follow mean summer warming (Ballester et al., 2009;

Ballester et al., 2010), the variability in European summer temperatures is large, and

there is robust evidence indicating that this variability could increase under global

warming (Fischer et al., 2012; Lustenberger et al., 2014; Bathiany et al., 2018). However,

it remains unclear which of the two main driving mechanisms of extreme European

summer temperatures is responsible for this increase in variability. Several studies

attribute the increase in summer temperature variability to the local thermodynamical

effects on temperature of moisture limitation (Seneviratne et al., 2006; Diffenbaugh

et al., 2007; Fischer and Schär, 2009; Vogel et al., 2017; Donat et al., 2017). In contrast,

other studies point to the large-scale dynamical atmospheric state as the main driver

of heat extremes, and that changes towards more anticyclonic atmospheric patterns

drive the increase in temperature variability (Meehl and Tebaldi, 2004; D. E. Horton

et al., 2015; Holmes et al., 2016; Mann et al., 2018). These studies focus on attributing

variability changes under global warming to either only dynamical or only thermo-

dynamical drivers, but do not quantify the contribution from both large-scale and

local drivers simultaneously. Here we evaluate large samples of extreme summer

temperature events simulated by the Max Planck Institute Grand Ensemble (MPI-GE)

to robustly quantify the contributions from large-scale dynamical drivers and local

thermodynamical drivers to extreme temperature variability, and how these contribu-

tions may change in a warmer world.

Considering both large-scale dynamical mechanisms and local thermodynamic

mechanisms simultaneously is crucial to understand how heat extremes develop and

what drives the variability in extreme European summer temperatures. Both driv-

ing mechanisms are not completely independent of each other — but rather capable

of intensifying or counteracting one another — and also not completely collinear —

but each capable of accounting for part of the variability in extreme temperatures

(Della-Marta et al., 2007; Zampieri et al., 2009; R. M. Horton et al., 2016; Sillmann et al.,

2017; Bunzel et al., 2017). Studies show that, over the US, both a shift towards more
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anticyclonic conditions and drier soils can intensify hot extremes in a warmer world,

with the later thermodynamic drivers accounting for more than half of the summer

temperature variability (Diffenbaugh and Ashfaq, 2010; Merrifield et al., 2017). In

the case of Europe, both dynamical mechanisms connected to atmospheric circulation

and thermodynamical effects related to relative humidity have been shown to affect

temperature during extremely hot days in both the ERA interim record and historical

simulations from different CMIP5 models (Krueger et al., 2015). Case-based studies

also indicate that past record-breaking heat waves occurred as a combination of ex-

treme conditions in both dynamic and thermodynamic drivers (Fischer et al., 2007;

Miralles et al., 2014). Others find the best predictive skill for temperatures during

past observed European heat waves when considering a combination of dynamical

and thermodynamical drivers as predictors (Della-Marta et al., 2007). Under future

climate conditions, studies also find that both dynamical and thermodynamical drivers

contribute to the changes in variability of European summer temperatures on daily to

subdaily scales (Cattiaux et al., 2015). On the other hand, studies considering the local

downwelling radiation at the surface as a proxy for the local atmospheric state find that

downwelling radiation does not influence the change in variability of European sum-

mertime mean temperatures substantially (Fischer et al., 2012; Bathiany et al., 2018), or

that is not clear whether the relative contributions from downwelling radiation or soil

drying dominate the change in variability (Fischer and Schär, 2009). Thus, how both

the dynamical large scale atmospheric state and local thermodynamical mechanisms

simultaneously contribute to driving heat extremes and which of these contributions

dominates the increase in extreme European summer temperature variability under

global warming remains unclear.

To understand how these large-scale dynamics and local thermodynamic effects

drive extreme temperatures in a warming world, and how relevant internal variability

is in the development of heat extremes, we need to analyze large samples of extreme

events that develop under a wide range of background conditions, but that are simu-

lated under the same external forcings and model physics. For this we use simulations

from the 100-member Max Planck Institute Grand Ensemble (MPI-GE), currently the

largest existing ensemble using a fully-coupled Earth System Model (Bittner et al.,

2016; Hedemann et al., 2017; Suarez-Gutierrez et al., 2017; Maher et al., 2019). The large

size of the ensemble is crucial to robustly sample internal variability and to empirically

evaluate the statistical significance of changes in very rare events. An ensemble size

of 100 simulations under the same forcing conditions allows 1-in-100-years events to

occur on average every simulated year (Suarez-Gutierrez et al., 2018), providing the

large samples of extreme events that develop under different driving conditions and

global warming levels needed for our study. Another relevant aspect to note is that



14 DRIVERS OF INTERNAL VARIABILITY IN EUROPEAN SUMMER HEAT EXTREMES

most previous studies investigate changes in variability in multi-model ensembles

and using standard deviation changes as a proxy (Fischer and Schär, 2009; Fischer

et al., 2012; Bathiany et al., 2018). However, this combination does not allow a clear

separation between the forced transient warming and the deviations caused by internal

variability, and can lead to misleading results. Using a very large single-model en-

semble, we are able to instead directly evaluate how temperature deviations from the

mean state change under global warming, based on a precise characterization of the

simulated internal variability and the forced warming signal that are not confounded

by different responses to forcing or model configurations.

We introduce a definition of extreme events with respect to the evolving decadal-

mean climate state, 2σ events, that allows us to focus on the extreme events that

would pose the biggest challenge to society — even if we manage to adapt to the

changing mean climate. We define 2σ events as summer months (JJA) with anom-

alies of European summer monthly mean temperatures (EuSTs) that deviate from the

decadal mean climate state by at least two EuST pre-industrial standard deviations.

This moving threshold delimitation of very rare extreme events is only well-defined

when both the evolving decadal-mean climate state and the probability distribution

of EuSTs in a changing climate are known accurately, as occurs in large ensemble

experiments, because it relies on an accurate characterization of the simulated internal

variability. This novel characterization allows us to study changes in the number of

heat extremes not only caused by the shift in the distribution towards higher temperat-

ures, but by variability changes leading to temperature deviations from the mean state

that are larger than those in our current climate, and that are caused by changes in the

underlaying driving mechanisms of extreme temperatures.

To represent the main driving mechanisms of summer temperature variability we

include large-scale dynamical atmospheric conditions, represented by geopotential

height at 500 hPa (Z500) and sea level pressure (SLP), as well as the local thermo-

dynamical effects of moisture availability, represented by soil moisture fraction (SM)

and evapotranspiration (EVP). Large Z500 and SLP anomalies are associated with

the persistent blocking and anticyclonic conditions that act as a dynamical driver of

extreme temperatures (Meehl and Tebaldi, 2004; Della-Marta et al., 2007; Pfahl, 2014;

R. M. Horton et al., 2016; Sillmann et al., 2017; Schaller et al., 2018). On the other

hand, large negative EVP anomalies indicate that less water is evaporated into the

atmosphere. This may occur as a response to lower temperatures and less heat causing

the evaporation of less moisture, showcasing a positive EVP-EuST relation. However,

lower evapotranspiration can also relate to limited moisture conditions that have a

local thermodynamic driving effect on high temperatures. This driving mechanism,
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characterized by a negative EVP-EuST relation, is initiated when moisture is limited

for evaporation, increasing the fraction of radiative energy that is transformed into

sensible — rather than latent — heat and thus resulting in higher temperatures. Simil-

arly, low SM anomalies can occur both as a response to high temperatures that may dry

out the soil through evaporation, or as an indicator of the low moisture conditions that

initiate the local thermodynamic driving mechanism leading to higher temperatures

(Seneviratne et al., 2006; R. M. Horton et al., 2016; Sillmann et al., 2017; Vogel et al.,

2017).

In this study, we investigate the internal variability in the response of extreme tem-

peratures to different background states in a warming world, separating circumstantial

from necessary conditions in the development of large samples of heat extremes. First,

in section 1.3 we introduce the MPI-GE and evaluate its ability to simulate European

heat extremes, as well as elaborate on the details of our approach and methods. In

section 1.4.1, we analyze extreme temperature events with respect to evolving decadal

climate over Europe, and how these extremes change under warming in MPI-GE. In

section 1.4.2, we quantify the contributions from both large-scale dynamical drivers

and local thermodynamical drivers to the variability in extreme European summer

temperatures by constructing a multiple linear regression model with these dynamical

and thermodynamical drivers as predictors in both current and future climate condi-

tions. We also construct multiple regression models based on only dynamical and only

thermodynamical drivers, to characterize the importance of simultaneously consider-

ing both sources of variability. In section 1.4.3, we identify the driving mechanisms

that dominate the change in extreme summer temperature variability by evaluating

how often heat extremes develop under extreme atmospheric conditions, as opposed

to under extreme moisture limitation, and how these frequencies may change under

global warming. In section 1.5 we discuss the caveats and limitations of our approach,

followed by a summary of our main results and conclusions in section 1.6.

1.3. Data and Methods

We use transient climate simulations from the Max Planck Institute Grand En-

semble (MPI-GE) under historical and RCP4.5 forcing conditions (Maher et al., 2019).

The ensemble consists of 100 realizations based on the same model physics and para-

metrizations and driven by the same external forcings, but each starting from a different

initial climate state taken from different points of the model’s pre-industrial control

run. The MPI-GE uses the model version MPI-ESM1.1 in the low resolution (LR)

configuration, with resolution T63 and 47 vertical levels in the atmosphere (Giorgetta
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et al., 2013) and 1.5◦resolution and 40 vertical levels in the ocean (Jungclaus et al., 2013).

MPI-ESM1.1 is fairly similar to the the CMIP5 version of MPI-ESM (Taylor et al., 2012),

but has a slightly lower equilibrium climate sensitivity of 2.8◦C (Giorgetta et al., 2013;

Flato et al., 2013), and a new 5-layer soil hydrology scheme (Hagemann and Stacke,

2015) implemented in the land-surface model component of MPI-ESM1.1, JSBACH

(Raddatz et al., 2007). Observational data from the CRUTEM4.6 (Jones et al., 2012)

dataset are used for comparing the MPI-GE simulations to current climate conditions.

Despite its low resolution, comparable to most models in the CMIP5 ensemble,

the MPI-GE captures observed temperature variability adequately (Suarez-Gutierrez

et al., 2018). In Appendix C, we find that MPI-GE offers an adequate representation

of the observed estimate of internal variability in European summer temperatures,

particularly in the upper tail of the temperature distribution. Temporal resolution is

also relatively limited in MPI-GE, with only monthly output available. Ideally, we

would use hourly to daily values to capture the amplitude of internal variability more

precisely and to separate between specific conditions leading to extreme temperatures

from those that occur as a response to them. However, both dynamical and thermo-

dynamical mechanisms leading to temperature extremes are based on the persistence

of either anticyclonic or dry conditions, making their signal still clearly identifiable

from monthly mean values. Lastly, MPI-ESM1.1 uses a simple although relatively

improved 5-layer soil hydrology scheme. Compared to the previous soil hydrology

scheme in MPI-ESM, a one layer bucket scheme (Roeckner et al., 2003) that tends to

overestimate evapotranspiration leading to excessively dry conditions, the new 5-layer

scheme offers a better representation of soil moisture memory (Hagemann and Stacke,

2015), and more realistic simulations of the large-scale atmospheric patterns in 500 hPa

geopotential height that lead to an improved representation of extreme temperature

events (Bunzel et al., 2017). Despite its caveats, MPI-ESM has been shown in model

evaluation studies to adequately simulate the relevant dynamic and thermodynamic

mechanisms contributing to the development of past observed extreme European

summer temperatures (Krueger et al., 2015).

European summer temperatures (EuSTs) are defined here as monthly mean near-

surface 2m air temperature anomalies for the summer months (JJA) over land-only grid

cells in the region defined by the [10◦W–50◦E, 35–68◦N] latitude-longitude domain.

We then define temperature extremes as anomalies of EuST that deviate from the

decadal mean climate state by at least two EuST pre-industrial standard deviations

(2σ events). Since we expect standard deviation to change with time under warming,

we use the pre-industrial standard deviation for the period 1850–1899 averaged across

all ensemble members as a deviation threshold for extremes; while the mean decadal
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climate state is defined as the centered decadal running ensemble mean. Analogously,

the variables representing the main driving mechanisms are defined as monthly mean

anomalies of Z500, SLP, SM and EVP over land-only grid cells in the same domain.

The effect of the thermal expansion of the lower troposphere under global warming

is removed by detrending Z500 anomalies at each grid cell, subtracting the ensemble

mean Z500 averaged over the domain for each time step. Since the subtracted field is

spatially constant, the spatial patterns of Z500 that define large-scale dynamics are not

affected by this procedure (Cattiaux et al., 2013). SM is defined as the fraction between

water accumulated in the soil versus the maximum water storage capacity for each

grid cell. Lastly, EVP is defined as the flux of water going from the soil and vegetation

into the atmosphere; positive EVP values indicate net gain of water in the atmosphere

and net loss in the soil. All anomalies are calculated with respect to the climatological

period of 1961–1990.

We use these variables, as well as global mean 2m surface air temperature (GMST),

as predictors in a stepwise multiple regression model to account for the variability

in large samples of extreme 2σ EuST events simulated by MPI-GE. Our multiple re-

gression model consists of several steps, starting with a forward selection of variables

as predictors ranked by their individual correlation to extreme EuSTs, followed by a

backward elimination of redundant predictors, accounting for multicollinearity and

non-significance (Storch and Zwiers, 1999). In the first step, we rank all variables in de-

creasing order of correlation to extreme EuSTs for each grid cell, and select the variable

with the highest correlation as the first predictor in the regression model. In the next

step, the variable with the next highest correlation is evaluated for multicollinearity,

and only if the multiple correlation coefficient between the considered variable and

any of the predictors already introduced in the model is below 0.95, corresponding to

an variance inflation factor (VIF) of 10 (O’brien, 2007), the variable is then selected for

the regression model. Once each new variable is added to the regression model, we

evaluate if the addition improves the model significantly. If the p-value of the newly

added predictor is above 0.05 or the fraction of unexplained variance is not reduced

compared to the step before, the variable is again eliminated from the model. If, on

the contrary, these conditions hold, then the remaining predictors in the model are

tested for significance, and removed from the model if their p-values are above the

0.05 threshold. This forward-selection backward-elimination procedure is repeated

until no other variables can be added to the regression model.
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1.4. Results

1.4.1. Changes in European heat extremes

Under the moderate warming scenario RCP4.5, corresponding in MPI-GE to a

global warming level of 2.25◦C above preindustrial conditions by the end of the 21st

century (Suarez-Gutierrez et al., 2018), the MPI-GE simulates an average increase

in European summer temperatures (EuST) of almost 3◦C compared to 20th century

conditions (Fig. 1.1a). MPI-GE projects that, by the end of the 21st century, the average

European summer month will be comparable to the warmest month observed in this

region, during the 2010 European heatwave. Furthermore, temperature anomalies

during the most extreme summer months could reach values twice as large as those

recorded in 2010. We find that the MPI-GE offers an adequate representation of the ob-

served estimate of internal variability and of the frequency and amplitude of extreme

European summer temperature events. The large size of MPI-GE makes it well capable

of simulating events comparable to the most extreme European summer temperatures

on record, unlike other large ensemble experiments (Schaller et al., 2018). Some of the

simulated events exhibit even substantially larger EuST deviations from the decadal

mean state that those observed. However, these simulated events showcasing large

EuST deviations have return periods of over hundreds of years, and the observational

record may just be too short to determine whether or not the ensemble overestimates

the amplitude of very extreme events.

We use a novel moving-threshold definition that evolves with the changing

decadal climate to characterize extreme events in the ensemble simulations. These

extreme events with respect to the evolving decadal mean climate, 2σ events, cor-

respond to months with spatially averaged EuST anomalies that deviate from the

decadal mean climate state by more than two EuST pre-industrial standard deviations.

Such events occur in the hundred MPI-GE simulations a total of 860 times during

the 20th century, and increase by 70% to 1483 extremes during the 21st century (Fig.

1.1a). This calculation is influenced by the baseline period used to calculate anomalies.

Using the climatological average defined by the period of 1961–1990 to calculate an-

omalies we find approximately 25% less extremes during the second half of the 20th

century compared to the two previous 50-year periods (Table 1.1). In contrast, using

the pre-industrial climatological average defined by the period of 1851–1880 leads

to an homogeneous number of extremes during the 19th and 20th century, and to a

slightly lower relative increase in extremes during the 21st century of 55% (Table 1.1).

Although the choice of 1961–1990 as climatology period can inflate the relative increase

in extreme events, we maintain this period as climatological baseline to facilitate the

comparison to observations. Observed EuST anomalies, also with respect to the 1961-
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1990 baseline, occur 11 times above the 2σ threshold during the second half of the 19th

century, 8 times during the 20th century, and twice in the 21st century so far.

2σ Extremes Anomalies wrt. 1961–1990 Anomalies wrt. 1851–1880

1850–1899 491 466

1900–1949 489 481

1950–1999 371 447

Total 20th century 860 928

Total 21st century 1483 1431

Table 1.1: Number of 2σ extremes for different climatological periods. Number of summer
months with extreme anomalies with respect to the evolving decadal mean climate
simulated by the 100-member MPI-GE during different periods, for anomalies
calculated with respect to the 1961–1990 climatological average versus for anomalies
calculated with respect to the 1851-1880 average.

The increase in extreme events with respect to the evolving decadal mean cli-

mate does not occur homogeneously over Europe. We find a maximum increase in

the number of 2σ extreme events of more than 100% over Central Eastern Europe,

accompanied by a lower increase of 50-100% over most of the central part of the

continent. On the other hand, some Southern and Northern European regions show

a moderate decrease in extreme events with respect to mean climate conditions of

less than 25% (Fig. 1.1b). But not only do extreme events with EuSTs above the 2σ

threshold occur more often over most of Europe in the 21st century; these events

also exhibit larger deviations from the mean decadal climate than those under 20th

century conditions, due to an increase in EuST variability. The change in variabil-

ity, illustrated by changes in the width of the EuST distribution, exhibits a similar

pattern to the change in the number of extreme events (Fig. 1.1c). By the end of

the 21st century, we find a maximum increase in summer temperature variability of

35% over Central Eastern Europe; while other Southern and Northern regions present

no substantial change to a slight decrease compared with early 20th century conditions.
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Figure 1.1: Change in European heat extremes and variability. (a) Time series of simulated
EuST anomalies for the period of 1850–2099. MPI-GE simulations (orange) are
compared to CRUTEM4 observations of EuST anomalies (black and white crosses)
for the period 1850–2017.Extreme EuST 2σ events (orange dots) are defined as
simulated EuST anomalies that deviate from the decadal mean climate state by
more than two EuST pre-industrial standard deviations (moving threshold; dashed
red line). The decadal mean climate state is defined by the 10-year running ensemble
mean (thick red line). The CRUTEM4 EuST anomalies that exceed the 2σmoving
threshold are highlighted in black. (b) Relative change in number of local 2σ
extreme EuST events during the 21st century (2000–2099) relative to the 20th century
(1900–1999). (c) Relative change in variability based on change in EuST probability
density distribution width (2.5th–97.5th percentiles) for early 20th century (1900–
1929) compared to late 21st century (2070–2099) for each grid cell. Stippling shows
significance for late 21st century PDF widths larger (or smaller) than all the possible
30-year PDFs in the 20th century. Simulations are historical runs for the period 1850–
2005 and RCP4.5 runs for the period 2006–2099 from the MPI-GE. All anomalies are
calculated with respect to the period of 1961–1990. Spatially averaged temperatures
are calculated for the land points in the [10◦W–50◦E, 35–68◦N] domain.
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Using MPI-GE we find variability changes that are comparatively smaller and

constricted to smaller regions than those found from standard deviation change assess-

ments in multi-model ensembles (Schär et al., 2004; Fischer and Schär, 2009; Fischer

et al., 2012). Note that these previous studies were based on higher forcing scenarios

more comparable to RCP8.5 than to RCP4.5 (namely SRES A2 and A1B), and that they

use the same climatology period to calculate temperature anomalies, 1961–1990, as

period of reference to calculate changes in variability, which leads to an underestim-

ation of the variability in the reference period (Supplementary Information; SI Fig.

S.1). To avoid this artificial increase in variability we use the period of 1900–1929 as

reference for variability changes. As long as the reference period does not overlap

with the period used to define the climatology baseline, choosing a different 30-year

reference period in the 20th century does not substantially alter our results (SI Fig. S.1).

1.4.2. Drivers of variability in European heat extremes

To understand the background conditions that lead to heat extremes and which

mechanisms dominate the variability of extreme summer temperatures over Europe,

we develop a multiple regression model based on the variables describing the large-

scale dynamic atmospheric state (Z500, SLP) and local thermodynamical effects of

moisture availability (SM, EVP) as predictors of extreme EuSTs, as well as the annual

global mean surface temperature (GMST). Using this novel approach, we can account

for up to 90% of the extreme EuST variability. Fig. 1.2 shows the results of our multiple

regression analysis, with the point-to-point standardized regression coefficients for

each of these predictors. The standardized regression coefficient refers the power of

each predictor to affect EuSTs, and illustrates the change in EuST in standard devi-

ations (σ) driven by a change of one standard deviation in the predictor when all other

predictors are held constant.

We find that Z500 is the multiple regression predictor that presents the strongest

relation to extreme summer temperatures, with 1σ deviations in Z500 driving above

1.2σ deviations in temperature over Northern Europe and slightly less southward. The

decrease over Southern Europe may arise from the competing effects of thermodynam-

ical drivers over this region; however it may also arise from the fact that the blocking

centers over southern Europe are not necessarily colocated over the center of maximum

temperatures, but are shifted westwards due to advection of warm air (Pfahl, 2014),

decreasing the Z500-EuST point-to-point regression coefficient in this region. The high

Z500-EuST regression coefficient, combined with the fact that geopotential height at

the 500 hPa level remains mostly independent from surface temperature conditions,

indicates that large Z500 anomalies and their associated persistent blocking events are
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the main individual driver of extreme summer temperature variability over Europe in

MPI-GE.

In contrast, the other atmospheric variable considered, SLP, presents a regression

coefficient to temperature that is slightly lower than for Z500, and negative. Although

the notion that temperatures are higher where SLP is lower may appear counterintuit-

ive, it relates to the fact that the peak temperatures are generally not reached where

the centre of the high pressure system is located, but rather westwards from this point,

where advection of warm air is strongest. In this way, although high-pressure systems

are the driver of the anticyclonic conditions that cause high summer temperatures,

the highest temperature anomalies would tend not to occur over the points with the

highest SLP anomalies, causing this negative relation. Additionally, SLP does not

remain as unaffected by the surface conditions as Z500, and part of this negative

relation may also appear as a response to the high surface temperatures causing a local

low-pressure area. This may occur over regions where intense surface temperatures

cause the heating of the air in the lower atmosphere above, resulting in air that is

less dense than the air in the neighboring regions and tends to rise, generating a

local low-pressure area or thermal low. Our monthly-mean based analysis cannot

completely disentangle the driver and response relations between SLP and high tem-

peratures. However, the fraction of explained EuST variance drops substantially when

SLP is excluded from the multiple regression model, demonstrating that SLP plays

a relevant role in characterizing the background conditions leading to heat extremes,

and in explaining part of the EuST variability. Our results indicate that the large-scale

dynamical mechanisms combining the effects of Z500 and SLP are the dominating

driver of extreme European summer temperature variability.

On the other hand, the local thermodynamical effects of moisture limitation also

play a significant, albeit smaller, role explaining extreme summer temperature vari-

ability. SM exhibits a negative regression coefficient that is significant mainly only

over Northern-Central Europe, where a 1σ decrease in SM corresponds to a maximum

increase in temperature of 0.5σ. However, comparable to the case of SLP, it is also not

directly clear whether the SM-EuST relation indicates limited moisture availability

as a driver of extreme temperatures, or whether soil moisture becomes limited as a

response to the high temperatures. Limited moisture availability can therefore be con-

sidered a driver of high temperatures only when evapotranspiration remains low, and

considered a response when otherwise, although it remains challenging to disentangle

these two processes on monthly timescales.
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The distinction between driver and response to high temperatures is more straight-

forward in the case of EVP. The negative EVP-EuST relation is slightly larger than for

SM, and significant only over Southern Europe, where limited moisture conditions

are commonplace. We find that a 1σ negative anomaly in EVP leads to an increase

in temperature from 0.25σ to 1σ. This negative EVP-EuST relation indicates that

less water is evaporated into the atmosphere when high temperatures occur. This

process can only be triggered by limited moisture availability that limits the amount of

evapotranspiration. Under this limited moisture conditions less radiative energy is

then transformed into latent heat, increasing the amount of energy available for surface

heating and increasing temperature, indicating EVP as a driver of extreme EuSTs over

this region. By contrast, in the case of the smaller positive EVP-EuST relation over

Northern Europe, the typically large moisture reservoirs in the soil and vegetation

over this region result in larger positive EVP anomalies that occur as a response to

high temperatures.

Lastly, we include GMST as predictor accounting for the global warming trend

and to avoid a spurious increase in the regression coefficients of predictors that also

exhibit a similar trend. GMST presents a slightly positive relation to extreme EuSTs,

which increases around twofold during the 21st century. This increase derives from

EuSTs closely following and contributing to the increasing trend in global temperat-

ures, but we have found no indication that anomalously warm years globally result in

higher European summer temperatures (Suarez-Gutierrez et al., 2018).

In contrast to the 90% explained EuST variability and fraction of unexplained vari-

ance mostly under 0.1 in the full multiple regression model, we find that performing

the same multiple regression analysis but considering only dynamical drivers, Z500

and SLP, as predictors leads to an overestimation of the relations of these predictors to

extreme temperatures, while explaining only around 60% of the EuST variability (Fig.

1.3, left column). On the other hand, a multiple regression model with only SM and

EVP as drivers of extreme EuSTs leads to a more than twofold overestimation of their

relation to extreme temperatures, as well as the area of significance of this relation,

while only explaining about 25% of the EuST variability (Fig. 1.3, right column). These

results highlight the importance of considering both dynamical and thermodynamical

sources of variability simultaneously in order to understand which driving mechan-

isms dominate the variability in EuSTs and to account for the effect of multicollinearity

between the different drivers.
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20th Century 21st Century

Figure 1.2: Standardized regression coefficients from multiple regression analysis. Point-to-
point standardized regression coefficients between 2σ extreme EuST and different
drivers from multiple regression analysis for the 20th century (left column) com-
pared to for the 21st century (right column). Hatching represents regions where the
variable is excluded from the regression model either because its contribution is
not significant or because it exhibits too high multicollinearity with the remaining
predictors in the model.
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Dynamic Drivers Thermodynamic Drivers

Figure 1.3: Regression coefficients from multiple regression analysis for each set of drivers.
Point-to-point standardized regression coefficients for the 21st century from mul-
tiple regression analysis between 2σ extreme EuST and large-scale dynamical
drivers only (left column) and between 2σ extreme EuST and local thermodynam-
ical drivers only (right column). Hatching represents regions where the variable is
excluded from the regression model either because its contribution is not significant
or because it exhibits too high multicollinearity with the remaining predictors in
the model. The last row represents the fraction of unexplained variance in EuST
remaining for each multiple regression model.

Our results indicate that the large-scale dynamical atmospheric conditions, com-

bining the effects of geopotential height at 500 hPa and sea level pressure, are the

dominating factor driving extreme European summer temperature variability. By

contrast, the local thermodynamical effects caused by limited moisture availability,

particularly relevant over Southern and Central Europe, play a secondary role in ac-

counting for this variability. Regarding how these relations may change with warming,

we find only minor changes in either the strength or the pattern of the relations of the

driving mechanisms with extreme temperatures with warming, with the exception

of GMST. These changes include a slight decrease in the regression coefficient to the
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dynamical drivers over Southern Europe, and a slight northward expansion of the

area where evapotranspiration acts as a significant driver.

1.4.3. Drivers of variability change in European heat extremes

The multiple regression analysis in the previous section is a useful tool to quantify

the contribution from each driver to the total variability in large samples of EuST

extremes. However, it does not allow us to robustly identify the dominating driver

of the EuST variability change, because both the strength and pattern of the relation

between extreme temperatures and their main driving mechanisms under warming

exhibit only minor changes. To explain which mechanisms drive the increase in ex-

treme temperature variability and the 70% increase in extreme temperature events

with respect to the changing mean climate during the 21st century, we evaluate how

often extreme temperature events occur under extreme atmospheric conditions as

opposed as to under extreme moisture limitation, in past compared to future climate

conditions.

Extreme 2σ EuST events occur most often, up to 75% of the cases, accompanied

by extreme Z500 anomalies, particularly over Northern Europe (Fig. 1.4, top row).

During the 21st century this frequency decreases to under 25% in most of Central

Europe, while increasing in some Mediterranean regions. On the other hand, we find

that during the 20th century fewer than 25% of the extreme EuST events occur under

limited moisture conditions of low SM and EVP; while increasing to up to 50% by the

end of the 21st century (Fig. 1.4, bottom row). The area of this maximum increase

corresponds with the area where we find the largest increase in temperature extremes

and variability, and also with the high moisture variability transition zone between dry

climate conditions to the south — where commonplace moisture limitation constrains

evapotranspiration — and wetter climate conditions to the north — with large moisture

reservoirs and where evapotranspiration is limited by radiation (Koster et al., 2009;

Fischer et al., 2012). We find that although most extreme EuST events develop under

extreme Z500 anomalies, an increasing number of heat extremes develop under neutral

atmospheric conditions in the 21st century; while up to 40% more of the extremes

develop under extreme moisture limitation.
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20th Century 21st Century Difference

Figure 1.4: Extreme temperatures under extreme atmospheric or moisture conditions. Per-
centage of extreme 2σ EuST events that exhibit simultaneous extreme atmospheric
conditions represented by 2σ extreme Z500 positive anomalies (top row) during
the 20th century (1900–1999; left column), during the 21st century (2000–2099;
middle column) and difference in this frequency in the 21st century minus in the
20th century (right column). Percentage of extreme 2σ EuST events that exhibit
simultaneous extreme moisture conditions represented by extreme 2σ extreme
negative EVP and SM anomalies (bottom row) during the 20th century (1900–1999;
left column), during the 21st century (2000–2099; middle column) and difference
in this frequency in the 21st century minus in the 20th century (right column).
Z500, SM and EVP extremes are defined as anomalies that deviate by more than
two standard deviations from the average preindustrial conditions in each driver,
defined for the period 1850–1899.

We analyze the specific atmospheric and moisture conditions during extreme

EuST events at grid cell level over the regions with large increases in EuST extremes

and find that the most extreme summer temperatures develop when both persistent

anticyclonic conditions and dryness occur, illustrated by high Z500 and low EVP

values respectively (Fig. 1.5). These results indicate that extreme temperature events

with respect to the mean climate state become more intense during the 21st century

under both extreme atmospheric conditions and limited moisture. However, by the

end of the 21st century we find that heat extremes develop more frequently as a result

of moisture limitation, even under neutral or unfavorable atmospheric conditions,

confirming the local thermodynamic effect of moisture limitation as the main driver of

the increasing 2σ summer temperature extremes over Europe.



28 DRIVERS OF INTERNAL VARIABILITY IN EUROPEAN SUMMER HEAT EXTREMES

Figure 1.5: Atmospheric and moisture conditions during extreme temperature events. Z500
against EVP absolute values during EuST extreme events for the early 20th century,
period 1900–1929 (a), and for the late 21st century, period 2070–2099 (b) for each
grid cell with an increase in extreme EuST events during the 21st century of 50% or
larger. Each point represents one extreme event at grid cell level, defined for EuST
anomalies larger than the 2σ threshold for the given grid cell. The color gradient
represents the EuST anomaly for each event. Z500 and EVP represent absolute
values, with the thermal expansion effect removed from Z500.

1.5. Discussion

Our analysis is based on monthly mean values due to the temporal resolution lim-

itations in MPI-GE. The fact that key characteristic of the anticyclonic or dry conditions

that act as driving mechanisms of heat extremes is their persistency, makes their signal

still clearly identifiable on monthly values. However, we would ideally use hourly to

daily values to capture the amplitude and duration of extremes more precisely, and

to directly separate between the specific conditions causing heat extremes from those

occurring as a result to them. This is particularly relevant for mechanisms regarding

sea level pressure and soil moisture, that can both act as a driver of extremes and result

as a response to high temperatures. Although our results agree with the theoretical

understanding of how heat extremes develop, it remains challenging to disentangle

cause and effect processes on monthly timescales.

The distinction between cause and effect can be partly achieved by applying a

multiple regression model that includes all potential sources of variability and that

is based on large enough samples of heat extremes. This method quantifies the in-

ternal variability in the response of temperature to different background conditions,
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and can to some extent separate conditions that are necessary to the development of

extremes from those that may be circumstantial. Using a multiple regression analysis

also allows us to account for the multicollinearity effect of different drivers on each

other. This multicollinearity refers to one or more of the drivers, additionally to having

an effect on temperature, having also an intensifying or counteracting effect on the

other drivers. Multicollinearity is inherit to the highly complex climate system and

cannot be simply removed; but its effect on our analysis can be reduced. To avoid an

inflation of the explained variability due to high multicollinearity we exclude from

our multiple regression model variables with a variance inflation factor of more than

10. More conservative multicorrelation thresholds may eliminate relevant variables

from the model and lead to spurious or less robust results, but do not substantially

influence our conclusions (SI Fig. S2)

To achieve the best combination of predictors for our multiple regression model,

we evaluated several other variables representing the main driving mechanisms. For

representing the large-scale dynamic drivers we additionally evaluated 850 hPa geo-

potential height (Z850) and North Atlantic jet stream position. First, Z850 presents a

strong relation with EuST in MPI-GE, however it also exhibits high correlation with

Z500 and SLP. This high multicollinearity with the other atmospheric variables leads

to the exclusion of Z850 from the multiple regression model in the majority of the

domain when Z500 and SLP are included as predictors. On the other hand, excluding

SLP and, especially, Z500 to include Z850 instead results in a substantial decrease in

explained EuST variance. Second, the North Atlantic jet stream position, represented

as the latitude where the monthly-average zonal wind maxima occur, exhibits only a

minor relation to extreme EuSTs in MPI-GE. Including jet stream position as predictor

in the model has only a minor effect on the explained EuST variance. For representing

the effects of moisture limitation we also considered soil moisture fraction in the month

preceding the extremes as predictor. However, similarly to the case of Z850, this lagged

predictor exhibits too high collinearity to SM in the extreme month, while explaining

less of the EuSTs variance.

Another potential caveat of our approach is the limitation to point-to-point re-

lations in the multiple regression analysis, that may lead to an underestimation of

non-local effects, particularly relevant for of large-scale drivers. This is to some extent

counteracted by the use of monthly averages of the dynamic atmospheric conditions

as predictors. However, it is possible that the contribution from large-scale dynamical

drivers, that we find dominates extreme European summer temperature variability,

is still underestimated in our study due to an underrepresentation of their non-local
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contribution to extreme temperatures.

Our results highlight the relevant role that internal variability plays in the de-

velopment of heat extremes in a warming world. To quantify the role of the main

mechanisms driving extreme summer temperatures, we need to understand to what

extent internal variability influences the development of heat extremes under different

background conditions. Large ensemble experiments like MPI-GE are a great tool

for this purpose, because they provide large samples of extreme events that develop

under different background conditions, but under the same external forcings and

model physics. However, basing our analysis on large ensembles of simulations with

the same climate models implies that the results and conclusions drawn from this

analysis may be subject to the flaws and uncertainties inherent to any single-model

study. Our conclusions on how different driving mechanisms contribute to heat ex-

tremes and changes in temperature variability are characterized by how the different

driving mechanisms perform and affect temperatures in MPI-ESM. This may occur

differently in different climate models, and there is valuable knowledge to be gained

from repeating this analysis on other large ensemble experiments.

In particular, the thermodynamic effect of moisture availability as a driving mech-

anism of simulated heat extremes is affected by the soil hydrology scheme included

in the model. Although the 5-layer scheme in MPI-GE represents an improvement

with respect to previous versions of MPI-ESM, biases in soil moisture memory may

remain. Also the location of the transition zone between wet and dry climates may

vary in different models, causing differences on where the maximum increase in 2σ

extremes occurs as a response to high moisture variability leading to extremely dry

conditions. However, our conclusions are supported by robust evidence of a trend

towards dryer summer conditions over Europe (Briffa et al., 2009; Ruosteenoja et al.,

2018; Spinoni et al., 2018), and of a poleward shift in the transition zone, where mois-

ture is highly-variable, that can affect temperature variability under global warming

(Seneviratne et al., 2006; Fischer et al., 2012).

On the other hand, there is no clear evidence of whether the blocking and anticyc-

lonic conditions that act as dynamical large-scale driving mechanism of heat extremes

will occur with more or less frequency in the future (Woollings et al., 2018). While some

studies find significant positive trends in the frequency of anticyclonic circulations

(D. E. Horton et al., 2015); most climate models show a decline in blocking conditions

with relatively good agreement (Matsueda and Endo, 2017; Woollings et al., 2018).

However, the atmospheric circulation over Europe is not realistically captured by most

climate models. Climate models tend to consistently underestimate the occurrence and
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persistency of blocking events compared to observed estimates (Davini and D’Andrea,

2016), a tendency that is also shown by MPI-ESM (Müller et al., 2018). Despite these

potential biases, the relationship between blocking and heat extremes is often well

captured by models, particularly in large ensemble experiments (Schaller et al., 2018).

This indicates that, although the effect of blocking as a driver of heat extremes may

be well captured in MPI-GE, a biased representation of blocking conditions or its

future occurrence may cause biases in the frequency or the intensity of heat extremes

in MPI-GE. If this were the case, more frequent blocking conditions could lead to a

larger increase of extreme events under future warming, additionally to the increasing

number of extremes that occur under unfavorable atmospheric conditions due to the

effect of moisture limitation.

Regardless of the potential limitations of our study, we demonstrate that to obtain

robust quantifications of the contributions from different drivers of heat extremes, we

need to account for the complex multicollinearity between these driving mechanisms,

and this can only be achieved by considering all sources of variability simultaneously.

We also demonstrate that the main driver of variability in European summer temperat-

ures may be different from the dominant driver of variability change, and that large

samples of extreme events like those provided by large ensemble experiments are

crucial to detect and understand these changes.

1.6. Summary and Conclusions

We use the 100-member MPI Grand Ensemble to disentangle the contributions

from large-scale dynamic atmospheric conditions and local thermodynamic effects

of moisture limitation as drivers of variability in large samples of European summer

heat extremes. Using a novel extreme event definition we find a 70% increase in heat

extremes with respect to the evolving decadal climate during the 21st century. This

extreme event characterization allows us to study changes in the number of extremes

not only caused by the shift in the distribution towards higher temperatures, but by

changes in temperature variability that result from changes in the underlaying driving

mechanisms of heat extremes. The increase in extremes reaches maximum values

of more than 100% in central Eastern Europe, where summer temperature variab-

ility increases by 35% in the MPI-GE. In agreement with previous studies (Fischer

and Schär, 2009; Fischer et al., 2012; Bathiany et al., 2018), our results indicate that

summer temperature variability is increasing under global warming over some parts

of Europe. This increase in variability results on temperature extremes that present

larger deviations from the mean average conditions, thus contradicting the assumption



32 DRIVERS OF INTERNAL VARIABILITY IN EUROPEAN SUMMER HEAT EXTREMES

that European summer extreme temperatures mostly follow mean summer warming

(Ballester et al., 2009; Ballester et al., 2010).

With a multiple regression approach we find that the large-scale dynamical mech-

anism representing blocking and anticyclonic conditions is the main driver of vari-

ability in extreme European summer temperatures in MPI-GE, both under past and

future climate conditions. In particular, we find that 500 hPa geopotential height is

the dominating individual driver of extreme temperature variability, especially over

Northern Europe. On the other hand, local thermodynamic drivers play a second-

ary role in explaining total extreme temperature variability. Furthermore, we find

that considering both sources of variability simultaneously is crucial to understand

extreme temperature variability. Assessing the contribution from only one type of

drivers can explain much less of the extreme temperature variability and leads to an

overestimation of the effect of the drivers on extreme temperatures, particularly when

considering only the local thermodynamical drivers.

Our results also show that the dynamical atmospheric mechanisms that act as

dominant driver of extreme summer temperature variability are not the dominant

driver of variability change. We find that most European summer heat extremes occur

under extreme 500 hPa geopotential height conditions, and that the most extreme sum-

mer temperatures develop when both persistent anticyclonic conditions and dryness

occur. However, we find that heat extremes develop 40% more frequently as a result of

moisture limitation during the 21st century, even under neutral or unfavorable atmo-

spheric conditions, confirming that the increase in European summer heat extremes

with respect to the evolving decadal climate is driven by the the local thermodynamic

effect of moisture limitation.



CHAPTER 2

INTERNAL VARIABILITY OF
EUROPEAN SUMMER
TEMPERATURES AT 1.5◦C AND 2◦C OF
GLOBAL WARMING

2.1. Summary

We use the 100-member Grand Ensemble with the climate model MPI-ESM to

evaluate the controllability of mean and extreme European summer temperatures with

the global mean temperature targets in the Paris Agreement. We find that European

summer temperatures at 2◦C of global warming are on average 1◦C higher than at

1.5◦C of global warming with respect to pre-industrial levels. In a 2◦C warmer world,

one out of every two European summer months. would be warmer than ever observed

in our current climate. Daily maximum temperature anomalies for extreme events

with return periods of up to 500 years reach return levels of 7◦C at 2◦C of global

warming and 5.5◦C at 1.5◦C of global warming. The largest differences in return levels

for shorter return periods of 20 years are over southern Europe, where we find the

highest mean temperature increase. In contrast, for events with return periods of

over 100 years these differences are largest over central Europe, where we find the

largest changes in temperature variability. However, due to the large effect of internal

variability, only four out of every ten summer months in a 2◦C warmer world present

mean temperatures that could be distinguishable from those in a 1.5◦C world. The

distinguishability between the two climates is largest over Southern Europe, while

decreasing to around 10% distinguishable months over Eastern Europe. Furthermore,

we find that 10% of the most extreme and severe summer maximum temperatures in a

2◦C world could be avoided by limiting global warming to 1.5◦C.

33
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2.2. Introduction

Recent decades have been marked by an increasing number of extremely warm

summers over the European continent (Schär et al., 2004; Christidis et al., 2014), and

this rising tendency, largely attributed to anthropogenic climate change, is expected to

be accentuated under further global warming (Stott et al., 2004; Meehl and Tebaldi,

2004; Christidis et al., 2014; Vautard et al., 2014). In the framework of the Paris Agree-

ment, it is crucial to evaluate which of the risks and impacts of climate change would

be reduced by limiting global warming to 1.5◦C (hereafter 1.5◦C target) in contrast to

by limiting warming to 2◦C (hereafter 2◦C target). Here we examine to what extent

the most extreme European summer temperatures at 2◦C of global warming could be

avoided in a 1.5◦C warmer world. In other words, we examine to what extent extreme

European summer temperatures could be controlled by limiting global warming to the

global mean temperature limits of the Paris Agreement. To evaluate the controllability

of European summer temperatures with global mean temperature limits, it is necessary

to robustly characterize the irreducible uncertainty that arises from chaotic internal

variability (Sriver et al., 2015; Hawkins et al., 2016). For this purpose, we use a state-of-

the-art tool to sample internal variability: the 100-member Max Planck Institute Grand

Ensemble (MPI-GE) (Bittner et al., 2016; Hedemann et al., 2017; Suarez-Gutierrez et al.,

2017; Maher et al., 2019).

Summer monthly mean and daily maximum temperatures at 2◦C of global warm-

ing are projected to become around 1◦C higher over Europe than at 1.5◦C of warming

(Schleussner et al., 2016; Perkins-Kirkpatrick and Gibson, 2017; King and Karoly, 2017;

Sanderson et al., 2017). Sanderson et al. (2017) and Wehner et al. (2017) also find

differences of around 1◦C between 20-year return levels of maximum temperatures at

1.5◦C versus at 2◦C of global warming. These studies are based on climate modelling

experiments of different nature: the Coupled Model Intercomparison Project phase

5 (CMIP5) multi-model ensemble (Schleussner et al., 2016; Perkins-Kirkpatrick and

Gibson, 2017; King and Karoly, 2017), and ensemble-experiments such as the Half a De-

gree Additional warming, Prognosis and Projected Impacts project (HAPPI; Mitchell

et al., 2017) atmosphere-only runs (Wehner et al., 2017), and the Community Climate

10-member CESM1 ensemble (Sanderson et al., 2017).

A key factor in evaluating the differences between the climates for the two targets

is to consider the magnitude of the response in the Earth’s climate to half a degree

more of warming relative to the signal of internal variability. For this purpose, large

ensembles of simulations based on the same coupled climate models (like the experi-

ments described in Deser et al., 2012; Kay et al., 2015; Rodgers et al., 2015; Fyfe et al.,
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2017; Sanderson et al., 2017 and Suarez-Gutierrez et al., 2017) are the best available

tools, because they provide unambiguous characterizations of the simulated internal

variability in a changing climate without being confounded by different model config-

urations. MPI-GE has 100 independent realizations, which start from different times

of a pre-industrial control run but are driven by the same external forcings, and is

currently the largest existing ensemble from a fully-coupled Earth System Model. The

large size of the ensemble is a crucial requirement to robustly sample internal variabil-

ity and to empirically evaluate the statistical significance of changes. An ensemble size

of 100 simulations under the same forcing conditions allows 1-in-100-years events to

occur on average every simulated year, which provides the large samples of extreme

events under different warming conditions that are necessary for the purpose of our

study.

We use MPI-GE simulations not only to evaluate average changes in summer

monthly mean, block maximum, and extreme temperatures, but also to quantify the

irreducible uncertainty in European summer temperatures that arises through internal

variability. We evaluate the controllability of European summer temperatures with

global temperature targets by quantifying the distinguishability of European summer

months at 2◦C of global warming with respect to those in a 1.5◦C warmer world. We

also quantify for the first time changes in the magnitude of extreme summer temperat-

ure events with return periods of up to 500 years.

2.3. Data and Methods

We use transient climate simulations from the 100-member MPI-GE under his-

torical, RCP2.6 and RCP4.5 forcing conditions. The Grand Ensemble uses the model

version MPI-ESM1.1 in the low resolution (LR) configuration, with resolution T63 and

47 vertical levels in the atmosphere (Giorgetta et al., 2013) and 1.5◦resolution and 40

vertical levels in the ocean (Jungclaus et al., 2013). MPI-ESM has an equilibrium climate

sensitivity of 2.8◦C and a transient climate response of 1.57◦C, values that are slightly

below the values for the CMIP5 version of MPI-ESM (Flato et al., 2013). Each of the 100

realizations in the ensemble is based on the same model physics and parametrizations,

and is driven by the same external forcings. The realizations differ only in their initial

climate state, taken from different points of the model’s pre-industrial control run.

MPI-ESM-LR has a relatively low resolution, comparable to most of the mod-

els in the CMIP5 experiment, which can influence the model’s ability of simulating

small-scale processes and affect the reliability of our projections. However, we find
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that MPI-GE offers an adequate representation of the observed estimate of internal

variability in global mean temperatures and European summer temperatures. The

evaluation of MPI-GE in Appendix C indicates a slight overestimation of the frequency

of colder than average summer months in the ensemble simulations that may be

partially caused by biases in precipitation variability (Appendix Figures A.4, A.5 and

A.6). Observational data from the HadCRUT4.5 (Morice et al., 2012; Osborn and Jones,

2014) and the CRUTEM4.6 (Jones et al., 2012) datasets are used for comparisons to

current climate conditions.

Global mean surface temperature (GMST) is defined as the annually averaged,

global mean, near-surface 2m air temperature anomaly. European monthly mean

summer temperature (EuST) is defined as the monthly averaged 2m air temperature

anomaly for the summer months (JJA), averaged over the land-only grid cells in the

region defined by the [10◦W–50◦E, 35–60◦N] latitude-longitude domain. Ideally, we

would use daily temperatures to capture the amplitude of internal variability more

precisely. However, monthly frequency is the highest output frequency in the Grand

Ensemble simulations. We also use the summer maximum value of daily maximum

temperature (EuSTXx) as the block maximum temperature anomaly reached each

summer at each grid cell averaged over the land-only grid cells in the same domain.

All anomalies are calculated with respect to the pre-industrial conditions defined by

the period 1851–1880. Observed temperature anomalies are transformed to anomalies

with respect to pre-industrial levels following the estimates in Hawkins et al. (2017).

We construct representative samples of the quasi-stationary climate conditions at

1.5◦C and 2◦C of global warming from transient climate simulations with a time-slice

method that is similar to the methods used in Schleussner et al. (2016) or King and

Karoly (2017). We select years of 0◦C, 1.5◦C, and 2◦C of global warming with respect to

pre-industrial levels from all historical, RCP2.6, and RCP4.5 100-member simulations

from MPI-GE. Global mean temperatures deviate from the long-term mean state on

year-to-year timescales due to the effect of internal variability. Therefore, we calculate

centered decadal-averaged GMST to robustly define global warming levels. We define

years of 0◦C of global warming as those years in which the centered decadal-averaged

GMST is in the range of 0◦C plus-minus one standard deviation of GMST, 0.13◦C.

Similarly, for 1.5◦C and 2◦C of global warming above pre-industrial levels we select

years in which the centered decadal-averaged GMST is in the range of 1.5±0.13◦C and

2±0.13◦C, respectively.

Based on this assumption of quasi-stationarity, we are able to calculate well-

defined return levels of maximum daily temperature anomalies for extreme events
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2.4.1. European summer monthly mean temperatures

The empirical probability distributions of GMST for the years selected from the

Grand Ensemble simulations show that the three samples describing pre-industrial

climate conditions and the climates for the two targets are significantly distinguishable

from each other (Figure 2.2a). The distribution of GMST for pre-industrial conditions,

with a width of around 0.9◦C, presents no overlap with either the 1.5◦C or the 2◦C

distributions. The two target distributions overlap over 5% of their area and have a

width of around 1◦C. Using a narrower range in decadal-averaged GMST for defining

each climate reduces the sample size of the distributions, but does not substantially

influence our results.

Whereas the climates for the two warming targets are distinguishable at the global

level, European summer temperatures have substantially larger internal variability

than global mean temperatures. The probability distributions of summer monthly

mean temperature anomalies for the selected years describing the two target climates

present a width more than four times larger than the GMST distributions (Figure 2.2b).

In contrast to the GMST distributions, and due to the large influence of internal variab-

ility, all three distributions of European summer temperatures for different warming

levels present some fraction of areal overlap. This overlap is largest when comparing

the two target climates, with a 60% areal overlap between the EuST probability distri-

butions at 1.5◦C and at 2◦C.

With respect to the relative GMST distributions, the EuST distributions for both

warming targets are also shifted towards higher mean temperature anomalies. The

probability distribution of EuST is centered around 2◦C anomalies at 1.5◦C of global

warming, and for 2◦C of global warming is centered around anomalies of 3◦C, indicat-

ing a pattern of regional amplification of global warming over Europe that is in line

with previous expectations (IPCC, 2013).

The two highest observed European summer monthly mean temperatures in July

2010 and August 2017 are marked in Figure 2.2b for comparison, as well as the value for

August 2003. The estimates for 2003 and 2017 are comparable to the average European

summer month in a 1.5◦C warmer world, and also comparable to summer months in

the upper tail of the pre-industrial distribution. This result is consistent with previous

findings that project the 2003 summer temperatures to become commonplace around

the 2040s (Stott et al., 2004). On the other hand, the 2010 value is comparable to the

average summer month in a 2◦C warmer world. This result indicates that, under 2◦C

of global warming, every other European summer month would be warmer than the
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Figure 2. Probability distributions at di↵erent global warming levels. (a)

Probability distribution of global mean surface temperature (GMST) anomalies for

pre-industrial conditions (gray), and for global warming levels of 1.5�C (orange) and

2�C (red) above pre-industrial levels, simulated by the MPI-ESM Grand Ensemble.

The shaded areas indicate the range of ± one standard deviation of GMST around

the mean state of 0�C (gray), 1.5�C (orange) and 2�C (red). Each distribution

has a sample size of around 3000 simulated years. The black reference line marks

the observed decadal-average GMST anomaly for 2008-2017 from HadCRUT4 data.

(b) Probability distribution of European monthly mean summer temperature (EuST)

anomalies for pre-industrial conditions (gray), and for global warming levels of 1.5�C
(orange) and 2�C (red) above pre-industrial conditions, as in (a). Each distribution

has a sample size of around 9000 summer months. The black reference lines mark the

observed EuST monthly mean anomaly for August 2003, August 2017 and July 2010

from CRUTEM4 data. Bin size is 0.075�C; frequencies are normalized to unity and

translated to percentage.
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global mean temperatures. The probability distributions of summer monthly mean tem-
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Figure 2. Probability distributions at di↵erent global warming levels. (a)

Probability distribution of global mean surface temperature (GMST) anomalies for

pre-industrial conditions (gray), and for global warming levels of 1.5�C (orange) and

2�C (red) above pre-industrial levels, simulated by the MPI-ESM Grand Ensemble.

The shaded areas indicate the range of ± one standard deviation of GMST around

the mean state of 0�C (gray), 1.5�C (orange) and 2�C (red). Each distribution

has a sample size of around 3000 simulated years. The black reference line marks

the observed decadal-average GMST anomaly for 2008-2017 from HadCRUT4 data.

(b) Probability distribution of European monthly mean summer temperature (EuST)

anomalies for pre-industrial conditions (gray), and for global warming levels of 1.5�C
(orange) and 2�C (red) above pre-industrial conditions, as in (a). Each distribution

has a sample size of around 9000 summer months. The black reference lines mark the

observed EuST monthly mean anomaly for August 2003, August 2017 and July 2010

from CRUTEM4 data. Bin size is 0.075�C; frequencies are normalized to unity and

translated to percentage.

level, European summer temperatures have substantially larger internal variability than

global mean temperatures. The probability distributions of summer monthly mean tem-
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Figure 2.2: Probability distributions at different global warming levels. (a) Probability dis-
tribution of global mean surface temperature (GMST) anomalies for pre-industrial
conditions (gray), and for global warming levels of 1.5◦C (orange) and 2◦C (red)
above pre-industrial levels, simulated by MPI-GE. The shaded areas indicate the
range of ± one standard deviation of GMST around the mean state of 0◦C (gray),
1.5◦C (orange) and 2◦C (red). Each distribution has a sample size of around 3000
simulated years. The black reference line marks the observed decadal-average
GMST anomaly for 2008-2017 from HadCRUT4 data. (b) Probability distribution
of European monthly mean summer temperature (EuST) anomalies as in (a). Each
distribution has a sample size of around 9000 summer months. The black ref-
erence lines mark the observed EuST monthly mean anomaly for August 2003,
August 2017 and July 2010 from CRUTEM4 data. Bin size is 0.075◦C; frequencies
are normalized to unity and translated to percentage.

warmest summer month on record in current climate conditions; while the other half

of European summer months in a 2◦C world would be more similar to current climate

conditions. However, the 60% of areal overlap between the two target distributions

indicates that less than half of the European summer months in a 2◦C world, four

months out of every ten, would be distinguishable from those in a 1.5 ◦C world.

Figure 2.3 illustrates these results locally, presenting differences in mean temper-

atures and in temperature variability as well as distinguishability between the two

warming limits per grid cell. Mean temperature differences are around 1◦C, consist-

ent with the results shown by King and Karoly (2017) and Sanderson et al. (2017),
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and largest over the Mediterranean region (Figure 2.3e). However, the temperature

variability, measured as the width of the local probability distributions between the

97.5th and 2.5th percentiles, is very large over these regions (Figure 2.3b, d). This

irreducible spread caused by internal variability of up to 10◦C is much larger than the

average temperature changes. However, the change in variability in European summer

temperatures is relatively small in comparison with the mean temperature changes

and is localized over central-northern Europe (Figure 2.3f). This pattern of change

in variability, shown here as the difference in spread, is also present when variability

changes are portrayed as ratios (Supporting Figure S.3 in Appendix D).

Figures 2.3g and 2.3h show how often European summer months at 2◦C of global

warming could be distinguishable from those at 1.5◦C of warming for each grid cell.

We define the distinguishability between the two target climates as the percentage of

summer months in a 2◦C world that could not be part of the temperature distribu-

tion of the 1.5◦C world. For Figure 2.3g, we base this estimate of distinguishability

between the two climates on the areal overlap between the two temperature distribu-

tions at grid-cell level. This distinguishability is largest over Southern Europe, with a

maximum of around 35% distinguishable summer months, and decreases to around

10% for Eastern Europe. We also include a second, more conservative measure of

distinguishability in Figure 2.3h, based on the percentage of summer months in a 2◦C

world that present EuSTs larger than the 95th percentile in the EuST distribution at

1.5◦C of warming. This measure of distinguishability yields values of around 5% to

20% months with distinguishable mean temperatures. For both measures, we find the

minimum distinguishability between the two climates over Eastern Europe, where

summer temperature variability is largest.
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a Mean temperature at 1.5�C b Temperature variability at 1.5�C

c Mean temperature at 2�C d Temperature variability at 2�C

e Mean temperature di↵erence f Temperature variability di↵erence

g Distinguishability (areal overlap) h Distinguishability (95th percentile)

Figure 3. Mean temperatures and temperature variability at di↵erent

global warming levels. (a) Average monthly mean temperature anomaly at 1.5�C
of global warming. (b) Spread in monthly mean temperature anomalies at 1.5�C of

global warming, measured as the di↵erence between the 97.5th and 2.5th percentiles.

(c) Average monthly mean temperature anomaly at 2�C of global warming. (d) Spread

in monthly mean temperature anomalies at 2�C of global warming, as in (b). (e)

Di↵erence in average monthly mean temperature anomaly at 2�C of global warming

minus at 1.5�C of global warming. (f) Di↵erence in the spread in monthly mean

temperature anomalies at 2�C of global warming minus at 1.5�C of global warming, as

in (b). (g) Summer months at 2�C of global warming with temperatures that could

be distinguishable from those at 1.5�C based on the areal overlap between the two

distributions. (h) Summer months at 2�C of global warming with temperatures that

could be distinguishable from those at 1.5�C based on the percentage of months at

2�C of warming above the 95th percentile in the 1.5�C distribution.

Figure 2.3: Mean temperatures and temperature variability at different global warming
levels. (a) Average monthly mean temperature anomaly at 1.5◦C of global warming.
(b) Spread in monthly mean temperature anomalies at 1.5◦C of global warming,
measured as the difference between the 97.5th and 2.5th percentiles. (c) Average
monthly mean temperature anomaly at 2◦C of global warming. (d) Spread in
monthly mean temperature anomalies at 2◦C of global warming, as in (b). (e) Dif-
ference in average monthly mean temperature anomaly at 2◦C of global warming
minus at 1.5◦C of global warming. (f) Difference in the spread in monthly mean
temperature anomalies at 2◦C of global warming minus at 1.5◦C of global warming,
as in (b). (g) Summer months at 2◦C of global warming with temperatures that
could be distinguishable from those at 1.5◦C based on the areal overlap between the
two distributions. (h) Summer months at 2◦C of global warming with temperatures
that could be distinguishable from those at 1.5◦C based on the percentage of months
at 2◦C of warming above the 95th percentile in the 1.5◦C distribution.
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in both target climates. 10-year return period events present values of around 3.5◦C in

a 1.5◦C warmer world and of around 5◦C in a 2◦C warmer world. This difference of

1◦C to 1.5◦C in return levels of extreme summer temperatures between the two target

climates is roughly maintained for increasingly longer return periods. For 500-year

return periods, we find return levels that reach values of almost 7◦C at 2◦C of global

warming and of around 5.5◦C at 1.5◦C of global warming. We reach similar results by

basing this analysis on the summer minimum value of daily minimum temperatures

(EuSTXn; Supporting Figure S.4 in Appendix D).

The differences between return levels for different return periods are not homo-

geneously distributed over Europe. 20-year return levels of EuTXx anomalies present

a maximum over south-eastern Europe and are generally largest in southern Europe

for both target climates (Figure 2.5a, b). The difference in 20-year return levels between

the two target climates is also largest in southern Europe, with values around 1.5◦C

(Figure 2.5c), overlapping with the region of largest mean temperature increase in

Figure 2.3e. Similarly, 100-year return levels also present a maximum over south-

eastern Europe (Figure 2.5d, e). In contrast to events with shorter return periods,

extreme events with return periods of 100 to 500 years (not shown) present differences

between the two target climates that are largest in central Europe, over the regions

where we find the largest increase in temperature variability in Figure 2.3f (Figure 2.5f).
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target climates. 10-year return period events present values of around 3.5�C in a 1.5�C

warmer world and of around 5�C in a 2�C warmer world. This di↵erence of 1�C to

1.5�C in return levels of extreme summer temperatures between the two target climates

is roughly maintained for increasingly longer return periods. For 500-year return peri-

ods, we find return levels that reach values of almost 7�C at 2�C of global warming and

of around 5.5�C at 1.5�C of global warming. We reach similar results by basing this

analysis on the summer minimum value of daily minimum temperatures (EuSTXn; SI

Figure S5).

a 20-year return levels at 1.5�C d 100-year return levels at 1.5�C

b 20-year return levels at 2�C e 100-year return levels at 2�C

c 20-year return level di↵erence f 100-year return level di↵erence

Figure 5. Return levels of summer block maximum daily temperatures at

di↵erent global warming levels. (a) Daily maximum temperature anomalies for

events with 20-year return periods at 1.5�C of global warming. (b) Daily maximum

temperature anomalies for events with 20-year return periods at 2�C of global warming.

(c) Daily maximum temperature anomalies for events with 20-year return periods

at 2�C of global warming minus at 1.5�C of global warming. (d) Daily maximum

temperature anomalies for events with 100-year return periods at 1.5�C of global

warming. (e) Daily maximum temperature anomalies for events with 100-year return

periods at 2�C of global warming. (f) Daily maximum temperature anomalies for

events with 100-year return periods at 2�C of global warming minus at 1.5�C of global

warming.

EuSTXx Anomaly (ºC) 

EuSTXx Anomaly (ºC) EuSTXx Anomaly (ºC) 

EuSTXx Anomaly (ºC) EuSTXx Anomaly (ºC) 

EuSTXx Anomaly (ºC) 

Figure 2.5: Return levels of summer block maximum daily temperatures at different global
warming levels. (a) Daily maximum temperature anomalies for events with 20-
year return periods at 1.5◦C of global warming. (b) Daily maximum temperature
anomalies for events with 20-year return periods at 2◦C of global warming. (c) Daily
maximum temperature anomalies for events with 20-year return periods at 2◦C of
global warming minus at 1.5◦C of global warming. (d) Daily maximum temperature
anomalies for events with 100-year return periods at 1.5◦C of global warming. (e)
Daily maximum temperature anomalies for events with 100-year return periods at
2◦C of global warming. (f) Daily maximum temperature anomalies for events with
100-year return periods at 2◦C of global warming minus at 1.5◦C of global warming.
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2.5. Summary and Conclusions

We use the state-of-the-art MPI-GE to evaluate the controllability of monthly

mean, block maximum, and extreme European summer temperatures under the global

warming limits of the Paris Agreement. We find that at 2◦C of global warming, one

out of every two European summer months is projected to be warmer than ever ob-

served in our current climate. We find European summer monthly mean temperature

differences of around 1◦C between the 2◦C and the 1.5◦C warmer worlds, in line with

previous results by Schleussner et al. (2016), Perkins-Kirkpatrick and Gibson (2017),

King and Karoly (2017) and Sanderson et al. (2017). We also find differences of around

1◦C in maximum daily temperature anomalies for extreme events with return peri-

ods of up to 500 years, which reach values of almost 7◦C at 2◦C of global warming

and of around 5.5◦C at 1.5◦C of global warming. For 20-year return period events

these differences are consistent with the differences in 20-year return levels shown by

Sanderson et al. (2017) and Wehner et al. (2017), reaching values of around 1.5◦C. These

differences in 20-year return levels are largest in southern Europe, over the regions

where we find the largest mean temperature increase. For events with return periods

of 100 to 500 years these differences reach values of more than 2.5◦C and are largest in

central Europe, over regions where we find the largest temperature variability increase.

Our results indicate that due to the irreducible uncertainty in European summer

temperatures caused by internal variability, only 40% of the European summer monthly

mean temperatures in a 2◦C warmer world would be distinguishable from those in a

1.5◦C warmer world. This distinguishability between the two climates is largest over

Southern Europe, and decreases to around 10% over Eastern Europe. Furthermore,

we find that only 10% of the most extreme summer maximum temperatures in a 2◦C

world would be avoided at 1.5◦C of global warming. However, although only 10% of

the most extreme temperatures could be avoided, these events would correspond to

the most extreme and severe heat waves, the ones with the most critical consequences.

Although these results may be subject to uncertainties inherent to any single-

model study as well as to the relatively low resolution of MPI-ESM-LR, we believe

that the concepts and methods at the core of our analysis can serve as blueprint for

future studies with focus on other regions and phenomena. Our findings highlight

the limited controllability of the amplitude of extreme temperature events at regional

levels by establishing global mean temperature limits, and emphasize the importance

of considering the irreducible uncertainty introduced by chaotic internal variability to

evaluate the impacts of climate change.





CHAPTER 3

GLOBAL HEAT HOTSPOTS UNDER
GLOBAL WARMING

3.1. Summary

We use the Max Planck Institute Grand Ensemble (MPI-GE) to determine the

maximum global warming level that allows us to avert the risk of extreme heat, once

the irreducible uncertainty introduced by internal variability is considered. We find

that limiting global warming to 2◦C above pre-industrial levels can substantially re-

duce the risk of extreme heat hotspots in all five extreme heat metrics considered —

maximum reachable temperatures, return periods of extreme temperatures, maximum

temperature variability, sustained tropical night temperatures, and extreme wet bulb

temperatures. At 2◦C of warming, MPI-GE projects maximum reachable summer

temperatures below 50◦C almost all over the world; whilst at 4◦C, temperatures higher

than 50◦C could occur in all continents. Very extreme events that occur once every hun-

dred years in pre-industrial conditions could occur every 10 to 25 years at 1.5◦C. At 4◦C

of warming, these 1-in-100-years events could happen every year almost all over the

world. Maximum temperature variability increases relative to pre-industrial levels up

to 50% in some regions at 2◦C. At 4◦C, the large increases in the maximum temperature

variability in North America or Central Europe could imply year-to-year variations

of maximum temperatures up to 14◦C, and above 18◦C in India; whilst maximum

temperature variability decreases by 10 to 35% in high latitudes and regions such as in

Southern Europe or North America. We also find that, for warming beyond 2◦C, con-

ditions that aggravate heat stress spread substantially over non-adapted regions. At

4◦C of global warming, tropical night hotspots expand polewards globally and prevail

for at least 95% of the summer months; while extreme wet bulb temperatures that only

rarely occur in current climates could occur in all continents. Our results indicate that

limiting global warming to 2◦C is vital to limit the exposure of non-adapted regions to

potentially dangerous heat levels.
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3.2. Introduction

Extreme heat will become more likely and more extreme under global warming

(Meehl and Tebaldi, 2004; Russo et al., 2014). As temperatures continue to rise due to

the accumulation of anthropogenic greenhouse gases in the atmosphere, the risk of

dangerous heat levels will increase in many regions of the world (IPCC, 2013; Kjell-

strom et al., 2010; Sherwood and Huber, 2010; Matthews et al., 2017; Coffel et al., 2018).

Extreme heat leads to increased heat-related mortality and illness, worsening the risk

of heat exhaustion, dehydration, and cardio-vascular and kidney diseases (Kjellstrom

et al., 2010; Hanna et al., 2011; De Blois et al., 2015). Additionally, it can also lead

to ecological and socio-economical impacts, such as decreased labour productivity,

increased risk of wildfires, habitat loss, crop failure, decreased agricultural efficiency,

and increase the risk of environmental refugees by rendering some regions partially

inhabitable (IPCC, 2014; Kjellstrom et al., 2010; Sherwood and Huber, 2010; Dunne

et al., 2013; Gourdji et al., 2013; Bowman et al., 2017). In this study, we investigate

how global warming aggravates extreme summertime heat, and evaluate for which

maximum global warming level the risk of extreme heat conditions under five different

metrics can be confidently averted.

Some of the regions that will suffer the effects of extreme heat the most are

highly-populated developing regions, where society is most vulnerable due to scarce

infrastructure and relatively low adaptive capacity (Mishra et al., 2017; Coffel et al.,

2018; Newth and Gunasekera, 2018). Already under current global warming levels,

the deadly combination of extreme heat and humidity together with insufficient infra-

structure caused the death of thousands in the 2015 heatwaves in India and Pakistan

(Wehner et al., 2016). But also in wealthy and developed countries the impacts of

extreme heat are already palpable. The combination of extreme daytime temperatures

and lack of nighttime cooling caused more than 70.000 additional deaths over 16

European countries during the 2003 summer (Robine et al., 2008; Laaidi et al., 2012);

and 55.000 people died due to the 2010 heatwave in Russia alone (Barriopedro et al.,

2011). As global warming continues to rise, such extreme events will occur more

frequently. By 2◦C of global warming above preindustrial levels, one out of every two

summer months are projected to be on average warmer than the 2010 summer over

Europe (Suarez-Gutierrez et al., 2018); and over some regions in India and Pakistan,

conditions equivalent to the 2015 heatwave could occur every year (Matthews et al.,

2017).

Extreme events are large deviations from the mean climate state that occur due

to quasi-random chaotic internal variability, emerging from spontaneously generated
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mechanisms and feedbacks across all components of the climate system. These extreme

deviations are, by definition, rare, and occur intrinsically by chance. In particular, the

internal variability in maximum summertime temperatures is so large that can make

their probability distributions at clearly differentiable global warming levels hard

to distinguish at the regional level (Suarez-Gutierrez et al., 2018). Thus, to evaluate

how the strength and frequency of extreme heat events change in a warming climate,

it is vital to sufficiently sample internal variability to adequately capture the very

extreme events at the tails of the distribution. To achieve this, we use the largest

ensemble of single-model simulations from a comprehensive, fully-coupled model:

the 100-member Max Planck Institute Grand Ensemble (MPI-GE; Maher et al., 2019)

Furthermore, to evaluate how global warming aggravates extreme heat events it

is also crucial to consider all the most relevant elements that define our vulnerability

to extreme heat. The foremost element of extreme heat events are maximum temperat-

ures. However, some of the events with the largest impacts to date were events that

combined the effect of extreme temperatures with other conditions that exacerbate heat

stress, such as high humidity or nighttime temperatures (Laaidi et al., 2012; Wehner

et al., 2016). To combine all these aspects, we evaluate the risk of extreme summertime

heat with five different metrics — maximum reachable temperatures, return periods of

very extreme temperatures, maximum temperature variability, sustained tropical night

temperatures, and extreme wet bulb temperatures. Here, we use these five metrics to

identify which regions become major extreme heat risk hotspots under global warm-

ing. But going one step further, we evaluate what maximum global warming level

allows us to avert the risk of extreme heat, once we take into account the irreducible

uncertainty that arises from chaotic internal variability.

We investigate the maximum reachable temperatures under different global warm-

ing levels to identify where summertime maximum temperatures become most ex-

treme. We also investigate how the return periods of maximum temperatures that are

very extreme under preindustrial conditions change under different global warming

levels. Another key aspect of our vulnerability to extreme heat that we investigate is

maximum temperature variability. In climates where temperature variability is small,

such as the tropics, a shift towards a warmer mean state can imply that society and

ecosystems need to adapt to new average conditions totally outside the range they

are used to, with relatively small temperature fluctuations resulting in large impacts.

In climates where temperature variability is large, such as mid-latitude continental

interiors, society and ecosystems need to prepare for a broad range of conditions, and

drastic fluctuations can happen in periods too short to allow for adaptation.
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Moreover, regardless of the absolute amplitude of maximum temperature variabil-

ity under pre-industrial conditions, heat stress can worsen if variability changes under

warming. An increase in variability, as projected over certain regions (Fischer et al.,

2012; Donat et al., 2017; Bathiany et al., 2018; Suarez-Gutierrez et al., 2018), leads to heat

extremes with increased amplitude and frequency, and to overall larger temperature

deviations from the mean state that impose bigger adaptational challenges. On the

other hand, a decrease in variability implies that the effects of global warming are less

likely to be temporarily counteracted by internal variability on any given summer,

resulting on year-to-year summer temperatures that are consistently warmer. Most

previous studies use standard deviation changes as a proxy for variability changes

under warming, and are based on multi-model ensembles (Fischer et al., 2012; Donat

et al., 2017; Bathiany et al., 2018). However, this combination does not allow a clear

separation between the forced transient warming and the deviations caused by in-

ternal variability, and can lead to misleading results. Using a very large single model

ensemble, we are able to instead directly evaluate how the range of maximum temper-

atures reachable every year changes under different levels of global warming, based on

an precise characterization of the simulated internal variability that is not confounded

by different responses to forcing or model configurations.

Alongside maximum temperature reached during the day, nighttime minimum

temperature is another aspect that exacerbates the impacts of extreme heat. Minimum

temperatures above 20◦C to 25◦C, known as tropical night conditions, result in an

absence of nighttime cooling that impedes organisms to recover from extreme heat

during daytime. The human body can, with time, adapt to these conditions, that

occur currently in many tropical and equatorial regions of the world. However, for

unadapted individuals and accompanied by extreme maximum temperatures, this

lack of restorative cooling can aggravate heat stress and is directly linked to increased

heat-related hospitalizations and mortality, particularly if sustained over several days

(Basu and Samet, 2002; Laaidi et al., 2012; Royé, 2017; Murage et al., 2017). Although

there is an overall agreement that a shift towards a warmer mean state results in higher

minimum temperatures (Russo and Sterl, 2011), it remains unclear to what extent

sustained tropical night conditions can be averted by limiting global warming. We

investigate the probability of sustained tropical night conditions expressed as daily

minimum temperatures that exceed the tropical night threshold of 20◦C for an entire

month, and quantify the maximum global warming levels that allows us to avoid these

conditions.

Lastly, we investigate extreme heat conditions involving simultaneous high tem-

perature and humidity. Even at very high air temperatures, the human body can
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efficiently loose heat through evaporative cooling, as long as humidity levels remain

low. Under high air temperature and humidity conditions, evaporative cooling looses

efficiency, and we become unable to maintain a stable core temperature. Several

studies highlight an increase in these hot and humid conditions, particularly in highly-

populated, vulnerable areas such as South East Asia, India or West and Central Africa

(Dunne et al., 2013; Pal and Eltahir, 2015; Im et al., 2017; Newth and Gunasekera, 2018;

Coffel et al., 2018). Under high emission scenarios, the portion of the population ex-

posed to potentially deadly heat stress could increase from the 30% currently exposed

to 75% by the end of the century (Mora et al., 2017). Very extreme humid heatwaves

that never occur in current conditions and very rarely occur at 2◦C are expected to oc-

cur every other year at 4◦C of global warming (Russo et al., 2017). Furthermore, under

very strong warming levels above 10◦C, the combination of heat and humidity could

reach levels so high that it renders large regions of the globe inhabitable (Sherwood

and Huber, 2010).

A variety of indexes are used to measure the combined impact of temperature

and humidity on heat stress (Willett and Sherwood, 2012; Buzan et al., 2015). One

of the most commonly used of these indexes, and the one that we focus on, is wet

bulb temperature (Sherwood and Huber, 2010; Pal and Eltahir, 2015; Im et al., 2017;

Coffel et al., 2018). Wet bulb temperature (W) is defined as the temperature that an air

parcel would reach through evaporative cooling once fully saturated. As opposed to

comfort-based heat indexes (Russo et al., 2017; Matthews et al., 2017; Li et al., 2018)

or more complex heat stress measures considering the effect of wind chill and solar

irradiation, such as wet bulb globe temperature (WGBT; Dunne et al., 2013; Fischer

and Knutti, 2013; Newth and Gunasekera, 2018), W establishes a clear thermodynamic

threshold on heat transfer for which health impacts cannot be overcome by adaptation

(Sherwood and Huber, 2010). For W values similar to the normal skin temperature of

35◦C, evaporative cooling is significantly less effective and the body starts to accumu-

late heat. For W values above 35◦C during periods as short as a few hours, core body

temperatures reach values that are lethal, even for acclimated healthy individuals.

Under current warming levels, W almost never exceeds values above 31◦C (Sherwood

and Huber, 2010). However, harmful to deadly levels of heat stress can occur at lower

W depending on health conditions, age, and level of physical activity. The moderate

risk threshold for vulnerable individuals occurs at W around 28◦C; and at W above

32◦C physical labor becomes unsafe also for healthy individuals (Dunne et al., 2013;

Buzan et al., 2015; Coffel et al., 2018). Here we investigate maximum reachable W

under different global warming levels, and determine the maximum global warming

for which dangerous levels of W can be avoided.
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Most previous studies evaluating how some of these heat stress indicators change

under global warming are based on smaller multi-model ensembles subsampling

CMIP5 (Dunne et al., 2013; Fischer and Knutti, 2013; Russo et al., 2014; Donat et al.,

2017; Mishra et al., 2017; Matthews et al., 2017; Russo et al., 2017; Mora et al., 2017;

Newth and Gunasekera, 2018; Coffel et al., 2018; Li et al., 2018; Bathiany et al., 2018),

smaller regional model ensembles (Pal and Eltahir, 2015; Im et al., 2017), or smaller

single-model ensembles (Sherwood and Huber, 2010; Willett and Sherwood, 2012;

Mishra et al., 2017). Also, most studies explore changes linked to different forcing

scenarios (e.g., Dunne et al., 2013; Fischer and Knutti, 2013; Russo et al., 2014; Mat-

thews et al., 2017; Coffel et al., 2018; Li et al., 2018; Bathiany et al., 2018), as opposed

to changes between different warming levels (e.g., Russo et al., 2017). In contrast,

we base our analysis on one very large single-model ensemble, MPI-GE, currently

the largest existing initial-condition ensemble using a comprehensive, fully-coupled

Earth System Model — largest both in terms of forcing scenarios represented and in

terms of independent members (Maher et al., 2019). MPI-GE consists of sets of 100

independent realizations under the same forcing conditions but starting from different

initial states, that allow 1-in-100-years events to occur on average every simulated year.

The large ensemble size in MPI-GE is crucial to robustly sample internal variability

and to empirically evaluate the statistical significance of changes in the characteristic of

extreme events. Another crucial ingredient in MPI-GE unique design is its diversity of

forcing conditions. This diversity allows us to robustly characterize and compare the

climates at global warming levels of 0◦C, 1.5◦C, 2◦C, 3◦C and 4◦C above pre-industrial

conditions, providing a precise sample of the simulated internal variability for each

climate. Using MPI-GE we construct five different heat metrics and five different

global warming levels to robustly evaluate the irreducible risk of very extreme heat

conditions that arises due to chaotic internal variability.

3.3. Data and Methods

We use transient climate simulations from the Max Planck Institute Grand En-

semble (MPI-GE) under historical forcing and three future representative concentration

pathways (RCP), namely RCP2.6, RCP4.5, and RCP8.5 (Maher et al., 2019; Bittner et al.,

2016; Hedemann et al., 2017; Suarez-Gutierrez et al., 2017). The ensemble consists of

sets of 100 realizations based on the same model physics and parametrizations and

driven by the same external forcings, but each starting from different initial climate

states, taken from different points of the model’s pre-industrial control run. The MPI-

GE uses the model version MPI-ESM1.1 in the low resolution (LR) configuration, with

resolution T63 and 47 vertical levels in the atmosphere (Giorgetta et al., 2013) and
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1.5◦resolution and 40 vertical levels in the ocean (Jungclaus et al., 2013). MPI-ESM1.1

is fairly similar to the the CMIP5 version of MPI-ESM (Taylor et al., 2012), but has a

slightly lower equilibrium climate sensitivity of 2.8◦C (Mauritsen et al., 2019; Flato

et al., 2013). MPI-ESM-LR has a relatively low resolution, comparable to most of the

models in the CMIP5 ensemble, which can influence the model’s ability to simulate

small-scale processes and affect the reliability of our projections.

The large ensemble size of MPI-GE makes it well capable of simulating very

extreme temperature events, such as the 2003 and 2010 European heat waves (Suarez-

Gutierrez et al., 2018), unlike other large ensemble experiments of smaller size (Schaller

et al., 2018). To evaluate the ability of MPI-GE to simulate observed current climate

conditions globally, we compare it to the 1◦ x 1◦ gridded data from Berkeley Earth Sur-

face Temperatures (BEST) climatology and monthly maximum temperature anomaly

for the period 1850–2018 (Rohde et al., 2012). The average maximum temperatures for

current climate conditions defined by the period of 1990–2018 simulated by MPI-GE

are within the range of BEST observations in most regions of the world. MPI-GE aver-

age maximum temperatures are larger than observations for regions over Australia,

West Asia, or North and South America; while the simulated average is smaller than

the observations over East Asia and most tropical regions (Supporting Fig. S.5).

Whereas averaged summertime monthly maximum temperatures in MPI-GE are

in good agreement with observations; maximum temperature variability appears to

be larger in MPI-GE than the observed estimates in most regions (Appendix Fig. A.4).

We find that MPI-GE adequately simulates extremes, particularly warm extremes, in

several relevant regions. In some regions such as Europe or North America, warm

extremes are generally adequately represented, while cold extremes appear to be over-

estimated. This tendency to overestimate the variability in maximum temperatures

may indicate that MPI-GE also overestimates future projections of maximum tem-

peratures. On the other hand, observed values generally occur within the ensemble

range, with some exceptions in Central Africa or East Asia. Our evaluation indicates

that MPI-GE does not underestimate extreme events in most regions, but may tend to

overestimate the magnitude and frequency of extremes particularly in the lower tail of

the distribution. However, summer maximum temperatures exhibit generally large

internal variability, and thus the observational record may be too short to determine

whether the amplitude and frequency of extreme events is adequately captured in

MPI-GE.

We define global mean surface temperature (GMST) as the annually averaged,

global mean, near-surface 2m air temperature anomaly with respect to pre-industrial
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conditions, defined by the period 1851–1880. We focus on summer months defined

as JJA for the Northern Hemisphere and DJF for the Southern Hemisphere. We use

the summer maximum value of daily maximum temperature (TXx), defined as the

block maximum temperature reached each summer at each grid cell. We evaluate the

likelihood of experiencing sustained tropical night conditions during an entire month,

for summer months with block minimum values of daily minimum temperatures

(TNn) above 20◦C. We construct monthly wet-bulb temperature estimates (W) using

summer monthly averages of near-surface 2m air temperatures and relative humidity

based on the method described in Stull (2011). Ideally, to obtain the most accurate

results W should be calculated instantaneously at the model time step. However, this

is not possible in MPI-GE, with only monthly mean relative humidity output available.

Calculating monthly W using monthly mean temperature and humidity, as opposed to

calculating monthly W averages based on instantaneous data, can lead to a maximum

overestimation of up to 1.5◦C (Buzan et al., 2015). Although this overestimation varies

with temperature, its 90% confidence range remains below 0.5◦C, and its median is in

the 0.005-0.2◦C range for all temperatures considered (Buzan et al., 2015). To counteract

this potential bias, we subtract the maximum median overestimation of 0.2◦C from the

monthly W estimates in this study. Although this correction does not alter our conclu-

sions, results for uncorrected W values are shown in the Supporting Figures S.6 and S.7.

We construct representative samples of the climate conditions at 0◦C, 1.5◦C, 2◦C,

3◦C and 4◦C of mean global warming with respect to pre-industrial levels using MPI-

GE transient climate simulations. GMST deviates from the long-term mean state on

year-to-year timescales due to the effect of internal variability. Therefore, we calcu-

late centered decadal-averaged GMST to robustly define each global warming level

(Suarez-Gutierrez et al., 2018). We define years of 0◦C of global warming as those

years in which the centered decadal-averaged GMST is in the range of 0 ± 0.25◦C in

the historical MPI-GE simulations. Analogously, for the remaining global warming

levels we select years in which the centered decadal-averaged GMST is in the range of

1.5±0.25◦C from RCP2.6 simulations, 2±0.25◦C from RCP4.5 simulations, and 3±0.25◦C

and 4±0.25◦C from RCP8.5 simulations. This time-slice method to define global warm-

ing levels from transient simulations is similar to the methods used in Schleussner et al.

(2016) and King and Karoly (2017) or Suarez-Gutierrez et al. (2018), but we defined

each level based on a slightly larger range of decadal averaged GMST, to reach an

adequate and homogeneous sample size of around 1000 simulated years for each

warming level.

The climates at 0◦C, 1.5◦C and 2◦C of global warming are defined from simulations

in a near-equilibrium state. On the other hand, due to the lack of near-equilibrium sim-
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ulations for higher warming levels, the climates at 3◦C and 4◦C of global warming are

defined from highly transient simulations. Although similar definitions of fixed global

warming levels from highly transient simulations have been used before (Schleussner

et al., 2016; King and Karoly, 2017), the climate conditions sampled from transient

runs may differ from the near-equilibrium conditions at said warming level, such as in

different warming patterns or different ocean heat content distributions (Gregory et al.,

2015). The use of highly transient runs also implies a higher probability that climates

with slightly higher or lower levels of warming may be oversampled. Additionally,

part of the differences between each warming level sampled from different RCPs may

arise from differences beyond CO2 atmospheric concentrations, such as different land

use changes or aerosol forcings.

3.4. Results and Discussion

We use MPI-GE simulations under historical, RCP2.6, RCP4.5, and RCP8.5 for-

cings to construct samples of the climate conditions at five different global warming

levels (Fig. 3.1). To achieve homogeneous sample sizes of around 1000 simulated years

for each climate conditions, we restrict our selection to the periods marked by the

dashed black lines in Figure 3.1a. The empirical probability distributions of GMST for

the simulated years selected show the effect of sampling near-equilibrium conditions,

as for GMST levels of 0◦C, 1.5◦C, or 2◦C, in comparison to sampling highly transient

conditions, as for 3◦C and 4◦C of GMST (Fig. 3.1b). The latter exhibit GMST values

that are more variable, resulting in wider probability distributions. However, the

distributions are correctly centered around the representative GMST levels and present

no substantial overlap, indicating that each sample distribution is distinguishable from

the others and offers an adequate representation of the climate conditions of each

warming level.
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a

b

Figure 3.1: Global mean surface temperature (GMST) in MPI-GE. (a) Time series of annually
averaged GMST anomalies (colored thin lines) and centered decadal-averaged
GMST anomalies (colored thick lines) for the period 1850–2099, simulated by the
MPI-ESM Grand Ensemble. Simulations are historical runs for the period 1850–
2005 (gray lines), and RCP2.6 (orange lines), RCP4.5 (red lines) and RCP8.5 (dark
red lines) for the period 2006–2099. The black dashed lines show the periods of
sampling for each warming level. (b) Probability distribution of GMST anomalies
for pre-industrial conditions at 0◦C of warming (gray; sample size n=1300), and
for future global warming levels of 1.5◦C (yellow; n=1300), 2◦C (orange; n=1297),
3◦C (red; n=1225) and 4◦C (dark red; n= 997) above pre-industrial conditions. The
shaded bars represent the range of ±0.25◦C around each GMST mean state. Bin size
is 0.05◦C; frequencies are normalized to unity and translated to percentage.
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3.4.1. Maximum Reachable Temperatures

We evaluate the maximum summer values of maximum monthly temperatures

(TXx) reached under each climate conditions in MPI-GE and compare them to max-

imum temperatures observed at our current warming level conditions of around 1◦C

above pre-industrial levels (Hawkins et al., 2017). The observed estimates represent

the maximum value of the spatial average of maximum temperatures in each grid

cell. Thus, localized record high temperatures may be smoothed within each grid-cell,

leading to maximum temperatures per grid cell that are slightly lower than the record

high temperatures for specific locations. With this consideration in mind, we find

that although the observed temperature patterns are well represented in MPI-GE,

the maximum temperatures reachable under pre-industrial conditions in the MPI-GE

simulations are similar or higher than those observed under current global warming

levels (Fig. 3.2, top row).

In some regions, such as North America, Argentina, Western Asia or Australia,

this may occur because MPI-GE simulates maximum temperatures on average warmer

than those observed (Supporting Fig. S.5). This can also occur due to a potential

overestimation of extreme temperatures over these regions in MPI-GE, that may result

from an overestimation of temperature variability over some continental areas (Ap-

pendix Fig. A.4). However, the large ensemble size in MPI-GE allows for simulated

extreme events with return periods over hundreds of years, and the observational

record may just be too short to determine whether the ensemble overestimates very

extreme temperatures or whether the Time of Emergence (Hawkins and Sutton, 2012)

has not yet been reached for TXx over these regions.

For higher warming levels of 1.5◦C and 2◦C, we find that the areas where max-

imum TXx values reach 45◦C to 50◦C increase in comparison to pre-industrial con-

ditions, particularly over North and West Africa (Fig. 3.2, middle row). For 2◦C of

warming and below, we find TXx values mostly lower than 50◦C all over the world,

with some exceptions in the Arabic Peninsula or Northern India and Pakistan. For

3◦C and 4◦C of global warming maximum temperatures could exceed 50◦C across all

continents (Fig. 3.2, bottom row). The MPI-GE projects the highest summer maximum

temperatures over Western Asia, reaching maximum values above 60◦C in countries

such as Pakistan, Iraq or Saudi Arabia.
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Figure 3.2: Maximum reachable summer maximum temperatures at different global warm-
ing levels. Absolute maximum summer maximum value of monthly maximum
temperature (TXx) reached under different global warming levels simulated by
MPI-GE compared to observed maximum temperatures in the BEST dataset. The
observed estimates represent the maximum value of the spatial average of max-
imum temperature anomaly plus the climatology for the respective month in each
grid cell for the period 1850–2018. The simulated maximum temperatures represent
the 99.5th percentile value for each distribution at each grid cell.
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3.4.2. Return Periods of Very Extreme Temperatures

Under rising levels of global warming we expect heat extremes not only to exhibit

higher maximum temperatures, but also to occur more frequently. In this section

we investigate how the frequency of events that are extreme under pre-industrial

conditions changes with global warming. As reference, we choose extreme maximum

summertime temperatures that occur on average once every hundred years under

pre-industrial conditions (1-in-100-years events; Fig. 3.3, top). Temperatures during

simulated 1-in-100-years events under pre-industrial climate conditions in MPI-GE are

similar to the highest observed summer maximum temperatures in current climate

conditions (Fig. 3.2, top left). As global warming levels increase, the temperature

levels characteristic of these events occur more frequently than once every hundred

years, thus becoming 1-in-x-years events as the world warms.

At 1.5◦C of global warming, these 1-in-100-years events could occur every 10 to 25

years in most regions of the globe, and up to every 1 to 2 years in North Africa. At 2◦C

of warming, these very extreme events are projected to occur more often than every 10

years over most of the world (Fig. 3.3, middle row). At 3◦C of global warming, these

pre-industrial 1-in-100-years heat extremes could occur generally every 2 to 5 years in

most regions, and every year in East Asia, North Africa and North America. By the

point when global warming reaches 4◦C above pre-industrial levels these very extreme

events could occur more often than every two years almost all over the world (Fig. 3.3,

bottom row).
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TXx of 1-in-100-years events at 0◦C GMST

Return periods of extreme pre-industrial TXx

Figure 3.3: Return periods of very extreme summer maximum temperatures at different
global warming levels. Return levels of TXx for events with return periods of
100 years under pre-industrial conditions defined at 0◦C GMST (top row). Return
periods of TXx levels of pre-industrial 1-in-100 years events under different levels
of global warming (middle and bottom rows).
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3.4.3. Maximum Temperature Variability

In this section we evaluate how the year-to-year variability in summer maximum

temperatures changes under global warming. Under pre-industrial conditions, in

agreement with what we could expect, we find that absolute TXx variability simulated

by MPI-GE is larger on mid and high latitudes, particularly in the Northern Hemi-

sphere, and smaller in tropical regions (Fig. 3.4, top row). TXx variability reaches

values well above 10◦C under pre-industrial conditions in regions such as Eastern

India, central Eurasia and other mid-latitude continental interiors. Most equatorial and

tropical regions exhibit lower maximum temperature variability under pre-industrial

climates, ranging from below 4◦C to around 8◦C.

For global warming of 1.5◦C and 2◦C, the change in TXx variability is domin-

ated by a relative increase. This TXx variability increase is similar for both warming

levels and remains mostly under 50%, reaching its maximum values in Central South

America, North America and India (Fig. 3.4, middle row). Above 2◦C of warming,

TXx variability increase in these regions reaches values above 50%. Apart from the

exceptions of Australia and some parts of Africa and East Asia, where TXx variabil-

ity does not change substantially, at 4◦C of global warming we find a large increase

in the variability of summer maximum temperatures in large continental areas all

across the globe, with maximum relative increase well above 100% (Fig. 3.4, bottom

row). For regions that exhibit low TXx variability under pre-industrial conditions,

such as Central South America, this doubling of variability results on absolute TXx

variability mostly below 8◦C at 4◦C of global warming. However, in regions of larger

pre-industrial TXx variability, the doubling in TXx variability translates in maximum

year-to-year variations of summer maximum temperatures of up to 14◦C in North

America or Central Europe, and up to 18◦C in India.

We also find a decrease in TXx variability ranging from 10 to 35% at 4◦C, most

prominent in regions such as Greenland, Southern Europe or North America (Fig.

3.4, bottom row). The variability decrease over high latitude regions is most likely

dominated by ice melt. Over middle latitude regions, TXx variability may decrease

as a result of overall dryer conditions and reduced moisture variability, that restrict

temperature variability in the lower tail of the distribution by limiting evaporative

cooling (Fischer et al., 2012). These results stand in contrast to results from previous

studies evaluating standard deviation changes in multi-model ensembles, that find a

consistent increase in summertime monthly mean temperature variability over land

under global warming, particularly in the Northern Hemisphere (Bathiany et al., 2018).
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Total TXx variability at 0◦C GMST

Relative change in TXx variability compared to 0◦C GMST

Figure 3.4: Variability in summer maximum temperatures at different global warming
levels. Variability in TXx under pre-industrial conditions measured as the dif-
ference between the 97.5th and the 2.5th percentiles in the TXx distribution at 0◦C
GMST (top row). Relative change in variability based on change in TXx probability
distribution width (2.5th–97.5th percentiles) at different global warming levels
relative to pre-industrial conditions at 0◦C GMST (middle and bottom rows).
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3.4.4. Sustained Tropical Night Temperatures

In this section we evaluate the risk of sustained tropical night temperatures, ex-

pressed as minimum temperatures that exceed the tropical night temperature threshold

of 20◦C for the entirety of the month. These sustained tropical night conditions occur

normally over most tropical regions in the pre-industrial climate with at least a 10%

probability, but most often with probabilities larger than 95% (Fig. 3.5, top row). For

1.5◦C and 2◦C of global warming the risk of sustained tropical night conditions exhibits

similar values and expands globally polewards, with the most marked increase over

the Amazon region and North Africa. In contrast, for warming levels of 3◦and 4◦C

sustained tropical night conditions expand substantially, particularly over mid-latitude

regions such as North America, South Africa and Central Eurasia (Fig. 3.5, middle and

bottom rows).

Figure 3.6 illustrates the maximum global warming level that allows us to avert

the risk of sustained summertime tropical night conditions (90% confidence). Our

results indicate that this conditions occur normally in the MPI-GE pre-industrial cli-

mate over large low-latitude regions all over the world, where the population is likely

acclimated to the lack of nighttime cooling. Under global warming levels below 2◦C,

the risk of sustained tropical night conditions presents only minor changes. However,

for warming levels beyond 2◦C there is risk of sustained tropical conditions across all

continents. At 4◦C of global warming, sustained tropical night conditions could occur

over most regions of the globe, with the exceptions of high-latitude regions particu-

larly in the Northern Hemisphere. Additionally to expanding polewards across all

continents, sustained tropical night conditions at 4◦C of warming prevail consistently,

for at least 95% of the summer months. Our results indicate that to limit the exposure

of non-adapted regions to sustained tropical night temperatures that significantly

aggravate heat stress, limiting global warming to 2◦C under pre-industrial conditions

is crucial.
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Probability of exceeding tropical night temperature threshold

Figure 3.5: Risk of sustained tropical night temperatures at different global warming levels.
Probability of sustained exceedance of the tropical night threshold for monthly
minimum temperatures (TNn > 20◦C) at different global warming levels.
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Global warming level of tropical night threshold exceedance

Figure 3.6: Global warming level of sustained tropical night temperatures. Global warming
level measured as GMST that exhibits sustained exceedance of the tropical night
threshold (minimum monthly temperature TNn > 20◦C) with probability of 10% or
higher.

3.4.5. Extreme Wet Bulb Temperatures

In this section we evaluate how the combination of high temperatures and simul-

taneous high humidity conditions measured by the wet bulb temperature index (W)

changes under different levels of warming. Under pre-industrial climate conditions

in MPI-GE, monthly W reaches its maximum values of around 27◦C over Northern

India and Pakistan; while remaining generally below 24◦on the majority of the world

(Fig. 3.7, top). Beyond 1.5◦C of global warming, projections of maximum reachable

monthly W above 26◦C spread over Northern India and East Asia; while W above

24◦C are projected to occur across all continents (Fig. 3.7, middle row). At 4◦C of global

warming, monthly W levels above 26◦C could occur over large land fractions across

all continents; while projections surpass the 28◦C threshold over parts of East China,

the Arabic Peninsula, Pakistan and Northern India. (Fig. 3.7, bottom row).

These values are comparable to harmful heat and humidity levels for vulner-

able individuals at W larger than 28◦C, but remain comparatively smaller than the

thresholds for moderate and fatal risks at 32◦C and 35◦C respectively. However, in-

stantaneous W values could exceed monthly estimates by several degrees. Monthly W

estimates from MPI-GE under pre-industrial and 1.5◦C climate conditions are indeed

several degrees lower than current instantaneous W estimations based on reanalysis
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data (Sherwood and Huber, 2010; Im et al., 2017). These differences are particularly

large over several extreme W hotspots such as Central South America, West Africa

or South Asia (Sherwood and Huber, 2010; Im et al., 2017). Whereas the maximum

monthly W values simulated by MPI-GE remain generally below 30◦C even at 4◦C of

global warming, daily maximum W values exceed the 29◦C threshold under current

climate conditions in large parts of India, Pakistan and East China (Im et al., 2017).

Over these regions, daily W estimates under RCP8.5 forcing are projected to exceed

the fatal 35◦C threshold by the end of the century (Im et al., 2017).

Although part of the differences between monthly W estimates in MPI-GE and

daily W estimates from previous studies may arise from remaining biases and model

differences, this comparison seems to indicate that our projections using monthly W

estimates may be somewhat conservative. Additionally, it is also important to note that

the maximum daily W values from previous studies are obtained from ensembles much

smaller than MPI-GE, with a smaller probability of capturing very extreme events.

Therefore comparisons based on larger ensembles may yield even larger differences

between maximum daily and monthly W estimates. On the other hand, we find good

agreement between the regions of largest W increase under warming in MPI-GE and

in previous studies (Sherwood and Huber, 2010; Im et al., 2017). This indicates that,

although our monthly W estimates may underestimate the risk of reaching harmful

instantaneous W levels within a month, the good agreement on the regions of largest W

increase supports our conclusions regarding which regions become major heat-stress

hotspots due to the combination of extreme temperature and humidity in a warmer

world.

Figure 3.8 illustrates the maximum global warming level that allows us to avert

the risk of extreme hot and humid conditions characterized by monthly W above 26◦C.

These extreme W conditions, that occur rarely in the pre-industrial climate of MPI-GE,

can be averted over most regions of the world by limiting global warming to levels

below 2◦C (99% confidence), with some exceptions over Northern India or East China.

For warming levels beyond 2◦C, the risk of extreme W conditions spreads over large

land fractions across almost all continents, from West Africa to central United States. At

4◦C of global warming, extreme W conditions spread not only over large low-latitude

and tropical regions, but also over mid-latitude regions in North America and East

Asia. Our results show that limiting global warming to 2◦C under pre-industrial con-

ditions is vital to avoid the exposure of large non-adapted regions to the combination

of extreme temperature and humidity, one of the factors that exacerbates heat stress

the most.
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Maximum Reachable Wet Bulb temperature

Figure 3.7: Maximum reachable extreme Wet Bulb temperatures at different global warm-
ing levels. Maximum reachable monthly Wet Bulb temperatures at different global
warming levels. The simulated maximum represents the 99.5th percentile value for
each distribution at each grid cell.
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Global warming level of Wet Bulb temperature threshold exceedance

Figure 3.8: Global warming level of exceedance of extreme Wet Bulb temperature threshold.
Global warming level measured as GMST that exhibits exceedance of the wet bulb
temperature threshold (W > 26◦C) with probability of 1% or higher.

3.5. Summary and Conclusions

Using the 100-member MPI-GE, we identify global summertime heat stress hot-

spots for five different extreme heat metrics under five different warming levels, and

determine the maximum global warming level for which the risk of extreme heat

conditions can be confidently averted. We find that MPI-GE adequately simulates the

pattern of observed maximum reachable temperatures. However, absolute reachable

maximum temperatures under preindustrial conditions are over some regions larger

than those observed at the current warming level of 1◦C. This may indicate that MPI-

GE overestimates either average maximum temperatures or maximum temperature

variability over these regions. However, due to the relatively short length of the obser-

vational record, this can also indicate that extreme temperatures with return periods

as long as those simulated by MPI-GE have not yet been recorded over these regions.

MPI-GE projects that, for global warming levels below 2◦C, maximum reachable

summer temperatures stay below 50◦C generally all over the world, with some excep-

tions in the Arabic Peninsula, Northern India and Pakistan. However, for warming

levels above 2◦C, this threshold could be overshot in all continents, with temperatures

reaching values above 60◦C over Pakistan, Iraq or Saudi Arabia. We find that very
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extreme events that occur under pre-industrial conditions on average once every 100

years could occur every 10 to 25 years at 1.5◦C of warming, and more often than once

every ten years at 2◦C. At 4◦C of warming, these 1-in-100-years events could happen

every year almost all over the world.

Our results also indicate that maximum summer temperature variability changes

substantially under warming in large regions of the globe. Summer maximum tem-

perature variability increases relative to pre-industrial levels up to 50% under 2◦C

of global warming, mostly in Central South America and North America, Central

Europe and India. At 4◦C of global warming we find a large increase in the maximum

temperature variability in large continental areas, with maximum relative increase

well above 100%. This 100% increase translates into maximum year-to-year variations

of summer maximum temperatures of up to 14◦C in North America or Central Europe,

and up to 18◦C in India. For regions such as Australia or large parts of Africa and East

Asia, maximum temperature variability does not change substantially under warming.

For other high latitude regions and parts of Southern Europe or North America, we

find that maximum temperature variability decreases by 10 to 35% at 4◦C of global

warming. These results stand in contrast to previous results, that indicate a consistent

and substantial increase in summertime monthly mean temperature variability espe-

cially in the Northern Hemisphere (Bathiany et al., 2018).

We find that for warming levels beyond 2◦C above pre-industrial conditions,

heat stress could be substantially aggravated by high minimum temperatures under

sustained tropical night conditions over non-adapted regions. At 4◦C of global warm-

ing, tropical night hotspots spread polewards over large regions across all continents,

particularly in central North America, South Africa, or Central Eurasia, and prevail

consistently for at least 95% of the summer months. Similarly, hot and humid condi-

tions under extreme wet bulb temperatures that occur very rarely under pre-industrial

conditions are projected to occur in almost all continents at 1.5◦C of warming, and

could spread over most tropical regions and some regions at mid latitudes in a 4◦C

warmer world.

Our results indicate that maintaining global warming levels below 2◦C above

pre-industrial conditions is vital in order to limit the risk of extreme heat conditions in

all metrics considered. For each of these heat metrics, we identify major hotspots over

different regions — from the highest maximum summertime temperatures projected

to occur over the Arabic Peninsula, to the largest maximum temperature variability

increase over India or Central Europe. These different heat-stress hotspots highlight

the different potential risks and related adaptation measures that are necessary over
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different regions. With time and within limits, our society, economy, ecosystems, and

even our bodies, are able to adapt to a warmer mean climate state. However, deviations

from these mean climate conditions in the form of extreme events that arise due to

internal variability challenge our range of adaptability, potentially to its limits.



CONCLUSIONS

To conclude, in this final section I wish to summarize the main findings and

conclusions drawn from this dissertation, as well as the overarching implications that

emerge from my research.

1. Drivers of internal variability in European heat extremes

In Chapter 1, I quantify the contributions from the large-scale dynamic atmo-

spheric mechanisms and the local thermodynamic effects of moisture limitation to

the development of extreme heat over Europe, and how these contributions change

in a warmer world to cause an increase in summer temperature variability. For this

purpose, I introduce a novel definition of extreme events based on a moving threshold

with respect to the evolving mean decadal climate. This extreme event definition relies

on an accurate characterization of both the simulated internal variability and forced

signal only readily available in large ensemble experiments. I then use these large

samples of heat extremes simulated by MPI-GE to distinguish between conditions that

are necessary for the development of extreme heat from those that may be circumstan-

tial. In doing so, I find the following answers to my research questions.

1.1 What are the contributions from large-scale dynamical atmospheric mechan-

isms and local thermodynamical effects of moisture limitation as drivers of

variability in extreme summertime temperatures?

Using a multiple regression approach that simultaneously considers both of the

main driving mechanisms of extreme heat, I identify the dynamical mechanism

as the dominating driver of variability in extreme European summer temperat-

ures. On the other hand, the local thermodynamic effect of limited moisture

plays a secondary role in driving total extreme temperature variability. Most

heat extremes occur under favorable atmospheric conditions, both in current

and future climate conditions, and the highest temperatures arise when both

persistent anticyclonic conditions and dryness occur.

71
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1.2. How do these dynamical and thermodynamical driving contributions

change to cause an increase in extreme summer temperature variability in

a warmer world?

In the regions where variability increases, heat extremes occur 10-40% less

frequently under extreme atmospheric conditions during the 21st century, and

40% more frequently under extreme moisture limitation. In a warmer world,

an increasing number of heat extremes are dominantly driven by the effect of

moisture limitation, and occur even under a neutral or unfavorable atmospheric

state. My results indicate that the dynamical atmospheric mechanism that acts

as dominant driver of total extreme summer temperature variability is not the

dominant driver of variability change under warming. Instead, the increase in

European summer heat extremes relative to the evolving decadal climate and

associated variability increase are dominated by the the local thermodynamic

effect of moisture limitation.

This study combines two crucial novel aspects to account for the complex multi-

collinearity between each set of drivers: considering all relevant sources of variability

simultaneously, and evaluating large samples of extreme events developing under a

wide range of background conditions. This approach helps to clarify the long-debated

discussion of whether the increased variability in extreme European summer temper-

atures emerges from the soil or rather descends from the atmosphere. However, in

the broader framework of understanding the causality relations between and beyond

the main driving mechanisms of extreme summertime heat, our knowledge remains

limited. Future research should aim at understanding the complex interdependencies

between both mechanisms, such as to what extent soil-moisture variability is actually

controlled by atmosphere-borne variability, or how the effects of local moisture evap-

oration, or lack thereof, influence the large-scale atmospheric dynamics.

Furthermore, beyond the cause and effect relationships between mechanisms,

the question of whether an overarching pattern of large-scale variability that controls

the variability of extreme European temperatures by controlling the variability of its

drivers can be found arises. On decadal to multi-decadal timescales, the North Atlantic

multi-decadal variability (AMV) is a strong contender for this overarching role. The

ocean heat transport variability and recurring circulation patterns associated with the

AMV have been shown to influence mean European summer temperatures (Sutton and

Hodson, 2005; Ghosh et al., 2017). However, the contribution from these multi-decadal
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variations in the North Atlantic to European extreme heat characteristics and driving

mechanisms has not yet been quantified. This is the topic that I plan to address in the

next phase of my scientific career. During the course of the last year, I have collaborated

with my advisors in the development of a postdoctoral research proposal based on

this line of research. Our proposal received positive evaluations during the first phase

of the selection process, and we await its resolution in the coming months.

2. Controllability of European temperatures under warming

In Chapter 2, I evaluate how the irreducible uncertainty arising from internal

variability defines to what extent an increase in extreme European summertime temper-

atures can be averted by maintaining global warming below fixed limits. I define these

limits as the 1.5◦C and 2◦C global mean surface temperature targets established in the

UNFCCC Paris Agreement. I use MPI-GE transient climate simulations to construct

quasi-stationary samples for each climate condition, that I then use to robustly compare

the different warming levels. The large ensemble size of MPI-GE combined with the

assumption of quasi-stationarity allows me to base this comparison on empirically

calculated probability distributions and extreme events that are well defined for return

periods up to 500 years. This comparison highlights stark differences between the

two warming levels on absolute terms. For example, extreme summers that occur on

average once every 500 years, exhibit maximum temperature anomalies below 3◦C

under pre-industrial conditions. These 1-in-500-years anomalies reach 5.5◦C at 1.5 ◦C

of global warming, and could rise to 7◦C at 2◦C of global warming. However, the true

innovative aspect of this comparison relies on understanding how the irreducible un-

certainty introduced by internal variability could blur these stark differences between

the two warming levels. To do so, I answer the following questions.

2.1 To what extent are European summer temperatures at 1.5◦C of global warm-

ing distinguishable from those at 2◦C of warming?

I introduce a novel distinguishability metric which identifies the summer

months in a 2◦C warmer world that could not be part of the 1.5◦C world

distribution. In a 2◦C warmer world, 40% of the summer months over Europe

are projected to exhibit mean temperatures distinguishable from those in a

1.5◦C warmer world. This distinguishability is largest over Southern Europe,

and decreases to around 10% of the summer months over Eastern Europe.
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2.2. To what extent can the risk of extreme European summer temperatures be

controlled by maintaining global warming below fixed global mean temper-

ature limits?

Internal variability narrows the controllability of extreme maximum temperat-

ures to the point that, by limiting global warming to 1.5◦C, only the 10% most

extreme summer maximum temperatures in a 2◦C world could be avoided.

These findings highlight the limited controllability of the amplitude of extreme

temperature events at regional levels by maintaining global warming below fixed

limits, and emphasize the importance of considering the irreducible uncertainty intro-

duced by chaotic internal variability in evaluating the impacts of climate change.

3. Heat hotspots under global warming

In Chapter 3 I investigate where the major heat-stress hotspots occur globally as

the world warms for five summertime heat metrics — maximum reachable temper-

atures, return periods of extreme temperatures, maximum temperature variability,

sustained tropical night temperatures, and extreme wet bulb temperatures. Based on

these metrics, I then identify the maximum global warming that allows us to avert

harmful heat levels. I use MPI-GE to construct well-defined samples for five different

global warming levels, ensuring the robust sampling of internal variability that is vital

to evaluate changes in the most extreme events reachable under different warming

levels. By doing so, I find the following answers to my research questions.

3.1 Which regions become summertime heat stress hotspots for these different

extreme heat metrics under global warming?

For maximum temperatures, MPI-GE projections stay below 50◦C generally all

over the world for global warming levels below 2◦C. However, for warming

levels above 2◦C, this threshold could be overshot over large regions in all

continents, in particular North Africa and Central Eurasia; while in some

regions such as Pakistan, Iraq or Saudi Arabia maximum temperatures could

surpass the 60◦C threshold.
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Similar hotspots emerge for return periods of extreme temperatures, Summer

maximum temperatures reached on average once every 100 years under pre-

industrial conditions could occur every 10 to 25 years at 1.5◦C of warming,

and as often as every two years in North Africa. At 4◦C of warming, these

1-in-100-years events could happen more often than every two years almost all

over the world.

Summer maximum temperature variability increases relative to pre-industrial

levels up to 50% under 2◦C of warming, in regions such as South America or

Central Europe. At 4◦C of warming, variability increases over large continental

areas, with a maximum relative increase well above 100% that translates into

maximum year-to-year variations of summer maximum temperatures of up

to 14◦C in North America or Central Europe, and up to 18◦C in India. For

some high latitude regions and parts of Southern Europe or North America,

maximum temperature variability decreases by 10-35% at 4◦C of warming.

Heat stress could be substantially aggravated by high minimum temperatures,

with sustained tropical night conditions over large non-adapted regions under

global warming beyond 2◦C. At 4◦C of global warming, tropical night hotspots

spread polewards over large regions across all continents, particularly in central

North America, South Africa, or Central Eurasia. In addition to this substantial

spread, sustained tropical night conditions also prevail consistently for at least

95% of the summer months.

Hot and humid conditions characterized by extreme wet bulb temperatures

that occur rarely in the pre-industrial climate are projected to expand to almost

all continents at 1.5◦C of warming, and spread to the point of covering most

tropical regions and some regions at mid latitudes in a 4◦C world.

3.2. For which maximum global warming level can the risk of extreme heat con-

ditions under these different metrics be confidently averted?

Different metrics exhibit different levels of risk under warming. For example,

maintaining global warming below 2◦C ensures that unprecedented levels of

extreme hot and humid conditions can be confidently averted in most regions

of the world. On the other hand, at 2◦C of warming very extreme events

could occur with frequencies already more than 20 times higher than under

pre-industrial conditions.
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My results indicate that completely averting some of the heat-related risks that

arise under further global warming may not be possible. However, I find that maintain-

ing global warming levels below 2◦C above pre-industrial conditions is vital in order

to minimize these risks and limit the exposure of non-adapted regions to potentially

dangerous heat levels.

4. Concluding remarks

In this dissertation, I use the largest existing ensemble from a fully coupled Earth

system model to investigate how chaotic internal variability shapes the changing

characteristics of summertime heat extremes in a warming world. I investigate which

mechanisms drive extreme heat variability, and find that the mechanisms causing some

summers to be much warmer than others may change under global warming. I also

evaluate how internal variability narrows the distinguishability and controllability of

extreme summertime heat regionally, even if we succeed to maintain global warming

below fixed limits. Lastly, I identify where the major heat hotspots emerge under

further global warming — from the highest maximum summertime temperatures

projected over the Arabic Peninsula, to the largest maximum temperature variability

increase over India or Central Europe.

My findings emphasize the importance of considering the irreducible uncertainty

introduced by internal variability to evaluate the impacts of anthropogenic climate

change. Due to this irreducible uncertainty, completely averting the risks of extreme

heat that arise due to global warming may not be possible. Our best chances for doing

so rest on putting a stop to the global mean temperature increase. Maintaining global

warming below 2◦C above pre-industrial conditions is vital to minimize the risk of

several manifestations of extreme heat, and limit the exposure of non-adapted regions

to harmful heat levels. Given time and within limits, our society, economy, ecosystems,

and even our bodies, are able to adapt to a warmer mean climate state. However, the

deviations from these mean climate conditions in the form of extreme events caused

by internal variability challenge our range of adaptability, potentially to its limits.
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APPENDIX A

The Max Planck Institute Grand Ensemble (MPI-GE) is currently the largest exist-

ing single-model ensemble using a comprehensive, fully-coupled Earth System Model

— largest both in terms of forcing scenarios represented and in terms of independent

members (Maher et al., 2019). MPI-GE consists of sets of 100 simulations that evolve

under the same model physics and parametrizations and are driven by the same

external forcings, but that start from different initial climate states, sampled from

different points of the model’s pre-industrial control run. This design implies that

each simulation differs from the rest only due to the effect of internal variability, thus

allowing a clear separation between the changes caused by the external forcing and

the quasi-random fluctuations caused by the chaotic internal variability of the climate

system. Furthermore, the large ensemble size in MPI-GE offers a substantial sampling

of internal variability in a transient climate. This substantial sampling of internal

variability allows us to empirically calculate well-defined probability distributions,

and provides the large samples of extreme events under different warming conditions

that are vital for this study. In this Appendix, I present the experimental design of

MPI-GE, how it relates to other large ensemble experiments, and some examples on

how to utilize its power.

The diversity of forcing pathways used in MPI-GE is one of the key ingredients

in its unique experimental design. The 100-member sets of MPI-GE simulations are

available for historical forcing conditions as well as for three future scenarios and one

scenario featuring a 1% CO2 increase per year. The future scenarios are based on three

Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5) from the CMIP5

framework, that describe alternative trajectories for CO2 emissions and the resulting

atmospheric concentration of CO2 based on different assumptions about population,

economic growth, energy consumption and sources, and land use (van Vuuren et al.,

2011). RCP2.6 can be interpreted as an early mitigation scenario, where CO2 emissions

are drastically reduced after 2020 and the atmospheric CO2 concentration reaches

its maximum at around 440 ppm. The low-emission scenario RCP2.6 corresponds

in MPI-GE to a global warming level by the end of the century below 1.5◦C above

pre-industrial conditions, well in compliance with the Paris Agreement (Fig. A.1).

RCP4.5 represents a moderate warming scenario where emissions continue at current

rates until the mid century and then decline, resulting in a 2.2◦C warming in MPI-GE

77



78 THE MAX PLANCK INSTITUTE GRAND ENSEMBLE

by the end of the century. Lastly, RCP8.5 can be interpreted as a business as usual

scenario, where CO2 concentrations reach 950 ppm by the end of the century and

continue increasing for another 100 years (van Vuuren et al., 2011; IPCC, 2013). Under

this high-emission scenario MPI-GE projects global warming levels of more than 4◦C

above pre-industrial conditions by the end of the 21st century (Fig. A.1). MPI-GE

allows, for the first time, a comparison of the climates under these three possible future

trajectories in a comprehensible, large-ensemble setting.

Figure A.1: Global mean surface temperature (GMST) in MPI-GE. Time series of annually
averaged GMST anomalies (colored thin lines) and centered ensemble means
(colored thick lines) for each forcing conditions for the period 1850–2099, simulated
by the MPI-GE. Simulations are historical runs for the period 1850–2005 (gray
lines), and RCP2.6 (orange lines), RCP4.5 (red lines) and RCP8.5 (dark red lines)
for the period 2006–2099. Anomalies are calculated with respect to pre-industrial
levels defined by the period of 1851–1880.

The second key ingredient of MPI-GE is its large ensemble size. An ensemble size

of 100 simulations under the same forcing conditions allows 1-in-100-years events to

occur on average every simulated year. Thus, it enables the simulation and charac-

terization of large samples of extreme events with return periods of over hundreds

of years that develop under different background conditions and different levels of

global warming. This precise sampling of the simulated internal variability allows us

to empirically calculate probability distributions, without the explicit need to para-

metrize the tails of the distributions with extreme value statistics. This is a crucial

requirement to empirically evaluate the statistical significance of changes in very rare

events. Ultimately, MPI-GE offers a precise characterization of the irreducible uncer-

tainty that arises from the simulated chaotic internal variability in a transient climate
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that is not confounded by different model configurations or forcing responses.

Several studies use MPI-GE to evaluate this irreducible uncertainty that arises

due to internal variability and disentangle it from the response to external forcings

in different quantities (Bittner et al., 2016; Hedemann et al., 2017; Suarez-Gutierrez

et al., 2017; Suarez-Gutierrez et al., 2018; Maher et al., 2018; Marotzke, 2019). For

example, Hedemann et al. (2017) determine that surface warming hiatuses occur 3% of

the time in MPI-GE due to internal variability, and that these warming hiatuses can

have both oceanic and atmospheric origins. Suarez-Gutierrez et al. (2017) investigate

the long-debated topic of whether the real-world upper tropospheric warming in the

tropics as described by observations is well captured in model simulations. They

show that differences between observed and simulated tropical tropospheric warming,

rather than being caused by incorrect model performance, are dominated by observa-

tional uncertainty and internal variability. Marotzke (2019) quantifies the degree of

irreducible uncertainty around whether emissions reduction will cause the desired

climate response over a given timescale, and finds a probability of about one-third

that the warming rate in the period of 2021–2035 will increase in RCP2.6 despite the

reduction in emissions.

Currently, there are several other large ensemble experiments with different com-

prehensive climate models available, with sizes ranging from a few members to up to

more than 50 (Deser et al., 2012; Kay et al., 2015; Rodgers et al., 2015; Kirchmeier-Young

et al., 2017; Frankignoul et al., 2017; Sanderson et al., 2017; Maher et al., 2019). As large

ensembles from fully-coupled climate models are gaining traction as the preferred

method to robustly estimate the internal variability and forced response in a transient

climate, it becomes more relevant to understand how simulated internal variability be-

haves in different models. However, in-depth multi-model evaluation and comparison

of the simulated internal variability of different quantities in different single-model

large ensembles, similar to that shown by Maher et al. (2018) and Schaller et al. (2018),

remains limited.

Another emerging approach to investigate internal variability in a transient cli-

mate are atmosphere-only large-ensemble experiments with prescribed SSTs, such

as the Half a Degree Additional warming, Prognosis and Projected Impacts project

(HAPPI; Mitchell et al., 2017). This approach has the advantage of requiring fewer

computational resources than their fully-coupled counterparts, thus making it much

more rapidly accessible and deployable to a large number of modeling groups. How-

ever, it also has known limitations. A finite set of prescribed SST patterns offers a

limited range of climate states that does not completely sample ocean-driven vari-
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ability (Hawkins et al., 2016; Sanderson et al., 2017; Fischer et al., 2018). In contrast,

large ensembles from fully-coupled climate models offer a better estimation of the

real-world variability, because they sample a wider range of ocean states and include

the influence of the ocean-borne variability (Hawkins et al., 2016). Furthermore, fully-

coupled large ensembles also offer a more realistic representation of heat extremes over

land than atmosphere-only large-ensembles, even if the later offer a larger number of

independent simulations (Fischer et al., 2018).

MPI-GE Model Description

MPI-GE uses the Max Planck Institute Earth System Model (MPI-ESM; Giorgetta

et al., 2013). The version used, MPI-ESM1.1, is run in the low resolution (LR) con-

figuration, with resolution T63 and 47 vertical levels in the atmosphere component

(ECHAM6.3; Giorgetta et al., 2013) and 1.5◦resolution and 40 vertical levels in the

ocean component (MPIOM1.6; Jungclaus et al., 2013). It also includes the land-surface

model component JSBACH-3 (Raddatz et al., 2007) and the biogeochemistry model

HAMOCC (Ilyina et al., 2013). MPI-ESM1.1 has some similarities to the the CMIP5

version of MPI-ESM (Taylor et al., 2012; Maher et al., 2019), but has a slightly lower

equilibrium climate sensitivity of 2.8◦C (Mauritsen et al., 2019; Flato et al., 2013), and

a new 5-layer soil hydrology scheme (Hagemann and Stacke, 2015) implemented in

JSBACH. MPI-GE has a relatively low spatial resolution, comparable to most of the

models in the CMIP5 experiment, which can influence the model’s ability to simulate

small-scale processes and affect the reliability of its projections. Temporal resolution is

also relatively limited in MPI-GE, with only monthly output available, which limits

the analysis of processes in shorter time-scales.
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VARIABILITY

APPENDIX B

In this section I introduce a novel method to investigate how the simulated in-

ternal variability in MPI-GE compares to real-world estimates. This method is based

on a simple approach: evaluating whether the observed estimates occur across the

whole range of the ensemble simulations, and whether they always stay within this

range. This model-evaluation method, first applied in Suarez-Gutierrez et al. (2018)

and further demonstrated in Maher et al. (2019), presents two main advantages. First,

as opposed to other evaluation techniques based on comparisons of mean values or

standard deviations, our approach focuses on the model’s ability to simulate higher

moments of the distribution, offering a more appropriate evaluation of the simulated

representation of the strength and frequency of extreme events. Second, this method

allows us to directly identify whether differences between observed and simulated

values are due to an incorrect simulation of the mean climate or its response to external

forcings, or rather due to an incorrect representation of internal variability. Next I

will explain this method in more detail and apply it to evaluate the ability of MPI-GE

to simulate observed mean and maximum surface temperatures in the summer months.

In the ideal case that real-world variability is perfectly simulated and the observa-

tional record is sufficiently long, the observed values would occur across the whole

ensemble spread with similar frequency. To illustrate this, I choose the central 75th

percentile range of the ensemble. I determine that MPI-GE adequately simulates the

observed estimated variability for the regions where observations fall within this 75th

percentile range around 75% of the time. On the other hand, I determine that MPI-GE

overestimates the observed variability in the regions where more than 75% of the

observations crowd within these bounds. This is illustrated by the gray shading in

Figure A.2 for simulated summertime monthly mean surface temperatures compared

to HadCRUT4 observations (Morice et al., 2012). The variability in monthly mean

temperatures is not overestimated for regions such as Europe or North America; whilst

is somewhat overestimated in regions such as Central Africa or Australia. The time

series for specific grid points where variability is adequately captured (Fig. A.2a)

reveal that the observed values indeed occupy the whole ensemble spread, including

the ensemble limits, and occur only occasionally outside the ensemble. For the regions
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where variability is slightly overestimated, the time series show that observed values

fall mostly in the central region of the ensemble (Fig. A.2b). However, in the example

case over Australia in Fig. A.2b, extreme observed values occur on the ensemble upper

limit in several months, indicating that the ensemble adequately captures the strength

and occurrence of warm events, while overestimating cold events.

The second aspect of our evaluation is whether observed estimates always occur

within the ensemble range, indicating that MPI-GE simulated variability is sufficient to

always capture observed anomalies. The red and blue shading in Figure A.2 indicate

the percentage of observed values of summertime monthly mean temperatures that

fall above or below the ensemble limits, respectively. In red regions, I expect an under-

estimation of the magnitude and frequency of extreme warm events that can lead to

underestimated projections for future climates; while the same is true for extreme cold

events in the blue regions. I find that observations lie outside the ensemble around 10%

of the months in most tropical regions, as well as regions over Asia, Europe or North

America. Observations may lie both above and below the ensemble limits because

MPI-GE underestimates internal variability in certain regions. However, other factors

may also play a relevant role. For regions where observations occur systematically

either below or above the ensemble limits, the cause may be that the average climate

state is not well represented either due to an incorrect response to external forcings,

or to an incorrect representation of relevant processes, that can also lead to a correct

representation of one tail of the distribution but not the other. Thus, this approach

highlights regions of interest that require a careful case-to-case investigation.

As an example, Fig. A.2c illustrates the time series for a grid point in the Ara-

bian Peninsula, where observations lie both above and below the ensemble limits,

indicating a potential underestimation of internal variability in MPI-GE. Comparing

MPI-GE to the observational record over this region, that starts around 1950, I identify

two behaviors. The first half of the record indicates a possible underestimation of

variability, with observed values often close to the ensemble limits or below the en-

semble minimum. However, after 1990 the warming signal in the observed record

is substantially larger than in MPI-GE, resulting in observed values lying more than

1◦C above the ensemble maximum. In the case of Fig. A.2d, representing a grid point

over China, it appears that the differences between observed and simulated values are

not caused by an incorrect representation of the response to external forcing as in the

previous case, but rather by an underestimation of internal variability, particularly on

decadal to multidecadal time scales.
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Figure A.2: Summer mean temperature variability in MPI-GE vs. observations. Global map
representing the variability of summer monthly mean 2m air surface temperature
anomalies from HadCRUT4 data (Morice et al., 2012) compared to the variability in
MPI-GE for the period 1850–2018. Red shading represents regions where observed
anomalies are larger than the ensemble maximum. Blue shading represents where
observed anomalies are smaller than the ensemble minimum. Gray hatching
indicates regions where MPI-GE simulated variability is larger than the observed
estimate; with the percentage of observed monthly anomalies occurring inside the
75th percentile of the MPI-GE distribution. Black dots represent regions where no
observations are available or are available only for less than ten months. Time
series for specific grid points (a-d) show ensemble maximum and minimum (red
lines) and 75th percentile bounds (red shading) compared to observed anomalies
(black points). Anomalies are calculated with respect to climatological levels
defined by the period of 1961–1990. Simulations are historical runs for the period
1850–2005 and RCP4.5 for the period 2006–2018 and are adapted to the HadCRUT4
grid. Summer months are defined as JJA for the Northern Hemisphere and DJF for
the Southern Hemisphere.
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Whereas variability in mean temperatures is mostly not overestimated in MPI-GE,

when investigating maximum temperature I find that observations occur within the

75th percentile bounds of MPI-GE for more than 85% of the months over most regions

(Fig. A.3). This comparison reveals that MPI-GE tends to overestimate the spread in

summertime monthly maximum surface temperatures as estimated from the BEST

data (Rohde et al., 2012). However, a more detailed investigation shows that MPI-GE

performs adequately in simulating extremes in several relevant regions, particularly in

the upper tail of the distribution. In the case of Europe (Fig. A.3a), warm extremes are

generally adequately represented, while cold extremes appear to be overestimated in

MPI-GE. This overestimation of summertime cold extremes occurs in other regions,

such as North America (Fig. A.3b), while other relevant regions present a similar beha-

vior for both types of extremes (Fig. A.3c and A.3d). This tendency to overestimate the

variability in maximum temperatures may indicate that MPI-GE also overestimates

future projections of maximum temperatures. On the other hand, observed values gen-

erally occur within the ensemble range, with some exceptions in Central Africa or East

Asia, indicating that MPI-GE does not underestimate the magnitude and frequency of

extreme events in most regions. However, summer maximum temperatures generally

exhibit larger variability than summer monthly mean temperatures (Suarez-Gutierrez

et al., 2018), and thus the observational record may be too short to determine whether

the amplitude and frequency of extreme events is adequately captured in MPI-GE.
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Figure A.3: Summer maximum temperature variability in MPI-GE vs. observations. Global
map representing the variability of summer monthly maximum 2m air surface
temperature anomalies from BEST data (Rohde et al., 2012) compared to the
variability in MPI-GE for the period 1850–2018. Red shading represents regions
where observed anomalies are larger than the ensemble maximum. Blue shading
represents where observed anomalies are smaller than the ensemble minimum.
Gray hatching indicates regions where MPI-GE simulated variability is larger
than the observed estimate; with the percentage of observed monthly anomalies
occurring inside the 75th percentile of the MPI-GE distribution. Black dots represent
regions where no observations are available or are available only for less than
ten months. Time series for specific grid points (a-d) show ensemble maximum
and minimum (red lines) and 75th percentile bounds (red shading) compared to
observed anomalies (black points). Time series for specific grid points (a-d) show
ensemble maximum and minimum (red lines) and 75th percentile bounds (red
shading) compared to observed anomalies (black points). Anomalies are calculated
with to the climatology baseline, defined in BEST data by the period of 1951–1980.
Simulations are historical runs for the period 1850–2005 and RCP4.5 for the period
2006–2018. BEST data are adapted to the coarser resolution MPI-GE grid. Summer
months are defined as JJA for the Northern Hemisphere and DJF for the Southern
Hemisphere.
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APPENDIX C

In this section I investigate the ability of the MPI-GE to simulate observed surface

temperatures globally and in particular over Europe. Figure A.4 illustrates how MPI-

GE captures the observed variability in global mean surface temperature (GMST) and

European summer monthly mean temperature (EuST) anomalies. GMST observations

occur within the ensemble spread for the majority of the record and generally across

the whole ensemble width with no preferred pattern (Fig. A.4a). To illustrate this more

clearly, I calculate the place, or rank, that the observed estimate would take in a list

of the ensemble members ordered by ascending GMST anomalies for each year. The

rank of observed anomalies that are smaller than those from all ensemble members is

1; while the rank of observed anomalies larger than the anomalies of all 100 members

is 101. The histogram of these ranks for observed GMST data presents a pattern that

is reasonably flat and continuous, indicating that observations occupy all ranks with

no preferred frequency (Fig. A.4b). Similarly, the probability distribution function

of simulated GMSTs for the reference period of 1981–2010 shows good agreement

the with the observed estimates in both the shape and the amplitude of the distribution.

In the case of observed temperatures averaged over Europe, EuST anomalies

occur rarely outside the ensemble limits, but tend to cluster in the upper half of the

ensemble (Fig. A.4c). The rank histogram for EuST shows a skewness toward higher

ranks, indicating that observations fall towards the ensemble maximum with higher

frequency as towards the ensemble minimum (Fig. A.4d). However, this skewness

exhibits some decadal variability, and is less prominent in the period of 1981–2010,

for which the observed and simulated distributions present good agreement in both

shape and amplitude (Fig. A.4f). This tendency may indicate an overestimation of the

frequency and amplitude of low European summer temperatures in MPI-GE during

some periods. However, the observational record may not be sufficiently long to allow

for a complete characterization of the large multi-decadal variability in European

summer temperatures.
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a b

c d

e f

Figure A.4: Global and European temperatures in MPI-GE vs. observations. (a) Time series
of GMST anomalies simulated by the MPI-GE (red) compared to HadCRUT4 ob-
servations (black). (b) Rank histogram for the HadCRUT4 GMST observations as a
member of the Grand Ensemble for the period of 1850–2016. (c) Time series of EuST
anomalies simulated by the MPI-GE (red) compared to CRUTEM4 observations
(black), as in (a). (d) Rank histogram for the CRUTEM4 EuST observations as a
member of MPI-GE for the period of 1850–2017. (e) Probability distribution of
GMST anomalies simulated by the MPI-GE (red) compared to HadCRUT4 obser-
vations (gray) for the period of 1981–2010. (f) Probability distribution of EuST
anomalies simulated by the MPI-GE (red) compared to CRUTEM4 observations
(gray) for the period of 1981–2010. Simulations are historical runs for the period
1850–2005 and RCP4.5 for the period 2006–2017. Anomalies are calculated with
respect to climatology baseline defined by the the period of 1961–1990. Simulated
data are subsampled to grid cells where observations are available.
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a MPI-GE mean EuST b Observed mean EuST

c MPI-GE minus Observed mean EuST d Evaluation of EuST variability

Figure A.5: European summer temperatures in MPI-GE vs. observations. (a) MPI-GE mean
EuST anomaly over the period 1990–2017. (b) CRUTEM4 mean EuST anomaly
over the period 1990–2017. (c) Difference between mean EuST anomaly in MPI-GE
minus CRUTEM4 over the period 1990–2017. (d) EuST variability in MPI-GE com-
pared to CRUTEM4 observed variability for the period 1850–2017. Gray hatching
shows where the estimated observed variability is smaller than the simulated
variability, as the percentage of observations occurring within the 75th ensemble
percentile. Red and blue shading represents regions where the observed estimated
variability is larger than the simulated variability. Red represents the percentage
of observations larger than the ensemble maximum anomaly at that time step;
blue represents the percentage of observations smaller than the ensemble min-
imum. Simulations are historical runs for the period 1850–2005 and RCP4.5 for the
period 2006–2017. Anomalies are calculated with respect to the climatological level
defined by the the period of 1961–1990.

Next, I evaluate how the ability of the MPI-GE to simulate the mean observed sum-

mer monthly mean temperatures and their variability varies over Europe (Fig. A.5).

For average temperatures in current climate conditions, represented by mean EuSTs

over the period of 1990–2017, the ensemble mean temperatures are slightly lower than

the observed EuSTs, with the largest differences around 0.5◦C (Fig. A.5c). Although

the ensemble presents a slight cold bias in the last decades, it captures the estimated

variability in the observed record adequately (Fig. A.5d). Observed anomalies rarely

occur outside the ensemble limits, and fall mostly across the whole ensemble spread.

In some regions like Italy, observations occur within the 75th percentile bounds of the

ensemble for more than 90% of the summer months. This indicates that simulated

temperature variability is slightly larger than the observed estimate in these areas. In
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case this analysis is performed for the frequency of observational estimates within the

ensemble’s 50th percentile, we find good agreement between observed and simulated

variability estimates, with around 50% frequency for the whole domain.

a MPI-GE mean Precipitation b Observed mean Precipitation

c MPI-GE minus Observed mean Precip. d Evaluation of Precipitation variability

Figure A.6: Precipitation in MPI-GE vs. observations. (a) MPI-GE mean precipitation anom-
aly over the period 1990–2017. (b) E-OBS mean precipitation anomaly over the
period 1990–2017. (c) Difference between mean precipitation anomaly in MPI-GE
minus E-OBS in the period 1990–2017. (d) Precipitation variability in MPI-GE
compared to E-OBS observed variability for the period 1950–2017. Gray hatching
shows where the estimated observed variability is smaller than the simulated
variability, as the percentage of observations occurring within the 75th ensemble
percentile. Red and blue shading represents regions where the observed estimated
variability is larger than the simulated variability. Red represents the percentage
of observations larger than the ensemble maximum anomaly at that time step;
blue represents the percentage of observations smaller than the ensemble min-
imum. Simulations are historical runs for the period 1850–2005 and RCP4.5 for the
period 2006–2017. Anomalies are calculated with respect to the climatological level
defined by the the period of 1961–1990.

One of the reasons that may cause an overestimation in MPI-GE of the amplitude

and frequency of colder European summers is an incorrect representation of precipita-

tion. Performing an analogous analysis for total precipitation over Europe I find that

the mean precipitation as well as its variability can be misrepresented in MPI-GE (Fig.

A.6). The ensemble mean precipitation for the period 1990–2017 is around 1 mm/day

larger than the observed average over the northern part of the domain and part of the

Iberian Peninsula, while being around 1 to 4 mm/day lower than the observed average
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in Southern Europe, particularly over alpine regions (Fig. A.6c). The simulated precip-

itation variability in the ensemble is smaller that the estimated observed variability

over most of Europe (Fig. A.6d). Observed precipitation anomalies occur outside

the ensemble limits up to more than 25% of the summer months, indicating that the

frequency and amplitude of extremely wet and, particularly, extremely dry events is

underestimated in MPI-GE. These results agree with our findings in Fig. A.4d and

point to an overestimation of the frequency of colder than average summer months

in the ensemble simulations that may be partially caused by biases in precipitation

variability. Albeit these potential biases in the simulation of cold extremes, I find

that MPI-GE captures the frequency and amplitude of extremes in the upper tail of

the observed distribution adequately, and is a suitable tool for the investigation of

extremely warm summers.
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APPENDIX D

Supporting Figures to Chapter 1

a Variability Change (1930–1959 vs 2070–2099) b Variability Change (1961–1990 vs 2070–2099)

Figure S.1: Change in European summer temperature variability relative to different refer-
ence periods. (a) Relative change in variability based on change in EuST probability
density distribution width (2.5th–97.5th percentiles) for mid 20th century (1930–
1959) compared to late 21st century (2070–2099) for each grid cell. (b) Relative
change in variability based on change in EuST probability density distribution
width (2.5th–97.5th percentiles) for the 20th century climatological period (1961–
1990) compared to late 21st century (2070–2099) for each grid cell. Stippling shows
significance for late 21st century PDF widths larger (or smaller) than all the possible
30-year PDFs in the 20th century. Simulations are historical runs for the period 1850–
2005 and RCP4.5 runs for the period 2006–2099 from the MPI-GE. All anomalies
are calculated with respect to the climatological period of 1961–1990.
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Figure S.2: Standardized regression coefficients from multiple regression with higher
multicorrelation threshold. Point-to-point standardized regression coefficients
between 2σ extreme EuST and different drivers from multiple regression analysis
for the 20th century (left column) compared to for the 21st century (right column)
for a more conservative multicorrelation threshold of 0.9, corresponding to a VIF of
5. Hatching represents regions where the variable is excluded from the regression
model either because its contribution is not significant or because it exhibits too
high multicollinearity with the remaining predictors in the model.
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Supporting Figures to Chapter 3

MPI-GE mean, 1990–2018

Observed mean, 1990–2018

Figure S.5: Maximum temperatures in MPI-GE vs. observations. Absolute summertime
monthly maximum temperatures averaged for the period 1990-2018 for MPI-GE
simulations compared to observed maximum temperatures in the BEST dataset
(Rohde et al., 2012). The observed estimates represent the maximum value of the
spatial average of maximum temperature anomaly plus the climatology for the
respective month in each grid cell for the period 1951–1980. MPI-GE simulations
are historical runs for the period 1990-2005 and RCP4.5 for the period 2005-2018.
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Maximum Reachable Wet Bulb temperature

Figure S.6: Uncorrected maximum reachable extreme Wet Bulb temperatures at different
global warming levels. Maximum uncorrected Wet Bulb temperatures at different
global warming levels,
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Global warming level of Wet Bulb temperature threshold exceedance

Figure S.7: Global warming level of exceedance of extreme uncorrected Wet Bulb temperat-
ure threshold. Global warming level measured as GMST that exhibits exceedance
of the uncorrected wet bulb temperature threshold (W > 26◦C) with probability of
1% or higher.
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