
RESEARCH ARTICLE

PyRates—A Python framework for rate-based

neural simulations

Richard GastID
1,2,3☯*, Daniel Rose3☯, Christoph Salomon1,4, Harald E. Möller2,

Nikolaus Weiskopf3, Thomas R. Knösche1,4

1 MEG and Cortical Networks Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig,

Saxony, Germany, 2 Nuclear Magnetic Resonance Group, Max Planck Institute for Human Cognitive and

Brain Sciences, Leipzig, Saxony, Germany, 3 Neurophysics Department, Max Planck Institute for Human

Cognitive and Brain Sciences, Leipzig, Saxony, Germany, 4 Institute for Biomedical Engineering and

Informatics, TU Ilmenau, Ilmenau, Thuringia, Germany

☯ These authors contributed equally to this work.

* rgast@cbs.mpg.de

Abstract

In neuroscience, computational modeling has become an important source of insight into

brain states and dynamics. A basic requirement for computational modeling studies is the

availability of efficient software for setting up models and performing numerical simulations.

While many such tools exist for different families of neural models, there is a lack of tools

allowing for both a generic model definition and efficiently parallelized simulations. In this

work, we present PyRates, a Python framework that provides the means to build a large

variety of rate-based neural models. PyRates provides intuitive access to and modification

of all mathematical operators in a graph, thus allowing for a highly generic model definition.

For computational efficiency and parallelization, the model is translated into a compute

graph. Using the example of two different neural models belonging to the family of rate-

based population models, we explain the mathematical formalism, software structure and

user interfaces of PyRates. We show via numerical simulations that the behavior of the

PyRates model implementations is consistent with the literature. Finally, we demonstrate

the computational capacities and scalability of PyRates via a number of benchmark simula-

tions of neural networks differing in size and connectivity.

Introduction

In the last decades, computational neuroscience has become an integral part of neuroscientific

research. A major factor in this development has been the difficulty in gaining mechanistic

insights into neural processes and structures from recordings of brain activity, without addi-

tional computational models. This problem is strongly linked to the actual signals recorded

with non-invasive brain imaging techniques such as magneto- and electroencephalography

(MEG/EEG) or functional magnetic resonance imaging (fMRI). Even though the spatiotempo-

ral resolution of these techniques has improved throughout the years, they are still limited with

respect to the state variables of the brain they can detect. Spatial resolution in fMRI has been

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gast R, Rose D, Salomon C, Möller HE,

Weiskopf N, Knösche TR (2019) PyRates—A

Python framework for rate-based neural

simulations. PLoS ONE 14(12): e0225900. https://

doi.org/10.1371/journal.pone.0225900

Editor: William W Lytton, SUNY Downstate MC,

UNITED STATES

Received: April 24, 2019

Accepted: November 14, 2019

Published: December 16, 2019

Copyright: © 2019 Gast et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All documentation

files for replication of the results figures are

available from the public repository https://github.

com/pyrates-neuroscience/PyRates/tree/master/

documentation.

Funding: Nikolaus Weiskopf is supported by the

European Research Council under the European

Union’s Seventh Framework Programme (FP7/

2007-2013) / ERC grant agreement no. 616905,

the BMBF (01EW1711A & B) in the framework of

ERA-NET NEURON, the European Union’s Horizon

2020 research and innovation programme under

http://orcid.org/0000-0002-4445-0340
https://doi.org/10.1371/journal.pone.0225900
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225900&domain=pdf&date_stamp=2019-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225900&domain=pdf&date_stamp=2019-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225900&domain=pdf&date_stamp=2019-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225900&domain=pdf&date_stamp=2019-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225900&domain=pdf&date_stamp=2019-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225900&domain=pdf&date_stamp=2019-12-16
https://doi.org/10.1371/journal.pone.0225900
https://doi.org/10.1371/journal.pone.0225900
http://creativecommons.org/licenses/by/4.0/
https://github.com/pyrates-neuroscience/PyRates/tree/master/documentation
https://github.com/pyrates-neuroscience/PyRates/tree/master/documentation
https://github.com/pyrates-neuroscience/PyRates/tree/master/documentation

pushed to the sub-millimeter range [1, 2], whereas EEG and MEG offer a temporal resolution

thought to be sufficient to capture all electrophysiological signaling processes in the brain [3].

On the EEG/MEG side, the measured signal is thought to arise mainly from the superposition

of primary and secondary currents resulting from post-synaptic polarization of a large number

of cells with similarly oriented dendrites [4]. Therefore, the activity of cell-types that do not

show a clear orientation preference (like most inhibitory interneurons [5]) are difficult to

detect, even though they might play a crucial role for the underlying neural dynamics. Further

issues of EEG/MEG acquisitions are their limited sensitivity to sub-cortical signal sources and

the inverse problem one faces when trying to locate the source of a signal within the brain [6].

On the other hand, fMRI measures hemodynamic signals of the brain related to local blood

flow, blood volume, and blood oxygenation levels and thus delivers only an indirect, strongly

blurred view of the dynamic state of the brain [7]. These limitations create the need for addi-

tional models and assumptions that link the recorded signals to the underlying neural activity.

Computational models of neural dynamics (called neural models henceforth) are particularly

important for interpreting neuroimaging data and understanding the neural mechanisms

involved in their generation [8–10]. Such models have been developed for various spatial and

temporal scales of the brain, ranging from highly detailed models of a single neuron to models

that represent the combined activity of thousands of neurons. In any case, they provide obser-

vation and control over all state variables included in a given model, thus offering mechanistic

insights into their dynamics.

Numerical simulations are the primary method used to investigate neural models beyond

pure mathematical analyses and to link model variables with experimental data. Such numeri-

cal simulations can be highly computationally expensive and scale with the model size, simula-

tion time, and temporal resolution of the simulation. Different software tools have been

developed for neural modeling that offer various solutions to render numerical simulations

more efficient (e.g. TVB [11], DCM [12], Nengo [13], NEST [14], ANNarchy [15], Brian [16],

and NEURON [17]). Since the brain is a highly parallelized information processing system

(i.e. all of its ~100 billion cells can transform and propagate signals in parallel), most models of

the brain have a high degree of structural parallelism as well. This means that they involve cal-

culations that can be evaluated in parallel, such as the updating of the firing rate of each cell

population inside a neural model. One obvious way of optimizing numerical simulations of

neural models is to distribute these calculations on parallel hardware, such as the central and

graphical processing units (CPUs and GPUs) of a computer. Neural simulation tools that

implement such mechanisms include Nengo [13], ANNarchy [15], Brian [16], NEURON [18],

and PCSIM [19], for example. Each of these tools has been built for neural models of certain

families. For example, the setup and simulation of complex multi-compartment models of sin-

gle spiking neurons is supported by NEURON, Nest, and Brian. Tools dedicated to networks

of point neurons, on the other hand, include ANNarchy, Nengo, and PCSIM (though NEU-

RON, Nest, and Brian support point neuron models as well). Finally, neural population models

are the focus of TVB and DCM. For most of these tools, a pool of pre-implemented models of

the given families are available that the user can choose from. However, often it is not possible

to add new models or modeling mechanisms to this pool without considerable effort. This

holds true especially if one wants to benefit from the parallelization and optimization features

of the respective software. Exceptions are tools like ANNarchy and Brian that include code

generation mechanisms. These allow the user to define the mathematical equations that certain

parts of the model will be governed by and will automatically translate them into the same rep-

resentations that the pre-implemented models follow. Unfortunately, the tools that provide

such code generation mechanisms are limited with regards to the model parts that can be

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 2 / 26

the grant agreement No 681094. Richard Gast has

been supported by Max Planck Society and

Studienstiftung des Deutschen Volkes. Daniel Rose

is supported by the International Max Planck

Research School NeuroCom. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0225900

customized in such a way and concerning the families of neural models they can express. It

should be mentioned that NEURON allows one to build custom, multi-compartment neuron

models that can be used in network models without any impact on the parallelization mecha-

nisms. This enables the setup of heterogeneous, multi-scale models of single cells without loss

of parallelization efficiency via high-level interfaces to NEURON such as BioNet or NetPyNE

[20, 21]. However, these mechanisms do not allow the modification of the underlying equa-

tions of the state variables in the model.

To summarize, we believe that the increasing number of computational models and numer-

ical simulations in neuroscientific research necessitates the development of neural simulation

tools that:

• follow a well-defined mathematical formalism in their model configurations,

• are flexible enough so that scientists can implement custom models that go beyond pre-

implemented models in both the mathematical equations and network structure,

• are structured in such a way that models are easily understood, set up, and shared with other

scientists,

• enable efficient numerical simulations on parallel computing hardware.

To address these needs, we present PyRates, an open-source Python framework for

rate-based neural modeling (freely available at https://www.cbs.mpg.de/departments/

neurophysics/software/pyrates and https://github.com/pyrates-neuroscience/PyRates). The

basic aim behind PyRates is to provide a well-documented, thoroughly tested, and computa-

tionally powerful framework for neural modeling and simulations. In PyRates, both the model

configuration and simulation can be performed with a few lines of code. Each model is repre-

sented by a graph of nodes and edges, with the former representing the model units (i.e. single

cells, cell populations, . . .) and the latter the information transfer between them. Further, as we

will explain in more detail below, the user has full control over the mathematical equations

that define the nodes and edges. To enable an efficient parallelization, the underlying model

equations are translated into a compute graph, specifying which parts of the equations have

to be evaluated serially and which parts can be processed in parallel. Parallel hardware that

PyRates can employ for this purpose includes central processing units (CPUs), graphical pro-

cessing units (GPUs), and compute clusters with multiple machines. In principle this will

allow the implementation of any kind of dynamic neural system that can be expressed as a

graph. For the remainder of this article we will focus on a specific family of neural models,

namely rate-based population models (hence the name PyRates).

The focus on population models is (i) in accordance with the expertise of the authors and (ii)

serves the purpose of keeping the article concise. However, the emphasis of the paper lies on

introducing the features and capacities of the framework, how to define a model in PyRates,

and how to use the software to perform and analyze neural simulations. Therefore, we first

introduce the mathematical syntax used for all of our models, followed by an explanation how

single mathematical equations are structured in PyRates to form a neural network model. To

this end, we provide a step-by-step example of how to configure and simulate a particular neural

population model. We continue with a section dedicated to the evaluation of different numeri-

cal simulation scenarios. First, we validate the implementation of two exemplary neural popula-

tion models in PyRates by replicating key behaviors of the models reported in their original

publications. Second, we demonstrate the computational efficiency and scalability of PyRates

via a number of benchmarks that constitute realistic numerical simulation scenarios. Finally, we

discuss the strengths and limitations of PyRates for developing and simulating neural models.

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 3 / 26

https://www.cbs.mpg.de/departments/neurophysics/software/pyrates
https://www.cbs.mpg.de/departments/neurophysics/software/pyrates
https://github.com/pyrates-neuroscience/PyRates
https://doi.org/10.1371/journal.pone.0225900

Neural population models

Investigating the human brain via EEG/MEG or fMRI means working with signals that are

assumed to represent changes in the average activity of large cell populations. While these

signals can be explained by detailed models of single cell processes, such models come with

a state space of much higher dimensionality than the measured signals. Indeed, several

approaches exist that employ this strategy to model the neural processes underlying macro-

scopic brain signals [22, 23] via tools such as the Human Neocortical Neurosolver or LFPy
[24, 25]. As an alternative approach, neural mass models have widely been used to model the

dynamics of the macroscopic brain signals of interest [26]. That is, they describe the average

activity of large cell populations in the brain via a mean-field approach, rendering their investi-

gation computationally much less expensive than single cell approaches [8, 27, 28]. As a down-

side, all information about the underlying single cell activity, except for the mean of their

probability distribution is lost. Thus, their application is limited to neurodynamic questions

addressing changes in those macroscopic state variables. Often, neural mass models express

the state of each neural population by an average membrane potential and an average firing

rate. The dynamics and transformations of these state variables can typically be formulated

via three mathematical operators. The first two describe the input-output structure of a single

population: While the rate-to-potential operator (RPO) transforms synaptic inputs into aver-

age membrane potential changes, the potential-to-rate operator (PRO) transforms the average

membrane potential into an average firing rate output. Widely used forms for these operators

are a convolution operation with an exponential kernel for the RPO (e.g. [29, 30, 32]) and a

sigmoidal, instantaneous transformation for the PRO (e.g. [28, 33, 34]). The third operator is

the coupling operator (CO) that transforms outgoing into incoming firing rates and is thus

used to establish connections across populations. By describing the dynamics of large neural

population networks via three basic transforms (RPO, PRO & CO), neural mass models com-

bine computational feasibility with biophysical interpretability. Due to these desirable quali-

ties, neural mass models have become an attractive method for studying neural dynamics on a

meso- and macroscopic scale [8, 10, 26]. They have been established as one of the most popular

methods for modeling EEG/MEG and fMRI measurements and have been able to account for

various dynamic properties of experimentally observed neural activity [31, 32, 35–40].

A particular neural mass model that we will use repeatedly in later sections is the three-pop-

ulation circuit introduced by Jansen and Rit [29]. The Jansen-Rit circuit (JRC) was originally

proposed as a mechanistic model of the EEG signal generated by the visual cortex [29, 41]. His-

torically, however, it has been used as a canonical model of cell population interactions in a

cortical column [35, 36, 40]. Its basic structure can be seen in Fig 1B, which can be thought of

as a single cortical column. The signal generated by this column is the result of dynamic inter-

actions between a projection cell population of pyramidal cells (PC), an excitatory interneuron

population (EIN) and an inhibitory interneuron population (IIN). For certain parametriza-

tions, the JRC has been shown to be able to produce key features of a typical EEG signal, such

as the waxing-and-waning alpha oscillations [29, 30, 42]. A detailed account of the model’s

mathematical description will be given in the next section, where we will demonstrate how to

implement models in PyRates, using the example of the JRC equations. We chose to employ

the JRC as an exemplary population model in this article since it is an established model used

in numerous publications that the reader can compare with our report.

Another neural population model that we will make use of in this paper is the one described

by Montbrió and colleagues [43]. It has been mentioned as one of the next generation neural

mass models that provide a more precise mean-field description than classic neural population

models like the JRC [44]. The model proposed by Montbrió and colleagues represents a

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 4 / 26

https://doi.org/10.1371/journal.pone.0225900

mathematically exact mean-field derivation of a network of globally coupled quadratic inte-

grate-and-fire neurons [43]. It can thus represent every macroscopic state the single cell net-

work may fall into. This distinguishes it from the JRC, since it has no such correspondence

between a single-cell network and the population descriptions. Furthermore, the macroscopic

states (average membrane potential and average firing rate) of the Montbrió model can be

linked directly to the synchronicity of the underlying single-cell network, a property that

benefits the investigation of EEG phenomena such as event-related (de-)synchronization. We

chose this model as our second example case due to its novelty and its potential importance

for future neural population studies. Within the domain of rate-based neural population mod-

els, we found these two models sufficiently distinct to demonstrate the ability of PyRates to

implement different model structures.

The framework

PyRates requires an installation of Python 3.6 or newer and can be installed via the package

manager pip, simply by calling pip install pyrates from the command line. The core

goal of PyRates is to let scientists focus on the model definition, i.e. working out the equation

Fig 1. Model structure in PyRates. The largest organizational unit of a network model is the Circuit. Any circuit may

also consist of multiple hierarchical layers of subcircuits. Panel (A) depicts an imaginary circuit that encompasses four

subcircuits that represent one brain region each. One of these local circuits is a Jansen-Rit circuit (B), consisting of

three neural populations (PC, EIN, IIN) and the connections between them. One node (C) may consist of multiple

operators containing the mathematical equations. Here, two rate-to-potential operators (RPO) convolute incoming

firing rates with an alpha kernel to produce post-synaptic potentials. These are summed into a combined membrane

potential V. The potential-to-rate operator (PRO) transforms V into an outgoing firing rate mout via a sigmoid

function. Inset graphs give a qualitative representation of the operators and evolution of the membrane potential.

Edges (lines in A and B) represent information transfer between nodes. As panel (D) shows, edges may also contain

operators. By default, edges apply a multiplicative weighting constant and can optionally delay the information passage

with respect to time. The equation shown in panel (D) depicts this default behavior.

https://doi.org/10.1371/journal.pone.0225900.g001

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 5 / 26

https://doi.org/10.1371/journal.pone.0225900.g001
https://doi.org/10.1371/journal.pone.0225900

structure, while the software takes care of transforming them into computationally efficient

network structures and numerical simulations thereof.

This goal is reflected in the modular software design and user interface. Model configura-

tion and simulation are realized as separate software layers as depicted in Fig 2. The frontend
features multiple user interfaces for different levels of programming expertise and allows scien-

tists to flexibly implement custom models. The models are then transformed into a graph-

based intermediate representation that the backend interprets to perform efficient computa-

tions. We employ a custom mathematical syntax and domain specific model definition lan-

guage. Both focus on readability and are much reduced in comparison to general-purpose

languages. The following paragraphs explain the user interfaces and how to define models and

run simulations. More details on implementation and installation can be found in the online

documentation (see pyrates.readthedocs.io).

Mathematical syntax

Neural network models are usually defined by a set of (differential) equations and correspond-

ing parameters. In PyRates, researchers can define computational models in terms of algebraic

equations and relations between different equations. The mathematical syntax strongly follows

the conventions used in Python, though in some cases common alternatives are allowed as

well. For example, the equation a ¼ 5�ðbþcÞ
d2 can be written as a = 5 � (b + c) / d��2.

Here, the power operator is a double asterisk �� as used in Python. However, the commonly

used caret ^ symbol is implemented as a synonym. Parentheses, for example (b + c) indi-

cate grouping. Arguments to a function are also grouped using parenthesis, e.g. exp(2) or

sin(4 + 3).

Currently, PyRates does not include a full computer algebra system. By convention, the var-

iable of interest is positioned on the left-hand-side of the equality sign and all other variables

and operations on the right-hand-side. First-order differential equations are allowed as an

exception: The expression d/dt � a is treated as a new variable and can thus be positioned

Fig 2. Schematic of software layers. PyRates is separated into frontend, intermediate representation (IR) and

backend. The frontend features a set of interfaces to define network models. These are then translated into a

standardized structure, called the IR. Simulations are realized via the backend, which transforms the high-level IR into

lower-level representations for efficient computations. The frontend can easily be extended with new interfaces, while

the backend can be swapped out to target a different computation framework.

https://doi.org/10.1371/journal.pone.0225900.g002

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 6 / 26

https://pyrates.readthedocs.io
https://doi.org/10.1371/journal.pone.0225900.g002
https://doi.org/10.1371/journal.pone.0225900

as the variable of interest on the left-hand-side as in

d=dt �a¼aþd ð1Þ

As a short-hand synonym, the expression a’ may be used as well (e.g. a0 = a + d). Higher

order differential equations must be given as a set of coupled first-order differential equations.

For example the equation

d2a
dt2
þ

da
dt
þ a ¼ bþ c ð2Þ

can be reformulated as the following set of two coupled first-order differential equations:

da
dt
¼ x , d=dt �a¼x ð3Þ

dx
dt
¼ bþ c � x � a , d=dt �x¼bþc � x � a ð4Þ

In simulations, this type of equation will be integrated for each time step of size dt. The follow-

ing is an example for equations of a single neural mass in the classic Jansen-Rit model [41],

which will be reused in later examples:

RPO: d=dt �V t¼h=tau �r in � 1=tau��2 �V � 2 � 1=tau �V t ð5Þ

d=dt �V¼V t ð6Þ

PRO: r out¼r max = ð1þexpðs�ðV thr � VÞÞÞ ð7Þ

Eq (7) represents the transformation of the population-average membrane potential V to an

outgoing firing rate rout via a sigmoidal transformation with slope s, maximum firing rate rmax

and firing threshold Vthr. This formulation contains a function call to the exponential function

via exp(. . .). Using the pre-implemented sigmoid function, Eq (7) can be shortened to

r out¼r max �sigmoidðs�ðV� V thrÞÞ ð8Þ

Multiple arguments to a function call are comma separated, e.g. in the sum along the first axis

of matrix A which would be: sum(A, 0). Using comparison operators as function argu-

ments, it is also possible to encode events, e.g. a spike, when the membrane potential V exceeds

the threshold Vthr:

spike¼floatðV>V thrÞ ð9Þ

The variable spike takes the decimal value 1.0 in case of a spike event and 0.0 otherwise.

The above examples assumed scalar variables, but vectors and higher-dimensional variables

may also be used in PyRates. In particular, indexing is possible via square brackets [. . .] and

mostly follows the conventions of numpy [45], the de facto standard for numerics in Python.

Supported indexing methods include single element indexing a[3], slicing [1:5], slicing

along multiple axes separated by commas [0:5, 3:7], multi-element indexing a[[3], [4]],

and slicing via Boolean masks a[a>5] for variable a of suitable dimensions. For more

detailed explanations, please refer to the numpy documentation. A full list of supported mathe-

matical symbols and pre-implemented functions can be found in the supporting information

(S1 and S2 Tables).

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 7 / 26

https://doi.org/10.1371/journal.pone.0225900

Components of a network model

In contrast to most other neural simulation frameworks, PyRates treats network models as net-

work graphs rather than matrices. This works well for densely connected graphs, but gives the

most computational benefit for sparse networks. Fig 1 gives an overview of the different com-

ponents that make up a model. A network graph is called a circuit and is spanned by nodes
and edges. For a neural population model, one node may correspond to one neural population

with the edges encoding coupling between populations. In addition, circuits may be nested

arbitrarily within other circuits. Small, self-contained network models can thus easily be

reused in larger networks with a clear and intuitive hierarchy. Fig 1A illustrates this feature

with a fictional large-scale circuit which comprises four brain areas and connections between

them. Each area may consist of a single node or a more complex sub-circuit. Edges between

areas are depicted as lines. Fig 1B zooms in on one brain area containing a three-node sub-cir-

cuit. This local model corresponds to the previously defined Jansen-Rit model [29, 41].

An individual network node consists of operators. One operator defines a scope, in which a

set of equations and related variables are uniquely defined. It also acts as an isolated computa-

tional unit that transforms any number of input variables into one output. Whether an equa-

tion belongs to one operator or another decides the order in which equations are evaluated.

Equations belonging to the same operator will be evaluated simultaneously, whereas equations

in different operators can be evaluated in sequence. As an example, Fig 1C shows the operator

structure of a pyramidal cell population in the Jansen-Rit model. There are two rate-to-poten-

tial operators (Eqs (5) and (6)), one for inhibitory synapses (RPOi) and one for excitatory syn-

apses (RPOe). The two RPOs contain identical equations but different values assigned to the

parameters. The subsequent potential-to-rate operator (PRO, Eq (7)) sums both synaptic con-

tributions into one membrane potential that is transformed into an outgoing firing rate. In

this configuration, the two synaptic contributions are evaluated independently, but possibly in

parallel. The equation in the PRO on the other hand will only be evaluated after the synaptic

RPOs. The exact order of operators is determined based on the respective input and output

variables.

Apart from nodes, edges may also contain coupling operators. An example is shown in Fig

1D. Each edge propagates information from a source node to a target node. In between, one or

more operators can transform the relevant variable, representing coupling dynamics between

source and target nodes. This could represent an axon or bundle of axons that propagates fir-

ing rates between neural masses. Depending on distance, location or myelination, these axons

may behave differently, which is encoded in operators. Note that edges can read any one vari-

able from a source population and can thus be used to represent dramatically different cou-

pling dynamics than those described above.

The described distinction between circuits, nodes, edges and operators is meant to provide

an intuitive understanding of a model while giving the user many degrees of freedom in defin-

ing custom models.

Model definition language

PyRates provides multiple interfaces to define a network model (see Fig 2). Templates are

building blocks that can be reused at multiple scales. Complex heterogeneous networks will

consist of many different templates whereas large homogeneous networks may reuse a few

templates many times. For brevity, we will focus on the YAML-based template interface which

is most suitable for users with little programming expertise. YAML is a data serialization stan-

dard using a syntax that is reduced to the absolute necessities and focuses on readability (ver-

sion 1.2, [46]).

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 8 / 26

https://doi.org/10.1371/journal.pone.0225900

All examples in this section are based on the popular Jansen-Rit model [29]. Additionally,

we will briefly discuss the implementation of the Montbrió model [43] for completeness. The

Jansen-Rit model is a three-population neural mass model whose basic structure is illustrated

in Fig 1. The model is formulated in two state-variables: Average membrane potential V and

average firing rate r. Incoming presynaptic firing rates rin are converted to post-synaptic

potentials via the rate-to-potential operator (RPO). In the Jansen-Rit model, this is a second-

order, linear, ordinary differential equation:

RPO :
d
dt
þ

1

t

� �2

VðtÞ ¼
h
t
rinðtÞ ð10Þ

with synaptic gain h and lumped time constant τ. The population-average membrane potential

is then transformed into a mean outgoing firing rate rout via the potential-to-rate operator (PRO)

PRO : rout ¼
rmax

1þ esðVthr � VÞ ð11Þ

which is an instantaneous logistic function with maximum firing rate rmax, maximum slope s,
and average firing threshold Vthr. The equations above define a neural mass with a single synapse

type. Multiple sets of these equations are coupled to form a model with three coupled neural

populations. For the two interneuron populations, Eq (10) represents synaptic excitation. The

pyramidal cell population uses this equation twice with two different parametrizations, repre-

senting synaptic excitation and inhibition, respectively. This model can be extended to include

more populations or to model multiple cortical columns or areas that interact with each other.

For such use-cases PyRates allows for the definition of templates that can be reused and adapted

on-the-fly. The following defines a YAML-template for a rate-to-potential operator that contains

Eq (10):
JansenRitSynapse: # name of the template
description: . . . # optional descriptive text
base: OperatorTemplate # parent template or Python class to use
equations: # unordered list of equations
- ’d/dt � V = V_t’
- ’d/dt � V_t = h/tau � r_in − (1./tau)^2 � V − 2.�1./tau�V_t’

variables:
additional information to define variables in equations
r_in:
default: input # defines variable type

V:
default: output

V_t:
description: integration variable # optional
default: variable

tau:
description: Synaptic time constant
default: constant

h:
default: constant

Similar to Python, YAML structures information using indentation to improve readability.

The base attribute may either refer to the Python class that is used to load the template or a

parent template. Using the equations attribute, an unsorted list of string-based equations

should be provided. These equations will be evaluated simultaneously during simulations and

need to follow the above defined mathematical syntax. The variables attribute gives additional

information regarding the variables used within equations. The only mandatory attribute of

variables is default which defines the variable type, data type and initial value. Additional

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 9 / 26

https://doi.org/10.1371/journal.pone.0225900

attributes can be defined, e.g. a description may help users to understand the template itself or

variables in the equations.

For the Jansen-Rit model, it is useful to define sub-templates for excitatory and inhibitory

synapses. These share the same equations, but have different values for the constants τ and h
which can be set in sub-templates, e.g. (values based on [41]):
ExcitatorySynapse:
base: JansenRitSynapse # parent template
variables:
h:
default: 3.25e−3

tau:
default: 10e−3

Above, the JansenRitSynapse template is reused as the base template and only the relevant

variables are adapted. A single neural mass in the Jansen-Rit model may be implemented as a

network node with one or more synapse operators and one operator that the transforms aver-

age membrane potential to the average firing rate (PRO, Eq (11)/Eq (7)):
PyramidalCellPopulation:
base: NodeTemplate # Python class for node templates
operators:
- ExcitatorySynapse # output: V
- InhibitorySynapse # output: V
- PotentialToRateOperator # input: V

This node template represents the neural population of pyramidal projection cells as

depicted in Fig 1C. PyRates internally orders operators based on their input and output vari-

ables. This way, complex operator hierarchies can be built without any additional syntax as long

as input and output variable names are consistent across all operators. In this example, two syn-

apse operators receive input from other neural masses (or external sources), transforming firing

rates r into membrane potentials V (rate-to-potential operators, RPO). The synapse operators

are independent and on the same hierarchical level. Equations in these two operators can thus

be evaluated in parallel. Both synapse operators define the membrane potential V as output.

The potential-to-rate (PRO) operator on the other hand, receives V as input. This is recognised

as a dependency and the PRO will be evaluated after the synapse operators have been processed.

Note that cyclic operator dependencies are not allowed. If necessary, self-edges can be used

to connect variables to each other within one node, to implement cyclic dependencies.

As described earlier, circuits are used in PyRates to represent one or more nodes and their

connecting edges. The following circuit template represents the Jansen-Rit model as depicted

in Fig 1B:
JansenRitCircuit:
base: CircuitTemplate
nodes: # list nodes and label them
EIN: ExcitatoryInterneurons
IIN: InhibitoryInterneurons
PC: PyramidalCellPopulation

edges: # assign edges between nodes
− [<source>, <target>, <template_or_operators>, <values>]
- [PC/PRO/r_out, IIN/RPO_e/r_in, null, {weight: 33.75}]
- [PC/PRO/r_out, EIN/RPO_e/r_in, null, {weight: 135.}]
- [EIN/PRO/r_out, PC/RPO_e/r_in, null, {weight: 108.}]
- [IIN/PRO/r_out, PC/RPO_i/r_in, null, {weight: 33.75}]

The nodes attribute specifies which node templates to use and assigns labels to them. These

labels are used in edges to define source and target, respectively. Each edge is defined by a list

(square brackets) of up to four elements: (1) source specifier, (2) target specifier, (3) template

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 10 / 26

https://doi.org/10.1371/journal.pone.0225900

(containing operators), and (4) additional named values or attributes. The format for source

and target is <node_label>/<operator>/<variable>, i.e. an edge establishes a

link to a specific variable in a specific operator within a node. Multiple edges can thus interact

with different variables on the same node. Note that for brevity the operators were abbreviated

here in contrast to the definitions above. In addition to source and target, it is possible to also

include operators inside an edge that allow additional transformations specific to the coupling

between the source and target variables. These operators can be defined in a separate edge tem-

plate that is referred to in the third list entry. In this particular example, the entry is left empty

(“null”). The fourth list entry contains named attributes, which are saved on the edge. Two

default attributes exist: weight scales the output variable of the edge before it is projected to

the target and defaults to 1.0; delay determines whether the information passing through

the edge is applied instantaneously (i.e. in the next simulation time step) or after a discrete

delay (defined in seconds). By default, no delays are set. Additional attributes may be defined,

e.g. to adapt values of operators inside the edge.

In the above example, all edges project the outgoing firing rate rout from one node to the

incoming firing rate rin of a different node, rescaled by an edge-specific weight. Values of the

latter are taken from the original paper by Jansen and Rit [29]. This example with the given

values can be used to simulate alpha activity in EEG or MEG.

Jansen and Rit also investigated how more complex components of visual evoked potentials

arise from the interaction of two circuits, one representing visual cortex and one prefrontal

cortex [29]. In PyRates, circuits can be inserted into other circuits alongside nodes. A template

for the two-circuit example from [29] could look like this:
DoubleJRCircuit:
base: CircuitTemplate
circuits: # define sub−circuits and their labels
JRC1: JansenRitCircuit
JRC2: JansenRitCircuit

edges: # assign edges between nodes in sub−circuits
- [JRC1/PC/PRO/r_out, JRC2/PC/RPO_e/r_in, null, {weight: 10.,

delay: 0.0}]
- [JRC2/PC/PRO/r_out, JRC1/PC/RPO_e/r_in, null, {weight: 10.,

delay: 0.0}]

Circuits are added to the template in the same way as nodes, the only difference being the

attribute name circuits. Edges are also defined similarly. Source and target keys start with the

assigned sub-circuit label, followed by the label of the population within that circuit and so on.

For heterogeneous or small networks it makes sense to build the entire circuit hierarchy with

templates. For large-scale networks, PyRates also allows the loading of a connectivity matrix

from which to build the network. This is realized via the Python interface. Assuming that a

JRC template has been set up containing the 3 nodes (PC, EIN, IIN), the syntax for adding

edges from a matrix is:
jrc = circuit_template.apply()
jrc.add_edges_from_matrix(source_var=’RPO/m_out’,

target_var=’RPO_e_pc/m_in’,
nodes=[’PC’, ’EIN’, ’IIN’],
weight = C)

Here, C refers to a 3 x 3 matrix containing the connection strengths. It is also possible to

define entire models (or even templates) using mere Python. Similar to YAML templates,

templates defined in Python can also be adapted when they are referenced, to perform minor

tweaks instead of defining multiple templates for small variations. For more information on

alternative ways to set up a network and further examples, we refer the interested reader to the

online documentation at pyrates.readthedocs.io.

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 11 / 26

https://pyrates.readthedocs.io
https://doi.org/10.1371/journal.pone.0225900

From model to simulation

All frontend interfaces translate a user-defined model into a set of Python objects that we

call the intermediate representation (IR, middle layer in Fig 2). This paragraph will give more

details on the IR and explain how a simulation can be started and evaluated based on the previ-

ously defined model. A model circuit is represented by the CircuitIR class, which builds

a network graph representation of the model using the software package networkx [47]. The

package is commonly used for graph-based data representation in Python and provides many

interfaces to manipulate, analyze and visualize graphs. The CircuitIR contains additional

convenience methods to plot a network graph or access and manipulate its content. The fol-

lowing lines of code load the JansenRitCircuit template that was defined above and

transforms the template into a CircuitIR instance:
from pyrates.frontend import CircuitTemplate
read YAML template and convert to Python object
template = CircuitTemplate.from_yaml(“path/to/file/JansenRitCircuit”)
transform template object to intermediate representation
circuit_ir = template.apply()

The apply method also accepts additional arguments to change parameter values while

applying the template.

Actual simulations take place in the compute backend (see Fig 2). Currently, the user can

choose between two backend implementations. The default backend is based on NumPy and

provides particularly fast simulations on single CPUs and, in combination with the Python

distribution provided by Intel, on multiple CPUs. The alternative backend is based on tensor-
flow 2.0 [48], which makes use of dataflow graphs to run parallel computations on CPUs and

GPUs. For optimal parallelization of network representations, PyRates can summarize identi-

cal sets of (scalar) mathematical operations into more efficient vector operations. Automatic

vectorization can be enabled via the vectorization keyword argument of the compile
method:
net = circuit_ir.compile(vectorization = True, dt = 0.0001,
solver=’euler’)

where vectorization = False indicates that the model should be processed as is,

while vectorization = True reduces identical nodes to one vectorized node. dt refers

to the (integration) time step in seconds used during simulations. By default, differential equa-

tions are integrated using an explicit Euler algorithm which is the most common algorithm

used in stochastic network simulations. In addition, PyRates provides two alternative numeri-

cal solvers that can be chosen via the solver argument. They implement the midpoint

method (solver=’midpoint’) and a 2/3 Runge-Kutta algorithm (solver=’rk23’).

The unit of dt and the choice of a suitable value depends on time constants defined in the

model. Here, we chose a value of 0.1ms, which is consistent with the numerical integration

schemes reported in the literature (e.g. [40, 43]). A simulation can be executed by calling the

run method, e.g.:
results, time = net.run(simulation_time = 10.0, # in seconds

outputs={’V’: ‘PC/PRO/V’},
sampling_step_size = 0.01) # in seconds

This example defines a total simulation time of 10 seconds and specifies that only the mem-

brane voltage from PC (pyramidal cell) nodes should be observed. Note that variable histories

will only be stored for variables defined as output. All other data is overwritten as soon as pos-

sible to save memory. Along this line, a sampling step-size can be defined that determines the

distance in time between observation points of the output variable histories. Collected data is

formatted as a DataFrame from the pandas package [49], a powerful data structure for serial

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 12 / 26

https://doi.org/10.1371/journal.pone.0225900

data that comes with a lot of convenience methods, e.g. for plotting or statistics. To gain any

meaningful results from this implementation of a JRC, it needs to be provided input in a bio-

logically plausible range. External inputs can be included via input variables. To allow for

external input being applied pre-synaptically to the excitatory synapse of the pyramidal cells,

one would have to modify the JansenRitSynapse as follows:
JansenRitSynapse_with_input:
base: JansenRitSynapse
equations:
replace: # insert u by replacing m_in by a sum
r_in: (r_in + u)

variables:
u: # adding the new additional variable u
default: input

We reused the previously defined JansenRitSynapse template and added the variable

u as an input variable by replacing occurrences of r_in by (r_in + u) using string

replacement. The previously defined equation

d=dt �V t¼h=tau �r in � ð1:=tauÞ̂ 2 �V � 2:�1:=tau�V t

thus turns into

d=dt �V t¼h=tau � ðr inþuÞ � ð1:=tauÞ̂ 2 �V� 2:�1:=tau�V t

This modification enables the user to apply arbitrary input to the excitatory synapse of the

pyramidal cells, using the inputs parameter of the run method:
results, time = net.run(simulation_time = 10.0,

outputs={’V’: ‘PC/PRO/V’},
inputs={’PC/RPO_e/u’: ext_input})

In this example, ext_input would be an array defining the input value for each simula-

tion step. This subsumes a working implementation of a single Jansen-Rit model that can

be used as a base unit to construct models of cortico-cortical networks. By using the above

defined YAML templates, all simulations described in the next section that are based on Jan-

sen-Rit models can be replicated.

Implementing the Montbrió model

The neural mass model recently proposed by Montbrió and colleagues is a single-population

model that is derived from all-to-all coupled quadratic integrate-and-fire (QIF) neurons [43].

It establishes a mathematically exact correspondence between macroscopic (population level)

and microscopic (single cell level) states and equations. The model consists of two coupled dif-

ferential equations that describe the dynamics of mean membrane potential V and mean firing

rate r:

dr
dt
¼

D

pt2
þ

2rV
t

ð12Þ

dV
dt
¼

1

t
V2 þ �Z þ IðtÞð Þ þ Jr � tp2r2 ð13Þ

with intrinsic coupling J and input current I(t). Δ and �Z may be interpreted as the spread and

mean of the distribution of excitability levels within the population. Note that the time con-

stant τ was set to 1 and hence omitted in the derivation by Montbrió and colleagues [43]. The

following operator template implements these equations in PyRates:

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 13 / 26

https://doi.org/10.1371/journal.pone.0225900

MontbrioOperator:
base: OperatorTemplate
equations:
- “d/dt � r = delta/(PI � tau��2) + 2.�r�V/tau”
- “d/dt � V = (V��2 + eta + inp) / tau + J�r − tau�(PI�r)��2”

variables:
. . .

Variable definitions are omitted in the above template for brevity. Since a single population

in the Montbrió model is already capable of oscillations, a meaningful network can be set up

with a single neural mass as follows:
MontbrioPopulation:
base: NodeTemplate
operators:
- MontbrioOperator

MontbrioNetwork:
base: CircuitTemplate
nodes:
Pop1: MontbrioPopulation

edges:
This template can be used to replicate the simulation results presented in the next section

that were obtained from the Montbrió model.

Exploring model parameter spaces

When setting up computational models, it is often important to explore the relationship

between model behavior and model parametrization. PyRates offers a simple but efficient

mechanism to run many such simulations on parallel computation hardware. The function

pyrates.utility.grid_search takes a single model template along with a specifica-

tion of the parameter grid to sample sets of parameters from. It then constructs multiple

model instances with differing parameters and adds them to the same circuit, but without

edges between individual instances. All model instances can thus be computed efficiently in

parallel on the same parallel hardware instead of executing them consecutively. How many

instances can be simulated on a single piece of hardware depends on the memory capacities

and number of parallel compute units. Additionally, PyRates provides an interface for deploy-

ing large parameter grid searches across multiple work stations. This allows the splitting of

large parameter grids into smaller grids that can be run in parallel on multiple machines. For a

tutorial on how to use those functionalities, we refer the interested reader to the jupyter note-

books that can be found at https://github.com/pyrates-neuroscience/PyRates/tree/master/

documentation which contain various examples of parameter grid searches.

Visualization and data analysis

PyRates features built-in functions for quick data analysis and visualization as well as native

support for external libraries due to its commonly used data structures. On the one hand, net-

work graphs are based on networkx Graph objects [47]. Hence, the entire toolset of networkx

is natively supported, including an interface to the graphviz [50] library. Additionally, we pro-

vide functions for quick visualization of a network model within PyRates. On the other hand,

simulation results are returned as a pandas.DataFrame which is a widely adopted structure for

tabular data with powerful built-in analysis methods [49]. While this data structure already

allows for an intuitive interface to the seaborn plotting library by itself, we also provide a num-

ber of visualization functions such as time-series plots, heat maps, and polar plots in PyRates.

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 14 / 26

https://github.com/pyrates-neuroscience/PyRates/tree/master/documentation
https://github.com/pyrates-neuroscience/PyRates/tree/master/documentation
https://doi.org/10.1371/journal.pone.0225900

Most of those provide direct interfaces to plotting functions from seaborn and MNE-Python,

the latter being an analysis toolbox for EEG and MEG data [51, 52].

Results

The aim of this section is to (1) demonstrate that numerical simulations of models imple-

mented in PyRates show the expected results and (2) analyze the computational capabilities

and scalability of PyRates on a number of benchmarks. As explained previously, we chose the

models proposed by Jansen and Rit and Montbrió and colleagues as exemplary models for

these demonstrations. We will replicate the basic model dynamics under extrinsic input as

reported in the original publications. To this end, we will compare the relationship between

changes in the model parametrization and the model dynamics with the relationship reported

in the literature. For this purpose, we will use the grid search functionality of PyRates, allowing

evaluation of the model behavior for multiple parametrizations in parallel. Having validated

the model implementations in PyRates, we will use the JRC as base model for a number of

benchmark simulations. All simulations performed throughout this section use an explicit

Euler integration scheme with a simulation step size of 0.1 ms. They have been run on a cus-

tom Linux machine with an NVidia Geforce Titan XP GPU with 12GB G-DDR5 graphic

memory, a 3.5 GHz Intel Core i7 (4th generation) and 16 GB DDR3 working memory.

Note that we provide Python scripts that can be used to replicate all of the simulation results

reported below. They are available at https://github.com/pyrates-neuroscience/PyRates/tree/

master/documentation.

Validation of model implementations

Jansen-Rit circuit. The Jansen-Rit circuit has been shown to be able to produce a variety

of steady-state responses [29, 30, 42]. In other words, the JRC has a number of bifurcation

parameters that can lead to qualitative changes in the model’s state dynamics. In their original

publication, Jansen and Rit delivered random synaptic input between 120 and 320 Hz to the

projection cells while changing the scaling of the internal connectivities C [29] (reflected

by the parameters Cxy in Fig 1B). As visualized in Fig 3 of [29], the model produced (noisy)

sinusoidal oscillations in the alpha band for connectivity scalings C = 128 and C = 135, thus

reflecting a major component of the EEG signal in primary visual cortex. For other scalings,

it produced either random noise (C = 68 and C = 1350) or large-amplitude spiking behavior

(C = 270 and C = 675). We chose to replicate this figure with our implementation of the JRC in

PyRates. We simulated 2 s of JRC behavior for each internal connectivity scaling C 2 {68, 128,

135, 270, 675, 1350}. All other model parameters were set according to the parameters chosen

in [29]. The average membrane potential of the projection cell population (depicted as PC in

Fig 1B) is depicted in the left panel of Fig 3A for each condition.

Results are in line with our expectations, showing random noise for both the highest and

the lowest value of C, alpha oscillations for C = 128 and C = 135, and large-amplitude spiking

behavior for the remaining conditions. Furthermore, the membrane potential amplitudes

were in the same range as reported in [29] in each condition. Next to the connectivity scal-

ing, the synaptic time scales τ of the JRC are further bifurcation parameters that have been

shown to be useful to tune the model to represent different frequency bands of the brains’

EEG signal [30]. As demonstrated by David and Friston [30], varying these time scales

between 1 and 60 ms leads to JRC dynamics that are representative of the delta, theta, alpha,

beta and gamma frequency bands in the EEG. Due to its practical importance, we chose to

replicate this parameter study as well. We systematically varied the excitatory and inhibitory

synaptic timescales (τe and τi) between 1 and 60 ms. For each condition, we adjusted the

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 15 / 26

https://github.com/pyrates-neuroscience/PyRates/tree/master/documentation
https://github.com/pyrates-neuroscience/PyRates/tree/master/documentation
https://doi.org/10.1371/journal.pone.0225900

excitatory and inhibitory synaptic efficacies, such that the product Hτ was held constant.

All other parameters were chosen as reported in [30] for the respective simulation. We then

simulated the JRC behavior for 1 min and evaluated the maximum frequency of the power

spectral density of the pyramidal cells membrane potential fluctuations. The results of this

procedure are visualized in the right panel of Fig 3A. They are in accordance with the results

reported in [30], showing response frequencies that range from the delta (1-4 Hz) to the

gamma (> 30 Hz) range, as well as the hyper signal not representative of any EEG signal

for too high ratios of
ti
te

. Together, we are confident that our implementation of the JRC in

PyRates accurately resembles the originally proposed model within the investigated dynam-

ical regimes. Note, however, that faster synaptic time-constants or extrinsic input fluctua-

tions should be handled carefully. For such cases, we recommend either reducing the above

reported integration step size or choosing a more elaborate numerical solver (midpoint or

Runge-Kutta 2/3) in order to avoid numerical instabilities.

Fig 3. Jansen-Rit and Montbrió model validations. A Shows the simulation results obtained from a single Jansen-Rit model. On the left hand side, the average

membrane potentials of the pyramidal cell population are depicted for different connectivity scalings C. On the right hand side, the dominant oscillation frequency

of the pyramidal cell membrane potentials (evaluated over a simulation period of 60 seconds) is depicted for different synaptic time-scales τe and τi. The

frequencies are categorized into the following bands: δ (1-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12–30 Hz), γ (> 30 Hz) and h.s. (hyper signal) for signals not

representative of any EEG component. B Shows the simulation results obtained from a single Montbrió model. The average membrane potentials v, average firing

rates r and input currents are depicted for constant and oscillatory input on the left and right hand side, respectively. Time-dependent variables are reported in

units of τ, which was set to τ = 1.0 in accordance with the simulations performed by Montbrió and colleagues. Following the definitions of Montbrió and

colleagues, membrane potential and input are reported as unit-less variables.

https://doi.org/10.1371/journal.pone.0225900.g003

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 16 / 26

https://doi.org/10.1371/journal.pone.0225900.g003
https://doi.org/10.1371/journal.pone.0225900

Montbrió model. Even though the Montbrió model is only a single-population model, it

has been shown to have a rich dynamic profile with bi-stable and even chaotic regimes [43,

53]. To investigate the response of the model to non-stationary inputs, Montbrió and col-

leagues initialized the model in a bi-stable dynamic regime and applied (1) constant and (2)

sinusoidal extrinsic forcing within a short time-window. In the constant forcing condition

they were able to show that the two different stable dynamic regimes of the model (stable focus

and stable fixed point) could be switched between via a simple, transient step-function input.

In the oscillatory forcing condition, on the other hand, they demonstrated that smooth

changes in the extrinsic input was also able to cause the same state transitions in the model.

This behavior can be observed in Fig 2 in [43] and we chose to replicate it with our implemen-

tation of the Montbrió model in PyRates. With all model parameters set to the values reported

in [43] for this experiment, we simulated the model’s behavior for the constant and periodic

forcing conditions. For both conditions, the external forcing strength was chosen as I = 30,

while the frequency of the oscillatory forcing was chosen as o ¼ p

20
. Note that in accordance

with the model definition of Montbrió and colleagues, time-dependent variables are reported

in units of τ (which was set to τ = 1), while all other variables such as v and I are unit-less [43].

As shown in Fig 3B, we were able to replicate the above described model behavior. Constant

forcing led to damped oscillatory responses of different frequency and amplitude at both onset

and offset of the stimulus, whereas oscillatory forcing led to damped oscillatory responses

around the peaks of the sinusoidal stimulus. Again, we take this as strong evidence for the cor-

rect representation of the Montbrió model by PyRates.

Benchmarks

Neural simulation studies can differ substantially in the size and structure of the networks they

investigate, leading to different computational loads. In PyRates, a number of backends and

parallelization strategies are available for numerical simulations and their optimal choice may

depend on the network architecture. In this paragraph, we describe how simulation durations

in PyRates scale as a function of network size and connectivity and how this scaling behavior

differs between different backends and parallelization types. For this purpose, we considered

parallelization on a single machine vs. parallelized computations on multiple machines and

simulations using the NumPy backend (CPU-based, version 1.17.2) vs. simulations using the

tensorflow backend (supporting GPU parallelization, version 2.0.0-rc0).

In a first benchmark, we simulated the behavior of different JRC networks using either the

NumPy or the tensorflow backend. Each network consisted of N 2 {20, 21, 22, . . ., 211} ran-

domly coupled JRCs with a coupling density of p 2 {0.0, 0.25, 0.5, 0.75, 1.00}. Here, the latter

refers to the relative number of pairwise connections between all pairs of JRCs that were estab-

lished. Each JRC was parametrized such that it expressed waxing-and-waning alpha oscilla-

tions (C = 135.0; for all other parameters see [29]). The behavior of these networks was

evaluated for a total of 1 s, leading to an overall number of 104 simulation steps to be per-

formed in each condition (given a step-size of 0.1 ms). To make the benchmark comparable to

realistic simulation scenarios, we applied extrinsic input to each JRC and tracked the average

membrane potential of every JRC’s projection cell population with a time resolution of 1 ms as

output. Thus, the number of input and output operations also scaled with the network size.

We assessed the time in seconds needed by PyRates to execute the run method of its backend

in each condition, thus excluding the model initiation time. This was done via the Python

internal package time. To account for random fluctuations due to background processes, we

chose to report average simulation durations over NR = 10 repetitions of each condition. To

provide an estimate of these fluctuations, we calculated the average variation in the simulation

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 17 / 26

https://doi.org/10.1371/journal.pone.0225900

duration d over conditions as sðdÞ ¼ 1

Nc

P
c maxðdcÞ� minðdcÞ

hdci
, with c being the condition index and

hdi representing the expectation of d. We found average variations of σ(d) = 0.42s and σ(d) =

1.55s for the NumPy and tensorflow backend, respectively, which reflects the slightly stronger

noise in the simulation duration we found for the tensorflow backend. The average simulation

durations over conditions are visualized in Fig 4A and 4B for the NumPy and tensorflow

backend, respectively. The average run times of the NumPy and tensorflow backend ranged

between 2.5 and 18.1 seconds, and 13.2 and 20.3 seconds, respectively. Thus, the NumPy

backend (running merely on the CPU) outperformed the tensorflow backend (running on

CPU and GPU) on all considered network configurations. However, on large and densely con-

nected networks, the tensorflow and NumPy backend expressed nearly the same simulation

duration. This reflects the stronger parallelization capacities of the tensorflow backend, which

is visible in its weaker scaling of the simulation duration with network size and coupling den-

sity. We expect this trend to lead to an advantage of the tensorflow backend for even larger

networks. However, simulations of larger network sizes exceeded the working memory capaci-

ties of the machine we ran our benchmarks on. Together, these results demonstrate the effec-

tiveness of PyRates’ backends in parallelizing network computations on CPUs and GPUs.

While the NumPy backend showed the shortest run times for this benchmark, the tensorflow

backend expressed less scaling behavior with the problem size. Thus, the latter might be supe-

rior in large-scale neural model simulations performed on a machine with better hardware

configurations.

In a second benchmark, we examined the simulation time scaling in parameter sweeps per-

formed via the grid search functionalities of PyRates on a single machine and on a cluster of 3

machines. The hardware specifications of each of those 3 machines were comparable to the

ones reported in the beginning of this section. As an exemplary parameter sweep, we explored

a parameter set which is prototypically investigated within the fields of connectomics and cou-

pled oscillators, i.e. the connectivity scaling and propagation delay. To this end, we set up a

network of 2 JRCs, with bidirectional coupling between their pyramidal cell populations. The

bidirectional coupling was parametrized via a homogeneous coupling strength κ and a homo-

geneous propagation delay τ (in seconds). In each benchmark condition a parameter sweep

was performed across all combinations of κ and τ. Thereby, the parameters were always varied

Fig 4. PyRates benchmarks. Benchmark results for 1 s simulations run in PyRates with a simulation step-size of 0.1 ms. A and B Show average simulation durations

over 10 independent simulations for networks with different numbers of Jansen-Rit circuits (N) and differently dense coupling between the JRCs (p), performed on

the NumPy (CPU) and tensorflow (CPU+GPU) backend, respectively. C Shows the average simulation durations for parameter sweeps over N different

parametrizations of a network of 2 bidirectionally, delay-coupled Jansen-Rit circuits. Averages were again calculated over 10 independent runs of each parameter

sweep.

https://doi.org/10.1371/journal.pone.0225900.g004

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 18 / 26

https://doi.org/10.1371/journal.pone.0225900.g004
https://doi.org/10.1371/journal.pone.0225900

within the ranges of κ 2 [0.0, 200.0] and τ 2 [0.0, 0.01], and only the number of steps between

the limits of those ranges was varied across benchmark conditions. For example, a benchmark

condition with 10 steps, would translate into a parameter sweep across all combinations of 10

different values of κ and τ and would hence result in N = 100 differently parametrized versions

of the 2 coupled JRCs. All other parameters of the JRCs were the same as in the first bench-

mark. In each benchmark condition, 10 numerical simulation were performed for every net-

work parametrization with a simulation time of T = 1s. Their average duration in dependence

of N is visualized in Fig 4C for simulations performed on a single machine and on a 3-machine

cluster, either using the NumPy or the tensorflow backend. Note that we also plotted the stan-

dard deviations across the 10 repetitions in each condition as error bars. However, those devia-

tions were too small to be visible in Fig 4C. Also, these durations were in general larger than

the ones reported in the first benchmark, because they include both the time to build the net-

work and the time to perform the actual simulation. Since the network building process is not

yet parallelized in PyRates, its duration shows stronger scaling behavior with the network size

than the mere simulation times. As can be seen, the single machine outperformed the cluster

for N< 900. Again, this can be explained by the overhead generated by the distribution of

parameter chunks across the different machines and the collection of results from those

machines after they finished their simulations. However, with increasing N, the benefit of par-

allelized simulations on multiple machines started to outweigh those costs, until reaching a

maximum speed-up at N = 10000, where the 3-machine cluster was approximately 3 times

faster than the single machine. This demonstrates that the maximal speed-up of parameter

sweeps performed on compute clusters directly scales with the size of the cluster, which is a

beneficial property for investigations of high-dimensional parameter spaces. In addition, Fig

4C shows that the speed-ups that resulted from different choices of backends were relatively

small in comparison to the speed-ups achieved by running a parameter sweep on a single

machine or on a cluster. This reflects the strong influence of the time it takes PyRates to build

the network on the overall simulation duration T. Since these network building times do not

differ between backends, we found a relatively small difference between NumPy and tensor-

flow backends in those parameter sweeps. Nonetheless, the tensorflow backend eventually out-

performed the NumPy backend on large parameter sweeps (N� 2500).

Discussion

In this work we have presented PyRates, a novel Python framework for designing neural mod-

els and performing numerical simulations of their dynamic behavior. We introduced the

frontend, including its user interfaces, structure, and mathematical syntax, and demonstrated

how to build neural models, run numerical simulations, and perform parameter sweeps in

PyRates. For validation purposes, we implemented the neural population models proposed by

Jansen and Rit [29] and Montbrió and colleagues [43] and successfully replicated their key

dynamic features. These results strongly suggest that both the model configurations produced

by our frontend and their translation into compute graphs by our backend are accurate. Addi-

tionally, we tested the computational power of our backend on a number of different bench-

marks. Those benchmarks consisted of simulations of JRC networks that differed in the

number of their nodes and edges. We demonstrated that the CPU-based NumPy backend is

most efficient for simulations of networks with up to a few thousand nodes, whereas the ten-

sorflow backend (which can make use of GPUs) simulation durations showed the best scaling

behavior with the problem size. The latter suggests an advantage of the tensorflow backend

over the NumPy backend on large-scale neural network simulations with more than 10000

nodes. Indeed, we found the tensorflow backend to be more efficient on parameter sweeps

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 19 / 26

https://doi.org/10.1371/journal.pone.0225900

over N� 2500 parametrizations. Furthermore, we have shown how model parameter sweeps

can benefit from parallelization on multiple machines.

From these results, we conclude that PyRates is a powerful simulation framework that

enables highly efficient neural network simulations. The main questions we will address in the

following discussion are (1) why is PyRates a valuable addition to established neural simulation

software, and (2) in which cases can researchers benefit from using it.

PyRates in the context of existing neural simulation frameworks

Within the domain of neural simulation frameworks, PyRates belongs to the family of graph-

based neural simulators. In both its frontend and backend, it represents a neural model as a

network of nodes connected by edges. PyRates makes no inherent assumptions concerning the

spatial scale of nodes and edges in its networks, thus rendering it feasible for neural networks

of any type. Additionally, PyRates allows for merging and hierarchical organization of neural

networks by building graphs from sub-graphs. Hence, our tool can also be used to build multi-

scale models, e.g. a macroscopic network of connected neural populations, with some popula-

tions of interest being represented by sub-networks of single neurons.

This being said, PyRates has only been systematically tested on rate-based population mod-

els. These differ qualitatively from spiking neuron models in terms of output variable, which is

continuous for rate-based models but discrete for spiking neuron models. While it is in princi-

ple possible to implement such discrete spiking mechanisms, the compute engine is not opti-

mized for it, since it projects output variables at each time-step to their targets in the network.

This means that the projection operation will be performed regardless of whether a spike is

produced or not, leading to considerable increases in computation time for large, densely con-

nected, single cell networks. Hence, when dealing with neuroscientific questions that implicate

the use of spiking neuron models, we currently recommend to use simulation tools such as

Nengo [13], NEST [14], ANNarchy [15], Brian [16], NEURON [17], BioNet [20] or NetPyNE

[21]. Such questions may involve problems where specific spike-timings have a non-negligible

influence, where dendritic tree architectures are important or, more generally, where the vari-

able of interest loses its meaning when averaged over time or over many neurons.

Of course, all of the above listed tools can be applied in other scenarios as well, even for

macroscopic neural network simulations. However, if the variable of interest in a given model

can be expressed as an average over many cells and single cell dynamics can be neglected,

mean-field approaches such as the neural population models used throughout this article will

be considerably faster and thus allow for the investigation of larger networks and parameter

spaces. In general, most frameworks that feature generic code generation should allow the

implementation of such models. From the above mentioned tools, Brian and ANNarchy

belong to that category. Brian is strictly aimed at spike-based simulations and thus not opti-

mized for continuous output variables like firing rates, whereas ANNarchy provides features

for spike- and rate-based neural simulations. Nonetheless, it is designed for single-cell network

simulations, so most of the templates it provides for neurons or populations are not necessarily

applicable to mean-field models. Other simulation frameworks that provide explicit mean-

field modeling mechanisms include TVB [54], DCM [12], DiPDE [55] and MIIND [56].

Among these, the latter two focus strongly on so-called population density techniques, which

can describe the full voltage probability distribution of a population of neurons, instead of

merely the mean. Both DiPDE and MIIND focus on the leaky integrate-and-fire neuron as the

underlying model to derive the voltage probability distribution from. The advantage of this

technique is the more direct and precise relationship between the single cell activity and the

population level as compared to mean-field approaches. However, this advantage is payed for

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 20 / 26

https://doi.org/10.1371/journal.pone.0225900

by higher computational demands, since a discretized probability distribution is computed at

each simulation step instead of a mere point-estimate (i.e. the mean). TVB and DCM, on the

other hand, focus on the same mathematical group of neurodynamic models as currently

implemented in PyRates, i.e. neural population models. The focus of TVB lies in the simula-

tion of large-scale brain networks via established, preferably homogeneous, local population

models. DCM is explicitly designed to infer parameters of a fixed set of pre-implemented mod-

els based on a given measure of brain activity. While being the optimal choice for their respec-

tive use-cases, both tools lack functionalities that help when implementing custom models.

We consider the core strengths of PyRates to be its highly generic model definition (compa-

rable to a pure code generation approach) and its two graph-based backends. The former dis-

tinguishes PyRates from other simulation frameworks, since it allows the customization of

every part of a neural network, as long as a network structure with nodes and edges defined

by mathematical operators is maintained. Every single computation that is performed in a

PyRates simulation, and every variable that it uses, is defined in the frontend and can be

accessed and edited by the user. This allows, for example, the addition of custom synapse

types, plasticity mechanisms, complex somatic integration mechanisms, or even axonal cable

properties. In addition, edges can access and connect all variables existing pre- or post-node,

thus enabling the implementation of projections or plasticity mechanisms that depend on pop-

ulation variables other than firing rates. This generic approach makes PyRates particularly

valuable for neuroscientists interested in developing novel neural models or extending existing

ones.

A notion of caution should be added here. The degrees of freedom we provide for setting

up models and simulations in PyRates imply that we do not provide safeguards for question-

able model definitions. Except for their syntactical correctness, model equations and their hier-

archical relationships will not be questioned further by PyRates. Also, inputs and outputs to

the model will be added exactly as defined by the user. In other words, while PyRates does pro-

vide a considerable number of convenience functions to quickly set up and simulate large neu-

ral networks, it still requires users to be aware of potential numerical issues they could run

into, if the model or simulation would not be set up correctly. Typical pitfalls include numeri-

cal overflows if variables become to large or small for the chosen data type, simulation step

sizes that were chosen too large for the internal timescales of a given model, and random vari-

ables that are sampled at each simulation step without taking into account the dependency

between sampling frequency and simulation step size. We tested numerical solvers providing

adaptive time steps as an alternative to our fixed step size solvers to handle the problem of

choosing an appropriate integration step size. However, we found those algorithms to be

unsuited for network simulations in PyRates, since handling asynchronicity between network

nodes created significant computational overhead.

Regarding PyRates’ second core strength, its backends, we have demonstrated its computa-

tional power in various scenarios. It provides optimized representations of large neural net-

works for simulations on CPUs and GPUs. Parallel execution of network simulations are

particularly efficient when its nodes and edges are similar in their mathematical operators,

since those similarities are exploited by the automatic vectorization mechanisms of PyRates. In

turn, this means that the effectiveness of the parallelization scales negatively with the relative

amount of heterogeneity or sequentiality of the network. Networks that consist of highly

diverse neural units governed by many, hierarchically dependent operators will show consid-

erably longer simulation durations than networks with very similar elements and a flat opera-

tor hierarchy. Thus, PyRates is particularly suited for simulating large, homogeneous networks

or conducting parameter studies on small- to medium sized networks. For the latter, PyRates

scales particularly well, since the size of the parameter sweep that can be computed in parallel

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 21 / 26

https://doi.org/10.1371/journal.pone.0225900

grows with the size of the compute cluster among which our cluster distribution mechanism

can distribute the different parametrizations.

Integrating PyRates into neuroscientific work-flows

Neural population models such as the Jansen-Rit model [29] were originally conceived to

understand or predict physical measures of brain activity such as LFPs, EEG/MEG or BOLD-

fMRI. Modern neuroscientific workflows, however, go beyond forward simulations of brain

activity. For example, The Virtual Brain [54] allows the use of structural (including diffusion-

weighted) MRI scans to specify 3-dimensional structure and connectivity of a network design.

Dynamic Causal Modeling [12] on the other hand can make use of measured brain activity

to infer model parameters (e.g. connectivity constants) that best fit the given data. Both

approaches have in common, that brain network models are adapted to individual subjects

based on measured data.

PyRates integrates well with this concept for two reasons. (1) It is designed to provide an

easy-to-use interface to construct and adapt network models with more flexibility than compa-

rable tools. (2) Due to its modular software structure, PyRates can easily be extended to inter-

face with existing tools. While the intermediate representation serves as a standard interface,

the front- and backends can be exchanged to integrate with other software. For example,

PyRates could be extended with a frontend that makes use of structural MRI data via tools pro-

vided by TVB. At the same time, the current backend could be extended to generate region-

specific models compatible with TVB’s node model interface.

Currently, PyRates already provides a number of useful interfaces to tools that can be

used for setting up models, subsequent analyses of simulated timeseries or model optimiza-

tion. Two of those interfaces come with the graph representations PyRates uses for networks.

As mentioned before, every PyRates network can either be translated into a NumPy- or ten-

sorflow-based compute graph. This enables the usage of every NumPy or tensorflow function

that could come in handy for setting up a model in PyRates, be it mathematical functions

like sine or max, variable manipulation methods like reshape or squeeze or higher-level func-

tions like error measurements or learning-rate decays. For the future, we also plan to provide

interfaces to tensorflow’s model training features, which would allow to optimize parameters

of neural models via gradient-descent based algorithms [48]. As an experimental feature,

model parameter optimization is already possible via genetic algorithms, for which an inter-

face is provided in the utility module of PyRates. They allow the definition of an arbitrary

objective function for a given model and optimization of that function via subsequent model

parameter updates employing mechanisms such as parameter re-combinations and muta-

tions [57]. As with parameter sweeps, these algorithms can be executed either on a single or

on multiple machines.

Since the intermediate representation fully builds on networkx graphs, the networkx API

can be used to create, modify, analyze or visualize models. This includes interoperability with

explicit graph visualization tools like Graphviz [49] or Cytoscape [58] that contain more elabo-

rate features for visualizing complex biological networks. For the processing, analysis and visu-

alization of simulation results, we provide a number of tools that mostly wrap MNE-Python
[51, 52] and seaborn [59] functions. For extended use of MNE-Python, we also provide a wrap-

per that allows the translation of every output of a PyRates simulation into an MNE-Python
object. This is particularly useful for forward simulations of EEG/MEG data, since MNE-Py-
thon comes with an extensive range of methods for the processing, analysis and visualization

of such data. Finally, PyRates can also be used in combination with pygpc, a generalized poly-

nomial chaos (GPC) toolbox for uncertainty quantification and sensitivity analysis publicly

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 22 / 26

https://doi.org/10.1371/journal.pone.0225900

available under https://github.com/konstantinweise/pygpc. Via this interface it is possible to

define a model plus a set of model parameters, including their respective uncertainties, and

estimate how sensitive the model behavior is to changes in these parameters. It is important to

note however, that the GPC cannot replace a proper bifurcation analysis and should currently

only be used for parameter ranges where no bifurcations or multi-stabilities occur.

In summary, PyRates is readily integrated into complex neuroscientific workflows as a tool

for bottom-up neural simulations. It provides interfaces to other Python tools that have been

specifically designed to manage other parts of such workflows (e.g. data processing or visuali-

zation). More interfaces can easily be implemented due to the modular structure of the frame-

work. This is further aided by the widely used data structures PyRates is built upon, like

YAML-based configuration files, networkx graphs or pandas DataFrames. PyRates can thus be

included as one independent component of larger neuroscientific workflows that can handle

the definition, setup, numerical simulation and optimization of neural models.

Supporting information

S1 Table. Overview of mathematical syntax.

(PDF)

S2 Table. Overview of preimplemented mathematical functions.

(PDF)

Acknowledgments

Richard Gast has been supported by Max Planck Society and Studienstiftung des Deutschen

Volkes. Daniel Rose is supported by the International Max Planck Research School NeuroCom.

Author Contributions

Conceptualization: Richard Gast, Daniel Rose, Thomas R. Knösche.

Data curation: Richard Gast, Christoph Salomon.

Formal analysis: Richard Gast, Christoph Salomon.

Funding acquisition: Harald E. Möller, Nikolaus Weiskopf.

Investigation: Richard Gast, Daniel Rose.

Methodology: Richard Gast, Daniel Rose, Thomas R. Knösche.

Project administration: Harald E. Möller, Nikolaus Weiskopf, Thomas R. Knösche.

Resources: Harald E. Möller, Nikolaus Weiskopf, Thomas R. Knösche.

Software: Richard Gast, Daniel Rose, Christoph Salomon.

Supervision: Harald E. Möller, Nikolaus Weiskopf, Thomas R. Knösche.

Validation: Richard Gast, Daniel Rose, Christoph Salomon.

Visualization: Richard Gast, Daniel Rose, Christoph Salomon.

Writing – original draft: Richard Gast, Daniel Rose.

Writing – review & editing: Richard Gast, Daniel Rose, Harald E. Möller, Nikolaus Weiskopf,

Thomas R. Knösche.

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 23 / 26

https://github.com/konstantinweise/pygpc
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225900.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225900.s002
https://doi.org/10.1371/journal.pone.0225900

References
1. Goense J, Merkle H, Logothetis N. High-Resolution fMRI Reveals Laminar Differences in Neurovascu-

lar Coupling between Positive and Negative BOLD Responses. Neuron. 2012; 76(3):629–639. https://

doi.org/10.1016/j.neuron.2012.09.019 PMID: 23141073

2. Huber L, Uludağ K, Möller HE. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and

CMRO2. NeuroImage. 2017. https://doi.org/10.1016/j.neuroimage.2017.07.041 PMID: 28736310

3. Niedermeyer E, Silva FHLd. Electroencephalography: Basic Principles, Clinical Applications, and

Related Fields. Lippincott Williams & Wilkins; 2005.

4. Baillet S, Mosher J C, Leahy R M. Electromagnetic brain mapping. IEEE Signal Processing Magazine.

2001; 18(6):14–30. https://doi.org/10.1109/79.962275

5. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocorti-

cal inhibitory system. Nature Reviews Neuroscience. 2004; 5:793. https://doi.org/10.1038/nrn1519

PMID: 15378039

6. Attal Y, Schwartz D. Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging

Model with Minimum Norm Operators: A MEG Study. PLOS ONE. 2013; 8(3):e59856. https://doi.org/

10.1371/journal.pone.0059856 PMID: 23527277

7. Logothetis NK, Wandell BA. Interpreting the BOLD Signal. Annual Review of Physiology. 2004; 66

(1):735–769. https://doi.org/10.1146/annurev.physiol.66.082602.092845 PMID: 14977420

8. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K. The Dynamic Brain: From Spiking Neurons

to Neural Masses and Cortical Fields. PLOS Computational Biology. 2008; 4(8):e1000092. https://doi.

org/10.1371/journal.pcbi.1000092 PMID: 18769680

9. Friston KJ, Dolan RJ. Computational and dynamic models in neuroimaging. NeuroImage. 2010; 52

(3):752–765. https://doi.org/10.1016/j.neuroimage.2009.12.068 PMID: 20036335

10. Breakspear M. Dynamic models of large-scale brain activity. Nat Neurosci. 2017; 20(3):340–352.

https://doi.org/10.1038/nn.4497 PMID: 28230845

11. Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network

modeling in The Virtual Brain. NeuroImage. 2015; 111:385–430. https://doi.org/10.1016/j.neuroimage.

2015.01.002 PMID: 25592995

12. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003; 19(4):1273–1302.

https://doi.org/10.1016/s1053-8119(03)00202-7 PMID: 12948688

13. Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC, Rasmussen D, et al. Nengo: a Python tool

for building large-scale functional brain models. Frontiers in Neuroinformatics. 2014; 7. https://doi.org/

10.3389/fninf.2013.00048 PMID: 24431999

14. Gewaltig MO, Diesmann M. NEST (NEural Simulation Tool). Scholarpedia. 2007; 2(4):1430. https://doi.

org/10.4249/scholarpedia.1430

15. Vitay J, Dinkelbach HU, Hamker FH. ANNarchy: a code generation approach to neural simulations on

parallel hardware. Frontiers in Neuroinformatics. 2015; 9. https://doi.org/10.3389/fninf.2015.00019

PMID: 26283957

16. Goodman DFM, Brette R. The Brian simulator. Frontiers in Neuroscience. 2009; 3. https://doi.org/10.

3389/neuro.01.026.2009 PMID: 20011141

17. Hines ML, Carnevale NT. The NEURON Simulation Environment. Neural Computation. 1997; 9

(6):1179–1209. https://doi.org/10.1162/neco.1997.9.6.1179 PMID: 9248061

18. Migliore M, Cannia C, Lytton WW, Markram H, Hines ML. Parallel network simulations with NEURON.

Journal of Computational Neuroscience. 2006; 21(2):119. https://doi.org/10.1007/s10827-006-7949-5

PMID: 16732488

19. Pecevski D, Natschläger T, Schuch K. PCSIM: a parallel simulation environment for neural circuits fully

integrated with Python. Frontiers in Neuroinformatics. 2009; 3. https://doi.org/10.3389/neuro.11.011.

2009 PMID: 19543450

20. Gratiy SL, Billeh YN, Dai K, Mitelut C, Feng D, Gouwens NW, et al. BioNet: A Python interface to NEU-

RON for modeling large-scale networks. PLOS ONE. 2018; 13(8):e0201630. https://doi.org/10.1371/

journal.pone.0201630 PMID: 30071069

21. Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, et al. NetPyNE, a tool for

data-driven multiscale modeling of brain circuits. eLife. 2019; 8:e44494. https://doi.org/10.7554/eLife.

44494 PMID: 31025934

22. Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta

rhythm: Sources and modeling. NeuroImage. 2005; 26(2):347–355. https://doi.org/10.1016/j.

neuroimage.2005.02.008 PMID: 15907295

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 24 / 26

https://doi.org/10.1016/j.neuron.2012.09.019
https://doi.org/10.1016/j.neuron.2012.09.019
http://www.ncbi.nlm.nih.gov/pubmed/23141073
https://doi.org/10.1016/j.neuroimage.2017.07.041
http://www.ncbi.nlm.nih.gov/pubmed/28736310
https://doi.org/10.1109/79.962275
https://doi.org/10.1038/nrn1519
http://www.ncbi.nlm.nih.gov/pubmed/15378039
https://doi.org/10.1371/journal.pone.0059856
https://doi.org/10.1371/journal.pone.0059856
http://www.ncbi.nlm.nih.gov/pubmed/23527277
https://doi.org/10.1146/annurev.physiol.66.082602.092845
http://www.ncbi.nlm.nih.gov/pubmed/14977420
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1371/journal.pcbi.1000092
http://www.ncbi.nlm.nih.gov/pubmed/18769680
https://doi.org/10.1016/j.neuroimage.2009.12.068
http://www.ncbi.nlm.nih.gov/pubmed/20036335
https://doi.org/10.1038/nn.4497
http://www.ncbi.nlm.nih.gov/pubmed/28230845
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1016/j.neuroimage.2015.01.002
http://www.ncbi.nlm.nih.gov/pubmed/25592995
https://doi.org/10.1016/s1053-8119(03)00202-7
http://www.ncbi.nlm.nih.gov/pubmed/12948688
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.3389/fninf.2013.00048
http://www.ncbi.nlm.nih.gov/pubmed/24431999
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fninf.2015.00019
http://www.ncbi.nlm.nih.gov/pubmed/26283957
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3389/neuro.01.026.2009
http://www.ncbi.nlm.nih.gov/pubmed/20011141
https://doi.org/10.1162/neco.1997.9.6.1179
http://www.ncbi.nlm.nih.gov/pubmed/9248061
https://doi.org/10.1007/s10827-006-7949-5
http://www.ncbi.nlm.nih.gov/pubmed/16732488
https://doi.org/10.3389/neuro.11.011.2009
https://doi.org/10.3389/neuro.11.011.2009
http://www.ncbi.nlm.nih.gov/pubmed/19543450
https://doi.org/10.1371/journal.pone.0201630
https://doi.org/10.1371/journal.pone.0201630
http://www.ncbi.nlm.nih.gov/pubmed/30071069
https://doi.org/10.7554/eLife.44494
https://doi.org/10.7554/eLife.44494
http://www.ncbi.nlm.nih.gov/pubmed/31025934
https://doi.org/10.1016/j.neuroimage.2005.02.008
https://doi.org/10.1016/j.neuroimage.2005.02.008
http://www.ncbi.nlm.nih.gov/pubmed/15907295
https://doi.org/10.1371/journal.pone.0225900

23. Sherman MA, Lee S, Law R, Haegens S, Thorn CA, Hämäläinen MS, et al. Neural mechanisms of tran-

sient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys,

and mice. Proceedings of the National Academy of Sciences of the USA. 2016; 113(33):E4885–E4894.

https://doi.org/10.1073/pnas.1604135113 PMID: 27469163

24. Neymotin SA, Daniels DS, Caldwell B, Peled N, McDougal RA, Carnevale NT, et al. Human Neocortical

Neurosolver; 2018.

25. Hagen E, Naess S, Ness TV, Einevoll GT. Multimodal Modeling of Neural Network Activity: Computing

LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Frontiers in Neuroinformatics. 2018; 12. https://doi.

org/10.3389/fninf.2018.00092

26. Coombes S. Large-scale neural dynamics: simple and complex. NeuroImage. 2010; 52(3):731–739.

https://doi.org/10.1016/j.neuroimage.2010.01.045 PMID: 20096791

28. Freeman WJ. Models of the dynamics of neural populations. Electroencephalography and clinical

neurophysiology. 1978; 34:9–18.

27. da Silva FHL, Hoeks A, Smits H, Zetterberg LH. Model of brain rhythmic activity. Biological cybernetics.

1974; 15(1):27–37.

29. Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical

model of coupled cortical columns. Biol Cybern. 1995; 73(4):357–366. https://doi.org/10.1007/

bf00199471 PMID: 7578475

30. David O, Friston KJ. A neural mass model for MEG/EEG:: coupling and neuronal dynamics.

NeuroImage. 2003; 20(3):1743–1755. https://doi.org/10.1016/j.neuroimage.2003.07.015 PMID:

14642484

31. Babajani A, Soltanian-Zadeh H. Integrated MEG/EEG and fMRI model based on neural masses. IEEE

Transactions on Biomedical Engineering. 2006; 53(9):1794–1801. https://doi.org/10.1109/TBME.2006.

873748 PMID: 16941835

32. Cona F, Zavaglia M, Massimini M, Rosanova M, Ursino M. A neural mass model of interconnected

regions simulates rhythm propagation observed via TMS-EEG. NeuroImage. 2011; 57(3):1045–1058.

https://doi.org/10.1016/j.neuroimage.2011.05.007 PMID: 21600291

33. Moran RJ, Kiebel SJ, Stephan KE, Reilly RB, Daunizeau J, Friston KJ. A neural mass model of spectral

responses in electrophysiology. NeuroImage. 2007; 37(3):706–720. https://doi.org/10.1016/j.

neuroimage.2007.05.032 PMID: 17632015

34. Wang P, Knösche TR. A Realistic Neural Mass Model of the Cortex with Laminar-Specific Connections

and Synaptic Plasticity—Evaluation with Auditory Habituation. PLOS ONE. 2013; 8(10):e77876. https://

doi.org/10.1371/journal.pone.0077876 PMID: 24205009

35. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ. Dynamic causal modeling of evoked

responses in EEG and MEG. NeuroImage. 2006; 30(4):1255–1272. https://doi.org/10.1016/j.

neuroimage.2005.10.045 PMID: 16473023

36. Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC. Realistically Coupled Neural

Mass Models Can Generate EEG Rhythms. Neural Computation. 2007; 19(2):478–512. https://doi.org/

10.1162/neco.2007.19.2.478 PMID: 17206872

37. Bojak I, Oostendorp TF, Reid AT, Kötter R. Connecting Mean Field Models of Neural Activity to EEG

and fMRI Data. Brain Topography. 2010; 23(2):139–149. https://doi.org/10.1007/s10548-010-0140-3

PMID: 20364434

38. Spiegler A, Knösche TR, Schwab K, Haueisen J, Atay FM. Modeling Brain Resonance Phenomena

Using a Neural Mass Model. PLOS Computational Biology. 2011; 7(12):e1002298. https://doi.org/10.

1371/journal.pcbi.1002298 PMID: 22215992

39. Onslow ACE, Jones MW, Bogacz R. A Canonical Circuit for Generating Phase-Amplitude Coupling.

PLOS ONE. 2014; 9(8):e102591. https://doi.org/10.1371/journal.pone.0102591 PMID: 25136855

40. Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A. Transcranial direct current stimulation changes

resting state functional connectivity: A large-scale brain network modeling study. NeuroImage. 2016;

140:174–187. https://doi.org/10.1016/j.neuroimage.2016.02.015 PMID: 26883068

41. Jansen BH, Zouridakis G, Brandt ME. A neurophysiologically-based mathematical model of flash visual

evoked potentials. Biological Cybernetics. 1993; 68(3):275–283. https://doi.org/10.1007/bf00224863

PMID: 8452897

42. Spiegler A, Kiebel SJ, Atay FM, Knösche TR. Bifurcation analysis of neural mass models: Impact of

extrinsic inputs and dendritic time constants. NeuroImage. 2010; 52(3):1041–1058. https://doi.org/10.

1016/j.neuroimage.2009.12.081 PMID: 20045068

43. Montbrió E, Pazó D, Roxin A. Macroscopic Description for Networks of Spiking Neurons. Physical

Review X. 2015; 5(2):021028.

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 25 / 26

https://doi.org/10.1073/pnas.1604135113
http://www.ncbi.nlm.nih.gov/pubmed/27469163
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.1016/j.neuroimage.2010.01.045
http://www.ncbi.nlm.nih.gov/pubmed/20096791
https://doi.org/10.1007/bf00199471
https://doi.org/10.1007/bf00199471
http://www.ncbi.nlm.nih.gov/pubmed/7578475
https://doi.org/10.1016/j.neuroimage.2003.07.015
http://www.ncbi.nlm.nih.gov/pubmed/14642484
https://doi.org/10.1109/TBME.2006.873748
https://doi.org/10.1109/TBME.2006.873748
http://www.ncbi.nlm.nih.gov/pubmed/16941835
https://doi.org/10.1016/j.neuroimage.2011.05.007
http://www.ncbi.nlm.nih.gov/pubmed/21600291
https://doi.org/10.1016/j.neuroimage.2007.05.032
https://doi.org/10.1016/j.neuroimage.2007.05.032
http://www.ncbi.nlm.nih.gov/pubmed/17632015
https://doi.org/10.1371/journal.pone.0077876
https://doi.org/10.1371/journal.pone.0077876
http://www.ncbi.nlm.nih.gov/pubmed/24205009
https://doi.org/10.1016/j.neuroimage.2005.10.045
https://doi.org/10.1016/j.neuroimage.2005.10.045
http://www.ncbi.nlm.nih.gov/pubmed/16473023
https://doi.org/10.1162/neco.2007.19.2.478
https://doi.org/10.1162/neco.2007.19.2.478
http://www.ncbi.nlm.nih.gov/pubmed/17206872
https://doi.org/10.1007/s10548-010-0140-3
http://www.ncbi.nlm.nih.gov/pubmed/20364434
https://doi.org/10.1371/journal.pcbi.1002298
https://doi.org/10.1371/journal.pcbi.1002298
http://www.ncbi.nlm.nih.gov/pubmed/22215992
https://doi.org/10.1371/journal.pone.0102591
http://www.ncbi.nlm.nih.gov/pubmed/25136855
https://doi.org/10.1016/j.neuroimage.2016.02.015
http://www.ncbi.nlm.nih.gov/pubmed/26883068
https://doi.org/10.1007/bf00224863
http://www.ncbi.nlm.nih.gov/pubmed/8452897
https://doi.org/10.1016/j.neuroimage.2009.12.081
https://doi.org/10.1016/j.neuroimage.2009.12.081
http://www.ncbi.nlm.nih.gov/pubmed/20045068
https://doi.org/10.1371/journal.pone.0225900

44. Coombes S, Byrne A. Next Generation Neural Mass Models. In: Corinto F, Torcini A, editors. Nonlinear

Dynamics in Computational Neuroscience. PoliTO Springer Series. Cham: Springer International Pub-

lishing; 2019. p. 1–16. Available from: https://doi.org/10.1007/978-3-319-71048-8_1.

45. Oliphant TE. A guide to NumPy. USA: Trelgol Publishing; 2006.

46. Ben-Kiki O, Evans C, döt Net I. YAML Ain’t Markup Language (YAML™) Version 1.2; 2009. Available

from: https://yaml.org/spec/1.2/spec.html.

47. Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function using Net-

workX. In: Varoquaux G, Vaught T, Millman J, editors. Proceedings of the 7th Python in Science Confer-

ence. Pasadena, CA USA; 2008. p. 11–15.

48. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: http://tensorflow.org/.

49. McKinney W. Data Structures for Statistical Computing in Python. In: van der Walt S, Millman J, editors.

Proceedings of the 9th Python in Science Conference; 2010. p. 51–56.

50. Gansner ER, North SC. An open graph visualization system and its applications to software engineer-

ing. Software—Practice and Experience. 2000; 30(11):1203–1233. https://doi.org/10.1002/1097-024X

(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N

51. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MEG and EEG data

analysis with MNE-Python. Front Neurosci. 2013; 7. https://doi.org/10.3389/fnins.2013.00267 PMID:

24431986

52. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MNE software for pro-

cessing MEG and EEG data. NeuroImage. 2014; 86:446–460. https://doi.org/10.1016/j.neuroimage.

2013.10.027 PMID: 24161808

53. Ratas I, Pyragas K. Macroscopic self-oscillations and aging transition in a network of synaptically cou-

pled quadratic integrate-and-fire neurons. Physical Review E. 2016; 94(3):032215. https://doi.org/10.

1103/PhysRevE.94.032215 PMID: 27739712

54. Ritter P, Schirner M, McIntosh AR, Jirsa VK. The Virtual Brain Integrates Computational Modeling and

Multimodal Neuroimaging. Brain Connectivity. 2013; 3(2):121–145. https://doi.org/10.1089/brain.2012.

0120 PMID: 23442172

55. Website:© Allen Institute for Brain Science. DiPDE Simulator [Internet]. Available from: https://github.

com/AllenInstitute/dipde.; 2015.

56. Kamps Md, Baier V. Multiple Interacting Instantiations of Neuronal Dynamics (MIIND): a Library for

Rapid Prototyping of Models in Cognitive Neuroscience. In: 2007 International Joint Conference on

Neural Networks; 2007. p. 2829–2834.

57. Bäck T, Schwefel HP. An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary

Computation. 1993; 1(1):1–23. https://doi.org/10.1162/evco.1993.1.1.1

58. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498–

2504. https://doi.org/10.1101/gr.1239303 PMID: 14597658

59. Waskom M. seaborn: statistical data visualization, URL: https://seaborn.pydata.org/; 2012.

PyRates—A neural simulation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0225900 December 16, 2019 26 / 26

https://doi.org/10.1007/978-3-319-71048-8_1
https://yaml.org/spec/1.2/spec.html
http://tensorflow.org/
https://doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
https://doi.org/10.3389/fnins.2013.00267
http://www.ncbi.nlm.nih.gov/pubmed/24431986
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
http://www.ncbi.nlm.nih.gov/pubmed/24161808
https://doi.org/10.1103/PhysRevE.94.032215
https://doi.org/10.1103/PhysRevE.94.032215
http://www.ncbi.nlm.nih.gov/pubmed/27739712
https://doi.org/10.1089/brain.2012.0120
https://doi.org/10.1089/brain.2012.0120
http://www.ncbi.nlm.nih.gov/pubmed/23442172
https://github.com/AllenInstitute/dipde
https://github.com/AllenInstitute/dipde
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://seaborn.pydata.org/
https://doi.org/10.1371/journal.pone.0225900

