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1 Introduction

Quantum gravity has undoubtedly been a topic of major interest in theoretical physics.

Here we wish to study the graviton using a worldline approach. Some benefits of a first-

quantized description are well known in the history of string theory: some properties, like

the relation between gauge and gravitational amplitudes, T-duality and so on are quite

transparent from the worldsheet description of the string, but pretty much hidden in terms

of the target space effective field theory. Similar considerations apply to standard quantum

field theories as well: despite the great success of covariant perturbation theory for elec-

trodynamics, the use of lagrangian Feynman rules to compute even simple QCD processes

becomes soon intractable. Moreover, the relative simplicity of tree-level gluon scattering

amplitudes, and their relation to graviton amplitudes (most naively stated as “gravity

is Yang-Mills squared”) are completely obscure in the standard lagrangian treatment of

Yang-Mills and gravity. Therefore, our aim in the present paper is to continue developing

a worldline description of perturbative quantum gravity, that is able to capture these fea-

tures in a more transparent way. For instance, the worldline field content of the N = 4

spinning particle, that is the relevant model for gravity, consists of two copies (in the

fermionic sector) of the worldline variables of the N = 2 model, relevant for Yang-Mills.

Similarly, the graviton three-point function was easily shown to exhibit the double copy

structure as compared to Yang-Mills [1].

However, the search of a worldline description for the graviton has met several obstruc-

tions along the years. Free spinning particle models based on worldline supersymmetry were

suggested and constructed in [2–4], and contained the N = 4 supersymmetric spinning par-

ticle that describes a massless point particle of spin 2 in D = 4 flat spacetime dimensions.

These models, which are based on O(N)-extended worldline supersymmetry, were found

to enjoy conformal invariance [5, 6], but their coupling to curved backgrounds seemed to

invalidate the first class algebra that is at the basis of the models. Couplings to (A)dS [7]

and conformally flat spaces [8, 9] were later found to be viable, but the problem remained
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how to use them as worldline models for describing perturbative quantum gravity. A first

attempt to construct a worldline representation of the graviton was made in [10]. A much

more elegant approach has been proposed recently in [1], building on the BRST construc-

tion that proved to be successful in the description of particles of spin 1 with the N = 2

supersymmetric spinning model [11].

The definition of the path integral on the circle (that is related to QFT 1PI one-

loop amplitudes) poses, in particular, some conceptual issues. The main step forward

in constructing consistent worldline descriptions of Yang-Mills [11] and gravity [1] was to

realize that the corresponding BRST systems are consistent only upon a suitable truncation

of the Hilbert space. In the case of the N = 2 spinning particle this has an immediate field

theoretic explanation, as p-forms admit Yang-Mills interactions only for p = 1 . Similarly,

the minimal constraint in the N = 4 case is U(1)× U(1) , that leaves the massless NS-NS

spectrum of closed string theory, and fits with the field theory result of [12]. While this is

not a problem for the BRST cohomology itself, nor for tree level amplitudes, one has to

find the correct way to implement the projection at one-loop level, since in principle all the

unwanted states propagate in the loop. Moreover, the path integral on the circle is usually

derived from gauge fixing a worldline action with local (super)symmetries, based on a first

class constraint algebra. In the presence of a non-trivial gravitational background, the

constraint algebra is obstructed and not first class anymore. A more appropriate way of

thinking about the model is thus to consider it as a genuine BRST system from the start,

regardless of being derived from a gauge invariant classical predecessor. Our main goal here

will be to determine the measure on the moduli space implementing the correct projection

on the pure gravity contribution, thereby defining the path integral on the circle.

Thus, we study again the N = 4 spinning particle from this new prospective. First

we consider the version defined by gauging the whole extended supersymmetry algebra of

the worldline. In particular, we analyze the path integral on the loop (a worldline with the

topology of a circle), constructed in [13], and dissect it to see how the gauge symmetries

project the full Hilbert space to the one of the spin 2 particle, which remains as the only

propagating degree of freedom. Studying the role played by the measure on the moduli

space, left over by the gauge-fixing, allows us to modify the measure to achieve an improved

projection. The latter has the virtue of working in any spacetime dimensions, allowing also

more general couplings to curved backgrounds. This modification of the measure on moduli

space is interpreted as due to the gauging of a parabolic subgroup of the SO(4) R-symmetry

group, supplemented by appropriate Chern-Simons couplings on the worldline. The model

is eventually tested on curved backgrounds, were it is found to reproduce the correct results

for the diverging part of the graviton one-loop effective action [14, 15].

2 Anatomy of degrees of freedom

We are going to review the quantization on the circle of the free N = 4 spinning particle

with various gaugings of the SO(4) R-symmetry algebra. In particular, we focus on the

precise way the path integral extracts the physical degrees of freedom from the Hilbert

space. This serves as a guiding principle for the quantization of the corresponding non-
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linear sigma model which couples a spin 2 particle (the graviton) to background gravity.

Then, we shall use it to compute terms in the graviton one-loop effective action in arbitrary

dimensions, checking in particular that it produces the expected gauge invariant (BRST

invariant) result in four dimensions.

2.1 Warm up: N = 2 and p-forms

Before analyzing the case of the N = 4 spinning particle, relevant for gravity, we shall

review the quantization on the circle of the N = 2 particle, describing differential forms [16,

17]. In particular, we wish to display how the gauging of worldline supersymmetries extracts

the physical degrees of freedom in a covariant way. It occurs in a way that is directly related

to the BV treatment of gauge theories in target space. This fact is maybe not surprising,

since the BRST wavefunction of the particle contains the full BV spacetime spectrum, and

the first-quantized BRST operator serves as BRST-BV differential in target space [18–21].

The action for the free N = 2 spinning particle in phase space reads

S =

∫
dt

[
pµẋ

µ + i ψ̄µψ̇µ − e p2 − iχ ψ̄ · p− iχ̄ ψ · p− a(ψ · ψ̄ − q)
]

(2.1)

where the one-dimensional supergravity multiplet (e, χ, χ̄, a) gauges worldline

reparametrizations, supersymmetries and U(1) R-symmetry, respectively. The spacetime

coordinates xµ(t) and momenta pµ(t) constitute bosonic phase space variables, while ψ
µ(t)

and ψ̄µ(t) are worldline fermions analogous to the RNS fermions of the spinning string. A

dot “·” indicates contraction over the spacetime indices µ, ν, . . .. In order to project on

p-form gauge fields we have included a Chern-Simons coupling1 q = p+1− D
2 , that converts

the classical constraint (ψ · ψ̄ − q) into the operatorial constraint (N̂ψ − (p+ 1)) [17]. The

contribution from the ghosts will then shift the eigenvalue p+ 1 to p for the p-form gauge

field.

The euclidean action is obtained by a Wick-rotation, and in configuration space it

becomes

S =

∫
dτ

[
1

4e
(ẋµ − χψ̄µ − χ̄ψµ)2 + ψ̄µ(∂τ + ia)ψµ + iq a

]
(2.2)

where we have Wick-rotated the gauge field a → −ia to maintain the U(1) group compact.

On the circle we gauge fix the supergravity multiplet as (e, χ, χ̄, a) → (T, 0, 0, θ). The

nontrivial part of the ghost action contains a system of bosonic superghosts and is given by

Sgh =

∫
dτ

[
β̄(∂τ + iθ)γ + β(∂τ − iθ)γ̄

]
. (2.3)

The partition function (multiplied by −1
2 it corresponds to the QFT effective action) is

then given by

Zp =

∫ ∞

0

dT

T
Zp(T ) , Zp(T ) :=

∫ 2π

0

dθ

2π

∫

P
Dx

∫

A
Dψ̄Dψ

∫

A
Dβ̄DγDβDγ̄ e−Sgf−Sgh

(2.4)

1We use a symmetric (Weyl) ordering of the quantum operators, e.g. ψ · ψ̄ = 1
2
(ψ · ψ̄− ψ̄ ·ψ) → N̂ψ − D

2
,

where N̂ψ = ψ · ∂
∂ψ

is the ψ−number operator. This matches with the path integral regularization we use.
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where Sgf denotes the gauge fixed version of (2.2), and the subscripts on the functional

integrals denote periodic or antiperiodic boundary conditions. In order to unveil the

spacetime gauge structure, it is instructive to recast the density Zp(T ) in operator terms as

Zp(T ) =

∫ 2π

0

dθ

2π

(
2 cos

θ

2

)−2

Tr
[
e−TĤeiθ(N̂ψ−p−1)

]
(2.5)

where Ĥ = p̂2 for the free theory. The trace is over the Hilbert space consisting of differ-

ential forms of arbitrary degree contained in the ψ Taylor coefficients of the wavefunctions

ω(x, ψ) . The factor of
(
2 cos θ

2

)−2
comes from the path integral over the SUSY ghosts,

and is responsible for the spacetime gauge structure, as we shall briefly review. To proceed

further, let us notice that the Hilbert space can be decomposed as a direct sum according

to the form degree, i.e. the eigenvalues of N̂ψ, as H =
⊕D

n=0Hn . Accordingly, the trace

can be decomposed as well, and we shall denote the trace restricted to Hn by

tn(T ) := Trn

[
e−TĤ

]
. (2.6)

For the free particle one has tn(T ) =
(
D
n

)
1

(4πT )D/2 , where the T -factor corresponds to

the free particle position while the binomial simply counts the number of independent

components of an antisymmetric tensor of rank n . Now one can use the Wilson line

variable z := eiθ and find

Zp(T ) =

∮

γ−

dz

2πiz

1

(z + 1)2

D∑

n=0

tn(T ) z
n−p =

p∑

k=0

(−)k(k + 1) tp−k(T ) (2.7)

where we have slightly deformed the contour |z| = 1 to exclude the pole in z = −1 .

The above result coincides with the decomposition one would obtain from the BV action

in field theory: the contribution for k = 0 is from the gauge p-form, k = 1 is from the

(p − 1)-form ghost, k = 2 from the first ghost for ghost, and so on. It is clear, from the

way the expansion is extracted from the above formula, that z
(z+1)2

is the crucial factor

for obtaining the correct residues and, as anticipated, it comes from the superghosts.2 In

order to treat the SUSY ghost sector in a similar footing to the ψ “matter” sector, we

now rewrite the same density by undoing the path integral over the βγ-system:

Zp(T ) =

∫ 2π

0

dθ

2π
TrBRST

[
e−TĤeiθ(N̂−p)(−)N̂γ+N̂β

]
= TrBRST

[
e−TĤδ(N̂ − p)(−)N̂γ+N̂β

]

(2.8)

where the symbol δ(N̂ − p) is a Kronecker delta that selects the contribution from sectors

with occupation number N̂ equals to p. Here N̂ := ψµψ̄µ + γβ̄ − βγ̄ and we observe that

on the BRST vacuum annihilated by γ̄ and β̄ it also takes the form N̂ = Nψ +Nγ +Nβ.

Finally, the trace is over the BRST Hilbert space3 with vacuum annihilated by β̄ and γ̄ .

We notice that the alternating signs appearing in (2.8) are due to the antiperiodic bound-

ary conditions in the bosonic ghost path integral, and have the spacetime interpretation of

2This should be expected, since in the light-cone formulation the local supersymmetries explicitly remove

the unphysical polarizations.
3This coincides with the treatment given in [11] for spin one.
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assigning negative contributions to the effective action (and so to the degrees of freedom)

of fields with odd ghost number. To exemplify the above, let us consider the case of p = 2 :

the BRST wavefunction at N̂ = 2 is given by4

Bµν ψ
µψν + λµ ψ

µβ + λ∗
µ ψ

µγ + φ γβ + λβ2 + λ∗ γ2 (2.9)

where Bµν is the two-form gauge field, (λµ, λ
∗
µ) are the ghost-antighost vectors, φ is an

auxiliary scalar, and (λ, λ∗) is the ghost for ghost paired with its canonical conjugate.

This gives immediately

Z2(T ) = t2(T )− 2t1(T ) + 3t0(T ) =
1

(4πT )D/2

(D − 2)(D − 3)

2
(2.10)

that corresponds to the physical transverse degrees of freedom of a two-form.

2.2 N = 4: gravitons and NS-NS spectrum

We turn now to the same analysis for the case of the N = 4 spinning particle, relevant for

gravity, with various gaugings of the R-symmetry group SO(4) . The corresponding phase

space action reads

S =

∫
dt

[
pµẋ

µ + i ψ̄i µψ̇i µ − e p2 − iχi ψ̄
i · p− iχ̄i ψi · p− ar Jr

]
(2.11)

where i = 1, 2 is a U(2) index and Jr denotes the subset of SO(4) generators being gauged

— we keep manifest only the symmetry U(2) ⊂ SO(4). The states in the Hilbert space

correspond to bi-forms, interpreted as gauge fields:

ω(x, ψi) =
D∑

m,n=0

ωµ[m]|ν[n](x)ψ
µ1

1 . . . ψµm
1 ψν1

2 . . . ψνn
2 ∼

⊕

m,n

m



 ⊗ n

{
. (2.12)

Being interested in gravity we will always project the above spectrum to the subspace

m = n = 1, with the graviton to be identified with the symmetric and traceless component

of ωµ|ν . In this respect, the most economical choice is to gauge the U(1)×U(1) subgroup

generated by

N̂i := ψ̂i · ˆ̄ψi , index i not summed , (2.13)

where we used hats to stress that the above expression refers to operators in that given

order. In this case one can add two independent Chern-Simons couplings qi , that we choose

as qi = 2− D
2 in order to project on the gravity sector. The spectrum consists of a graviton,

a two-form and a scalar, coinciding with the massless NS-NS sector of closed strings. On

the circle, the two gauge fields ai give rise to the angular moduli (θ, φ) and, similarly to

the N = 2 case, we obtain

ZU(1)×U(1)(T ) =

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π

(
2 cos

θ

2

)−2(
2 cos

φ

2

)−2

Tr
[
e−TĤeiθ(N̂1−2)+iφ(N̂2−2)

]
.

(2.14)

4Prior to integrating the (b, c) reparametrization ghosts, the BRST Hilbert space is doubled by the

presence of c in the wavefunction. This corresponds to the full BV spectrum in spacetime, with all the

antifields included. Here, having already integrated out the (b, c) system, the wavefunction corresponds to

taking Siegel’s gauge bΨ = 0 .

– 5 –
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The Hilbert space, and so the trace, has an obvious double grading according to the

eigenvalues of N̂i . Thus we define

tm,n(T ) := Trm,n

[
e−TĤ

]
, (2.15)

allowing to write

ZU(1)×U(1)(T ) =

∮

γ−

dz

2πiz

∮

γ−

dw

2πiw

z

(z + 1)2
w

(w + 1)2

D∑

n,m=0

tn,m(T ) zn−2wm−2 (2.16)

where the Wilson line variables are given by z := eiθ and w := eiφ . The contour integrals

are easily performed, yielding5

ZU(1)×U(1) = t1,1 − 2 t1,0 − 2 t0,1 + 4 t0,0 . (2.17)

In the free theory one has tn,m(T ) = tm,n(T ) =
1

(4πT )D/2

(
D
n

)(
D
m

)
, thus giving the number of

degrees of freedom DofU(1)×U(1) = (D−2)2 that corresponds to the transverse polarizations

of the tensor ωµ|ν . The above partition function can be decomposed into its irreducible

spacetime components:

ZU(1)×U(1) = t1,1−4 t1,0+4 t0,0 = [t1,1−t2,0−2 t1,0]+[t2,0−2 t1,0+3 t0,0]+t0,0 = Zh+ZB+Zφ

(2.18)

namely the spin two graviton, the two-form and a scalar. The corresponding degrees of

freedom decompose accordingly as

DofU(1)×U(1) = (D − 2)2 =
D(D − 3)

2
+

(D − 2)(D − 3)

2
+ 1 (2.19)

and coincide with the transverse polarizations of the (traceless) graviton hij , two-form Bij

and scalar φ . In the following we will be interested in gauging larger subgroups of SO(4) in

order to project out the two-form and/or the scalar field from the spectrum. In particular

we will now analyze how the maximal gauging of the entire R-symmetry group, that was

studied in [13] for general N , extracts the graviton degrees of freedom. When the entire

SO(4) group is gauged there is no room for Chern-Simons couplings. This fixes the Young

diagram of the spacetime gauge field to have D−2
2 rows, thus yielding a graviton only in

D = 4 . Restricting to four dimensions, the partition function is given by (see [13] for the

derivation)

ZSO(4)(T ) =
1

4

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π

(
2 cos

θ

2

)−2(
2 cos

φ

2

)−2(
2i sin

θ + φ

2

)2(
2i sin

θ − φ

2

)2

× Tr
[
e−TĤeiθ(N̂1−2)+iφ(N̂2−2)

]
. (2.20)

In the above expression the cosine factors, as in the previous case, come from the path

integral over the SUSY ghosts. The sine factors result instead from the path integral of

the non-abelian ghosts of SO(4) . In particular, the factor containing the difference of the

5For brevity we omit the dependence on T .
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angles corresponds to the U(2) subgroup generated by J j
i := ψi · ψ̄j , while the other factor,

depending on the sum of the angles, is related to the gauging of K̄ij := ψ̄i · ψ̄j (trace

operator) and Kij := ψi ·ψj (insertion of the metric). In terms of Wilson line variables we

have

ZSO(4)(T ) =
1

4

∮

γ−

dz

2πiz

∮

γ−

dw

2πiw

z

(z + 1)2
w

(w + 1)2
p(z, w)

D∑

n,m=0

tn,m(T ) zn−2wm−2 ,

(2.21)

where the function

p(z, w) =
(zw − 1)2(z − w)2

z2w2
= 4− 2zw − 2

( z

w
+

w

z

)
− 2

zw
+ z2 + w2 +

1

z2
+

1

w2
(2.22)

contains all the dependence on the non-abelian gauging. We shall now compute the con-

tributions to (2.21) of the various components of p(z, w) in order to see how the projection

on the graviton is achieved

4 → t1,1 − 4 t1,0 + 4 t0,0 ≡ ZU(1)×U(1)

−2zw → −1

2
t0,0 ≡ −1

2
Zφ

−2
( z

w
+

w

z

)
→ −(t2,0 − 2 t1,0 + 3 t0,0) ≡ −ZB (2.23)

− 2

zw
→ −1

2
(t2,2 + 4 t1,1 + 9 t0,0 − 4 t2,1 + 6 t2,0 − 12 t1,0) ≡ −1

2
ZA2,2

z2 + w2 → 0

1

z2
+

1

w2
→ 1

2
(t3,1 − 2 t2,1 + 3 t1,1 − 4 t0,1)−

1

2
(t3,0 − 2 t2,0 + 3 t1,0 − 4 t0,0) ≡

1

2
ZA3,1 ,

where the arrows mean that the given monomial yields the corresponding contribution

upon integration over the moduli z and w.

The first three contributions are clear from what we have discussed so far. One can see,

for instance, that the third contribution removes the two-form from the reducible partition

function ZU(1)×U(1) , while the second contribution removes only “half” of the scalar field.

To explain the interpretation of the second half of (2.23), let us introduce (p, q) gauge

bi-forms. By a gauge bi-form Ap,q we denote the tensor field

Ap,q(x, ψi) = Aµ[p]|ν[q](x)ψ
µ1

1 . . . ψ
µp

1 ψν1
2 . . . ψ

νq
2 ∼ p



 ⊗ q

{
(2.24)

with gauge symmetries

δAp,q = d1λp−1,q + d2ξp,q−1 , di := ψµ
i ∂µ (2.25)

and gauge invariant curvature Fp+1,q+1 = d1d2Ap,q . The corresponding partition function

can be obtained from the previous case of U(1) × U(1) gauging by modifying the Chern-

– 7 –
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Simons couplings to q1 = p+ 1− D
2 and q2 = q + 1− D

2 , yielding

ZAp,q =

p,q∑

k,l=0

(−)k+l(k + 1)(l + 1)tp−k,q−l , (2.26)

that justifies the identifications made in (2.23). Let us now consider the contribution of

ZA2,2 to ZSO(4). By performing a double Hodge dualization of the field A2,2 we can see

that it is dual to a scalar (recalling that we are in four dimensions):

A2,2
curvature−−−−−−→ F3,3

Hodge dual−−−−−−−→ F̃1,1
potential−−−−−→ Ã0,0 ≡ φ̃ . (2.27)

Similarly, one can see that A3,1 is a non-propagating field

A3,1
curvature−−−−−−→ F4,2

Hodge dual−−−−−−−→ F̃0,2
potential−−−−−→ ∅ (2.28)

with zero degrees of freedom. We can now put together the results of (2.23) and, using the

decomposition (2.18), obtain

ZSO(4) = Zh +
1

2
(Zφ − Z

φ̃
) +

1

2
ZA3,1 . (2.29)

We can thus conclude that the effective action generated by the full SO(4) gauging cor-

responds to the graviton plus topological terms. The latter vanish in the free theory,

corresponding to zero degrees of freedom, but do contribute to the effective action on

non-trivial backgrounds. Our goal is to find a modified one-loop measure for the path

integral that projects exactly onto the graviton state. In the measure (2.21) the factors

of z
(z+1)2

w
(w+1)2

and p(z, w) play very different roles: as we have previously mentioned, the

former corresponds to the gauging of worldline supersymmetries, and is responsible of the

spacetime gauge symmetry that ensures unitarity. The latter factor, related to the gauging

of the R-symmetries, performs algebraic projections on the spectrum and is the only one

that we will modify. To begin with, we notice that the SO(4) projector (2.22) has the

manifest symmetry p(z, w) = p(1/z, 1/w) and can be written as

p(z, w) = P (z, w) + P (1/z, 1/w) , P (z, w) = 2−
( z

w
+

w

z

)
− 2zw + z2 + w2 . (2.30)

By looking at the decomposition (2.23), it is clear that the unwanted contributions from

dual fields come from the term P (1/z, 1/w) , that indeed entails double Hodge dualization.

We will thus propose to use 2P (z, w) instead of p(z, w) as an ansatz for the graviton

projector:

Zgrav(T ) =
1

2

∮

γ−

dz

2πiz

∮

γ−

dw

2πiw

z

(z + 1)2
w

(w + 1)2
P (z, w)Tr

[
e−TĤzN̂1−2wN̂2−2

]
.

(2.31)

This ansatz for the projector can be related to a different gauging of the R-symmetry

algebra. First, notice that P (z, w) can be written in factorized form as

P (z, w) =
(zw − 1)(z − w)2

zw
, or P (θ, φ) = 2i sin

θ + φ

2

(
2i sin

θ − φ

2

)2

exp i

(
θ + φ

2

)
.

(2.32)
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We now consider the case of gauging the parabolic subalgebra of so(4) consisting of the

u(2) subalgebra, generated by J j
i , plus the trace K̄ij . We are thus excluding, compared

to the maximal gauging, the insertion of the metric Kij , which causes in the measure the

depletion of one sine factor, yielding

Pparab(θ, φ) = 2i sin
θ + φ

2

(
2i sin

θ − φ

2

)2

, (2.33)

⇒ P (θ, φ) = exp i

(
θ + φ

2

)
Pparab(θ, φ) . (2.34)

The extra exponential factor can be accounted for, since the parabolic gauging allows for

a Chern-Simons term proportional to the diagonal U(1) :

SCS = iq

∫
dτ aii gauge fix−−−−−→ iq(θ + φ) . (2.35)

By an appropriate choice of q it is possible to reproduce the graviton projector P (θ, φ) and

also to go to arbitrary dimensions. In fact, recall that the shift in the number operators

in (2.21) is in general N̂i − D
2 . By choosing the Chern-Simons coupling as

q = −D − 3

2
= 2− D

2
− 1

2
,

the 1
2 part produces P (θ, φ) from Pparab(θ, φ) , while the rest modifies the shifts N̂i − D

2 to

N̂i − 2 in arbitrary dimensions.

3 One loop gravity effective action

In the present section we apply the method described above to represent the one-loop

effective action for pure Einstein-Hilbert gravity, and compute it in a local expansion up

to quadratic orders in the curvature.6 The starting point is the SO(4)-extended locally

supersymmetric spinning particle, whose phase-space action corresponds to the curved

deformation of action (2.11). It was previously studied in [22], where a suitable BRST

gauge fixing, involving the whole R-symmetry group, was analyzed.

In the present approach, we instead consider the gauge fixing of the parabolic subgroup

discussed above, which corresponds to the phase space action

S[z, E; g] =

∫
dt
[
pµẋ

µ+i ψ̄i µψ̇i µ−eH−iχi ψ̄
i·π−iχ̄i ψi·π−

1

2
aijK̄

ij−ai
j(J i

j−iqδij)
]
, (3.1)

where z = (x, p, ψ, ψ̄), E = (e, χi, χ̄
i, aij , ai

j), and

πµ = pµ − ωµab ψ
a
i ψ̄

ib (3.2)

H = gµνπµπν −Rabcd ψ
a
i ψ̄

ibψc
j ψ̄

jd . (3.3)

6For massless particles the local expansion of the one-loop effective action is not permitted, except for

identifying the divergences which indeed are local. Here we consider precisely those terms.
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The one-loop effective action thus corresponds to the circle path integral of the previous

action. The antiperiodic gravitini χi, χ̄
i are again gauge-fixed to zero, whereas the einbein

gets gauge-fixed to its modulus, T , which is interpreted as the Schwinger proper-time. The

gauge fields of the parabolic subgroup are fixed to the two angles of the associated Cartan

torus, with the Faddeev-Popov determinant given by the expression in (2.33). Thus, in

euclidean configuration space we have

Γ[g] = −1

2

∫ ∞

0

dT

T
Z(T ) , (3.4)

with

Z(T ) =
1

2

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π

(
2 cos

θ

2

)−2(
2 cos

φ

2

)−2

Pparab(θ, φ) e
−iq(θ+φ)

×
∫

P
Dx

∫

A
Dψ̄Dψ exp

{
−
∫ 1

0
dτ

[
1

4T
gµν ẋ

µẋν + ψ̄ia(Dτδ
j
i − Λi

j)ψja

− TRabcd ψ
a · ψ̄bψc · ψ̄d + 2T Vim

]}
,

(3.5)

where Λi
j =

(
θ 0

0 φ

)
, Dτ is the covariant derivative in the multispinor representation of the

Lorentz group, and the scalar potential Vim = − D+2
8(D−1)R is an order ~2 improvement term,

generated at the quantum level from the anticommutator of the supersymmetry generators.

The constraints are not first class, but the expression (3.4) coincides with the one coming

from the BRST system of ref. [1], considered as the starting point for the path integral.

The BRST system, and thus the path integral, is only consistent (upon projection) on

Einstein manifolds: Rµν = λ gµν , which is the class of allowed backgrounds [1].

The above curved space particle path integral involves a nonlinear sigma model action,

whose perturbative (short time) evaluation needs a careful regularization. This is well

studied (see ref. [23] for a review), even in models with extended supersymmetries [24].

In particular, the use of worldline dimensional regularization implies the inclusion of a

counterterm potential which, for N = 4, is VCT = 1
8R and, together with the improvement

term, it produces the final potential

V = VCT + Vim =

(
1

8
− D + 2

8(D − 1)

)
R = − 3

8(D − 1)
R =: ωR . (3.6)

With these prescriptions, and with the Feynman rules described in [22], we obtain

Z(T ) =
1

2

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π

(
2 cos

θ

2

)D−2(
2 cos

φ

2

)D−2

Pparab(θ, φ) e
iq(θ+φ)

×
∫

dDx

√
g

(4πT )
D
2

〈
e−Sint

〉

=:

∫
dDx

√
g

(4πT )
D
2

〈〈
e−Sint

〉〉
, (3.7)
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where

〈
e−Sint

〉
= 1− T

(
− 5

12
+ 2ω +

1

4

(
cos−2 θ

2
+ cos−2 φ

2

))
R

+ T 2

{
1

2

(
− 5

12
+ 2ω +

1

4

(
cos−2 θ

2
+ cos−2 φ

2

))2

R2

+

(
− 1

180
− 1

8

(
cos−4 θ

2
+ cos−4 φ

2

)
+

1

8

(
cos−2 θ

2
+ cos−2 φ

2

))
R2

ab

+

(
1

180
− 1

32

(
cos−4 θ

2
+ cos−4 φ

2

)
− 1

48

(
cos−2 θ

2
+ cos−2 φ

2

)

+
1

16

(
cos−2 θ

2
+ cos−2 φ

2

)2)
R2

abcd

−
(
− 9

120
+

ω

3
+

1

24

(
cos−2 θ

2
+ cos−2 φ

2

))
∇2R+O(T 3)

}
, (3.8)

and 〈〈. . . 〉〉 is the modular integral of the path integral average. As above we find it

convenient to rewrite the modular integrals in terms of complex variables rather than

angles. We thus have

〈〈
e−Sint

〉〉
=

1

2

∮
dz

2πiz

∮
dw

2πiw

(1 + z)D−2

z2
(1 + w)D−2

w2

(zw − 1)(z − w)2

zw

×
{
1− T

(
− 5

12
+ 2ω +

z

(1 + z)2
+

w

(1 + w)2

)
R

+ T 2

[
1

2

(
− 5

12
+ 2ω +

z

(1 + z)2
+

w

(1 + w)2

)2

R2

+

(
− 1

180
− 2

(
z2

(1 + z)4
+

w2

(1 + w)4

)
+

1

2

(
z

(1 + z)2
+

w

(1 + w)2

))
R2

ab

+

(
1

180
− 1

2

(
z2

(1 + z)4
+

w2

(1 + w)4

)
− 1

12

(
z

(1 + z)2
+

w

(1 + w)2

)

+

(
z

(1 + z)2
+

w

(1 + w)2

)2)
R2

abcd

−
(
− 9

120
+

ω

3
+

1

6

(
z

(1 + z)2
+

w

(1 + w)2

))
∇2R+O(T 3)

]}
, (3.9)

which, after performing the contour integrals, yields

〈〈
e−Sint

〉〉
=

D(D − 3)

2

{
1 + TR

5D2 − 35D + 12

12(D − 1)(D − 3)

+ T 2

[
R2 25D

4 − 275D3 + 232D2 − 432D + 288

288D(D − 1)2(D − 3)
−R2

ab

D2 − 183D − 720

180D(D − 3)

−R2
abcd

D2 − 33D + 540

180D(D − 3)
+∇2R

9D2 − 61D + 22

480(D − 1)(D − 3)

]
+O(T 3)

}
. (3.10)
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For D = 4 it reduces to

〈〈
e−Sint

〉〉
=

{
2− 8

3
T R+T 2

[
−31

18
R2+

359

90
R2

ab+
53

45
R2

abcd−
13

30
∇2R

]
+O(T 3)

}
, (3.11)

that on Einstein manifolds, coincides with the expression found in ref. [10], namely

〈〈
e−Sint

〉〉
=

{
2− 8

3
T R+ T 2

[
−29

40
R2 +

53

45
R2

abcd

]
+O(T 3)

}
, (3.12)

where R2
abcd can be identified with the four-dimensional Euler density of Einstein man-

ifolds. The different powers of T , once inserted into (3.7) and (3.4), give rise to the

quartic, quadratic and logarithmic divergences of the graviton one-loop effective action. In

spacetime dimensional regularization the first two terms are invisible, and the logarithmic

divergence vanishes for null cosmological constant, thus reproducing the famous result by

’t Hooft and Veltman [14]. With a cosmological constant, the logarithmic divergence co-

incides with the one found in [15]. More generally, all these divergences reproduce those

computed in [10].

The on-shell expression given in eq. (3.12) is gauge independent, and it is a benchmark

for any correct calculation in perturbative quantum gravity. For completeness, we also

report the same result for a graviton on a D-dimensional Einstein manifold

〈〈
e−Sint

〉〉
=

D(D − 3)

2
+ TR

D(5D2 − 35D + 12)

24(D − 1)

+ T 2

[
R2 125D

5 − 1383D4 + 2640D3 + 664D2 − 8616D + 5760

2880D(D − 1)2

−R2
abcd

D2 − 33D + 540

360

]
+O(T 3) , (3.13)

where the first term gives just the number of its degrees of freedom.

4 Conclusions

We have constructed a modified N = 4 spinning particle that is able to describe the

pure graviton on Einstein spaces. It is identified by gauging a parabolic subgroup of the

SO(4) R-symmetry group of the particle, and adding suitable Chern-Simons couplings on

the worldline. The gauging of parabolic subgroups have already been used in worldline

models for higher spin particles, as in ref. [25]. They give rise to worldline actions that are

not real, but which do not seem to produce any pathology in the spacetime intepretation

of the theory, in that the sole purpose of the R-symmetry gauging is to perform algebraic

projections on the spacetime spectrum to achieve different degrees of reducibility. Similarly,

the use of Chern-Simons couplings on the worldline helps to insert projectors in the Hilbert

space, so to leave a desired subsector containing the physical states. They appeared in the

worldline description of differential forms [17, 26, 27].
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Our model has been able to reproduce the correct divergences of one-loop quantum

gravity. Together with the BRST construction of ref. [1], few working tools are now avail-

able to address quantum gravity from a worldline perspective.

We stress again that the model developed in this paper can be naively obtained by

gauging the worldline supersymmetries, together with appropriate subalgebras of the R-

symmetry. However, the classical supersymmetry algebra is broken by the background

curvature, and the action has to be seen as a quantum BRST model, whose consistency

is guaranteed by the truncation of the Hilbert space. On the reduced Hilbert space the

BRST charge is nilpotent only when the background is on-shell according to Einstein’s

equation [1], showing that the “prediction” of target space equations of motion from quan-

tum consistency of the first-quantized theory is not a peculiarity of string theory, as already

confirmed by the earlier work of ref. [11].

It would be useful to extend further these constructions and find more applications of

worldline methods to quantum gravity, for instance extending the present description to

non-commutative spaces [28]. An immediate generalization of the present model consists

in weakening the R-symmetry constraint to U(1) × U(1) , thereby letting all the massless

NS-NS particles circulate in the loop. Then coupling the model to a background B-field

and dilaton [29] would allow to obtain the one-loop effective action for the whole NS-NS

massless sector of string theory.

An alternative to the present formulation which employs fermionic oscillators is to

use the Sp(2) particle with bosonic oscillators. The advantage, once a consistent BRST

system is found, would be to easily treat all spins at once, by just modifying a suitable

Chern-Simons coupling. This should also reproduce the well known no-go results for the

minimal coupling of higher spin fields to gravity [30, 31].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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