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FAST INTERPOLATION-BASED GLOBALITY CERTIFICATES FOR
COMPUTING KREISS CONSTANTS AND THE DISTANCE TO

UNCONTROLLABILITY∗

TIM MITCHELL†

Abstract. We propose a new approach to computing global minimizers of singular value func-
tions in two real variables. Specifically, we present new algorithms to compute the Kreiss constant of
a matrix and the distance to uncontrollability of a linear control system, both to arbitrary accuracy.
Previous state-of-the-art methods for these two quantities rely on 2D level-set tests that are based
on solving large eigenvalue problems. Consequently, these methods are costly, i.e., O(n6) work using
dense eigensolvers, and often multiple tests are needed before convergence. Divide-and-conquer tech-
niques have been proposed that reduce the work complexity to O(n4) on average and O(n5) in the
worst case, but these variants are nevertheless still very expensive and can be numerically unreliable.
In contrast, our new interpolation-based globality certificates perform level-set tests by building in-
terpolant approximations to certain one-variable continuous functions that are both relatively cheap
and numerically robust to evaluate. Our new approach has an O(kn3) work complexity and uses
O(n2) memory, where k is the number of function evaluations necessary to build the interpolants.
Not only is this interpolation process mostly “embarrassingly parallel,” but also low-fidelity approx-
imations typically suffice for all but the final interpolant, which must be built to high accuracy.
Even without taking advantage of the aforementioned parallelism, k is sufficiently small that our
new approach is generally orders of magnitude faster than the previous state of the art.
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Notation. ‖·‖ denotes the spectral norm, σmin(·) the smallest singular value, Λ(·)
the spectrum, and κ(·) the condition number of a matrix with respect to the spectral
norm. A matrix pencil A− λB and its spectrum are denoted by (A,B) and Λ(A,B),
respectively, and (A,B) is a regular matrix pencil if there exists at least one λ ∈ C such
that det(A − λB) 6= 0. A matrix A ∈ C2n×2n is (skew-)Hamiltonian if (JA)∗ = JA
(A∗J = JA), where J =

[
0 I
−I 0

]
. A matrix pencil (A,B) with A,B ∈ C2n×2n is

skew-Hamiltonian-Hamiltonian (sHH) if B is skew-Hamiltonian and A is Hamiltonian.
Euler’s number, 2.71828 . . . , is denoted by e, while bdA and intA are the boundary
and interior of a set A, respectively.

1. Introduction. We begin with two important quantities that can be writ-
ten as global optimization problems of certain singular value functions in two real
variables and describe existing algorithms for computing these quantities and their
limitations. In this discussion, we also establish necessary background and context
for understanding our new approach.

1.1. The distance to uncontrollability. Consider the linear control system

(1.1) ẋ = Ax+Bu,
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FAST INTERPOLATION-BASED GLOBALITY CERTIFICATES 579

where A ∈ Cn×n, B ∈ Cn×m, and the state x ∈ Cn and control input u ∈ Cm are de-
pendent on time. System (1.1) is controllable if, for any pair of initial and final states
x(0) and x(T ), T > 0, there exists a control function u(·) that takes x(0) to x(T ).
However, a more robust measure is the distance to uncontrollability, which was in-
troduced in [23] and is denoted here by τ(A,B). Given a system (1.1), τ(A,B)
specifies the distance to the nearest matrix pair Auc, Buc such that ẋ = Aucx+Bucu
is uncontrollable, with the distance being zero if (1.1) is uncontrollable and positive
otherwise.1 In [10], Eising showed that τ(A,B) is equal to the globally minimal value
of the following singular value function:

(1.2) τ(A,B) = min
z∈C

σmin

([
A− zI B

])
.

While many methods have been proposed for τ(A,B) over the years (see [14,
p. 990] for a historical overview), the first polynomial-time algorithm to correctly
estimate τ(A,B) to within a constant factor is due to Gu [14]. The basis of Gu’s
algorithm is a 2D level-set test. Given a guess γ ≥ 0 for the value of τ(A,B) and
a parameter η > 0, Gu’s 2D level-set test verifies whether or not there exists one or
more points z̃ ∈ C such that

(1.3) γ = σmin

([
A− z̃I B

])
= σmin

([
A− (z̃ + η)I B

])
holds. Moreover, if such points exist, Gu’s test also returns their values. Clearly
τ(A,B) ≤ γ holds if (1.3) is satisfied by some z̃. However, if there are no such points,
[14, Theorem 3.1] states that the following lower bound must instead hold:

(1.4) τ(A,B) > γ − η
2 .

By starting with γ0 ≥ τ(A,B) and using γk+1 := 1
2γk and ηk+1 := γk+1, Gu’s method

for τ(A,B) repeatedly applies his 2D level-set test until it no longer finds any points
z̃ ∈ C satisfying (1.3). Assuming exact arithmetic is used, at termination, the last
estimate is guaranteed to be within a factor of two of τ(A,B) (in either direction).
The cost of Gu’s method is dominated by the need to compute all real eigenvalues
of a large generalized eigenvalue problem of order 2n2 for each 2D level-set test, as
described in [14, section 3.2]. Consequently, when using standard dense eigensolvers,
such as those based on the QZ algorithm, Gu’s estimation algorithm has an O(n6)
work complexity2 and requires O(n4) memory. In practice, this limits Gu’s method
to all but the smallest of problems, and furthermore, in inexact arithmetic, his 2D
level-set test can fail due to rounding errors, particularly as η gets closer and closer
to zero; see [6, p. 358].

Using Gu’s 2D level-set test, Burke, Lewis, and Overton [6] proposed the first
two algorithms to compute τ(A,B) to arbitrary accuracy, again assuming exact arith-
metic. Their first method [6, Algorithm 5.2] uses Gu’s test in a trisection iteration in
an effort to minimize the speed at which η → 0 as trisection converges to τ(A,B). In
turn, this helps reduce the chances of Gu’s test failing numerically before the estimate
to τ(A,B) has been sufficiently resolved. We forgo describing trisection in detail, but
mention that trisection is not a panacea, since if τ(A,B) is very small, so must η be

1A new alternative for assessing the distance to uncontrollability of systems with input and
output was recently proposed in [18, 12], but here we focus on the standard definition.

2As in [6], work complexities are given in terms of considering all computations of singular values,
eigenvalues, etc., as atomic operations with cubic costs in the dimensions of the associated matrices,
and we further assume that these costs reduce to linear if sparse methods are applicable.
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580 TIM MITCHELL

to resolve τ(A,B) to even a single digit of accuracy; see [22, Lemma B.1 and Corol-
lary B.2]. The authors’ second method [6, Algorithm 5.3] combines Gu’s test and local
optimization to yield an optimization-with-restarts iteration. As σmin ([A−zI B ]) is
Lipschitz and will generally be smooth, even at minimizers, finding locally optimal
approximations to τ(A,B) via standard optimization techniques is straightforward
and can be done with few function evaluations. Computing the value, gradient, and
Hessian of σmin ([A−zI B ]) is O(n3) work via standard dense SVD methods, while
the function value and gradient can be obtained in just O(n) work via sparse SVD
methods. Thus, given a local minimizer zk of (1.2) with fk = σmin ([A−zkI B ]), [6,
Algorithm 5.3] uses Gu’s test with carefully chosen values for parameters γ and η
such that the algorithm terminates if fk is sufficiently close to τ(A,B) in a relative
sense. If not, Gu’s test still provides new level-set points such that running optimiza-
tion from them must yield a better (lower) minimizer. Since the objective function
in (1.2) is semialgebraic, it has a finite number of locally minimal function values;
see [6, p. 359]. As a result, [6, Algorithm 5.3] must terminate at a globally optimal
minimizer within a finite number of optimization restarts (for brevity, throughout the
paper we assume that optimization finds stationary points exactly). In practice, the
number of restarts is typically only a handful, which makes it many times faster than
the trisection iteration.

Shortly thereafter, [15] showed how the large generalized eigenvalue problem in
Gu’s 2D level-set test can be reduced to a standard eigenvalue problem (but still of or-
der 2n2), and then proposed a divide-and-conquer technique to compute the relevant
eigenvalues in O(n4) work on average and O(n5) in the worst case. While divide-and-
conquer enables asymptotically faster versions of all of the methods of [14, 6] described
above, it does not address the aforementioned numerical issues inherent in Gu’s 2D
level-set test. In fact, divide-and-conquer introduces additional numerical uncertain-
ties, as it relies on sparse shift-and-invert eigensolver techniques. As we mentioned
in [22, section 8], one issue is that divide-and-conquer assumes that such eigensolvers
always return the closest eigenvalues to a given shift, which, while reasonable, is not
always true in practice. Furthermore, sparse eigensolvers such as eigs in MATLAB
can have convergence issues when the norm of the matrix in question gets large; see
[15, p. 500]. Nevertheless, it is not always clear whether divide-and-conquer will be
more or less reliable than Gu’s original test using dense eigensolvers, and indeed the
experiments of [15, section 4] do demonstrate that divide-and-conquer can be a much
faster and effective alternative for computing τ(A,B). For a thorough discussion of
the numerical difficulties of both Gu’s original approach and divide-and-conquer, see
[15, sections 4.1, 5.2, and 5.3] and the references within.

Finally, we recently showed how the numerical reliability of all of these τ(A,B)
methods can be greatly improved via a crucial reinterpretation and modified version
of Gu’s 2D level-set test; see [22, Key Remark 6.3].

1.2. The Kreiss constant of a matrix. We now turn to another impor-
tant quantity, namely, the Kreiss constant of a matrix A ∈ Cn×n, which comes in
continuous- and discrete-time variants that respectively bound the transient behavior
of ẋ = Ax and xk+1 = Axk. More specifically, the discrete-time version of the Kreiss
Matrix Theorem [17], after being refined by many authors over nearly thirty years,
states that [24, Theorem 18.1]

(1.5) K(A) ≤ sup
k≥0
‖Ak‖ ≤ enK(A),
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where the Kreiss constant K(A) has two equivalent definitions [24, p. 143],

K(A) = sup
z∈C,|z|>1

(|z| − 1)‖(zI −A)−1‖,(1.6a)

= sup
ε>0

ρε(A)− 1

ε
,(1.6b)

and the ε-pseudospectral radius ρε(·) is defined by

ρε(A) = max{|z| : z ∈ Λ(A+ ∆), ‖∆‖ ≤ ε}(1.7a)

= max{|z| : z ∈ C, ‖(zI −A)−1‖ ≥ ε−1}.(1.7b)

For ε = 0, ρε(A) = ρ(A), the spectral radius of A, and so it is easy to see that
K(A) = ∞ if ρ(A) > 1. Furthermore, if A is normal and ρ(A) ≤ 1, then K(A) = 1,
which is the minimum value K(A) can take.

The continuous-time Kreiss Matrix Theorem states that [24, Theorem 18.5]

(1.8) K(A) ≤ sup
t≥0
‖etA‖ ≤ enK(A),

where this version of K(A) also has two equivalent definitions [24, eqn. (14.7)],

K(A) = sup
z∈C,Re z>0

(Re z)‖(zI −A)−1‖,(1.9a)

= sup
ε>0

αε(A)

ε
,(1.9b)

and the ε-pseudospectral abscissa αε(·) is defined by

αε(A) = max{Re z : z ∈ Λ(A+ ∆), ‖∆‖ ≤ ε}(1.10a)

= max{Re z : z ∈ C, ‖(zI −A)−1‖ ≥ ε−1}.(1.10b)

If ε = 0, αε(A) = α(A), the spectral abscissa of A, and so K(A) = ∞ if α(A) > 0.
Similar to the discrete-time case, K(A) ≥ 1 always holds and K(A) = 1 if A is normal
and α(A) ≤ 0.

In [22], we introduced the first globally convergent algorithms to compute both
continuous- and discrete-time Kreiss constants to arbitrary accuracy. Prior to this, it
was only possible to estimate K(A) using supervised techniques, i.e., where a user is
an active participant of the process. In [19, Chapter 3.4.1] and [11], Kreiss constants
were approximated by plotting (1.6b) or (1.9b) and simply taking the maximum of
the resulting curve. Meanwhile, Kreiss constant estimation via plotting ‖etA‖ with
respect to t or ‖Ak‖ with respect to k or by finding local maximizers of (1.6b) or
(1.9b) via optimization is discussed in [24, Chapters 14 and 15]. Plotting and/or grid
techniques of course have low fidelity. They are unlikely to obtain the value of K(A) to
more than a few digits at best and may require a large number of function evaluations
to have any accuracy whatsoever. In contrast, under sufficient regularity conditions,
optimization techniques have high fidelity in finding local maximizers, often with
relatively few function evaluations. However, as the optimization problems in (1.6)
and (1.9) are typically nonconvex, general optimization solvers cannot guarantee that
a global maximizer is found, and estimates from local minimizers can be arbitrarily
bad approximations to K(A). Even if one happens to know a relatively small bounded
region containing a global maximizer of the optimization problems in (1.6) and (1.9),
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582 TIM MITCHELL

to guarantee any level of accuracy, this region must still be sufficiently sampled (for
plotting or grid techniques) or contain no other stationary points (for optimization).
Knowing such a region and how much sampling is required or that it contains no other
stationary points is not typical, at least not without user experimentation. Moreover,
if transient behavior occurs on a fast time scale, such regions can be very small and
thus hard to find, particularly without fine-grained sampling. As noted by Mengi [19,
section 6.2.2], “in general it is difficult to guess a priori which ε value is most relevant
for the transient peak [of (1.6b) or (1.9b)].”

For our recent algorithms to compute Kreiss constants with theoretical guarantees
[22], we actually worked with the inverses of (1.6a) and (1.9a), respectively:

K(A)−1 = inf
|z|>1

σmin

(
zI −A
|z| − 1

)
(discrete-time),(1.11a)

K(A)−1 = inf
Re z>0

σmin

(
zI −A

Re z

)
(continuous-time).(1.11b)

In this form, it is easier to see that the optimization problems in (1.11) have some
similarity to (1.2), which naturally leads to the question of whether or not any of
the aforementioned τ(A,B) methods could be adapted to computing K(A). Like
the τ(A,B) setting, the objective functions in (1.11) are semialgebraic, so they have
a finite number of locally minimal values; hence, properly designed optimization-
with-restart algorithms will converge to K(A)−1 within a finite number of restarts.
Optimization can also robustly and efficiently find (feasible) minimizers of (1.11)
in order to obtain locally optimal approximations to K(A)−1, even for large scale
problems. For complete details on both of these points, see our previous comments in
subsection 1.1 and [22, section 3]. However, as shown in [22, section 4], there are in
fact fundamental differences between computing the distance to uncontrollability, and
Kreiss constants and existing τ(A,B) methods do not extend directly. Nevertheless,
for the objective functions in (1.11), we developed several different Kreiss constant
analogues of Gu’s [14, Theorem 3.1], which, along with several new 2D level-set tests,
enable three different K(A) iterations [22].

When computing continuous-time K(A), the first of these is based on a new
2D level-set test that, similar to Gu’s τ(A,B) test for (1.3), looks for pairs of level-set
points of the objective function in (1.11b) that are a fixed-distance η apart. However,
the aforementioned τ(A,B) trisection and optimization-with-restart algorithms of [6]
cannot be used with this new test because a meaningful lower bound for K(A)−1, like
(1.4), is not asserted when no such level-set pairs are detected; see [22, section 4].
But, by combining optimization-with-restarts with a backtracking procedure, it was
possible to use this fixed-distance test to devise a globally convergent iteration for
K(A); see [22, section 5]. This new level-set involves computing all real eigenvalues
of a generalized eigenvalue problem A1 − λA2 of order 4n2 [22, eqn. (5.5)], where A2

is singular with rank 2n2. As noted in [22, section 5.3], it does not seem possible to
analytically reduce the order of A1−λA2 to 2n2 or to a standard eigenvalue problem
via the techniques of [15] for Gu’s τ(A,B) level-set test.

Meanwhile, in [22, section 6], we devised a second 2D level-set test for (1.11b) that
looks for pairs of level-set points that are a certain variable distance apart involving η.
This too leads to solving a generalized eigenvalue problem of order 4n2, B1 − λB2 [22,
eqn. (6.6)], but here B2 is nonsingular and we derived an explicit form for its inverse.
Differences in numerical reliability between the fixed- and variable-distance tests are
still not entirely clear, but one advantage of the variable-distance test is that it does
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assert that the lower bound K(A)−1 > γ− η
2 must hold whenever no such level-set pairs

are detected. Thus, this variable-distance 2D level-set test enables two more K(A)
iterations, which respectively use trisection and optimization-with-restarts without
backtracking. In practice, optimization-with-restarts without backtracking generally
needs the least number of level-set tests, while trisection needs far more than either
of the optimization-based iterations.

To compute discrete-time K(A), we also developed three analogues of these iter-
ations [22, section 7], which, at a very high level, work similarly. However, the un-
derlying new 2D level-set tests for the objective function in (1.11a) are substantially
different and more complicated and expensive. In particular, they require solving
quadratic eigenvalue problems of order 4n2.

Like the τ(A,B) methods, these K(A) methods do O(n6) work when using dense
eigensolvers. However, solving the larger and generalized/quadratic eigenvalue prob-
lems is substantially more expensive and requires much more memory, particularly
for discrete-time K(A). In [22, sections 5.4, 6.3, and 7.4], we also developed divide-
and-conquer versions of all of these K(A) algorithms. While these variants do O(n4)
work on average and O(n5) in the worst case and have dramatically lower memory
requirements, we noted in [22, section 8] that divide-and-conquer for the K(A) setting
does not appear to be very reliable in practice. All our 2D level-set tests for K(A)
also use our improved technique that is explained in [22, Key Remark 6.3].

1.3. Motivation and contribution of the paper. As we have just seen, the
state-of-the-art methods for computing τ(A,B) and K(A) are based on a 2D level-set
test methodology that intrinsically involves solving very large eigenvalue problems.
Even in their faster divide-and-conquer variants, these algorithms are prohibitively
expensive. Moreover, the convergence guarantees of these methods assume exact
computation, but rounding errors in computed eigenvalues may cause the methods to
fail numerically. Our aforementioned modified technique to perform these 2D level-
set tests more reliably, while effective and in fact crucial for robust codes, does not
address all the numerical pitfalls of these methods.

In this paper, we address both these high-cost and reliability issues by propos-
ing a new methodology for computing quantities whose values are given by global
optimization of singular value functions in two real variables. We do this by de-
veloping new level-set tests for optimization-with-restarts-based methods, which we
call interpolation-based globality certificates and that work by sufficiently resolving
certain one-variable continuous functions over a finite interval known a priori. These
new functions are reasonably well behaved and relatively cheap and robust to evaluate,
all of which makes high-fidelity approximation via interpolation practical. Our new
τ(A,B) and K(A) methods have O(kn3) work complexity and require O(n2) memory,
where k, the total number of function evaluations incurred to build the interpolants,
is such that our new methods are orders of magnitude faster than the previous state
of the art. Moreover, additional significant speedups can be attained via parallel
processing, since function evaluations for interpolation are “embarrassingly parallel.”
Our “strength in numbers” interpolation-based approach also has numerical benefits,
as global convergence does not crucially hinge upon any single computation being
susceptible to rounding error, which is not true for almost all of the 2D level-set test
methods discussed in subsections 1.1 and 1.2 (the sole exception being the Kreiss con-
stant iteration using backtracking). The trade-off we have made here is that instead
of putting our faith in accurately computing eigenvalues of very large eigenvalue prob-
lems, we assume that approximation via interpolation is reliable enough to be used
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584 TIM MITCHELL

as a subroutine. In this sense, our new approach can be considered complementary
to our earlier efforts of [22], as they are built on very different foundations.

In section 2 we present our new interpolation-based globality certificates for the
case of computing continuous-time K(A). Analogues of our interpolation-based cer-
tificates for discrete-time K(A) and τ(A,B) are derived, respectively, in sections 3
and 4. Numerical experiments are given in section 5, while concluding remarks are
made in section 6.

2. A new approach for computing continuous-time Kreiss constants.
We now propose a new optimization-with-restarts-based algorithm for computing
continuous-time K(A), i.e., a new method to find a global minimizer of (1.11b). As
previously mentioned, local minimizers of (1.11b) can be found relatively cheaply, and
its objective function has a finite number of locally minimal values. Thus, given a cor-
responding level-set test, only a finite number of optimization restarts are necessary
to compute K(A)−1, and equivalently K(A), to arbitrary accuracy. However, unlike
the earlier methods discussed in the introduction, we abandon the concept of looking
for pairs of points on the γ-level set of the given singular value function for which a
global minimizer is sought. Instead, we focus on devising a new type of level-set test,
which, given some γ ≥ K(A)−1 corresponding to a minimizer of (1.11b), answers the
question, Are there other points on this same level set, and if so, where are they?

For (1.11b), minimizers should be computed using Cartesian coordinates (see [22,
section 3.1] for full details), but note that all of our interpolation-based globality certifi-
cates to detect level-set points are based on polar coordinates, even in continuous-time
settings. Thus, consider (1.11b) parameterized in polar coordinates:

(2.1) g(r, θ) := σmin(G(r, θ)) and G(r, θ) :=
reiθI −A
r cos θ

,

so
K(A)−1 = inf

r>0, θ∈(−π2 ,
π
2 )
g(r, θ).

As computing K(A) is trivial if either A is normal or α(A) > 0, we assume neither
holds. For reasons that will become clear momentarily, we also assume that 0 6∈ Λ(A).

2.1. Level sets of g(r, θ) and a 1D radial level-set test. For a fixed θ ∈ R,
the following key result relates singular values of G(r, θ) with eigenvalues of a certain
2n×2n matrix pencil. Exploiting such relationships of singular values and eigenvalues
has a rich history in computing various robust stability measures, starting when Byers
introduced the first algorithm to compute the distance to instability in 1988 [7].

Theorem 2.1. Let A ∈ Cn×n and γ, r, θ ∈ R with r 6= 0. Then γ ≥ 0 is a
singular value of G(r, θ) defined in (2.1) if and only if ir is an eigenvalue of the
skew-Hamiltonian-Hamiltonian matrix pencil (M,Nθ), where

(2.2) M :=

[
A 0
0 −A∗

]
and Nθ :=

[
−ieiθI iγ cos θI
−iγ cos θI ie−iθI

]
,

Nθ is singular if and only if |γ cos θ| = 1, and (M,Nθ) is regular if |γ cos θ| 6= 1.

Proof. It is easy to verify that M and Nθ are, respectively, Hamiltonian and skew-
Hamiltonian, and so (M,Nθ) is an sHH matrix pencil. As Nθ is composed of four
blocks of different multiples of the n × n identity matrix, det(Nθ) = 1 − (γ cos θ)2.
Thus, |γ cos θ| 6= 1, i.e., Nθ being nonsingular, is clearly a sufficient condition for
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(M,Nθ) to be a regular matrix pencil. Now suppose γ is a singular value of G(r, θ)
with left and right singular vectors u and v. Then the following two equations hold:

γ

[
u
v

]
=

[
G(r, θ) 0

0 G(r, θ)∗

] [
v
u

]
and γr cos θ

[
u
v

]
=

[
reiθI −A 0

0 re−iθI −A∗
] [
v
u

]
.

Multiplying the bottom block by −1 and rearranging terms, this is equivalent to[
A 0
0 −A∗

] [
v
u

]
= r

[
eiθI −γ cos θI

γ cos θI −e−iθI

] [
v
u

]
.

Noting that the matrix on the right multiplied by −i is Nθ completes the proof.

Remark 2.2. By Theorem 2.1, if a point (r̃, θ̃) is in the γ-level set of g(r, θ) for
some γ ≥ 0, then ir̃ ∈ Λ(M,Nθ̃). Note that the converse is not necessarily true. If
ir̃ is an eigenvalue of the matrix pencil (M,Nθ̃), Theorem 2.1 only states that γ is a

singular value of G(r̃, θ̃). For point (r̃, θ̃) to be in the γ-level set, γ would additionally
have to be the smallest singular value of G(r̃, θ̃). However, if γ is not the minimum
singular value of G(r, θ), then (r̃, θ̃) is instead in some γ̂-level set of g(r, θ) with γ̂ < γ.

Besides being computationally useful for detecting level-set points, Theorem 2.1
provides a way to show that the γ-level set of g(r, θ) is bounded for γ ∈ [0, 1).

Theorem 2.3. Let A ∈ Cn×n and γ ∈ [0, 1). The γ-level set of g(r, θ) defined in
(2.1) is bounded. Moreover, if α(A) < 0, the γ-level set is compact.

Proof. For any point r̃eiθ in the γ-level set of g(r, θ), γ is a singular value ofG(r̃, θ).
Thus by Theorem 2.1, ir̃ ∈ Λ(M,Nθ). Furthermore, all eigenvalues of (M,Nθ) must
be finite, as |γ| < 1 implies that Nθ is always nonsingular. Consider the function
m(θ) := ρ(M,Nθ). By continuity of the spectral radius, m(θ) must have a finite
maximal value m? on [−π2 ,

π
2 ]. Since |ir̃| ≤ m? must hold, the γ-level set of g(r, θ)

is bounded. If α(A) < 0, then g(r, θ) is infinite on all of the imaginary axis, and
so its γ-level set cannot contain purely imaginary values. Thus, the γ-level set must
additionally be in the open right half-plane and closed, hence compact.

Our new method will require that zero is not an eigenvalue of (M,Nθ). The
following theorem gives the precise conditions to meet this requirement, namely, that
zero cannot be an eigenvalue of A.

Theorem 2.4. Let A ∈ Cn×n and γ, θ ∈ R. Then the matrix pencil (M,Nθ)
defined by (2.2) has zero as an eigenvalue if and only if the matrix A also has zero as
an eigenvalue. Consequently, 0 6∈ Λ(A) also ensures that (M,Nθ) is regular.

Proof. The proof is immediate as det(M) = det(A) det(−A∗), so clearly (M,Nθ)
is a regular matrix pencil if 0 6∈ Λ(A).

Given γ ≥ K(A)−1 and some θ ∈ (−π2 ,
π
2 ), Theorem 2.1 provides a way to compute

all the γ-level set points of g(r, θ) along the ray emanating from the origin specified by
angle θ̃, namely, via computing all the imaginary eigenvalues of (M,Nθ̃). As (M,Nθ)
is an sHH pencil, its eigenvalues are symmetric with respect to the imaginary axis,
and structure-preserving eigenvalues solvers such as [1] can be used to ensure that
computed imaginary eigenvalues are exactly on the imaginary axis in the presence of
rounding errors. While this is desirable for numerical robustness, solving generalized
eigenvalue problems is many times more expensive than solving a standard eigenvalue
problem of the same dimension and, as we explain later, our new methods often do
not need this level of robustness. Thus, since Nθ is generically nonsingular, we now
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investigate the condition number ofNθ to ascertain the feasibility of instead computing
the eigenvalues of N−1θ M via the QR algorithm. We first need the following generic
result.

Lemma 2.5. Let the matrix E =
[
aI bI
bI aI

]
with a, b ∈ C such that det(E) 6= 0.

Then the condition number of E is

κ(E) =
|a|+ |b|
||a| − |b||

.

Proof. Since E is nonsingular, all its singular values are positive and they are
equal to the square roots of the eigenvalues of EE∗. As

EE∗ =
[
(aa+bb)I 2abI

2abI (aa+bb)I

]
=:
[
cI dI
dI cI

]
,

0 = det(EE∗ − λI) = λ2 − 2cλ+ (c2 − |d|2), so the eigenvalues of EE∗ are

λ = c± |d| = |a|2 + |b|2 ± 2|ab|.

Thus, the singular values of E are ||a| ± |b||.
Theorem 2.6. Let A ∈ Cn×n and γ, θ ∈ R with |γ cos θ| 6= 1. Then the spectrum

of the matrix pencil (M,Nθ) defined by (2.2) is equal to the spectrum of

(2.3) Mθ := N−1θ M =
i

1− (γ cos θ)2

[
e−iθA (γ cos θ)A∗

(γ cos θ)A eiθA∗

]
,

and if γ ∈ [0, 1), then maxθ∈R κ(Nθ) = 1+γ
1−γ .

Proof. The matrix given in (2.3) simply follows by using the obvious explicit form
of N−1θ , which exists if and only if |γ cos θ| 6= 1, and then evaluating N−1θ M . Applying

Lemma 2.5 to Nθ, we have that κ(Nθ) = 1+|γ cos θ|
|1−|γ cos θ|| . It is easy to see that if γ ∈ [0, 1),

then θ = 0 is a global maximizer of this ratio, thus completing the proof.

For γ = 0.9, Theorem 2.6 says that the condition number of Nθ is at most only
19, and maxθ∈R κ(Nθ) → 1 monotonically as γ → 0. While κ(Nθ) does blow up
as γ → 1, this is mostly inconsequential, since γ = K(A)−1 ∈ [0.9, 1] corresponds
to Kreiss constants between 1 and 1.1. In other words, for almost all matrices of
interest, encountered values of γ should be much less than 0.9, and so Nθ will be very
well conditioned. Hence, there is generally no numerical concern in computing the
eigenvalues of (M,Nθ) via N−1θ M , except that the imaginary axis symmetry will not
be maintained exactly via the standard QR algorithm. As we clarify later, computing
the spectrum of (M,Nθ) using an sHH structure-preserving eigensolver can always be
done as a backup.

2.2. An interpolation-based globality certificate for g(r, θ). We are now
ready to present our first interpolation-based globality certificate, specifically for
(1.11b). Given γ ≥ 0, the idea is to sweep the open right half of the complex
plane with rays from the origin to determine which ones intersect the γ-level set.
To do this, we are about to construct a rather well-behaved continuous function
gγ : (−π2 ,

π
2 ) 7→ [0, π2] such that gγ(θ̃) = 0 holds whenever the ray from the origin

determined by angle θ̃ intersects the γ-level set of g(r, θ). Hence, if gγ(θ) is strictly

positive for all θ ∈ (−π2 ,
π
2 ), then γ < K(A)−1 must hold. Otherwise, the angles θ̃
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for which gγ(θ̃) = 0 provide the directions of the rays that intersect the γ-level, and
provided these intersection points are not stationary, they can be used to restart op-
timization to find better (lower) minimizers of (1.11b). By approximating gγ(θ) via
interpolation, we can then ascertain if it has any zeros.

Keeping in mind that the spectrum of (M,Nθ) as defined by (2.2) is always
imaginary-axis symmetric, to accomplish our criteria above, consider

gγ(θ) := min{Arg(−iλ)2 : λ ∈ Λ(M,Nθ),Reλ ≤ 0},(2.4a)

G(γ) := int{θ : gγ(θ) = 0, θ ∈ (−π2 ,
π
2 )},(2.4b)

where Arg : C \ {0} 7→ (−π, π] is the principal value argument function.

Theorem 2.7. Let A ∈ Cn×n with α(A) ≤ 0 and 0 6∈ Λ(A). Then for any γ ≥ 0,
the function gγ(θ) defined in (2.4a) has the following properties:

(i) gγ(θ) ≥ 0 for all θ ∈ D := (−π2 ,
π
2 ),

(ii) gγ(θ) = 0 if and only if there exists ir ∈ Λ(M,Nθ) with r ∈ R and r > 0,
(iii) gγ(θ) is continuous on its entire domain D,
(iv) gγ(θ) is differentiable at a point θ if the eigenvalue λ ∈ Λ(M,Nθ) attaining

the value of gγ(θ) is unique and simple.
Furthermore, the following properties hold for the set G(γ) defined in (2.4b):

(v) if K(A)−1 < γ, then 0 < µ(G(γ)),
(vi) γ1 ≤ γ2 if and only if µ(G(γ1)) ≤ µ(G(γ2)),

(vii) limγ→∞ µ(G(γ)) = π,
where µ(·) is the Lebesgue measure on R.

Proof. We begin with gγ(θ). The first and second properties hold by construction,
since −iλ in (2.4a) is always in the (closed) upper half of the complex plane. The
third property is a consequence of the continuity of eigenvalues and our assumption
that 0 6∈ Λ(A), which via Theorem 2.4 ensures that zero is never an eigenvalue of
(M,Nθ) for any θ. The fourth property follows from standard perturbation theory
for simple eigenvalues and by the definition of gγ(θ).

We now turn to G(γ), which, since it is defined as an interior, is thus open and
measurable. Let (r?, θ?) be a global minimizer, i.e., g(r?, θ?) = K(A)−1, where r? > 0
and θ? ∈ D, and let Lγ := {(r, θ) : g(r, θ) < γ, r > 0, θ ∈ D)} be a strict lower
level set of g(r, θ). As Lγ is open, there exists an open disk neighborhood N ⊂ Lγ
about (r?, θ?), so let T denote the (positive-length) interval of angles specifying the
rays from the origin that intersect N . Since g(r, θ) < γ for all points in N and
limr→0+ g(r, θ) = ∞ for any θ ∈ D (as 0 6∈ Λ(A)), it follows by continuity of g(r, θ)
that for every θ ∈ T there exists at least one r̃ ∈ (0, r?) such that g(r̃, θ) = γ. Thus,
by Theorem 2.1 it follows that gγ(θ) = 0 for all θ ∈ T , and as µ(T ) > 0 and T ⊂ G(γ),
the fifth property holds. The sixth property holds by noting that γ1 ≤ γ2 if and only if
Lγ1 ⊆ Lγ2 , which in turn is equivalent to G(γ1) ⊆ G(γ2). To see this, consider any ray
from the origin that intersects bdLγ1 , say, at point (r̂, θ). Then g(r̂, θ) = γ1, and so
as in the argument for the fifth property, there exists r̃ ∈ (0, r̂) such that g(r̃, θ) = γ2;
hence this ray must intersect bdLγ2 at (r̃, θ). Thus, gγ1(θ) = 0 implies gγ2(θ) = 0,
and so G(γ1) ⊆ G(γ2). Now suppose G(γ1) ⊃ G(γ2) and let θ ∈ G(γ1) \ G(γ2); hence
gγ1(θ) = 0 but gγ2(θ) > 0. Then g(r̂, θ) = γ1 holds for some r̂ > 0, but g(r, θ) 6= γ2
for all r ∈ (0,∞), and so γ2 < minr>0 g(r, θ) ≤ γ1, a contradiction. For the seventh
property, we first note that limr→∞ g(r, θ) = sec θ ≥ 1; hence for any θ such that
sec θ ≤ γ, there again must exist r̃ > 0 such that g(r̃, θ) = γ. Thus, it is clear that
limγ→∞ µ(G(γ)) = π must hold.
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Taken together with Theorem 2.1 and Remark 2.2, it clear that gγ(θ) meets our

new criteria for a level-set test. Given γ ≥ 0, r̃ > 0, and some θ̃ ∈ D, if point
(r̃, θ̃) is in the γ-level set of g(r, θ), then by Theorem 2.1, ir̃ must be an eigenvalue of
matrix pencil (M,Nθ̃) and so gγ(θ̃) = 0 holds. If gγ(θ̃) = 0, by definition there exists
ir̃ ∈ Λ(M,Nθ̃) with r > 0, and so by Theorem 2.1, γ must be a singular value of

G(r̃, θ̃). Thus by Remark 2.2, point (r̃, θ̃) must either be in the γ-level set of g(r, θ) or
some other γ̃-level set with γ̃ < γ. Hence, gγ(θ) = 0 is associated with new starting
points for optimization such that a better (lower) minimizer can be found. Finally, if
gγ(θ) > 0 for all θ ∈ D, then (M,Nθ) has no imaginary eigenvalues on the positive
imaginary axis for any θ ∈ D, so again by Theorem 2.1, γ is not a singular value of
G(r, θ) for any r > 0 and θ ∈ D. This in turn means the γ-level set of g(r, θ) is empty.
As g(r, θ) is continuous, γ < K(A)−1 must hold.

Remark 2.8. As we will approximate gγ(θ) via interpolation, the presence of the
square in Arg(−iλ)2 is to help smooth out the numerically difficult high rate of change
that Arg(−iλ) would otherwise have. To understand this, suppose that the γ-level
set of g(r, θ) consists of a single continuous closed curve enclosing a nonempty convex
interior. Then G(γ) ⊂ (−π2 ,

π
2 ) is simply a single interval, and for any θ in G(γ),

(M,Nθ) must have two distinct eigenvalues: ir1 and ir2 with r1, r2 > 0. However,
as θ approaches either end of interval G(γ), this pair will first coalesce on the imaginary
axis and then split apart again, with both eigenvalues moving very rapidly off of the
imaginary axis (in opposite directions).

In Figure 1, we show plots of gγ(θ) for different values of γ for the 10 × 10
continuous-time example used in [22, section 8]. The example is based on a demo
from EigTool [25], specifically A = B − κI, where B = companion demo(10) and
κ = 1.001α(B). Since this matrix is real-valued, the level sets of g(r, θ) are symmetric
with respect to the real axis, and so it is only necessary to sweep the upper right
quadrant of the complex plane, i.e., the domain of gγ(θ) can be reduced to [0, π2 ).

Although we do not know of an analytic way of finding zeros of gγ(θ), it is a
continuous function of one real variable on a fixed finite interval which we can ap-
proximate via interpolation. Interpolation-based approximation of gγ(θ) is practical
as gγ(θ) is rather well behaved on its finite domain and is relatively cheap to evalu-
ate. Moreover, even though gγ(θ) may be nondifferentiable at some points, modern
interpolation software is adept at approximating functions that are nonsmooth and
even discontinuous or have singularities. Thus, as finding roots (and extrema) of
polynomial or piecewise-polynomial interpolants is easy, approximating gγ(θ) via in-
terpolation allows a way to find where gγ(θ) = 0 holds, and in turn find γ-level set
points of g(r, θ). Moreover, as we are about to explain, often a high-fidelity approx-
imation for gγ(θ) is only needed once γ ≈ K(A)−1 holds, i.e., once our new method
has converged. Finally, note that even without interpolation, zeros of gγ(θ) may be
found via sampling, since by Theorem 2.7 µ(G(γ)) > 0 must hold if γ > K(A)−1.

In Algorithm 2.1, we provide pseudocode for our new approach to computing
continuous-time K(A) using optimization-with-restarts and our interpolation-based
globality certificates, the latter of which we now describe at a high level. Our certifi-
cates assume that existing interpolation software can approximate gγ(θ) to essentially
machine precision. Given γ ≥ K(A)−1, our certificate works by beginning to sam-
ple gγ(θ) for various values of θ in order to approximate it on D, or just [0, π2 ) if A
is real. Since interpolation methods are adaptive, this sampling happens in batches,
where gγ(θ) can be evaluated at the requested sample points in an “embarrassingly
parallel” manner. If any zeros of gγ(θ) are encountered during a given batch of
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Fig. 1. The top left pane shows a contour plot of the level sets (in log10 scale, with label k
denoting 10k) of the objective function in (1.11b) for a continuous-time example, with z = x + iy.
As this matrix is real, only the upper right quadrant of the complex plane is shown. The global
minimizer of (1.11b) lies in the small boxed area near (x, y) ≈ (0, 6); an enlarged view of this region
is shown in the bottom left pane. Contours are shown for k = −3,−4,−5 (dotted), k = −5.1 (solid),
k = −5.105 (solid, unlabeled at top left), and k = −5.11 (solid, not visible at top left). For each of
the three solid contours, gγ(θ) for γ = 10k is plotted in the right panes, for the respective regions
shown in the left panes. For each angle tick mark in the right panes, the corresponding ray from the
origin is shown as a dashed line in the left panes. It is easy to see the correspondence between the
level sets for k ∈ {−5.1,−5.105,−5.11} in the left panes and where their associated functions gγ(θ)
are zero in the right panes.

sampling, then γ-level-set points of g(r, θ) have been detected and the interpolation
process is immediately halted. Then the locations of detected level-set points are
computed via Theorem 2.1, and these are used to restart optimization in order to find
a better (lower) minimizer; for brevity, we assume that the detected level-set points
are not exactly stationary. In this case, sampling gγ(θ) and restarting optimization
suffices to lower γ closer to K(A)−1; hence the interpolation process begins anew
with the updated version of gγ(θ). We now consider when interpolation produces a
high-fidelity approximation pγ(θ) for gγ(θ) but without ever encountering zeros dur-
ing sampling. To assert that γ = K(A)−1 really holds, the interpolant pγ(θ) is used
to check if gγ(θ) = 0 on regions that were not sampled. This is possible to do since,
by assumption, pγ(θ) approximates gγ(θ) to machine precision. Thus, the global min-
imizer(s) of the interpolant pγ(θ) are computed and used to check if gγ(θ) = 0 at
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Algorithm 2.1 Interpolation-Based Globality Certificate Algorithm

Input: A ∈ Cn×n (nonnormal, α(A) ≤ 0, and 0 6∈ Λ(A)) and z0 ∈ C with Re z0 > 0.
Output: γ−1 ≈ K(A) (continuous-time).

1: D ← (−π2 ,
π
2 )

2: if A is real then
3: D ← [0, π2 )
4: end if
5: while true do
6: γ ← computed locally/globally minimal value of (1.11b) initialized from z0
7: // Begin approximating gγ(θ) to check convergence or find new starting points
8: pγ(θ)← 1 // Initial guess for interpolant pγ(θ) for approximating gγ(θ)
9: while pγ(θ) does not sufficiently approximate gγ(θ) on D do

10: [θ1, . . . , θl]← new sample points from D
11: // If new starting points are detected, restart optimization to lower γ:
12: if gγ(θj) = 0 for some j ∈ {1, . . . , l} then
13: z0 ← a point reiθj such that ir ∈ Λ(M,Nθj ) defined in (2.2) with r > 0
14: goto line 6 // Restart optimization from z0
15: end if
16: // Otherwise, no starting points detected, keep improving pγ(θ):
17: pγ(θ)← improved interpolant of gγ(θ) via θ1, . . . , θl
18: end while
19: // pγ(θ) approximates gγ(θ) well and no new starting points were encountered
20: // However, do a final check before asserting that gγ(θ) has no other zeros:
21: [θ1, . . . , θl] = arg min pγ(θ)
22: if gγ(θj) = 0 for some j ∈ {1, . . . , l} then
23: z0 ← a point reiθj such that ir ∈ Λ(M,Nθj ) defined in (2.2) with r > 0
24: goto line 6 // Restart optimization from z0
25: else
26: return // pγ(θ) ≈ gγ(θ) and =⇒ γ ≈ K(A)−1

27: end if
28: end while

Note: For simplicity of the pseudocode, we assume that optimization converges to local/global min-
imizers exactly and z0 computed in lines 13 and 23 is never a stationary point of (1.11b). Lines 7–19
describe the core of the interpolation-based globality certificate, where we assume the interpolation
process for approximating gγ(θ) is done via some reliable method, e.g., Chebfun. In lines 20–27,
where a final check is done before asserting convergence, one can additionally/alternatively compute
the roots {θ1, . . . , θl} of pγ(θ) and check the value of gγ(θ) at 0.5(θj+θj+1) for all j = 1, . . . , l− 1.

these angles. If this yields newly detected nonstationary level-set points (since this
may simply recover known minimizers that were computed in the last round of opti-
mization), then optimization is restarted to lower γ further. If still no roots of gγ(θ)
are discovered, then the roots of pγ(θ) are computed and are similarly used to check if
gγ(θ) = 0 holds elsewhere, specifically by evaluating gγ(θ) at the midpoints between
consecutive roots. Again, if new level-set points are detected, optimization is restarted
from them. Otherwise, our certificate has built a high-fidelity approximation to gγ(θ)
and asserts that it cannot find nonstationary points in the γ-level set. As µ(G(θ)) > 0
must hold if γ > K(A)−1 by Theorem 2.7, the algorithm concludes with γ = K(A)−1.
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Since the main cost of evaluating gγ(θ) is computing the spectrum of (M,Nθ),
Algorithm 2.1 has a work complexity of O(kn3) and a memory complexity of O(n2),
where k is the total number of function values of gγ(θ) incurred (over all values of γ
encountered). The cost of finding minimizers of (1.11b), the other major component
of Algorithm 2.1, can be ignored, as (quasi-)Newton methods only require a handful
of iterations to converge (for two-variable problems), while evaluating the function
value and gradient/Hessian of the objective function in (1.11b) can be done with at
most O(n3) work and O(n2) memory; for more details, see our comments in the intro-
duction on this. As we show in the experiments, when γ > K(A)−1, very few samples
are needed before a restart occurs. Meanwhile, when γ = K(A)−1, the number of
interpolation points needed to build a high-fidelity approximation to gγ(θ) is not nec-
essarily dependent on n, and in fact often acts more like a constant, albeit a large
one. The combination of k not being too large and that only a single high-fidelity ap-
proximation to gγ(θ) is typically needed means that our interpolation-based globality
certificates can be orders of magnitude faster than earlier techniques based on solving
fewer but much larger eigenvalue problems. Moreover, using parallel processing for
the sampling phases only improves upon this already large performance difference.
Finally, in stark contrast to all but one of the methods discussed in subsections 1.1
and 1.2, our new level-set approach does not crucially rely on any single computation
for correctness. The only way our new interpolation-based approach can fail to restart
optimization is if rounding errors prevent detection of level-set points for every sam-
pled root of gγ(θ); as µ(G(θ)) > 0 holds when γ > K(A)−1, this seems quite unlikely
and so our new approach is more numerically reliable than previous ones.

Remark 2.9. Note that our interpolation-based globality certificates have two key
differences to the supervised techniques discussed in the introduction for estimating
Kreiss constants. The first and more important difference is that a global maxi-
mizer of (1.9b) may be anywhere in [0,∞) and may occur on a very fast time scale,
which can make finding such maximizers very difficult. Here, gγ(θ) is defined on the
fixed finite interval (−π2 ,

π
2 ), and its zeros form a subset with positive measure when

γ > K(A)−1. Hence finding zeros of gγ(θ) should be substantially easier than finding
global maximizers of (1.9b). Second, gγ(θ) is more reliable to compute and cheaper
to obtain; computing αε(A) via the criss-cross algorithms of [5] or [3] often involves
computing all eigenvalues of several 2n× 2n matrices.

Remark 2.10. Certainly our certificate function defined in (2.4a) is not the only
possible choice, but one might wonder why we did not choose something simpler,
e.g., an indicator function. The reason is that if gγ(θ) were to return a fixed positive
value whenever the associated ray does not intersect the level set, then interpolation
software may erroneously conclude with very few sample points that the function
is constant. This is because the error between the interpolant and gγ(θ) would be
exactly zero if none of the interpolation points happen to fall in G(γ), which may be
small when γ is close to K(A)−1. Defining gγ(θ) so that it generally varies with θ
helps to ensure that the function is sufficiently sampled.

2.3. Efficient and robust evaluation of gγ(θ). By using an sHH structure-
preserving eigensolver to compute Λ(M,Nθ), computed imaginary eigenvalues will
have exactly zero real part, and so roots of gγ(θ) should generally be computed as
exact roots, i.e., gγ(θ) should be exactly zero numerically whenever θ corresponds to a
ray intersecting the γ-level set. While this is clearly appealing, as mentioned in subsec-
tion 2.1, the downside of structure preservation is that it involves solving a generalized
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eigenvalue problem, which, if Nθ is nonsingular, is many times slower than solving the
equivalent standard eigenvalue problem N−1θ M . However, in our new algorithm, the
vast majority of evaluations for gγ(θ) will be for values that are nowhere close to being
roots. This is because at γ = K(A)−1, we expect that µ(G(θ)) = 0. Furthermore, if
γ > K(A)−1, µ(G(θ)) > 0 holds, and so some rounding error in the computed eigenval-
ues can typically be tolerated in obtaining roots of gγ(θ). Consequently, the increased
numerical robustness from using structure-preserving eigensolvers is actually often
not relevant in our new certificates. With this in mind, we propose the following way
to evaluate gγ(θ) much faster while still maintaining numerical reliability.

Given γ ≥ K(A)−1 and θ̃ ∈ D, if Nθ̃ is singular, then gγ(θ̃) must be evaluated by
computing the spectrum of the matrix pencil (M,Nθ̃), so in this case there is little
reason not to use a structure-preserving eigensolver. However, if Nθ̃ is nonsingular,

then gγ(θ̃) is initially evaluated via computing the eigenvalues of N−1
θ̃
M , which, as

we have established in subsection 2.1, is not an issue as κ(Nθ) is typically small.
Given some small tolerance tol > 0, if gγ(θ̃) is not attained by an eigenvalue λ such
that min{|Imλ|, |λ|} ≤ tol, i.e., λ is deemed not too close to the positive imaginary
axis, then gγ(θ̃) can be considered to have been computed with sufficient accuracy

to assert that angle θ̃ is indeed not a root. Otherwise, the eigenvalues near the
positive imaginary axis are, via Theorem 2.1, used to check if level-set points to
restart optimization have been detected. If so, then this is sufficient. The only case
that remains is that eigenvalues near the positive imaginary axis have been computed
but level-set points have not been detected. As not detecting level-set points could
be the result of rounding errors, Λ(M,Nθ̃) is now recomputed using a structure-
preserving eigensolver to either overcome any rounding errors or verify that indeed
gγ(θ̃) > 0 holds.

As we expect µ(G(θ)) = 0 to hold once γ = K(A)−1, only a small minority of
evaluations of gγ(θ) should require the additional computation with the structure-
preserving eigensolver. As such, the overall running time of our new algorithm should
be much faster than if the structure-preserving eigensolver were always used, and by
construction, numerical reliability remains uncompromised.

3. A new approach for computing discrete-time Kreiss constants. We
now adapt our new globality certificates to compute discrete-time Kreiss constants
to arbitrary accuracy, i.e., to find global minimizers of (1.11a). To do this, we will
adapt Algorithm 2.1 and develop a new interpolation-based globality certificate for
discrete-time K(A). In this discrete-time setting, a polar parametrization is used for
both finding (feasible) minimizers of (1.11a) (see [22, section 3.2] for details) and the
interpolation-based globality certificate itself. Thus, consider

(3.1) h(r, θ) := σmin(H(r, θ)) and H(r, θ) :=
reiθI −A
r − 1

,

so
K(A)−1 = inf

r>1, θ∈(−π,π]
h(r, θ).

To create a discrete-time K(A) analogue of gγ(θ), we make the following assumptions.
If A is normal or ρ(A) > 1, computing K(A) is trivial, so we assume that neither
condition holds. Also, while in the previous section gγ(θ) required that 0 6∈ Λ(A), our
new certificate for discrete-time K(A) requires that γ2 6∈ Λ(AA∗).

3.1. Level sets of h(r, θ) and another 1D radial level-set test. Since a
key part of interpolation-based globality certificates is a 1D radial level-set test, we
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begin with an analogue of Theorem 2.1.

Theorem 3.1. Let A ∈ Cn×n and γ, r, θ ∈ R with r 6= 1. Then γ ≥ 0 is a
singular value of H(r, θ) defined in (3.1) if and only if ir is an eigenvalue of the
skew-Hamiltonian-Hamiltonian matrix pencil (S, Tθ), where

(3.2) S :=

[
A −γI
γI −A∗

]
and Tθ :=

[
−ieiθI iγI
−iγI ie−iθI

]
,

Tθ is singular if and only if |γ| = 1, and (S, Tθ) is regular if |γ| 6= 1.

Proof. It is easy to verify that S and Tθ are, respectively, Hamiltonian and skew-
Hamiltonian, and so (S, Tθ) is an sHH matrix pencil. Furthermore, the determinant
of Tθ is simply det(Tθ) = 1−γ2. Thus, |γ| 6= 1, i.e., Tθ being nonsingular, is sufficient
for (S, Tθ) to be a regular matrix pencil. Now suppose γ is a singular value of H(r, θ)
with left and right singular vectors u and v. Then the following two equations hold:

γ

[
u
v

]
=

[
H(r, θ) 0

0 H(r, θ)∗

] [
v
u

]
and γ(r−1)

[
u
v

]
=

[
reiθI −A 0

0 re−iθI −A∗
] [
v
u

]
.

Rearranging terms, this is equivalent to[
A 0
0 A∗

] [
v
u

]
− γ

[
u
v

]
= r

[
eiθI 0

0 e−iθI

] [
v
u

]
− rγ

[
u
v

]
.

Combining terms and multiplying the bottom block row by −1, we equivalently have[
A −γI
γI −A∗

] [
v
u

]
= r

[
eiθI −γI
γI −e−iθI

] [
v
u

]
.

Noting that the matrix on the right multiplied by −i is Tθ completes the proof.

The point of Remark 2.2, with appropriate substitutions, similarly applies to
Theorem 3.1, h(r, θ), and H(r, θ), and Theorem 3.1 also allows a way to show that
the γ-level set of h(r, θ) is bounded for γ ∈ [0, 1).

Theorem 3.2. Let A ∈ Cn×n and γ ∈ [0, 1). The γ-level set of h(r, θ) defined in
(3.1) is bounded. Moreover, if ρ(A) < 1, the γ-level set is compact.

Proof. The proof follows similarly to the proof of Theorem 2.3, with the key part
being that the eigenvalues of (S, Tθ) are finite for all θ (since Tθ is nonsingular if
γ 6= ±1), and so maxθ∈R ρ(S, Tθ) must be finite.

As with our continuous-time certificate using gγ(θ) and (M,Nθ), for discrete-
time K(A) we need to ensure that zero cannot be an eigenvalue of (S, Tθ), the precise
conditions for which are given by the following result.

Theorem 3.3. Let A ∈ Cn×n and γ, θ ∈ R. Then the matrix pencil (S, Tθ)
defined by (3.2) has zero as an eigenvalue if and only if the matrix AA∗ has γ2 as an
eigenvalue. Consequently, γ2 6∈ Λ(AA∗) also ensures that (S, Tθ) is regular.

Proof. As the blocks of S are all n × n and the lower two blocks γI and −A∗
commute, the if-and-only-if equivalence holds because det(S) = det(−AA∗ + γ2I).
Lastly, if 0 6∈ Λ(S), then clearly (S, Tθ) must be a regular matrix pencil.

Finally, we consider the condition number of Tθ and when computing the ei-
genvalues of (S, Tθ) via T−1θ S is possible. The following result shows that κ(Tθ) =
maxθ∈R κ(Nθ), i.e., Tθ will generally be very well conditioned for all relevant values
of γ, and hence using T−1θ S to compute Λ(S, Tθ) is not problematic.
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Theorem 3.4. Let A ∈ Cn×n and γ, θ ∈ R with γ 6= ±1. Then the spectrum of
the matrix pencil (S, Tθ) defined by (3.2) is equal to the spectrum of

(3.3) Sθ := T−1θ S =
i

1− γ2

[
e−iθA− γ2I γ(A∗ − e−iθI)
γ(A− eiθI) eiθA∗ − γ2I

]
,

and if γ ∈ [0, 1), then maxθ∈R κ(Tθ) = 1+γ
1−γ .

Proof. The matrix given in (3.3) simply follows by using the explicit form of S−1θ ,
which exists if and only if γ 6= ±1. Applying Lemma 2.5 to Tθ with γ ∈ [0, 1),
κ(Tθ) = 1+γ

1−γ , thus completing the proof.

3.2. An interpolation-based globality certificate for h(r, θ). For (1.11a),
we correspondingly consider sweeping the entire complex via a ray from the origin to
see where it intersects the γ-level set of h(r, θ) outside of the closed unit disk. Thus,
we construct a new continuous function hγ : (−π, π] 7→ [0, π2] similar to (2.4a),

hγ(θ) := min{Arg(−iλ)2 : λ ∈ Λ(S, Tθ), λ 6∈ [0, i],Reλ ≤ 0},(3.4a)

H(γ) := int{θ : hγ(θ) = 0, θ ∈ (−π, π]},(3.4b)

similarly keeping in mind that Λ(S, Tθ) always has imaginary-axis symmetry, regard-
less of whether or not the level sets of h(r, θ) have symmetry.

Theorem 3.5. Let A ∈ Cn×n with ρ(A) ≤ 1. Then for any γ ≥ 0 such that
γ2 6∈ Λ(AA∗), the function hγ(θ) defined in (3.4a) has the following properties:

(i) hγ(θ) ≥ 0 for all θ ∈ D := (−π, π],
(ii) hγ(θ) = 0 if and only if there exists ir ∈ Λ(S, Tθ) with r ∈ R and r > 1,
(iii) hγ(θ) is continuous on its entire domain D,
(iv) hγ(θ) is differentiable at a point θ if the eigenvalue λ ∈ Λ(S, Tθ) attaining the

value of hγ(θ) is unique and simple.
Furthermore, the following properties hold for the set H(γ) defined in (3.4b):

(v) if K(A)−1 < γ, then 0 < µ(H(γ)),
(vi) γ1 ≤ γ2 if and only if µ(H(γ1)) ≤ µ(H(γ2)),
(vii) if γ > 1, then µ(H(γ)) = 2π,

where µ(·) is the Lebesgue measure on R.

Proof. The proof mostly follows the proof of Theorem 2.7, now using Theorems 3.1
and 3.3 instead of Theorems 2.1 and 2.4. The notable differences are as follows. The
second property requires the exclusion of any imaginary eigenvalues of (S, Tθ) that are
also in the interval [0, i], per the definition of hγ(θ) given in (3.4a). This key change
keeps hγ(θ) strictly positive whenever (S, Tθ) has one or more eigenvalues on the
imaginary axis in [0, i] but not in (i,∞). The continuity property is unaffected by this
exclusion but does require our assumption that γ2 6∈ Λ(AA∗), which by Theorem 3.3
guarantees that zero is never an eigenvalue of (S, Tθ) for any θ ∈ R. For the properties
of H(γ), the main differences to note are that limr→∞ h(r, θ) = 1 for any θ, while
limr→1+ h(r, θ) =∞ for almost all θ. This second limit can only be finite for at most
n values of θ ∈ D, namely, at angles corresponding to unimodular eigenvalues of A.

In Figure 2, we show plots of hγ(θ) for different values of γ for the 10 × 10
discrete-time example used in [22, section 8], namely, A = 1

13B + 11
10I, where matrix

B = convdiff demo(11) from EigTool. As A is real, the level sets of h(r, θ) are
symmetric with respect to the real axis, and so only the upper half of the complex
plane is shown.
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Fig. 2. The top left pane shows a contour plot of the level sets (now in linear scale) of the
objective function in (1.11a) for a discrete-time example, with z = x + iy. As this matrix is real,
only the upper half of the complex plane is shown. The global minimizer of (1.11a) lies in the boxed
area, in the well near the top left corner; an enlarged view of this region is shown in the bottom left
pane. Contours are shown for γ = 1 (dotted), γ = 0.9 (solid), γ = 0.65 (dotted), γ = 0.58 (solid),
and γ = 0.54 (solid, not visible at top left). For each of the solid contours, the corresponding hγ(θ)
function is plotted in the right panes, for the respective regions shown in the left panes. For each
angle tick mark in the right panes, the corresponding ray from the origin is shown as a dashed line in
the left panes. The correspondence between the γ-level set and where hγ(θ) = 0 is clearly evident. In
the top right pane, the discontinuity in hγ(θ) for γ = 0.54 near θ = π is due to excluding eigenvalues
of (S, Tθ) that lie inside the eccentric ellipse δ−2x2 + y2 = 1 with δ = 10−8.

The removal of eigenvalues from Λ(S, Tθ) on the imaginary axis in the interval
[0, i] for hγ(θ) requires further comment. In fact, any eigenvalue of (S, Tθ) inside the
closed unit disk is irrelevant, but per Remark 2.2, Theorem 3.1 may detect level-set
points of σk(zI − A)/|(|z| − 1)|, for any k = 1, . . . , n, where σk(·) is the kth largest
singular value. However, excluding all eigenvalues in the unit disk could introduce
discontinuities, as Arg(·) may jump if an eigenvalue of (S, Tθ) enters or exits the unit
disk. Instead, by only excluding those in [0, i], continuity is preserved, and while hγ(θ)
may become infinitesimal as eigenvalues inside the unit disk may be arbitrarily close
to [0, i], they cannot introduce a zero of hγ(θ) precisely since [0, i] itself is excluded.
In practice, using a structure-preserving eigensolver for (S, Tθ) means that computed
eigenvalues on the imaginary axis will be exactly imaginary, and so removing any
that are in [0, i] can be done exactly. When a structure-preserving eigensolver is
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not used, two other measures can help deal with rounding errors in the real parts of
computed eigenvalues. First, in lines 13 and 23 for the adaptation of Algorithm 2.1
(see subsection 3.3 for the complete details), we need only consider eigenvalues ir
of (S, Tθ) with r > 1 so that optimization is restarted only if feasible nonstationary
points are found; for hγ(θ), this crucial specification ensures that hγ(θ) is increasingly
better approximated by interpolant pγ(θ) until either pγ(θ) ≈ hγ(θ) or a detected zero
of hγ(θ) also leads to detection of a level-set point outside the unit disk. Second, to
help ensure that hγ(θ) = 0 only if reiθ with r > 1 is a level-set point, we can discard
any eigenvalue of (S, Tθ) that lies inside the eccentric ellipse defined by δ−2x2+y2 = 1
for some small δ > 0. Technically, this may still introduce discontinuities in hγ(θ), but
they are much less likely to occur than when excluding the entire unit disk (δ = 1).
Note that such a discontinuity can be seen in Figure 2; see the caption for details.

3.3. Adapting Algorithm 2.1 for discrete-time K(A). The following mod-
ifications of Algorithm 2.1 are needed for computing discrete-time K(A). For input,
it is assumed that A is nonnormal with ρ(A) ≤ 1 and z0 ∈ C with |z0| > 1. While
hγ(θ) requires that γ2 6∈ Λ(AA∗), per Theorem 3.3, this is a very mild assumption;
clearly there are only up to n values of γ ≥ 0 such that γ2 ∈ Λ(AA∗), and in the
unlikely case that one of these is encountered, simply perturbing γ by a slight amount
would suffice. In lines 1–3, D should be initially set to (−π, π] and reduced to [0, π]
if A is real. Throughout the pseudocode and accompanying note, (1.11b) and gγ(θ)
should be replaced by (1.11a) and hγ(θ), respectively, and 0.5(θl + (θ1 + 2π)) should
also be included when doing the additional check described in the note. As alluded
to earlier, in lines 13 and 23, “ir ∈ Λ(M,Nθj ) defined in (2.2) with r > 0” should be
replaced with “ir ∈ Λ(S, Tθj ) defined in (3.2) with r > 1.” For increased efficiency,
hγ(θ) should be evaluated in an analogous manner as described in subsection 2.3 for
gγ(θ), but in this case it is only necessary to consider recomputing the eigenvalues
of T−1θ S via its matrix pencil form when a computed eigenvalue is within a distance
tol of the interval [i,∞) on the imaginary axis (as opposed to the interval [0,∞)).
These modifications for discrete-time K(A) do not alter the O(kn3) work complexity
and O(n2) memory characteristics.

4. A new approach for computing the distance to uncontrollability.
We now turn to adapting our new globality certificates for τ(A,B), i.e., to find global
minimizers of (1.2). For the optimization phases, local minimizers of (1.2) should be
found using Cartesian coordinates, with a quasi-Newton method or Newton’s method
for fast local convergence; the gradient of (1.2) can be found in [6, p. 358], while
the corresponding Hessian can be obtained via a straightforward modification to the
derivation of the Hessian of (1.11b) in [22, section 3.1]. For our interpolation-based
globality certificate for τ(A,B), we again use polar coordinates:

(4.1) f(r, θ) := σmin(F (r, θ)) and F (r, θ) :=
[
A− reiθI B

]
,

so
τ(A,B) = inf

r≥0, θ∈(−π,π]
f(r, θ).

Our upcoming τ(A,B) analogue of gγ(θ) and hγ(θ) requires that γ2 6∈ Λ(AA∗+BB∗),
a condition which can be easily ensured, as we will explain.

4.1. Level sets of f(r, θ) and another 1D radial level-set test. We again
begin with a result enabling a radial 1D level-set test. Our following result is es-
sentially a modified version of the result derived in [14, eqn. (2.4)]. As noted there,
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similar results were also previously developed in [8, Theorem 3.1] and [13, Lemmas 2.1
and 2.2]. The key difference here, besides some simplifications, is that we derive an
sHH matrix pencil for the desirable imaginary-axis symmetry of its eigenvalues. The
proof is also a bit different.

Theorem 4.1. Let A ∈ Cn×n and γ, r, θ ∈ R with γ 6= 0. Then γ > 0 is a
singular value of F (r, θ) defined in (4.1) if and only if ir is an eigenvalue of the
regular skew-Hamiltonian-Hamiltonian matrix pencil (C,Dθ), where

(4.2) C :=

[
A B̃
γI −A∗

]
and Dθ :=

[
−ieiθI 0

0 ie−iθI

]
,

B̃ := 1
γBB

∗ − γI, and Dθ is always nonsingular.

Proof. Clearly Dθ is always nonsingular and it easy to verify that it is also skew-
Hamiltonian and C is Hamiltonian; hence, (C,Dθ) is a regular sHH matrix pencil.
Now suppose γ is a singular value of F (r, θ) with left and right singular vectors u and
v = [ v1v2 ]. Then the following two equations hold:

γ

[
u
v

]
=

[
F (r, θ) 0

0 F (r, θ)∗

] [
v
u

]
and γ

 uv1
v2

 =

A− reiθI B 0
0 0 A∗ − re−iθI
0 0 B∗

v1v2
u

 .
The last block row yields v2 = 1

γB
∗u, and so by making this substitution in the

equation above, we equivalently have

γ

[
u
v1

]
=

[
A− reiθI 1

γBB
∗ 0

0 0 A∗ − re−iθI

]v1u
u

 =

[
A− reiθI 1

γBB
∗

0 A∗ − re−iθI

] [
v1
u

]
.

Rearranging terms to separate out the terms involving r and multiplying the resulting
lower block row by −1 yields[

A 1
γBB

∗

0 −A∗
] [
v1
u

]
− γ

[
u
−v1

]
=

[
A B̃
γI −A∗

] [
v1
u

]
= r

[
eiθI 0

0 −e−iθI

] [
v1
u

]
.

Noting that the matrix on the right multiplied by −i is Dθ completes the proof.

Remark 2.2, with appropriate substitutions, also applies to Theorem 4.1, f(r, θ),
and F (r, θ). While Theorem 4.1 can also be used to show that the γ-level set of
f(r, θ) is compact for any finite γ, this is not necessary as it is already well known;
see [6, p. 353]. A third argument for this is via [26, Theorem 2.2] and equivalently
considering σmin([A−zI B ]

∗
), whose lower level sets are rectangular pseudospectra.

Theorem 4.2. Let A ∈ Cn×n, B ∈ Cn×m, and γ ≥ 0. The γ-level set of f(r, θ)
defined in (4.1) is compact.

While in the Kreiss constant setting it is clear when the level sets of g(r, θ) and
h(r, θ) are symmetric with respect to the real axis, the symmetry conditions for f(r, θ)
are slightly more nuanced.

Theorem 4.3. Let A ∈ Cn×n, B ∈ Cn×m, and let σk(·) denote the kth singular
value. Then σk

([
A− λI B

])
= σk

([
A− λI B

])
if either (i) A and B are both

real-valued matrices or (ii) A is Hermitian.

D
ow

nl
oa

de
d 

04
/1

9/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

598 TIM MITCHELL

Proof. Case (i) holds since conjugation does not change singular values, i.e.,

σk
([
A− λI B

])
= σk

([
A− λI B

])
= σk

([
A− λI B

])
,

where the middle equivalence uses the fact that A = A and B = B since both are
real. Case (ii) follows from the equivalence σk(M)⇐⇒ σ2

k ∈ Λ(MM∗):

σk
([
A− λI B

])
⇐⇒ σ2

k ∈ Λ

([
A− λI B

] [A∗ − λI
B∗

])
⇐⇒ σ2

k ∈ Λ
([
AA∗ − λA∗ − λA+ |λ|2I +BB∗

])
⇐⇒ σ2

k ∈ Λ
([
AA∗ − λA− λA∗ + |λ|2I +BB∗

])
⇐⇒ σ2

k ∈ Λ

([
A− λI B

] [A∗ − λI
B∗

])
⇐⇒ σk

([
A− λI B

])
,

where the third line uses the assumption that A = A∗.

We now consider the conditions under which zero is an eigenvalue of (C,Dθ),
since our interpolation-based globality certificates require excluding this possibility.

Theorem 4.4. Let A ∈ Cn×n, B ∈ Cn×m, and γ, θ ∈ R with γ 6= 0. Then the
matrix pencil (C,Dθ) defined by (4.2) has zero as an eigenvalue if and only if the
matrix AA∗ +BB∗ has γ2 as an eigenvalue.

Proof. Since the blocks of C are all square matrices of the same size and the lower
two blocks γI and −A∗ commute, the if-and-only-if equivalence holds because

det(C) = det(−AA∗ − γB̃) = det(−AA∗ − γ( 1
γBB

∗ − γI))

= det(−AA∗ −BB∗ + γ2I).

As the next result states, it is clear that D−1θ C can be used to compute the
eigenvalues of (C,Dθ) when forgoing structure-preserving eigensolvers.

Theorem 4.5. Let A ∈ Cn×n, B ∈ Cn×m, and γ, θ ∈ R. The condition number
of Dθ, κ(Dθ), equals one for any θ, and the spectrum of matrix pencil (C,Dθ) defined
by (4.2) is equal to the spectrum of

(4.3) Cθ := D−1θ C = i

[
e−iθA e−iθB̃
−γeiθI eiθA∗

]
.

Proof. The proof is an immediate consequence of the fact that Dθ is a unitary
diagonal matrix for any θ.

4.2. An interpolation-based globality certificate for f(r, θ). Unlike for
Kreiss constants, there are no domain restrictions for where a minimizer of (1.2) may
lie, so our τ(A,B) certificate must sweep the entire complex plane with a ray from
the origin to find level-set points. Moreover, the origin can be immediately tested
by simply evaluating f(0, θ) for any θ. Thus, given γ > 0, we construct another
continuous function fγ : (−π, π] 7→ [0, π2] similar to gγ(θ):

fγ(θ) := min{Arg(−iλ)2 : λ ∈ Λ(C,Dθ),Reλ ≤ 0},(4.4a)

F(γ) := int{θ : fγ(θ) = 0, θ ∈ (−π, π]},(4.4b)

noting that Λ(C,Dθ) always has imaginary-axis symmetry.
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Theorem 4.6. Let A ∈ Cn×n and B ∈ Cn×m. Then for any γ > 0 such that
γ2 6∈ Λ(AA∗+BB∗), the function fγ(θ) defined in (4.4a) has the following properties:

(i) fγ(θ) ≥ 0 for all θ ∈ D := (−π, π],
(ii) fγ(θ) = 0 if and only if there exists ir ∈ Λ(C,Dθ) with r ∈ R and r > 0,
(iii) fγ(θ) is continuous on its entire domain D,
(iv) fγ(θ) is differentiable at a point θ if the eigenvalue λ ∈ Λ(C,Dθ) attaining

the value of fγ(θ) is unique and simple.
Furthermore, the following properties hold for the set F(γ) defined in (4.4b):

(v) if τ(A,B) < γ, then 0 < µ(F(γ)),
(vi) γ1 ≤ γ2 if and only if µ(F(γ1)) ≤ µ(F(γ2)),

(vii) if γ > f(0, θ) for any θ ∈ R, then µ(F(γ)) = 2π,
where µ(·) is the Lebesgue measure on R.

Proof. This proof also follows the proof of Theorem 2.7, now using Theorems 4.1
and 4.4 instead of Theorems 2.1 and 2.4. Here the continuity property of fγ(θ)
requires our assumption that γ2 6∈ Λ(AA∗+BB∗), which by Theorem 4.4 guarantees
that zero is never an eigenvalue of (C,Dθ) for any θ ∈ R. For F(γ), the corresponding
arguments use that f(r, θ) is continuous and limr→∞ f(r, θ) =∞ for any θ.

Note that by Theorems 4.1 and 4.4, our assumption that γ2 is not an eigenvalue
of AA∗ +BB∗ is equivalent to γ not being a singular value of F (0, θ) for any θ ∈ R.
As such, the properties of fγ(θ) hold as long as γ < f(0, θ). Since optimization-with-
restarts monotonically decreases the value of γ until it converges to τ(A,B), we can
easily guarantee that γ2 is never an eigenvalue of AA∗ + BB∗ just by initializing at
the origin. Provided the origin is not a stationary point, optimization guarantees
finding a point (r̃, θ̃) such that f(r̃, θ̃) < f(0, θ). Otherwise, either other starting
points can be evaluated in order to find a function value lower than f(0, θ) or the
initial value of γ can simply be set to slightly less than f(0, θ) before commencing
the first certification computation. Note that while fγ(θ) is not defined for γ = 0,
this is not a problem as there is no need to do a globality check when f(r, θ) = 0, as
f(r, θ) is never negative. Finally, if f(r, θ) = f(r,−θ), i.e., the level sets have real-axis
symmetry, then the domain D can be reduced to [0, π].

For brevity, we forgo showing illustrative plots of fγ(θ) here, but an example is
shown later in Figure 3(c).

4.3. Adapting Algorithm 2.1 for τ (A,B). We modify Algorithm 2.1 to com-
pute τ(A,B) as follows. For input, A ∈ Cn×n, B ∈ Cn×m, and z0 ∈ C without restric-
tion. By also including the origin as an initial point, ensuring γ2 6∈ Λ(AA∗ + BB∗)
only requires that the origin not be stationary or, if no other starting points result in
a value of γ less than f(0, θ), that the initial value of γ be set slightly less than f(0, θ).
In lines 1–3, D should be initially set to (−π, π] and reduced to [0, π] if the level sets
have real-axis symmetry, per the conditions given in Theorem 4.3. Throughout the
pseudocode and accompanying note, (1.11b) and gγ(θ) should be replaced by (1.2)
and fγ(θ), respectively, and 0.5(θl+(θ1 +2π)) should also be included when doing the
additional check described in the note. In lines 13 and 23, “ir ∈ Λ(M,Nθj ) defined
in (2.2) with r > 0” should be replaced with “ir ∈ Λ(C,Dθj ) defined in (4.2) with
r > 0.” For increased efficiency, fγ(θ) should be evaluated in a manner analogous to
that described in subsection 2.3 for gγ(θ). The O(kn3) work complexity and O(n2)
memory characteristics again hold.

5. Numerical experiments. To validate our new interpolation-based global-
ity certificates, we implemented a proof-of-concept of Algorithm 2.1 (and its variants
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described in sections 3 and 4; for simplicity, in section 5 we refer to any of these
as Algorithm 2.1) in MATLAB and compared it against the existing state-of-the-art
methods of [22] for continuous- and discrete-time Kreiss constants and of [15] for the
distance to uncontrollability. Experiments were performed in MATLAB R2017b us-
ing a computer with two Intel Xeon Gold 6130 processors (16 cores each, 32 total)
and 192GB of RAM. The supplementary material includes code (kreiss dtu code.zip
[local/web 7.72MB]), test examples, and a detailed descriptions of both our imple-
mentation and experimental setup for reproducibility of all results, tables, and figures
in the paper (kreiss dtu mitchell supp.pdf [local/web 170KB]); for brevity, we only
give essential details here. We plan to add “production-ready” implementations of
Algorithm 2.1 for K(A) and τ(A,B) to a future release of ROSTAPACK [20].

For implementing Algorithm 2.1, fminunc was used for finding local minimizers,
while gγ(θ), hγ(θ), and fγ(θ) were evaluated using eig. Per subsection 2.3 on effi-
cient evaluation, our code first attempts to compute the values of gγ(θ), hγ(θ), and
fγ(θ) via the standard eigenvalue problem formulations in (2.3), (3.3), and (4.3). For
simplicity, our prototype code only resorts to using the generalized eigenvalue prob-
lems in (2.2), (3.2), and (4.2) when infs, nans, or errors are encountered; for a more
robust implementation, eigenvalues of these sHH matrix pencils should be computed
using a structure-preserving eigensolver such as [1, 4], and this should also be done
whenever the computed values of gγ(θ), hγ(θ), and fγ(θ) (when using eig and the
standard eigenvalue problems) are close to zero. For approximating gγ(θ), hγ(θ), and
fγ(θ), we used Chebfun [9], a sophisticated and efficient toolbox for “computing with
functions to about 15-digit accuracy”3 that is also adept at handling nonsmooth func-
tions when its splitting option is enabled. To replicate the design of Algorithm 2.1,
where optimization is restarted when zeros of gγ(θ), hγ(θ), and fγ(θ) are encoun-
tered, our code simply throws and catches an error in order to halt Chebfun; this
allows us to immediately restart optimization without letting Chebfun finish building
a high-fidelity approximation and requires no modifications to Chebfun itself. Our
prototype attempts to restart optimization using one or more of the detected level-
set points but not necessarily all; a more robust implementation might first check
whether or not any of these points are nonstationary before deciding to halt Chebfun
early. When Chebfun does build an approximation without encountering zeros, our
prototype does the additional global convergence checks described in Algorithm 2.1
(see lines 20–27 and its accompanying note). Finally, our code terminates if none
of the new starting points leads to a meaningful decrease in the estimate γ, i.e., if
the relative improvement in γ is less than 10−14. This additional test is necessary in
practice as optimization software will generally not compute minimizers exactly and
our interpolation-based globality certificates may still detect level-set points when a
global minimizer has been found to numerical precision.

Remark 5.1. To demonstrate our interpolation-based globality certificates and
encourage multiple restarts, we intentionally chose starting points such that only local,
not global, minimizers would be found on the first round of optimization. Moreover,
our prototype performs a new globality certificate as soon as optimization results in a
relative decrease of 10−6 or more from the value of γ for the preceding certificate. As
such, some detected level-set points may be ignored, which, if used, could have led to
larger decreases in γ. In practice, it will likely be more efficient to run optimization
from all or at least many of the detected level-set points, to avoid making unnecessarily

3The quote is taken from the homepage of http://www.chebfun.org.
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small updates. For similar reasons, more than a single starting point should be used.

Remark 5.2. For conceptual simplicity, we have so far intentionally omitted a few
other notable implementation details, which we now briefly describe. First, in Algo-
rithm 2.1, to account for rounding error, the interpolation-based globality certificates
should not be done with the value of γ computed in line 6 but rather (1− tol)γ for a
relative tolerance tol ∈ (0, 1), e.g., tol = 10−14. Second, for continuous-time K(A)
and τ(A,B), when the level sets do not have real-axis symmetry, it may be bene-
ficial to shift the “search point” from the origin; e.g., for K(A), one might instead
use the average of the imaginary parts of the eigenvalues of A. Finally, for discrete-
time K(A) and τ(A,B), there is an additional technique that can often provide an
additional factor-of-two speedup. By noting that both hγ(θ) and hγ(θ + π) can be
computed via a single computation of the spectrum of (S, Tθ), our interpolation-based
globality certificates can be computed by approximating min{hγ(θ), hγ(θ + π)} over
half of the domain D, and the same can be analogously done when computing τ(A,B).
For simplicity in the comparisons here, we forgo using this additional optimization.

5.1. Comparisons to earlier methods. Since we address parallel computa-
tion in subsection 5.2, here we consider a single-core evaluation of all the methods. We
did this by calling parpool(1) in MATLAB and by not using any parfor loops. The
test problems, whose dimensions are listed in Table 1, are as follows. For continuous-
time K(A), companion (stab.) is the stabilized EigTool example we used to generate
Figure 1, while boeing(’S’) and orrsommerfeld are directly from EigTool. For
discrete-time K(A), convdiff (mod.) is the modified EigTool example we used to
generate Figure 2, while randn #1 (stab.) and randn #2 (stab.) are randomly gen-
erated stable complex matrices, scaled so their spectral radii are 0.999. While these
discrete-time examples have very low Kreiss constants, they are useful for demon-
stration as h(r, θ) has multiple different local minima for each of them. For τ(A,B),
[15, section 4.3] used real-valued examples generated by setting A to different sizes of
the kahan demo from EigTool and B = randn(n,m); for our experiments here, we
generated two such examples using larger values of n and m, namely, kahan (m = 20)
and kahan (m = 30). Of the eight examples, randn #1 (stab.) and randn #2 (stab.)
do not have level sets with real-axis symmetry, while the others do.

For computing Kreiss constants, we compare the efficiency of Algorithm 2.1 with
the earlier 2D level-set methods of [22], using the code provided in the supplementary
material of [22]. However, the running times we report in Table 1 are not for the
complete algorithms of [22], but rather just the time to perform a single 2D level-set
test. Recall that the methods of [22] always require performing at least one 2D level-
set test, and these tests are the dominant cost, with O(n6) work when using dense
eigensolvers. Thus, it suffices to time a single level-set test for each method of [22].
We did not use the asymptotically faster divide-and-conquer versions from [22], as
they appear to be less reliable when computing Kreiss constants; see [22, section 8].
For continuous-time K(A), the generalized eigenvalue problems that appear in the
fixed- and variable-distance 2D level-set tests of [22] were solved with eig, while the
corresponding quadratic eigenvalue problems for the discrete-time K(A) tests were
solved with polyeig. In Table 1, we see that for the small (n = 10) examples,
companion (stab.) and convdiff (mod.), the total running time of Algorithm 2.1 is
comparable with the cost of a single 2D level-set of [22], but our new approach is much
faster for larger dimensions. In fact, for the other continuous-time K(A) examples,
boeing(’S’) (n = 55) and orrsommerfeld (n = 100), Algorithm 2.1 is generally over
1000 times faster than a single 2D level-set test. For the two randn-based discrete-time
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Table 1
The eight problems tested. The size of the matrix A is given by n, while z0 is the initial point

used for the first round of optimization. The values of K(A) and τ(A,B) computed by Algorithm 2.1
are given under “Computed Value.” Elapsed wall-clock times (in seconds) are given in the three
rightmost columns. For Algorithm 2.1, the total running times are reported under “New.” For
Kreiss constants, rather than running the complete algorithms of [22], we only recorded the time to
perform a single 2D level-set test (“Single LS Test” in the table) for each problem. Consequently,
these times greatly underreport the actual costs to run the full algorithms of [22]. As the methods
of [22] use either fixed- or variable-distance 2D level-set tests, times are reported for both types,
respectively under “2D Fixed” and “2D Vari.,” except for randn #2 (stab.), where out-of-memory
errors occurred. For τ(A,B), for which only fixed-distance 2D level-set tests are relevant, the times
to compute τ(A,B) using the complete divide-and-conquer method of [15] (“Full D&C Alg.” in the
table) are reported.

Time (sec.)

Problem n z0 Computed Value New 2D Fixed 2D Vari.

K(A) (continuous) Single LS Test

companion (stab.) 10 6+6i 1.29186707013556× 105 0.5 0.5 1.0
boeing(’S’) 55 1+50i 3.62541052800213× 104 6.1 6226.5 3446.7
orrsommerfeld 100 10+10i 3.93230474282055× 101 149.6 170547.2 197426.0

K(A) (discrete) Single LS Test

convdiff (mod.) 10 −1+1i 1.89501339090580× 100 1.8 0.9 0.9
randn #1 (stab.) 50 1+1i 1.75843606578311× 100 128.7 3324.0 3248.0
randn #2 (stab.) 100 1−1i 2.35849495574647× 100 1223.8 — out-of-mem —

τ(A,B) Full D&C Alg.

kahan (m = 20) 60 0+0i 3.88211512261161× 10−2 51.1 246.2 —
kahan (m = 30) 150 0+0i 1.82581469530120× 10−2 644.4 27454.4 —

K(A) examples, Algorithm 2.1 is roughly 25 times faster than a single 2D level-set
test for n = 50, while it was not even possible to time the discrete-time 2D level-set
tests for n = 100, since polyeig immediately ran out of memory (on a computer with
a 192GB of RAM). To compare accuracy of the methods, we only considered the two
small examples (both n = 10), due to the high cost of running the 2D level-set-based
methods for larger n. The K(A) estimates computed by Algorithm 2.1 in Table 1 for
companion (stab.) and convdiff (mod.) agree, respectively, to 11 and 15 digits to
the corresponding values reported in [22, Table 1] for the optimization-with-restart
methods of [22]. The slight discrepancy for companion (stab.) is almost certainly due
to the fact that optimization solvers do not find minimizers exactly, and so there will
generally be some variability in the least significant digits of γ. This can likely be
dealt with via tighter tolerances, using different optimization solvers, and/or using
more starting points per restart.

For computing the distance to uncontrollability, we compared Algorithm 2.1 with
the divide-and-conquer-based method of [15]. Since divide-and-conquer has an as-
ymptotic work complexity of O(n4) on average and O(n5) in the worst case, it was
feasible to run the full method of [15] on our test problems; specifically, we com-
pared Algorithm 2.1 against the dist uncont hybrid routine,4 which uses BFGS
for optimization and divide-and-conquer 2D level-set tests when opts.method=1 and
opts.eig method=1 are set. For the smaller kahan-based example (n = 60, m = 20),
Algorithm 2.1 is 4.8 times faster than dist uncont hybrid, while for the larger ex-

4Available at http://home.ku.edu.tr/∼emengi/software/robuststability.html.

D
ow

nl
oa

de
d 

04
/1

9/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

http://home.ku.edu.tr/~emengi/software/robuststability.html


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST INTERPOLATION-BASED GLOBALITY CERTIFICATES 603

Table 2
For each restart using our new interpolation-based globality certificates, the left number is the

total number of points at which Chebfun evaluated gγ(θ), hγ(θ), or fγ(θ) for the current estimate
γ until either new starting points were found (which immediately restarts optimization) or Chebfun
terminated on its own; bold font indicates the last certificate computed. The right number is the rela-
tive difference obtained by the next round of optimization to lower γ. Note that for convdiff (mod.),
the last certificate actually produced new starting points, but optimization was unable to meaning-
fully lower estimate γ further, and so our code terminated after a round of optimization instead of
after a certificate test.

# of θ’s evaluated per certificate and rel. diff. in γ

Problem Restart 1 Restart 2 Restart 3 Restart 4

companion (stab.) 15 1e-02 389 — — — — —
boeing(’S’) 15 7e-01 15 7e-01 535 — — —
orrsommerfeld 15 9e-01 3048 — — — — —

convdiff (mod.) 15 3e-01 15 4e-02 31 3e-02 4084 1e-15

randn #1 (stab.) 63 1e-01 12448 — — — — —
randn #2 (stab.) 15 2e-01 15 2e-01 127 1e-01 18672 —

kahan (m = 20) 15 7e-01 3529 — — — — —
kahan (m = 30) 15 6e-01 15 2e-01 6246 — — —

ample (n = 150, m = 30), Algorithm 2.1 is 42.6 times faster. We expect that this
performance gap will generally widen more as n increases. The τ(A,B) estimates
computed by Algorithm 2.1 for kahan (m = 20) and kahan (m = 30) agreed, respec-
tively, to 12 and 13 digits with those computed by dist uncont hybrid, with our
new method returning the (slightly) smaller answers for both.

In Table 2, we show the number of points at which Chebfun evaluates gγ(θ),
hγ(θ), or fγ(θ) (as appropriate) for each interpolation-based globality certificate that
is performed. As can be seen, before a global minimizer is obtained, relatively few
values of θ are evaluated by Chebfun before new starting points are discovered and
optimization commences again, demonstrating that high-fidelity approximations are
indeed only needed once a global minimizer has been found. Furthermore, as hoped,
the number of function evaluations needed to build the final interpolants does not
dramatically increase as the problems get larger. The number of function evaluations
is instead correlated with how complex gγ(θ), hγ(θ), and fγ(θ) are, which is not
necessarily related to the problem dimension. In Figure 3, we plot gγ(θ), hγ(θ), and
fγ(θ) for the final values of γ computed by Algorithm 2.1 for three of our examples.

5.2. Additional acceleration via parallel processing. The main compo-
nents of Algorithm 2.1 are “embarrassingly parallel.” Optimization can be run from
multiple starting points in parallel, to hopefully find a global minimizer on any given
iteration without increasing runtime. For our interpolation-based globality certifi-
cates, any time Chebfun provides a vector of different values of θ, obtaining the
corresponding function values of gγ(θ), hγ(θ), or fγ(θ) is also “embarrassingly par-
allel.” We focus on this latter task, as it is the dominant cost and is dependent on
the average size of vectors provided by Chebfun. To obtain speedup data, we recom-
puted the final certificates for our three largest problems, where parpool(cores) was
called with cores set to 2, 4, 8, 16, and 32, and the values of gγ(θ), hγ(θ), and fγ(θ)
were computed inside a parfor loop. We did these tests with the Chebfun preference
’min samples’ retained at its default value of 17 and with it increased to 65, com-
paring speedups with respect to our single-core configuration used in subsection 5.1.

In Table 3, the best speedups range from 6.6 to 9.1, a significant boost. While
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(a) boeing(’S’): gγ(θ) in linear scale (left) and in log10 scale (right)

(b) randn #2: hγ(θ) in linear scale (left) and in log10 scale (right)

(c) kahan (m = 30): fγ(θ) in linear scale (left) and in log10 scale (right)

Fig. 3. The top two plots show gγ(θ) at the final value of γ computed by our new method for the
boeing(’S’) example, in linear and log10 scales. The circle denotes the angle of the best minimizer
obtained by optimization and corresponds to the single place where gγ(θ) = 0 (which is more easily
seen in the log10 plot on the right), confirming that γ is the globally minimal value. The same is
done for hγ(θ) and randn #2 in the middle plots and for fγ(θ) and kahan (m = 30) in the bottom
plots.

this is not high utilization of 32 cores, the average number of θ values provided at
a time by Chebfun, which was often about 15 to 20, is an upper limit on achievable
speedup. As reported in the # column of Table 3, the parallel region of our code is
entered and exited hundreds of times, which comes with a very high overhead.

Since varying ’min samples’ had little impact on performance and the total num-
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Table 3
Speedups with respect to the number of θ’s evaluated per second while Chebfun is building the

final interpolant for the three largest problems; the reason speedups are not with respect to overall
running time is because the total number of function evaluations Chebfun needed was not always
the same as the number of cores was changed. The last two columns, “#” and “Avg. Size,” show,
respectively, the number of times Chebfun requested a vector of different values of θ to be evaluated
and the average length of these vectors. These average lengths give upper bounds on the best possible
speedups, while the pair of values together show that there is likely high overhead due to entering
and exiting the parfor loop many times in order for Chebfun to evaluate more and more points.

Speedup per # of cores Vector of θ’s

Problem 2 4 8 16 32 # Avg. Size

Chebfun min samples: 17

orrsommerfeld 2.4 3.6 4.9 6.4 5.7 184 16.6
randn #2 (stab.) 2.9 4.5 6.3 8.5 9.0 797 21.8
kahan (m = 30) 2.6 3.9 5.5 7.7 8.6 430 14.5

Chebfun min samples: 65

orrsommerfeld 2.6 3.8 5.3 6.6 6.1 162 20.1
randn #2 (stab.) 3.0 4.9 6.9 9.1 8.8 608 29.3
kahan (m = 30) 2.7 4.3 6.2 8.3 8.8 385 17.3

ber of vectors, we analyzed the Chebfun code to determine how its amenability to
parallelization might be improved. Perhaps the biggest influence is the findJump rou-
tine inside @fun/detectEdge.m, which does bisection to detect singularities and thus
requests only a single function value per iteration and does many iterations. We mod-
ified findJump to instead do k-sectioning for integers k > 2 and found that our new
version dramatically increased the overall average vector length if k was sufficiently
large, as it also dramatically reduced the number of iterations findJump needed. An-
other cause is related to the fact that Chebfun often approximates functions, particu-
larly nonsmooth ones, not by a single polynomial interpolant but by a concatenation
of them. For each piece, a final safety test for accuracy (@chebtech/sampleTest.m)
is done by evaluating a pair of hard-coded points in the interval the piece is approxi-
mating over. This too can keep the average vector length low and increase the total
number of vectors. For parallel processing, it would be more efficient to speculatively
evaluate these two fixed values for each piece by batching them in with the first vector
of initial sample points and storing this pair of function values for recall later.

Remark 5.3. Parallel eigensolvers such as [2] could also be used to accelerate
solving the large eigenvalue problems in the 2D level-set tests of [22] and [14], but
this would not reduce their high memory requirements, nor does it seem likely that
this would be competitive with our interpolation-based certificates even using serial
computation, let alone parallel computation.

6. Concluding remarks. We have seen that our new interpolation-based glob-
ality certificates are generally orders of magnitudes more efficient than the existing
techniques of [22] for Kreiss constants and those of [14, 15] for the distance to un-
controllability. While our new approach assumes that gγ(θ), hγ(θ), and fγ(θ) are
adequately sampled to find their zeros, this seems a rather mild assumption in prac-
tice, as per Theorems 2.7, 3.5, and 4.6, they will be zero on sets of positive measure
before a global minimizer has been obtained. The nature of our adequate interpola-
tion assumption is quite different from the exact arithmetic assumption used in the
earlier methods of [14, 15, 22], and we believe it to be a more pragmatic choice, both
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in terms of efficiency and reliability. Finally, while in this paper we have considered
the three specific problems of computing continuous-time Kreiss constants, discrete-
time Kreiss constants, and the distance to uncontrollability, we again emphasize that
our new approach of interpolation-based globality certificates is for general global op-
timization problems of singular value functions in two real variables. In fact, after
submitting this manuscript, we have since used the idea of interpolation-based glob-
ality certificates to obtain a new algorithm for computing “sep-lambda” [21] that is
much faster than the method of [16]. However, there are many fundamental differ-
ences in this case, in both the nature of the associated global optimization problem
and our resulting algorithm.
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