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Abstract

This tutorial is meant for a broad audience: Students, researchers, biologists and
computer scientist interested in (a) an overview of general and efficient algorithms
for statistical learning used in computational biology, (b) sequence kernels for the
problems such as promoter or splice site detection. No specific knowledge will be
required since the tutorial is self-contained and most fundamental concepts are
introduced during the course.

The slides and additional tutorial material are available at http://www.fml.
mpg .de/raetsch/projects/gcbtutorial

1 Introduction

The Machine Learning field evolved from the broad field of Artificial Intelligence, which
aims to mimic intelligent abilities of humans by machines. In the field of Machine Learning
one considers the important question of how to make machines able to “learn”. Learning
in this context is understood as inductive inference, where one observes examples that
represent incomplete information about some “statistical phenomenon”. In supervised
learning, there is a label associated with each example. It is supposed to be the answer to
a question about the example. If the label is discrete, then the task is called classification
problem otherwise, for real-valued labels we speak of a regression problem. Based on
these examples (including the labels), one is particularly interested in predicting the
answer for other cases before they are explicitly observed. Hence, learning is not only a
question of remembering but also of generalization to unseen cases.

2 Classification Algorithms

An important task in Machine Learning is classification, also referred to as pattern recog-
nition, where one attempts to build algorithms capable of automatically constructing
methods for distinguishing between different exemplars, based on their differentiating
patterns. [39] described a pattern as “the opposite of chaos; it is an entity, vaguely
defined, that could be given a name”. Examples of patterns are human faces, text doc-
uments, handwritten letters or digits, EEG signals, and the DNA sequences that may
cause a certain disease. More formally, the goal of a (supervised) classification task is
to find a functional mapping between the input data X, describing the input pattern,
to a class label Y (e.g. 1 or +1), such that Y = f(X). The construction of the map-
ping is based on so-called training data supplied to the classification algorithm. The aim
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is to accurately predict the correct label on unseen data. A pattern (also: “example”)
is described by its features. These are the characteristics of the examples for a given
problem. For instance, in a face recognition task some features could be the color of the
eyes or the distance between the eyes. Thus, the input to a pattern recognition task can
be viewed as a two-dimensional matrix, whose axes are the examples and the features.
Pattern classification tasks are often divided into several sub-tasks:

e Data collection and representation.
e Feature selection and/or feature reduction.
e (lassification.

Data collection and representation are mostly problem-specific. Therefore it is difficult
to give general statements about this step of the process. In broad terms, one should
try to find invariant features, that describe the differences in classes as best as possible.
Feature selection and feature reduction attempt to reduce the dimensionality (i.e. the
number of features) for the remaining steps of the task. Finally, the classification phase
of the process finds the actual mapping between patterns and labels (or targets). In many
applications the second step is not essential or is implicitly performed in the third step.

3 Large Margin Classification Algorithms

Machine learning rests upon the theoretical foundation of Statistical Learning Theory [36]
which provides conditions and guarantees for good generalization of learning algorithms.
Within the last decade, large margin classification techniques have emerged as a practical
result of the theory of generalization. Roughly speaking, the margin is the distance of
the example to the separation boundary and a large margin classifier generates decision
boundaries with large margins to almost all training examples. The two most widely
studied classes of large margin classifiers are Support Vector Machines (SVMs) [2] and
Boosting [35], 26].

In this tutorial we mainly consider Support Vector Machines and its applications to
biological sequence analysis. SVMs work by mapping the training data into a feature
space by the aid of a so-called kernel function and then separating the data using a
large margin hyperplane (cf. Algorithm . Intuitively, the kernel computes a similarity
between two given examples. Most commonly used kernel functions are RBF kernels
k(x,x') = exp(—||x — x||?) and polynomial kernels k(x,x’) = (x-x')?. The SVM finds a
large margin separation between the training examples and previously unseen examples
will often be close to the training examples. Hence, the large margin then ensures that
these examples are correctly classified as well, i.e., the decision rule generalizes. For so-
called positive definite kernels, the optimization problem can be solved efficiently and
SVMs have an interpretation as a hyperplane separation in a high dimensional feature
space [30], 27]. Support Vector Machines have been used on million dimensional data
sets and in other cases with more than ten million examples [32]. Research papers and
implementations can be downloaded from the kernel machines web-site http://www.
kernel-machines.org.
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Algorithm 1 Support Vector Machine with regularization parameter C' and kernel k
Given labeled sequences x,...,X,, and a kernel k, the SVM computes a function

f(s) = Z:aik(xi, x) + b,

where the coefficients «; are found by solving the optimization problem

m m m
maximize Z o — B Z Z ;o yiyk(Xi, X;)
i=1 i=1j=1

w.r.t. 0<q<Cfori=1,...,m

subject to Z ay; =0
i=1

4 Kernels on Biological Sequence Analysis

One of the most important benefits of using kernel methods is that one can apply the
machinery developed for vector space methods directly to structured data. This is done
via the “kernel trick” which enables efficient convex optimization methods to be applied
to structured data such as sequences, trees and graphs. We will focus on kernels on
sequences, and the reader is referred to [28, 3] [7, 6], 10, 12] for more general structures. Our
introduction to string kernels will include their definition [I3] [I4], approaches to speed
up kernel computation [30, B8] and several examples of applications to gene sequence
comparison [22, 140, 23], 25, 32]. These kernels are the modeling tool that allow us to
apply the algorithms presented in the previously on complex data structures arising in
computational biology.

In the tutorial we discuss how a practitioner can construct kernels for a particular
application with an emphasis to

e the spectrum and weighted degree kernels,
e the combination of known kernels and
e kernel design guidelines.
Finally, we give a brief overview of publicly available software:
e machine learning and optimization toolboxes and
e efficient kernel implementations.

With the course we will provide access to a novel kernel learning toolbox, called shogun,
and give a tutorial introduction to the software (available at http://www.fml.mpg.de/
raetsch/projects/shogun).


http://www.fml.mpg.de/raetsch/projects/shogun
http://www.fml.mpg.de/raetsch/projects/shogun

References

1]

[11]

[12]

[13]

[14]

[15]

B.E. Boser, .M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin
classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, pages 144-152, 1992.

C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:273—
297, 1995.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational kernels: Theory and
algorithms. Journal of Machine Learning Research, 5:1035-1062, 2004.

CPLEX Optimization Incorporated, Incline Village, Nevada. Using the CPLEX
Callable Library, 1994.

R.O. Duda, P.E.Hart, and D.G.Stork. Pattern classification. John Wiley & Sons,
second edition, 2001.

T. Gértner, P.A. Flach, and S. Wrobel. On graph kernels: Hardness results and
efficient alternatives. In B. Scholkopf and M. K. Warmuth, editors, Proc. Annual
Conf. Computational Learning Theory. Springer, 2003.

D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-
CRL-99 - 10, Computer Science Department, UC Santa Cruz, 1999.

T.S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for de-
tecting remote protein homologies. J. Comp. Biol., 7:95-114, 2000.

T. Joachims. Making large—scale SVM learning practical. In B. Scholkopf, C.J.C.
Burges, and A.J. Smola, editors, Advances in Kernel Methods — Support Vector
Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In Proc. Intl. Conf. Machine Learning, Washington, DC, United States,
2003.

G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82-95, 1971.

I. R. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete
structures. In Proc. Intl. Conf. Machine Learning, 2002.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM
protein classification. In Proceedings of the Pacific Symposium on Biocomputing,
pages 564-575, 2002.

C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch string kernels for dis-
criminative protein classification. Bioinformatics, 20(4), 2003.

C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein
sequences. Journal of Machine Learning Research, 5:1435-1455, 2004.

4



[16]

[17]

[21]

[22]

[23]

[24]

[26]

[27]

28]

[29]

[30]

L. Liao and W.S. Noble. Combining pairwise sequence similarity and support vector
machines. In Proc. 6th Int. Conf. Computational Molecular Biology, pages 225232,
2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2:419—
444, 2002.

J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:415-446, 1909.

K.-R. Miller, S. Mika, G. Rétsch, K. Tsuda, and B. Scholkopf. An introduc-
tion to kernel-based learning algorithms. IEEE Transactions on Neural Networks,
12(2):181-201, 2001.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support
vector machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural
Networks for Signal Processing VII — Proceedings of the 1997 IEEE Workshop,
pages 276285, New York, 1997. IEEE.

J. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In B. Scholkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in
Kernel Methods — Support Vector Learning, pages 185—208, Cambridge, MA, 1999.
MIT Press.

G. Rétsch and S. Sonnenburg. Accurate splice site detection for Caenorhabditis
elegans. In K. Tsuda B. Schoelkopf and J.-P. Vert, editors, Kernel Methods in
Computational Biology. MIT Press, 2004.

G. Ratsch, S. Sonnenburg, and C. Schéfer. Learning interpretable svms for biological
sequence classification. BMC' Bioinformatics, 7(Suppl 1):S9, February 2006.

G. Ratsch, S. Sonnenburg, and B. Scholkopf. RASE: recognition of alternatively
spliced exons in C. elegans. Bioinformatics, 21(Suppl. 1):i369-1377, June 2005.

Gunnar Rétsch, Bettina Hepp, Uta Schulze, and Cheng Soon Ong. PALMA: Perfect
alignments using large margin algorithms. In German Conference on Bioinformatics,
2006.

R.E. Schapire. The Design and Analysis of Efficient Learning Algorithms. PhD
thesis, MIT Press, 1992.

B. Scholkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

B. Scholkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology.
MIT Press, Cambridge, MA, 2004.

A.J. Smola and B. Scholkopf. A tutorial on support vector regression. Statistics and
Computing, 2001.

S. Sonnenburg, G. Rétsch, A. Jagota, and K.-R. Miiller. New methods for splice-site
recognition. In Proc. International Conference on Artificial Neural Networks, 2002.

bt



[31]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

Soren Sonnenburg, Gunnar Ratsch, Christin Schafer, and Bernhard Scholkopf. Large
Scale Multiple Kernel Learning. Journal of Machine Learning Research, 7:1531-1565,
July 2006.

Soren Sonnenburg, Alexander Zien, and Gunnar Ratsch. ARTS: Accurate Recogni-
tion of Transcription Starts in Human. Bioinformatics, 22(14):e472-480, 2006.

K. Tsuda, M. Kawanabe, G. Rétsch, S. Sonnenburg, and K.R. Miiller. A new
discriminative kernel from probabilistic models. Neural Computation, 14:2397-2414,
2002.

K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences. Bioin-
formatics, 18:2685-275S, 2002.

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134~
1142, November 1984.

V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, New York,
1995.

J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences.
In K. Tsuda B. Schoelkopf and J.-P. Vert, editors, Kernel Methods in Computational
Biology. MIT Press, 2004.

S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree match-
ing. In K. Tsuda, B. Scholkopf, and J.P. Vert, editors, Kernels and Bioinformatics,
Cambridge, MA, 2004. MIT Press.

W. Watanabe. Pattern recognition: Human and mechanical. Wiley, 1985.

A. Zien, G. Ratsch, S. Mika, B. Scholkopf, T. Lengauer, and K.-R. Miiller. En-
gineering Support Vector Machine Kernels That Recognize Translation Initiation
Sites. Biolnformatics, 16(9):799-807, September 2000.



	Introduction
	Classification Algorithms
	Large Margin Classification Algorithms
	Kernels on Biological Sequence Analysis

