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Deep sub-wavelength localization and displacement sensing of optical nanoantennas have emerged
as extensively pursued objectives in nanometrology, where focused beams serve as high-precision
optical rulers while the scattered light provides an optical readout. Here, we show that in these
schemes using an optical excitation as a position gauge implies that the sensitivity to displacements
of a nanoantenna depends on the spatial gradients of the excitation field. Specifically, we explore one
of such novel localization schemes based on appearance of transversely spinning fields in strongly
confined optical beams, resulting in far-field segmentation of left- and right-hand circular polar-
izations of the scattered light, an effect known as the giant spin-Hall effect of light. We construct
vector beams with augmented transverse spin density gradient in the focal plane and experimentally
confirm enhanced sensitivity of the far-field spin-segmentation to lateral displacements of an electric-
dipole nanoantenna. We conclude that sculpturing of electromagnetic field gradients and intelligent
design of scatterers pave the way towards future improvements in displacement sensitivity.

I. INTRODUCTION

Currently, there is a growing interest in localization
and displacement sensing of optical nanoantennas [1–4]
in focal volumes of tightly focused beams. Tight focusing
produces highly inhomogeneous three-dimentional (3D)
focal fields [5], resulting in position-dependent excitation
and scattering of nanoantennas [6–18]. In this schemes,
information on the position of a scatterer with respect to
the focal fields becomes encoded in the directivity and
polarization pattern of the far-field scattered light. The
latter implies that the far-field sensitivity to displace-
ments of a nanoantenna may be enhanced by tailoring
the spatial derivatives of the excitation field.
In this letter, we consider far-field spin-segmentation of
the scattered light — an effect referred to as the giant
spin-Hall effect of light [7, 8, 18–20] — as a measure of
the position of an isotropic electric-dipole nanoantenna
located in the focal plane of a tightly focused beam. The
extent of this far-field circular polarization splitting de-
pends on the eccentricity and orientation of the polariza-
tion ellipse of the excited electric dipole moment. The
“maximal” spin splitting is achieved for a dipole mo-
ment whose vector upon time evolution draws a circle
lying in the propagation (meridional) plane with respect
to the incident light [19]. Consequently the extent of
the spin segmentation depends on the transverse com-
ponents of the spin density vector at the position of the
nanoantenna [21–26]. To enhance the sensitivity of the
far-field spin segmentation to displacements of the scat-
terer, we experimentally utilize a generalized cylindrical
vector beam [27, 28] with augmented transverse spin den-
sity (TSD) gradient. Our study based on structuring the
gradient of the focal TSD reveals that the displacement
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sensitivity can be drastically increased. Thus, our work
may constitute an important step in nanophotonics and
localization microscopy.
A schematic of the spin-segmentation-based displace-
ment detection scheme is shown in Fig. 1. A polarization
tailored beam is focused by a microscope objective (MO1)
with the numerical aperture NA1 onto a nanoantenna po-
sitioned in the focal plane. Highly inhomogeneous 3D fo-
cal fields result in position dependent scattering patterns.
We collect the transmitted and the scattered light by a
second microscope objective (MO2) with a higher nu-
merical aperture NA2, creating an angular region in the
back focal plane (BFP) of MO2, which allows us to ana-
lyze the far-field scattered light only. This is achieved by
blocking the angular region containing the transmitted
excitation beam. We detect the changes in the far-field
distribution of circular polarization, expressed by the an-
gularly resolved third Stokes parameter S3(k), and link
these changes to the displacements of the nanoantenna
in the focal plane.

II. THEORY

First, we assume that MO1 focuses an incident
paraxial beam, propagating along the z-axis, onto a
spherical isotropic point-dipole nanoantenna (compare
Fig. 1 and Fig. 2a). The focal electric Efoc(x,y)
and magnetic Hfoc(x,y) fields excite position-dependent
electric p(x,y)=αeε0E

foc(x,y) and magnetic m(x,y)=
αmHfoc(x,y) dipole moments in the nanoantenna [5, 29].
Here, αe and αm are the electric-dipole and magnetic-
dipole polarizabilities [30], respectively, and ε0 is the vac-
uum permittivity. The free space far-field emission Ef

of this point-dipole (see Appendix A) in transverse x-
direction k=(±k,0,0), where k is the vacuum wavenum-

ar
X

iv
:1

90
9.

13
36

5v
1 

 [
ph

ys
ic

s.
op

tic
s]

  2
9 

Se
p 

20
19

mailto:peter.banzer@mpl.mpg.de
http://www.mpl.mpg.de/


2

MO1(NA1)
x

y
MO2(NA2>NA1)

kx

ky

S3
min max

focal plane

back f
ocal plane

(NA1
NA1

NA2

S3(k)

z

Figure 1. Spin-segmentation-based displacement detection
scheme. The first microscope objective (MO1) focuses the
beam onto a nanoantenna. Another confocally aligned micro-
scope objective (MO2) with larger numerical aperture (NA)
collects the transmitted and the scattered light. We analyze
the circular polarization distribution of the scattered light in
the back focal plane (k-space) of MO2. The degree of circu-
lar polarization is expressed by the angularly resolved third
Stokes parameter S3(k). Owing to the larger NA of MO2, the
angular region of NA>NA1 contains only the scattered light.
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Figure 2. (a) Sketch of the experimental setup. A linear
polarizer (LP), a q-plate and a Fourier filter (not shown) pre-
pare the incident beam. The beam is focused by an aplanatic
dry microscope objective (MO1) and excites a gold nanopar-
ticle (see scanning-electron microgaph shown as inset) of di-
ameter d=120nm. A confocally aligned index-matched im-
mersion microscope objective (MO2) collects the transmitted
and scattered light. We split the outgoing beam into left-
and right-hand circularly polarized components using a liq-
uid crystal variable retarder (LCVR) and a polarizing beam
splitter (PBS) and simultaneously image them onto a CMOS
camera. (b) Electric field distribution Ein at the entrance
pupil of MO1. The intensity pattern |Ein|2 corresponds to
the colormap. The angle ψ defines the polarization pattern,
which is indicated by white arrows.

ber, is given by:

Ef (±k,0,0)=

[
Efp(±k)
Efs (±k)

]
∝
[
−pz±my/c
±py+mz/c

]
(x,y), (1)

where the subscripts p and s indicate the transverse mag-
netic (TM) and electric (TE) field components, respec-
tively, and c is the speed of light in vacuum. We omit
the spatial dependence in most of the following equa-
tions for clarity. Using Eqn. 1, we define the far-field
spin-segmentation Dx with respect to kx as [18]:

Dx [p(x,y),m(x,y)]=
S3(+k)−S3(−k)

S0(+k)+S0(−k)
, (2)

where S3=−2=
{

Efp
(
Efs
)∗}

is the third Stokes param-

eter describing the preponderance of left- over right-
hand circularly polarized light (LCP and RCP) and
S0=|Efp |2+|Efs |2 describes the far-field intensity distri-
bution. Substituting expressions for the dipole moments
in Eqn. 2 relates Dx to the focal fields:

Dx=
2=
{

Efoc
z

(
Efoc
y

)∗
+η2βHfoc

z

(
Hfoc
y

)∗}(
|Efoc
z |2+|Efoc

y |2
)
+η2β

(
|Hfoc
z |2+|Hfoc

y |2
) , (3)

where η is the vacuum impedance and β≡|αm/αe|2 is
the squared ratio of the dipole polarizabilities. For an
electric-dipole (β=0) nanoantenna, Dx(β=0) depends on
the normalized x-component of electric TSD of the focal
fields sE∝=

{
Efoc∗×Efoc

}
[21–26]:

Dx(β=0)=
2=
{

Efoc
z

(
Efoc
y

)∗}
|Efoc
y |2+|Efoc

z |2
. (4)

The sensitivity to displacements of the scatterer across
the focal plane Υx and the angle θx of the steepest ascent
of Dx with respect to the x-axis are:

Υx=|∇Dx|,
θx=tan−1(∂yDx,∂xDx),

(5)

where tan−1 is the four-quadrant inverse tangent. As
mentioned before, our main goal is to enhance the sensi-
tivity of the spin-segmentation in order to measure small
particle displacements. Therefore, to enhance Υx, we aim
to design a field with an electric TSD distribution ex-
hibiting the steepest possible gradient in the focal plane.
As an example of such a field, we consider an incident
spirally-polarized cylindrical vector beam [27, 28], shown
in Fig. 2b, which is a linear superposition of in-phase
radially and azimuthally polarized beams:

Ein=E0
ρ

w0
e
− ρ2

w2
0 (sinψρ̂︸ ︷︷ ︸

Radial

+ cosψϕ̂︸ ︷︷ ︸
Azimuthal

), (6)

where w0 is the beam waist, ψ is the spiral polarization
angle, ρ and ϕ are the radial and axial cylindrical coordi-
nates. Focusing the beam in Eqn. 6 yields the following



3

fields in the focal plane (z=0) near the optical axis [5]:

Efoc(x,y)≈ 1√
δ2+1

δ(xx̂+yŷ+2ık−1ẑ)︸ ︷︷ ︸
Radial

+(xŷ−yx̂)︸ ︷︷ ︸
Azimuthal

,
Hfoc(x,y)≈ η−1√

δ2+1

δ(xŷ−yx̂)︸ ︷︷ ︸
Radial

−(xx̂+yŷ+2ık−1ẑ)︸ ︷︷ ︸
Azimuthal

,

(7)

where δ=tanψ such that the values δ=0 and δ→∞ cor-
respond to input azimuthal and radial polarizations, re-
spectively. For the longitudinal fields, we used the parax-
ial approximation with a first order correction [31, 32].
By substituting the focal fields (Eqns. 7) into the expres-
sions for directivity Dx (Eqn. 3 and 4) we get:

Dx=
4
k [δ(δy+x)+β(y−δx)]

(2δ/k)2+(δy+x)2+β(2/k)2+β(y−δx)2
,

Dx(β=0)=
4δ
k (δy+x)

(2δ/k)2+(δy+x)2
,

(8)

which leads to the following sensitivities Υx and angles
θx, as defined in Eqns. 5:

Υx=
k
√

(δ2+β2)(1+δ2)

δ2+β
,

θx=tan−1
(
δ2+β,δ−βδ

)
,

Υx(β=0)=
k

|δ|
√

1+δ2∝|δ|−1,

θx(β=0)=tan−1(δ2,δ)=ψ+π/2

(
1− ψ

|ψ|

)
.

(9)

Eqns. 9 are the main theoretical results of our
manuscript. Specifically, they show that small values of
|δ|≈|ψ|�1, which correspond to a mostly azimuthally
polarized incident beam, significantly enhance the dis-
placement sensitivity Υx for electric-dipole scatterers
(β=0).

III. EXPERIMENT

For an experimental demonstration, we use a spheri-
cal gold nanoparticle [33] of diameter d=120nm, drop-
casted onto a glass substrate with a refractive index of
n=1.52. At a wavelengths of λ=630nm, the nanoparti-
cle is approximately an electric dipole scatterer [30] with
β=0.0034. Fig. 2a schematically depicts our experimen-
tal system [9, 26]. We start by converting an incident lin-
early polarized Gaussian beam into a spirally-polarized
cylindrical vector beam using a q-plate of charge 1/2 [34].
The relative angle between the axis of the q-plate and the
polarization of the Gaussian beam defines the polariza-
tion angle ψ of the spiral polarization beam in Fig. 2b. To
ensure singlemodedness, we spatially filter the polariza-
tion tailored beam [35], which is subsequently focused by
MO1 with the numerical aperture of NA1=0.9. The fo-
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Figure 3. (a), (b) Experimentally and (d), (e) theoretically
obtained (see Appendix A) left- and right-hand circularly po-

larized projections (LCP and RCP) Iflcp and Ifrcp of the scat-
tered light in the back focal plane of the second microscope ob-
jective for the position (x,y)=(50nm,0) of the nanoparticle in
the focal plane. (c) and (f) show a strong spin-segmentation

in the associated third Stokes parameter S3=Iflcp−Ifrcp. The

brackets in (a) and (b) show the integration regions used on
the experimental back focal plane images to calculate Dx from
Eqn. 2.

cal plane (z=0) coincides with the boundary between air
(z<0) and the glass substrate (z>0). A high-precision
3D piezo actuator, attached to the glass substrate trans-
lates the nanoparticle through the focal volume of the
beam. The confocally aligned MO2 with NA2=1.4 col-
lects and collimates the transmitted and the scattered
light, while the angular region of NA>NA1 contains only
scattered light. The collimated beam passes through a
liquid crystal variable retarder set to λ/4 retardation
and oriented at 45° with respect to the x-axis, which
converts left- and right-hand circularly polarized compo-
nents (LCP and RCP) to linearly polarized x and y com-
ponents, respectively, preserving their intensity profiles

Iflcp and Ifrcp. The subsequent polarizing beam splitter

(PBS) separates the linear x and y polarizations. We
simultaneously image the resulting projections onto a
CMOS camera to visualize the intensity profiles of LCP

and RCP components (Iflcp and Ifrcp) in the BFP of the
collecting MO.

First, we translate the nanoparticle through the focal
plane on a 2D grid of 50nm × 50nm with a 5nm step
size for a variety of angles ψ and record the polariza-

tion projections Iflcp and Ifrcp at each point (x,y) of the
grid. In Fig. 3, we plot the individual experimental and
theoretical BFP images (see Appendix A) obtained for
ψ=5°. The top and bottom row in Fig. 3 correspond
to the position (x,y)=(50nm,0) of the nanoparticle in
the focal plane. There is a visible directivity in both

LCP (Iflcp) and RCP (Ifrcp) components of the scattered
light, resulting in strong spin-segmentation in the asso-

ciated third Stokes parameter S3=Iflcp−Ifrcp, as shown in
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Figure 4. The experimental (a)-(c) and theoretical (d)-(f)
values of the directivity Dx(x,y) in far-field spin-segmentation
with respect to kx for ψ=+90°,+5°,−5°. The green dots in (b)
and (e) show the position (x,y)=(50nm,0) in the focal plane.
The dashed square in (b) shows the area used to calculate
sensitivity Υx and its corresponding angle θx.

Fig. 3c and 3f . Overall, we see an excellent qualitative
correspondence between the experimental and theoreti-
cal data. In order to increase the signal-to-noise ratio
(see also Appendix B) and to calculate the experimen-
tal values of Dx from the experimental BFP images, we

integrate the intensities Iflcp and Ifrcp over finite angular
regions, which are marked in Fig. 3a and 3b. We use the

obtained values Iflcp(±k) and Ifrcp(±k) to calculate Dx in
Eqn. 2.
In Fig. 4 we show the resulting experimental and theoret-
ical (Eqn. 8, β 6=0) plots of Dx(x,y) for ψ=90°,+5°−5°.
As expected from Eqn. 9, for radially polarized excitation
(ψ=90°) the directivity in far-field spin-segmentation
with respect to kx appears for displacements of the
nanoparticle along the y-axis (θx=π/2) [7, 8, 18, 19], as
shown in Fig. 4a and 4d. We also notice in the second
and third column of Fig. 4 a faster rise of Dx for ψ=±5°,
as compared to ψ=90° in the first column. The change
of sign of Dx and θx for ψ=±5° is in agreement with
Eqns. 9. The green dots in Fig. 4b and 4e correspond to
the position (x,y)=(50nm,0) of the nanoparticle in the
focal plane for which we have plotted the BFP images in
Fig. 3.
Finally, to define the experimentally achieved sensitivi-
ties Υx and angles θx, we fit the experimental plots of
Dx with planes in regions marked by a dashed square in
Fig. 4b, such that:

Dx=Ax+By+C,

Υx=
√
A2+B2,

θx=tan−1(B,A).

(10)

In Fig. 5a we plot the theoretical (Eqns. 9) and exper-
imental (solid blue line and red markers, respectively)
values of Υx [36], showing that we correctly resolve
the characteristic shape of Υx. The fast decay of
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Figure 5. (a) Sensitivity Υx as a function of the angle of spiral
polarization ψ. The theoretical curves are divided by a factor
of 5 for comparison. (b) The corresponding angles θx. The
markers, solid blues lines and dashed black lines correspond
to the experimental results, theoretical model in Eqns. 9 for
β 6=0 and β=0, respectively.

Υx for ψ→0°, following two sharp maxima around
ψ≈±3.3°, is the result of the selective excitation of a
magnetic dipole moment and simultaneous suppression
of the electric dipole moment in the nanoantenna for
azimuthally polarized incident beam [37]. We also show
the theoretical curve obtained from Eqns. 9 for β=0 as
a black dashed line in Fig. 5a, which approaches infinity
for ψ→0°. We obtain a maximal experimental value of
Υx of ≈1.5%nm−1 for ψ=±5°, which is approximately
5 times smaller than in theory. This discrepancy mostly
originates from our very simplified free-space model that
does not account for the glass substrate [5, 38, 39] (see
Appendix A), for the exact form of the focal fields [5],
for the integration regions in the BFP and for the plane
fitting of Dx. A theoretical point-dipole model that
includes these effects reduces the discrepancy already to
a factor of 2. Additionally, an ideal point-dipole model
still neglects the experimental imperfections, e.g., the
extinction ratios of polarizers, phase shifts introduced
by the optical elements, actual shape of the nanoparticle
and, most importantly, the beam preparation and
experimentally achieved focal fields.
In Fig. 5b we plot the theoretical (Eqns. 9) and ex-
perimental values of θx [36]. The simplified theory in
Eqns. 9 shows good correspondence to the experimental
values of θx for both β 6=0 and β=0. Since the value
of θx strongly correlates with the angle of the spiral
polarization ψ (Eqns. 9), it also serves as a verification
of the form of the incident beam in Eqn. 6 and the
quality of preparation of the focal fields in Eqns. 7.

IV. DISCUSSION AND CONCLUSION

In summary, we have considered a sub-wavelength
localization and displacement sensing scheme that is
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based on position-dependent scattering response of op-
tical nanoantennas excited with structured light beams.
We have shown a characteristic feature of this and similar
schemes, that the far-field sensitivity to lateral displace-
ment of nanoantennas depends on the spatial derivatives
of the excitation field. Experimentally, we have inves-
tigated the specific case of far-field spin-segmentation
upon scattering of tightly focused beams bearing trans-
verse spin by an electric-dipole nanoantenna. By design-
ing focal field gradients, we have strongly enhanced the
sensitivity of this segmentation to lateral displacements
of the nanoantenna within the focal plane of the beam.
The maximal achieved sensitivity Υx of ≈1.5%nm−1

is comparable to previous experimental records of ≈
1%nm−1 [10, 12], ≈2.5%nm−1 [15] and ≈5%nm−1 [18].
In principle, Υx has a potential for further improvement
with better optical components in the current experimen-
tal scheme. However, Fig. 5a clearly shows that the
limiting factor in our experiment is the excitation of a
non-negligible magnetic dipole moment, i.e., the valid-
ity of the electric-dipole approximation of our scatterer.
Recently, intelligent designs of core-shell nanoparticles
have been suggested aiming to enhance or suppress spe-
cific multipolar contributions to the scattering response.
Specifically, in [40], the authors theoretically predict an
ideal magnetic dipole scattering. Applying our scheme
to such a scatterer to enhance the magnetic counterpart
of the giant spin-Hall effect of light may lead to further
enhanced sensitivity that approaches the dashed curve in
Fig. 5a.
Importantly, the results presented in sections II&III are
by no means limited to focal fields featuring transverse
spin density, to observation of circular polarization effects
or to dipolar scatterers. The sensitivity of any localiza-
tion or displacement-sensing scheme relying on spatial
inhomogeneity of the excitation field depends on the spa-
tial derivatives of this field. For instance, one can chose
a ±π/2 dephased superposition of radial and azimuthal
polarization in Eqn. 6 to observe far-field segmentation
of the first S1 and second S2 Stokes parameters, as di-
rectly follows from the derivations in sections II.
Finally, we would like to note a similarity between our
approach to enhance the displacement sensitivity and the
quantum weak measurements inspired [41, 42] polariza-
tion filtering techniques, typically employed to enhance
the visibility of beam shift phenomena [43–46]. In the
context of classical optics, a “weak measurement” with
pre- and post-selected state vectors consist of perform-
ing a measurement in which polarization weakly couples
to other degrees of freedom using two almost orthogo-
nal input and output polarizations states [47–51]. Only
recently these techniques have expanded to the realm of
nano-optics and nano-photonics [18, 19, 52], for which an
analogy was put forward [19]. Also in our case, a super-
position of azimuthal polarization with a small fraction
of radial polarization and the selective response of the
electric-dipole nanoantenna to the focal electric field cre-
ated mostly by the radial component near the optical axis

can be regarded as pre- and post-selection, respectively.
In conclusion, we believe that precise sculpturing of
electromagnetic field gradients with intelligent design of
nanoantennas’ scattering response open new avenues for
drastically increased displacement sensitivity. These ca-
pabilities may have far-reaching implications in nanopho-
tonics, microscopy and beyond.
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Appendix A: Dipole nanoantenna on a substrate

For a more complete theoretical description of the ex-
periment, we use an exact calculation of the focal fields
that includes reflections at the interface [5] with the
experimental beam waist of w0=1.6mm and focal dis-
tances of the MOs of f=2mm. Next, we account for
the substrate-induced bi-anisotropy in the dipole polar-
izabilites [38, 39]. The excited dipole moments are

p(x,y)=α̂eeε0E
foc(x,y)+α̂emHfoc(x,y),

m(x,y)=α̂mmHfoc(x,y)+α̂meE
foc(x,y),

(A1)

with values of α̂ij calculated according to Ref. [39] using
Mie coefficients [30] of a spherical gold nanoparticle [33]
of diameter d=120nm located at a distance of d/2 above
a glass substrate with the refractive index of n=1.52.
We assume that the point-dipole is positioned in air (half-
space z<0) above the glass substrate (half-space with
z>0) at (x,y,−d/2). The far-field emission of p(x,y) and
m(x,y) into the hemisphere z>0, as observed in the BFP
of MO2, according to Ref. [5] is given in (p,s)> basis by:

Efp(kx,ky)=CD(x,y)

[
kxkz
k⊥k

tp
kykz
k⊥k

tp −k⊥k tp
− ky
k⊥
ts

kx
k⊥
ts 0

]
p(x,y),

Efm(kx,ky)=CD(x,y)

[
− ky
k⊥
tp

kx
k⊥
tp 0

−kxkzk⊥k
ts −kykzk⊥k

ts
k⊥
k ts

]
m(x,y)

c
,

D(x,y)=exp[ı(kxx+kyy+kzd)]× exp[ınkf ]

f
,

C=
k2

4πε0
×
√
k2n2−k2⊥
kz

×
√
nk

(k2n2−k2⊥)1/4
.

(A2)

Here, tp(k⊥) and ts(k⊥) are the Fresnel transmis-

sion coefficients, k⊥=
(
k2x+k2y

)1/2≤nk is the transverse

wavenumber and kz=
(
k2−k2⊥

)1/2
is the longitudinal

wavenumber with =[kz]≥0. In the BFP of MO2

only the scattered light appears in the angular region
NA1<k⊥≤NA2. We used Eqns. A1-A2 to calculate the
theoretical BFP images in Fig. 3d-3f . Additionally, we
have applied the same procedure of data analysis and
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plane-fitting on the theoretical BFP images as on the
experimental ones, which significantly improved our pre-
diction in Fig. 5a (not shown here). However, the quali-
tative behavior of the improved model matches the sim-
plified free-space model provided by Eqns. 9.

Appendix B: Signal-to-noise ratio

In section IV we have mentioned that our approach to
enhance the displacement sensitivity resembles quantum
weak measurement inspired polarization filtering tech-
niques [41, 42, 44–46]. There is an ongoing debate on
whether these techniques allow for enhancing signal-to-
noise (SNR) ratio or yield more Fisher information. We
refer the readers to [53–60] for a more elaborate discus-
sion. However, it is instructive to find out whether the
drastic increase of sensitivity Υx for an ideal electric-
dipole nanoantenna (β=0) shown by the dashed black
line in Fig. 5 influences the SNR of the measurement.
We assume a shot noise limited scenario, in which the
noise is given by the square root of the total intensity
∆I=

√
I=
√
S0, while the signal corresponds to the third

Stokes parameter |S3|. The SNR is therefore given by:

SNR(x,y,δ)=
|S3|√
S0

=P

∣∣∣2={Efoc
z

(
Efoc
y

)∗}∣∣∣√
|Efoc
y |2+|Efoc

z |2
, (B1)

where we have combined all constants that do not depend
on (x,y,δ) into the proportionality constant P . Using the
focal field in Eqns. 7 yields:

SNR(x,y,δ)=
P√
δ2+1

∣∣ 4δ
k (δy+x)

∣∣√
(2δ/k)2+(δy+x)2

. (B2)

We now have to examine Eqn. B2 for small displace-
ments (x,y) in the limit of radial (δ→∞) and almost
azimuthal (δ≈0) input polarizations. Since the maxi-
mal directivity Dx(β=0)=1 in Eqn. 8 is achieved for any
(x,y) on the line of x+δy=2δ/k, e.g., for (x,y)=(0,2/k)
or (x,y)=(2δ/k,0), we consider displacements such that
0<|x|=|y|=r�δ/k. Under these assumptions, for radi-
ally polarized (δ→∞) and almost azimuthally polarized
(δ≈0) input beams we get:

SNRazi(r,δ≈0)=SNRrad(r,δ→∞)=2Pr. (B3)

Consequently, in our case, the drastic increase of sensi-
tivity to small displacements does not influence SNR in
shot noise limited scenarios [53–60].
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[7] O. G. Rodŕıguez-Herrera, D. Lara, and C. Dainty, Optics
Express 18, 5609 (2010).
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