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Abstract
We analyse the relation between anomalies in their manifestly supersymmetric 
formulation in superspace and their formulation in Wess–Zumino (WZ) 
gauges. We show that there is a one-to-one correspondence between the 
solutions of the cohomology problem in the two formulations and that they 
are related by a particular choice of a superspace counterterm (‘scheme’). 
Any apparent violation of Q-supersymmetry is due to an explicit violation by 
the counterterm which defines the scheme equivalent to the WZ gauge. It is 
therefore removable.

Keywords: supersymmetry, supergravity, anomalies

1.  Introduction

Anomalies in supersymmetric theories were understood in the superspace formulation a long 
time ago. Having a supersymmetric theory one can couple it to external source superfields. 
The Ward identities related to global symmetries of the microscopic theory can be equiva-
lently studied by analyzing the gauge invariances of the effective action, which depends on 
the sources after the microscopic fields are integrated out. The two typical examples which we 
will discuss in this paper are microscopic theories with ‘flavour’ symmetries and superconfor-
mal symmetries. In these cases the sources are gauge superfields and the Einstein supergravity 
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multiplet, respectively. The gauge groups in superspace are (super)Lie groups. For the flavour 
symmetry each Lie group generator is associated with a transformation parameterized by a 
chiral superfield. For the superconformal theories we have a semidirect product of superspace 
reparametrizations with super-Weyl transformations; the former are parameterized by vector 
and spinor holomorphic superfields and the latter by a holomorphic scalar superfield.

The local anomalies we are discussing are related to operators in the microscopic theory 
which vanish on-shell. For lack of a better name we will call them null operators: divergence 
of a current, trace of the energy-momentum tensor, fermionic and auxiliary components in 
the respective anomaly multiplets, etc. One would naively expect that all correlators in the 
microscopic theory which involve the null operators vanish, i.e. that these operators decouple 
from the theory. Since the operators are on-shell, this is automatic for the imaginary parts 
of the correlators. However in certain correlators the real parts, which are necessarily pre-
sent by analyticity, cannot be chosen to satisfy the Ward identities which follow from decou-
pling. This is the anomaly. Since real parts can be added arbitrarily, anomalous correlators are 
always defined modulo arbitrary polynomials in the external momenta, whose choice defines 
a ‘scheme’. Changing the scheme may change the overall symmetry preserved by the correla-
tors, but there is no choice where all Ward identities are non-anomalous.

The above statements have a clear translation into the generating functional formalism, 
where ‘real parts’ correspond to local terms in the external gauge fields. One can add local 
terms to the generating functional defining ‘the scheme’, while the non-local piece corre-
sponds to the imaginary part. The anomaly corresponds to a local gauge variation of the gener-
ating functional which cannot be eliminated by a choice of scheme, i.e. by adding a local term 
to the generating functional. This defines a cohomology problem, whose nontrivial solutions 
are the anomalies. By adding suitable counterterms the anomaly can be shifted between dif-
ferent symmetries, but it cannot be eliminated altogether.

Anomalies of supersymmetric theories were completely analyzed and explicit local 
superspace expressions were given, as discussed in detail in [1–3] and more recently in [4]. 
Furthermore, the impossibility of removing them by adding local counterterms was proven. 
The superspace expressions imply a particular scheme which respects, by construction, super-
symmetry and additional subgroups of the gauge symmetry: transformations with constant 
gauge parameters for the ‘flavour’ symmetry and superspace reparametrizations for the super-
conformal case.

For the supersymmetric anomalies there arises a special situation: the gauge symmetries 
can be partially fixed in an ‘ultralocal’ fashion: the gauge fixing is done on the θ dependence, 
but it is completely algebraic in x-space, i.e. it does not involve derivatives in x space4. As a 
consequence one can study the anomaly problem in a meaningful fashion in these gauges, 
called generically ‘WZ gauges’ in the following. The exact relation between the anomalies 
in these WZ gauges, including the relation to the original manifestly supersymmetric expres-
sions for the anomaly in superspace, is the topic of our discussion.

For notational convenience, we start with a discussion of the set-up in a general frame-
work. Consider the generating functional Γ(A) where A is acted upon by elements G of the 
full gauge group G . The x and θ dependence of the fields A and group elements G is left out, 
again for the sake of notational simplicity. In our case A represents the full set of superspace 
gauge fields and G  the full gauge group in superspace. Consider now a partial gauge fixing 
to configurations Ā and denote the residual gauge group by Ḡ . Each element G ∈ G can then 

4 A similar situation exists in nonsupersymmetric theories for the trace anomalies: one can choose a gauge where 
the trace of the energy-momentum tensor is identically zero and one deals just with the Ward identities following 
from conservation. This will be further discussed in appendix B.
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be represented in terms of an element G0(A) of the coset G/Ḡ times an element of Ḡ . This 
decomposition is generically ambiguous since we can multiply the element of the coset with 
an arbitrary element of Ḡ  and the group element of Ḡ  with its inverse.

In the supersymmetric context we are in a special situation: in WZ gauges the gauge fix-
ing occurs by ultralocal (super)gauge transformations which do not involve derivatives with 
respect to x, i.e. the coset element G0(A) is local. Its defining property is the relation between 
the original configurations A and the gauge fixed ones Ā:

Ā = AG0(A).� (1.1)

The condition of locality of G0(A) and the fact that the relation (1.1) between the configura-
tions A and G0(A) is one to one due to the ultralocality, define the situation for which our 
general discussion below applies. For configurations in the WZ gauge G0(Ā) = e, where e is 
the unit element of the gauge group.

In terms of the microscopic theory the above gauge choice amounts to putting to zero cor-
relators involving ‘ultralocal null operators’. They couple to sources whose gauge transforma-
tion is algebraic. They can be removed by a choice of WZ gauge. Different WZ gauges are 
characterized by the set of ultralocal null operators which were put to zero. In contrast to this, 
one keeps all ‘divergence null operators’, i.e. divergences of currents which couple to sources 
with a differential gauge transformation. Their sources survive in WZ gauge.

The group manipulations are valid in the specific representation where the group acts on 
A: as a consequence we will have group parameters depending on A. Here it is essential that 
this dependence is local in x space and therefore the anomaly analysis makes sense also for 
the gauge fixed situation.

We start by discussing the relation between the generating functional in superspace Γ(A) 
and in the fixed gauge Γ̄(Ā) in the simplest situation, i.e. when there are no anomalies. Then 
the relation is trivial. Starting with Γ we get:

Γ̄(Ā) = Γ(A = Ā).� (1.2)

Conversely, if Γ̄(Ā), the generating functional in the Wess–Zumino gauge is known, we can 
reconstruct the full Γ(A) by simply defining:

Γ(A) = Γ̄(AG0(A)).� (1.3)

The above relations express the fact that in the situation of non-anomalous gauge invariance 
the generating functional really depends on the gauge orbit and Ā is an unambiguous label of 
the orbit.

We now discuss the situation when anomalies are present. Then for a generic supergauge 
transformation G the generating functional Γ is no longer invariant but obeys the anomalous 
transformation rule

Γ(AG) = Γ(A) + W(A; G),� (1.4)

where W(A; G) is a local functional of A and G, called the ‘Wess–Zumino functional’ in the 
following. It represents a solution to the WZ cohomology problem. It cannot be written as a G 
transformation of a local functional of A. For infinitesimal G (1.4) gives the anomaly, i.e. (1.4) 
represents the integrated form of the anomaly. Since the lhs of (1.4) gives a representation of 
the gauge group G , W(A; G) obeys the consistency condition (‘WZ condition’):

W(A; G1G2) = W(A; G2) + W(AG2 ; G1).� (1.5)

S M Kuzenko et alJ. Phys. A: Math. Theor. 53 (2020) 064003
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Given the anomaly, W always exists but its explicit form is not always available. For abelian 
flavour symmetries and the superconformal case explicit expressions can be written down.

Since the anomalous transformation involves the local quantity W, the imaginary parts are 
not affected by it. Therefore the imaginary parts of the generating functionals Γ and Γ̄ con-
tinue to be related by the naive relations (1.2) and (1.3). Once the full generating functionals 
are considered, the relation is no longer so simple. In particular in the WZ gauge we have a 
new cohomology problem for the residual gauge transformations, i.e. we have functionals 
Γ̄(Ā) which should satisfy the conditions (1.4) and (1.5) with A and G replaced by Ā and Ḡ , 
respectively, for a local functional W(Ā; Ḡ). Moreover the gauge transformations relating a 
general configuration to its WZ-representative could be anomalous such that (1.2) and (1.3) 
are not applicable.

In one direction the relation is simple: given a Γ(A) which obeys the condition (1.4), the 
restriction to the WZ gauge

Γ̄r(Ā) ≡ Γ(A = Ā)� (1.6)

will give a solution of the WZ cohomology problem with

Wr(Ā; Ḡ) ≡ W(A = Ā; G = Ḡ).� (1.7)

In the opposite direction the relation is equally straightforward: assume one has a solution 
of the cohomology problem for a Γ̄(Ā) with a corresponding W(Ā; Ḡ). Then we can define a 
generating functional for arbitrary configurations in superspace by

Γu(A) ≡ Γ̄(AG0(A)).� (1.8)

Since the group element G0(AG)G[G0(A)]
−1 belongs to Ḡ , it is easy to show that Γu defined 

by (1.8) obeys (1.4) with Wu given by

Wu(A; G) ≡ W(AG0(A); G0(AG)G[G0(A)]
−1

).� (1.9)

By construction Γu, though formally defined on the full superspace configuration A, after the 
superspace integration depends only on the components of A present in the WZ gauge. It rep-
resents the mapping of the cohomology in the WZ gauge to the full superspace. We assumed 
that in superspace all the solutions of the cohomology are known and are represented by Γ(A). 
Therefore Γu defined above should differ from it by a local functional of A.

After establishing the isomorphism of the cohomologies in superspace and in WZ gauge 
we would like to be more specific and relate directly the generating functionals. This is pos-
sible only if the WZ gauge represents a genuine gauge fixing, i.e. the gauge direction repre-
sented by the choice G0(A) is anomaly free. We can achieve this by choosing a new scheme. 
Define a new generating functional Γ̃(A)

Γ̃(A) = Γ(A) + W(A; G0(A)) = Γ(Ā).� (1.10)

The new generating functional obeys by construction the identity

Γ̃(AG0(A)) = Γ̃(A),� (1.11)

i.e. now (1.2) becomes a genuine gauge fixing. While Γ(A) and W(A;G0(A)) each depend on 
all the components of A, their combination appearing in (1.10) depends just on the comp
onents of the WZ gauge and the dependence on them coincides with Γ(Ā).

We have therefore a general procedure to map the generating functional in a WZ gauge 
to a particular scheme in superspace. This was achieved by adding the local counterterm 
W(A;G0(A)). This counterterm may violate additional symmetries being at the origin of the 

S M Kuzenko et alJ. Phys. A: Math. Theor. 53 (2020) 064003



5

apparent violations in the WZ gauge. The above pattern, i.e. transforming the WZ gauge into 
a particular scheme in superspace, will be used in all the examples discussed in the paper.

This general discussion led us to the conclusion that due to the special properties of the WZ 
gauges, the cohomology problems in full superspace and in the WZ gauges are completely 
equivalent. In particular to any anomaly solution in the WZ gauge corresponds in superspace 
a local counterterm, i.e. a particular allowed scheme. Therefore if in a WZ gauge a particular 
symmetry is violated compared to the superspace formulation, it just means that a particular 
counterterm violating the symmetry was added and removing it will lead to a symmetric for-
mulation making the apparent violation spurious.

In all the cases discussed in this paper the cohomology in the WZ gauge is given by Γ̄r  
defined in (1.6). Therefore using (1.10) the counterterm in superspace is simply W(A;G0(A)) 
giving a very simple realization of the ‘anomaly shifting’ paradigm. The symmetries and the 
anomalous Ward identities in the new scheme can be directly obtained from the properties of 
the counterterm W(A;G0(A)).

As a general conclusion the anomalies seen in the WZ gauge cannot have an absolute 
meaning. In particular any additional anomaly compared to the standard superspace anoma-
lies can be removed by simply removing W, i.e. adding the local counterterm  −W(A;G0(A)).

In the paper we will analyze in detail three examples which fit into the general pattern 
described above: we will identify in each example the fixed gauge space and the residual 
gauge group. We will specify the WZ functionals giving the local counterterms for each case 
and analyze the symmetries apparently broken.

The rest of the paper is organized as follows: in section 2 we analyze the anomalies in 
supersymmetric models with a global U(1) symmetry, tracing the apparent violation of global 
SUSY in the WZ gauge. In section 3 we review the formulation of super-Weyl anomalies in 
superspace. In section 4 we discuss a gauge (equivalently a scheme) which is minimal for hav-
ing a non-anomalous Q-supersymmetry. In section 5 the WZ gauge and its associated scheme, 
which have an apparent anomaly in Q-supersymmetry, is analysed. We identify the direction 
which became non-anomalous when the anomaly in Q-supersymmetry appeared. In the con-
cluding section 6 we summarize the relations between WZ gauges and respective schemes and 
we discuss the general pattern of the interplay of Q-supersymmetry with other symmetries.

In two appendices we discuss the construction of WZ actions and WZ-like gauges in non-
supersymmetric theories, respectively.

In this paper we discuss N = 1 supersymmetric theories in four dimensions, using heavily 
their superspace formulation. General references are [5, 6] and [7]. We will largely follow the 
notation and conventions of the first and third of these references.

2.  Flavour anomaly

In this section we mostly review well known facts. They are discussed in detail in [8, 9] and 
more recently in [10]5.

Consider a supersymmetric field theory with global (‘flavour’) symmetries. For simplicity 
we only discuss the abelian case when the symmetry is U(1). In the references the non-abelian 
case is also considered.

There is an associated Noether current J = J† which is classically conserved on-shell:

D2J = D̄2J = 0.� (2.1)

5 See also [11] for a thorough BRST cohomology analysis. We thank Brandt for pointing out this reference.
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For instance, for the free massless WZ model J = Φ†Φ. The conservation equation means 
that J is a linear multiplet on-shell, i.e. its higher components (θ2, θ̄2 and higher) are zero. The 
θθ̄  component of J is a conserved vector current. One gauges the symmetry by introducing a 
(real) vector multiplet V , whose components are sources for a multiplet of currents. There is a 
linear coupling in the microscopic action

∫
d4x d2θ d2θ̄ VJ� (2.2)

and current conservation (2.1) is translated to the gauge invariance of the generating func-
tional for the transformation

V ′ = V +
i
2
(Λ− Λ†), D̄α̇Λ = 0� (2.3)

where Λ is a chiral scalar superfield. V = V† has the expansion

V(x, θ, θ̄) = C + i θχ− i θ̄χ̄+
i
2
θ2M − i

2
θ̄2M̄ − θσmθ̄ vm

+ i θ2 θ̄

(
λ̄+

i
2
σ̄m∂mχ

)
− i θ̄2 θ

(
λ+

i
2
σm∂mχ̄

)
+

1
2
θ2 θ̄2

(
D +

1
2
�C

)
.

�
(2.4)

Here C and D are real scalars, while M is complex; vm is a real vector and χ and λ are Weyl 
spinors. In this case the gauge group G  is simply the additive group of chiral scalar superfields 
as defined by (2.3).

The generating functional Γ[V] is not gauge invariant, i.e. there is an anomaly given by

δΛΓ[V] = i
∫

d4x d2θΛWαWα + h.c.� (2.5)

for an infinitesimal Λ or, equivalently,

D̄2〈J〉 = 8 WαWα where 〈J〉 = δ

δV
Γ[V].� (2.6)

Here Wα = − 1
4 D̄2 DαV  is the (chiral) gauge-invariant field strength and we put the strength 

of the anomaly to 1 for convenience.
We now want to study the anomaly in the WZ gauge where by a partial gauge fixing the 

lower components C,χ and M are gauged to zero, i.e.

V(x, θ, θ̄)|WZ = −θσmθ̄ vm + i θ2 θ̄λ̄− i θ̄2 θλ+
1
2
θ2 θ̄2 D ≡ V̄ .� (2.7)

This is achieved by making a gauge transformation defined by the special choice of Λ

Λ0 = i C(y)− 2 θχ(y)− θ2M(y),� (2.8)

where y ≡ x + iθσθ̄ . We have therefore the relation

V(x, θ, θ̄)|WZ = V(x, θ, θ̄) +
i
2
(Λ0 − Λ†

0).� (2.9)

From (2.9) it is clear that Λ0 plays the role of G0(A) in our general discussion. In particular 
the gauge fixing is purely algebraic. However, as is obvious from (2.8) and (2.9), this gauge 
is inconsistent with supersymmetry: while being a chiral superfield, i.e. D̄α̇Λ0 = 0, the 

S M Kuzenko et alJ. Phys. A: Math. Theor. 53 (2020) 064003
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supersymmetry transformations of its components are those of the components of a real super-
field and not of a scalar chiral superfield6.

After fixing the WZ gauge, the residual, non-algebraic, gauge transformations are gener-
ated by Λ = α with α real. Under these transformations only vm transforms: vm → vm + ∂mα. 
The anomaly in the WZ gauge corresponds to the standard chiral U(1) gauge anomaly

δαΓWZ[V̄] =

∫
d4xα vmnṽmn� (2.10)

where vmn is the field strength of vm. Up to the gauge variation of the local term 2
∫

d4x vm λ̄σmλ, 
the anomaly in (2.10) is the restriction of the general anomaly (2.5) for Λ = α. The cohomol-
ogy in the WZ gauge is completely represented by the restriction of the action to configura-
tions V̄  in the WZ gauge. A generic effective action calculated in the WZ gauge is therefore the 
restricted action Γ[V = V̄] modulo local terms. We will therefore be able to follow our general 
treatment where V̄  corresponds to Ā, etc.

We now want to find a counterterm which, when added to the superspace functional Γ[V], 
will reproduce the WZ gauge results. Finding the WZ functional is trivial due to the abelian 
nature of the gauge transformation. We have

Γ[V ′] = Γ[V] + i
∫

d4x d2θΛWαWα + h.c.� (2.11)

for any finite Λ, V ′ being the gauge transform of V . Then the counterterm C following (1.10) is

C[V] ≡ i
∫

d4x d2θΛ0 WαWα + h.c.� (2.12)

If we define

Γ̃[V] = Γ[V] + C[V]� (2.13)

where C plays the role of W(A;G0(A)) in (1.10), we have

Γ̃[V +
i
2
(Λ0 + Λ†

0)] = Γ̃[V]� (2.14)

and the counterterm corrected generating functional has the following properties:

	 (a)	�its anomaly reproduces (2.10); 
	(b)	�it depends only on the V-components in the WZ gauge.

It follows from the latter property that Γ̃[V] = Γ[V̄]. The meaning of this definition is that for 
every V  we identify its unique V̄  representative which can be reached from V  by an ultralocal 
gauge transformation and then Γ̃[V] is defined as Γ[V̄]. We stress that V̄  is not an independent 
variable but it is determined by V . Moreover all V-configurations of the form V̄ + i

2 (Λ− Λ†), 
where Λ is a chiral superfield with purely imaginary lowest component, will have the same 
representative and therefore the same value of Γ̃. Γ̃[V] is not supersymmetric because, as we 
have remarked before, the counterterm explicitly breaks supersymmetry due to the ‘wrong’ 
transformation properties of Λ0.

We want to calculate the action of supersymmetry on the generating functional in two 
ways, which should agree:

6 The conflict with supersymmetry exists for any partial WZ gauge, where we transform away only C or C and χ.

S M Kuzenko et alJ. Phys. A: Math. Theor. 53 (2020) 064003
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	 (a)	�in the WZ gauge where the generating functional is Γ[V̄]; 
	(b)	�on Γ̃.
	We start with (a):	�The supersymmetry transformation does not preserve the gauge choice. To 

correct for this one has to accompany it by a compensating field dependent 
gauge transformation:

δ̂ε = δε + δΛ(ε)� (2.15)

		 where

δεΨ =
[
εQ + ε̄Q̄,Ψ

]
� (2.16)

		 for any superfield Ψ and

Λ(ε) = −2i θσmε̄ vm(y)− 2 θ2 ε̄λ̄(y).� (2.17)

		 The compensating gauge transformation brings the components χ, M  of V , which are 
reintroduced by δε, back to zero. Therefore the supersymmetry action on the generating 
functional, V̄  being an independent variable, is

δ̂εΓ[V̄] = δΛ(ε)Γ[V̄] = i
∫

d4x d2θΛ(ε)Wα(V̄)Wα(V̄) + h.c.� (2.18)

	We now proceed to (b):  The basic idea is to make an independent supersymmetry variation 
on V , then identify the new ‘representative’ V̄  and evaluate Γ for the new representative. It is 
essential that the new V̄  is not a supersymmetry variation of the old representative V̄ .

We start with a supersymmetry variation of V̄  itself, δεV̄ . We write this as

δεV̄ = δ̂εV̄ − δΛ(ε)V̄ .� (2.19)

Since Λ(ε) defined above is ultralocal, this shows that the representative on the orbit of 
V̄ + δεV̄  is V̄ + δ̂εV̄ , the corresponding G0 being −Λ(ε). Therefore

δεΓ̃[V̄] ≡ δεC[V̄] = δ̂εΓ[V̄].� (2.20)

From (2.20) it is apparent that what looked in the WZ gauge as an anomaly became in the new 
scheme the variation of the local counterterm C, which violates explicitly supersymmetry for 
the reasons discussed above.

By adding the additional counterterm (see below (2.10))

C1 = 2
∫

d4x λ̄ σ̄mλ vm� (2.21)

which involves only fields which are present in the WZ gauge and using (2.18), one finds:

δε(C + C1)[V̄] = 2
∫

d4x
(

3 i ελ λ̄2 + i εσqλ̄ emnpqvmn vp + h.c.
)

.� (2.22)

This agrees with the ‘SUSY-anomaly’ of [8–11].
Equation (2.20) can be generalized for arbitrary values of V , but one gets an additional con-

tribution related to a genuine gauge transformation component in the supersymmetry trans-
formation of vm.

We end this section with a comment on the correlators which can be derived from Γ and Γ̃ 
as functional derivatives w.r.t. the sources. From the former, which depends on all components 
of the gauge superfield V , one derives the correlators involving all components of the current J. 

S M Kuzenko et alJ. Phys. A: Math. Theor. 53 (2020) 064003
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There are purely local terms contained in Γ[V] which are linear in the sources (C,χ, M). They 
can be read off from the component expansion of the counterterm C and the fact that Γ̃[V] is 
independent of them. The operators of the microscopic theory, to which the components of 
V  couple, are read off from the JV  coupling. Those coupling to (C,χ, M) are ultralocal null 
operators. For instance, Γ[V] contains the term Mλ2; e.g. in the free massless WZ model, one 
finds: M couples to AF̄  and λ couples to ψĀ, where (A,ψ, F) are the components of a chiral 
multiplet. One easily verifies that the three point function 〈AF̄ ψĀψĀ〉 is purely local and, e.g. 
in Pauli–Villars regularization, only the regulator field contributes. The terms in Γ[V] which 
depend on C and χ can be analysed similarly. They also correspond to purely local three-point 
functions with one operator insertion sourced by C or χ.

In contrast to this, Γ̃ does not carry information about the correlators of the ultralocal 
null operators, but they are needed for the supersymmetric Ward identities to be satisfied. To 
restore them, the local correlators derived from the counterterm C have to be added by hand. 
They contain components of J whose sources are absent in Γ̃, but they can be recovered as 
explained in general terms in the introduction and explicitely for the U(1) flavour current in 
this section.

3.  Super-Weyl anomalies

In the following we are interested in the quantum aspects of superconformal field theories 
coupled to supergravity. There exist two powerful superspace formulations for N = 1 con-
formal supergravity [12, 13]: (i) the U(1) superspace of [14] (see [6] for a review); and (ii) 
the conformal superspace developed in [15]7. However the simplest and most economical 
approach to describe N = 1 conformal supergravity in superspace is to make use of the 
Grimm–Wess–Zumino geometry [17], which underlies the Wess–Zumino formulation for old 
minimal supergravity [18] (see [5] for a review) developed independently in [19, 20]. In order 
to formulate conformal supergravity, the gauge group of old minimal supergravity has to be 
extended to include the super-Weyl transformations, originally introduced in [21]. The spe-
cific feature of superconformal field theories is that they are invariant under arbitrary super-
Weyl transformations.

The supergravity multiplet is described by covariant derivatives DA = (Da,Dα, D̄α̇), equa-
tion (A.1), such that the torsion and curvature tensors obey nontrivial constraints [18]. These 
constraints were solved by Siegel [22] in terms of two unconstrained prepotentials, a real axial 
vector Hm(x, θ, θ̄) and a chiral density ϕ(x, θ). The former is equivalent to the gravitational 
superfield introduced by Ogievetsky and Sokatchev [23]. The latter determines the integration 
measure E of chiral subspace, E = ϕ3. In this paper we will use the realization of Hm given 
in [23].

A finite super-Weyl transformation acts on Hm and ϕ by the rule [24]

Hm → Hm, ϕ → eΣϕ,� (3.1)

with Σ a covariantly chiral scalar. This transformation law implies that locally superconfor-
mal field theories do not couple to ϕ at the classical level, since all dependence on ϕ can be 
absorbed into matter supermultiplets.

Another fundamental symmetry group acting on Hm and ϕ is the supergroup of ‘holomor-
phic coordinate transformations’ (‘λ-transformations’ in the following):

7 The conformal superspace approach [15] is a master formulation for conformal supergravity. All other off-shell 
formulations, including the superconformal tensor calculus [12, 13] (see, e.g. [16] for a review), can be obtained 
from conformal superspace by partially fixing the gauge freedom.
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y′m = f m(y, θ), ȳ′m = f̄ m(ȳ, θ̄), θ′α = fα(y, θ), θ̄′α̇ = f̄ α̇(ȳ, θ̄).� (3.2)

Infinitesimal λ-transformations are parametrized by chiral superfields λm(y, θ),λα(y, θ) and 
their complex conjugate anti-chiral fields λ̄m(ȳ, θ̄), λ̄α̇(ȳ, θ̄), i.e.

f m(y, θ) = ym − λm(y, θ), fα(y, θ) = θα − λα(y, θ).� (3.3)

The transformations of the real coordinates xm are defined in an implicit fashion by

xm → x′m =
1
2

f m(x + i H, θ) +
1
2

f̄ m(x − i H, θ̄),

θα → θ′α = fα(x + i H, θ), θ̄′α̇ → θ̄α̇ = f̄ α̇(x − i H, θ̄).
� (3.4)

The transformations of the gauge fields Hm and ϕ under λ-transformations are

H′m(x′, θ′, θ̄′) = − i
2

f m(x + i H, θ) +
i
2

f̄ m(x − i H, θ̄)� (3.5)

and

ϕ′(y′, θ′) =
[

Ber
(

∂(y, θ)
∂(y′, θ′)

)]1/3

ϕ(y, θ)� (3.6)

respectively. Here ‘Ber’ denotes the Berezinian also known as the superdeterminant. The 
infinitesimal versions of these transformations are

δλHm =
i
2
λm(x + iH, θ)− i

2
λ̄m(x − iH, θ̄)

+

(
1
2
λn(x + iH, θ)∂n + λα(x + iH, θ)∂α + c.c.

)
Hm,

�
(3.7a)

δλϕ = (λm∂m + λα∂α)ϕ+
1
3
(∂mλ

m − ∂αλ
α)ϕ.� (3.7b)

It is worth remarking that in the case of Minkowski superspace the prepotentials Hm and ϕ 
can be chosen in the form

Hm = θσaθ̄ δa
m,� (3.8a)

ϕ = 1,� (3.8b)

by partially fixing the λ gauge freedom. The rigid superconformal transformations of 
Minkowski superspace are those λ-transformations which preserve Hm given by (3.8a). They 
are (see e.g. [7])

λa(y, θ) = aa + σya + Ka
byb + yaf 2 − 2f afbyb + 2i θσaε̄− θσaσ̃bηyb,� (3.9a)

λα(y, θ) = eα − i
2
(η̄σ̃b)

αyb +
1
2
(
σ + iρ

)
θα − Kα

βθ
β + f ayb(θσaσ̃b)

α + ηαθ2,
� (3.9b)

with all the parameters being constant. Here the real scalar parameters σ and ρ  generate 
scale and R-symmetry transformations. The real vectors aa and f a correspond to the spacetime 
translations and special conformal transformations, respectively, while the real antisymmetric 
parameter Kab generates the Lorentz transformations. Finally, the spinor parameters (eα, ēα̇) 
and (ηα, η̄α̇) generate the Q and S supersymmetry transformations, respectively. The isom-
etries of Minkowski superspace are those λ-transformations which preserve both Hm and ϕ 
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given by equations (3.8a) and (3.8b). They are obtained from (3.9) by switching off the param-
eters σ, ρ , f a and ηα.

Let S[χ, H,ϕ, ϕ̄] be the action of matter superfields χ (with suppressed indices) coupled 
to the supergravity sources. The coupling should be invariant under λ-transformations. All 
information about the coupling of matter to supergravity is encoded in two tensor superfields, 
the supercurrent Ja = J̄a and the supertrace T, which originate as covariantised variational 
derivatives of S[χ, H,ϕ, ϕ̄] with respect to the supergravity prepotentials. If the matter and 
source superfields are given small disturbances, the action varies as

δS =

∫
d4xd2θd2θ̄ E ∆Hαα̇Jαα̇ +

{∫
d4xd2θ E δ lnϕ T + c.c.

}
+

∫
δS
δχ

δχ.

� (3.10)
Here E−1 = Ber(EA

M) is the full superspace measure, E = ϕ3 the chiral measure and ∆/∆Hαα̇ 
denotes a covariantised variational derivative with respect to the gravitational superfield [25]. 
By construction, the supertrace is covariantly chiral, D̄α̇T = 0.

If the matter supermultiplets obey their equations  of motion, δS/δχ = 0, the condition 
that the matter action is invariant under λ-transformations is expressed as the conservation 
equation

D̄α̇Jαα̇ =
1
3
DαT .� (3.11)

The supercurrent Jαα̇ reduces to the Ferrara–Zumino multiplet [26] when the sources are put 
to zero, equation (3.8).

In a superconformal field theory, the super-Weyl transformation (3.1) is accompanied by 
a local rescaling of the matter supermultiplets of the form χ → χ′ = e−d+Σ−d−Σ̄χ, for some 
parameters d±, such that the action is super-Weyl invariant,

δΣS =

∫
d4x d2θ E Σ T + c.c. +

∫
δΣχ

δS
δχ

= 0.� (3.12)

This implies that the classical supertrace vanishes,

T = 0,� (3.13)

on the mass shell. The two conservation equations (3.11) and (3.13) following from the two 
classes of symmetries cannot be both implemented in the quantum theory, leading to the 
superconformal anomalies.

We now proceed to a detailed discussion of the quantum theory. Integrating out the matter 
supermultiplets results in an effective action Γ[H,ϕ, ϕ̄]. The effective action Γ does not respect 
both the super-Weyl and λ-transformation symmetries, i.e. an anomaly appears. In this paper 
we will use as a basic starting point the ‘superspace scheme’ where λ-transformations are 
preserved8.

Invariance of the effective action under λ-transformations is encoded in the conservation 
equation

D̄α̇〈Jαα̇〉 =
1
3
Dα〈T〉.� (3.14)

On the other hand in the quantum theory (3.13) is violated. Here the quantum supertrace is 
defined by

8 In the non-supersymmetric setting this would correspond to the scheme where diffeomorphism invariance is kept 
and Weyl symmetry is sacrificed; see appendix B.
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δΣΓ[H,ϕ, ϕ̄] =
∫

d4x d2θ E Σ 〈T〉+ c.c.� (3.15)

where

δΣHm = 0, δΣϕ = Σϕ.� (3.16)

The appearance of a super-Weyl anomaly in the quantum theory, i.e. the violation of (3.13), 
means that the effective action acquires a dependence on the chiral prepotential ϕ and its 
conjugate ϕ̄, unlike the classical action of a superconformal field theory. This dependence 
is ‘cohomologically nontrivial’ in the sense that by adding local counterterms the effective 
action cannot be made independent of ϕ and ϕ̄ without spoiling the invariance under λ-trans-
formations. In the next section we will analyze in detail the subset of λ-transformations which 
are incompatible with the vanishing of the quantum supertrace.

According to the cohomological analysis of [3] and explicit supergraph calculations9 for 
the scalar and vector supermultiplets [27], the general form of 〈T〉 in classically super-Weyl 
invariant theories is

〈T〉 = 2(c − a)WαβγWαβγ +
1
2

a(D̄2 − 4R)(GaGa + 2RR̄),� (3.17)

modulo cohomologically trivial contributions. Here a and c are two numerical coefficients 
whose values depend on the microscopic superconformal field theory10. Equation (3.17) is 
equivalent to the fact that the super-Weyl variation of the effective action is (d4|4z = d4xd2θd2θ̄ )

δΣΓ[H,ϕ, ϕ̄] = 2(c − a)
∫

d4xd2θ E ΣWαβγWαβγ + c.c.

− 2a
∫

d4|4z E (Σ + Σ̄)(GaGa + 2RR̄).
�

(3.18)

We are interested in a local action K = K[H,ϕ, ϕ̄;Ω, Ω̄] (also called ‘WZ action’ in 
the following) that gives the transformation of Γ under a finite super-Weyl transformation 
Ω ≡ expΣ, where Ω is a covariantly chiral scalar superfield:

K ≡ Γ[HΩ,ϕΩ, ϕ̄Ω]− Γ[H,ϕ, ϕ̄]� (3.19)

with

HΩ = H, ϕΩ = Ωϕ, ϕ̄Ω = Ω̄ϕ̄.� (3.20)

The required action was constructed in [29] by integrating the anomaly to finite transforma-
tions with parameter Ω and has the form

K[H,ϕ, ϕ̄;Ω, Ω̄] = 2(c − a)
∫

d4xd2θ E lnΩWαβγWαβγ + c.c.

− 2 a
∫

d4|4z E
{
ln(ΩΩ̄)(GaGa + 2RR̄)− 1

2
Gαα̇D̄α̇ ln Ω̄Dα lnΩ

− 1
4

(
R(D lnΩ)2 + R̄(D̄ ln Ω̄)2

)
+

1
16

(D lnΩ)2(D̄ ln Ω̄)2

+
i
4
Dαα̇(ln Ω̄− lnΩ)D̄α̇ ln Ω̄Dα lnΩ

}
.

�

(3.21)

9 The work described in [27] was completed in 1984 (the same year as [3]) but then it took over a year to obtain the 
KGB clearance required for publication in the West.
10 The general structure of the super-Weyl anomaly, equation (3.17), can be extracted from the earlier work of 
McArthur [28].
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An alternative derivation is presented in appendix A. Under the infinitesimal super-Weyl 
transformation (3.16) accompanied with

δΣΩ = −ΣΩ,� (3.22)

the functional (3.21) varies as δΣK[H,ϕ, ϕ̄;Ω, Ω̄] = −δΣΓ[H,ϕ, ϕ̄].
In addition to the above equation defining the super-Weyl transformation of the ‘super-

space scheme’ effective action, we should also give its behaviour under λ-transformations 
which is simply

δλΓ[H,ϕ, ϕ̄] = 0.� (3.23)

The transformations of the arguments are given in (3.5) and (3.6).
Given the fact that ϕ is needed just in the presence of the super-Weyl anomaly, one won-

ders how unique the completion of H by this additional degree of freedom is. As an extension 
of the Weyl-invariant formulation for gravity [30, 31], every off-shell supergravity theory can 
be realised as a super-Weyl invariant coupling of conformal supergravity to a compensat-
ing supermultiplet, see e.g. [6, 32–34]. In such a setting, any supergravity-matter system is 
described by a super-Weyl invariant action functional. Different off-shell supergravity theories 
correspond to different compensating supermultiplets. Locally superconformal theories are 
independent of any compensator. In the case of a classically superconformal theory, the pres-
ence of a super-Weyl anomaly at the quantum level is equivalent to a nontrivial dependence of 
the effective action on the compensating supermultiplet, as advocated in [35]. The compensat-
ing super-Weyl invariance is not anomalous [36].

In the case of old minimal supergravity [18–20], the compensator is a nowhere vanishing 
covariantly chiral scalar S0, D̄α̇S0 = 0, with the super-Weyl transformation

S0 → e−ΣS0.� (3.24)

In the superconformal setting, the effective action Γ[H,ϕ, ϕ̄] is replaced by the following 
super-Weyl invariant functional

Γ[H,ϕ, ϕ̄, S0, S̄0] = Γ[H,ϕ, ϕ̄] + K[H,ϕ, ϕ̄, S0, S̄0].� (3.25)

In the compensator approach, the super-Weyl anomaly is manifested in the dependence of 
Γ[H,ϕ, ϕ̄, S0, S̄0] on S0 and its conjugate S̄0. Choosing the super-Weyl gauge S0  =  1 reduces 
Γ[H,ϕ, ϕ̄, S0, S̄0] to the original effective action, Γ[H,ϕ, ϕ̄].

In the framework of the new minimal formulation for N = 1 supergravity [37, 38], the 
compensator is a covariantly linear supermultiplet11 L constrained by

(D̄2 − 4R)L = 0, L̄ = L.� (3.26)

Its super-Weyl transformation is uniquely fixed by these constraints to be [7]

L → e−Σ−Σ̄L.� (3.27)

Unlike the effective action (3.25) constructed using the chiral compensator S0, it appears that 
there is no way to complete Γ[H,ϕ, ϕ̄] to a super-Weyl invariant functional by adding local 
structures depending only on the linear compensator, in addition to Hm,ϕ and ϕ̄. This is 
analogous to the non-minimal formulation for N = 1 supergravity [32, 39], for which the 
compensator is a complex linear supermultiplet Υ, only constrained by

11 The linear compensator [33] is described by a tensor multiplet [40] such that its field strength L is nowhere 
vanishing.
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(D̄2 − 4R)Υ = 0.� (3.28)

Under super-Weyl transformation it transforms as [7]

Υ → exp
(3n − 1

3n + 1
Σ− Σ̄

)
Υ,� (3.29)

with n �= −1/3, 0 a real parameter. It does not seem to be possible to complete Γ[H,ϕ, ϕ̄] to a 
super-Weyl invariant functional by adding local structures depending only on Υ and its conju-
gate Ῡ. These conclusions agree with the old analysis of [41] which established the incompat-
ibility of the new minimal and non-minimal supergravity formulations with the existence of 
local super-Weyl anomalies. In this sense indeed the H, ϕ setup summarised above is unique 
and we will formulate all our further discussion in this framework.

4. The minimal Q-supersymmetric scheme

We will first try in superspace to find a scheme in which the anomaly in super-Weyl transfor-
mations is shifted to λ-transformations. This will allow us to identify those λ-transformations 
which are necessarily anomalous in such a scheme.

Starting with the standard scheme Γ, we want to reach the configuration H,ϕ = 1, ϕ̄ = 1. 
This can be achieved by doing a super-Weyl transformation with Ω = ϕ−1. As the super-Weyl 
transformation is anomalous, in order to have Γ at the new configuration we have to use (3.19) 
and (3.21), i.e.

Γ[H, 1, 1] = Γ[H,ϕ, ϕ̄] + K[H,ϕ, ϕ̄,ϕ−1, ϕ̄−1].� (4.1)

The rhs of the equation  is ϕ-independent. Therefore Γ[H, 1, 1] differs from Γ[H,ϕ, ϕ̄] by a 
local counterterm and we can define a new scheme with a new generating functional Γ̃ by

Γ̃[H] ≡ Γ[H, 1, 1].� (4.2)

In the new scheme Γ̃ is independent of ϕ and therefore the super-Weyl anomaly vanishes, i.e.

〈T̃〉 = 0.� (4.3)

The variation of Γ̃ under finite λ-transformations is not difficult to calculate:

δλΓ̃ ≡ Γ[Hλ, 1, 1]− Γ[H, 1, 1]

=
[
Γ[Hλ, B, B̄]− Γ[H, 1, 1]

]
−
[
Γ[Hλ, B, B̄]− Γ[Hλ, 1, 1]

]
,

�
(4.4)

where B denotes the weight factor in (3.6),

B =

[
Ber

(
∂(y, θ)
∂(y′, θ′)

)]1/3

,� (4.5)

associated with the λ-transformation. The expressions in brackets in the second line of (4.4) 
are variations for the standard scheme: the first is zero due to λ-invariance of Γ, while the 
second is given by (3.21) for ϕ = 1 and Ω = B. In the infinitesimal case

B = 1 +
1
3
(
∂mλ

m − ∂αλ
α
)
≡ 1 +Σ(λ)� (4.6)
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and therefore the anomaly becomes

δλΓ̃[H] = −
∫

d4xd2θΣ(λ)〈T〉+ c.c.,� (4.7)

where 〈T〉 is evaluated at ϕ = 1. In particular we see that only λ-transformations with B �= 1 
are anomalous.

We will discuss first the Ward identities associated with the non-anomalous symmetries in 
this scheme. Along with (4.3) one can use (4.7) to derive

D̄α̇〈J̃αα̇〉 =
1
3
Dα〈T〉,� (4.8)

with T given by (3.17), evaluated in the configuration (H, 1, 1). We remark that the appear-
ance of T and not of T̃  in the rhs of (4.8) shows that in this new scheme the λ-transformations 
are anomalous. On the other hand the ‘improvable’ form of (4.8) is related to the fact that the 
subgroup of λ-transformations with unit Berezinian remains non-anomalous.

Once the symmetries of the ‘minimal Q-supersymmetric’ scheme defined by the addi-
tion of the local counterterm (4.1) are understood, we could study the detailed properties 
of Γ̃ in the ‘ultralocal’ gauge it defines. There is a one-to-one correspondence between the 
ultralocal gauge condition which, in the notation of the introduction is specified by the field 
dependent G0(A), and the scheme in which the gauge transformation G0(A) is anomaly free. 
In this example we started with the scheme and we identified as the anomaly free direction 
the λ-transformations with unit Berezinian and ϕ, ϕ̄ fixed to 1. Therefore the ultralocal gauge 
transformations correspond to λ-transformations f 0(H) which brings H to the form:

H̃m(θ, θ̄) =
i
2
θ2Sm − i

2
θ̄2S̄m + θσaθ̄ea

m + i θ̄2θαΨm
α − i θ2θ̄α̇Ψ̄

mα̇

+ θ2θ̄2
(

Am − i
4

[
Sn∂n(S̄m)− S̄n∂n(Sm)

])
,

�
(4.9)

while

ϕ = 1, ϕ̄ = 1� (4.10)

is reached by a super-Weyl transformation with Σ = − logϕ under which Hm is invariant. The 
relations (4.9) and (4.10) define a WZ gauge in old minimal supergravity.

We will not need the explicit form of f 0(H). Since the transformation is non-anomalous, the 
H configuration given by (4.9) is a convenient labelling of the gauge orbit. By construction 
the generating functional in this scheme is independent of the three lowest components H, i.e. 
those which do not appear in (4.9) as they were gauged away:

Γ̃[H] = Γ̃[H = H̃].� (4.11)

The effective action Γ̃[H] is invariant under those gauge transformations which are used to 
arrive at the WZ gauge conditions (4.9) and (4.10), namely volume preserving λ-transforma-
tions and arbitrary super-Weyl transformations.

We now study the remaining symmetries of the generating functional in the gauge fixed 
form. The symmetries in the superspace formulation are understood, i.e. they are non-anom-
alous or anomalous depending on whether the Berezinian is equal to or different from one, 
respectively.

We start with the non-anomalous symmetries. In infinitesimal form the Berezinian being 
one gives the constraint

S M Kuzenko et alJ. Phys. A: Math. Theor. 53 (2020) 064003



16

Σ(λ) =
1
3
(∂mλ

m − ∂αλ
α) = 0.� (4.12)

These non-anomalous transformations leave H inside the gauge and are therefore simply 
residual gauge transformations. Their general (infinitesimal) form is

λm(θ) = am + 2iθσaε̄ea
m − 2θεSm + θ2sm� (4.13a)

λα(θ) = eα +
1
2
θα∂mam − Kα

βθ
β + θ2∂m

[
i(ε̄σ̃a)αea

m + eαSm
]
,� (4.13b)

where the components obey the conditions

ām = am, Kαβ = Kβα, ∂msm = 0.� (4.14)

The parameters am, Kα
β and εα correspond to general coordinate transformations, local 

Lorentz transformations and local Q-supersymmetry transformations, respectively. They are 
all non-anomalous. The identification of the parameters with the various symmetries proceeds 
by working out their action on the components of Hm, using the infinitesimal form of (3.5), 
see [7, 42]. As shown in [42], the commutator of two such gauge preserving transformations 
preserves the gauge as well.

The gauge transformation generated by the complex transverse parameter sm acts on the 
complex field Sm as

δsSm = sm,� (4.15)

while all other fields are invariant. This identifies Sm as the Hodge dual of a complex gauge 
three-form. Then

B := ∂mSm� (4.16)

and its conjugate B̄ are the only independent gauge-invariant field strengths. The fields {
ea

m, Ψmα, Ψ̄m
α̇, Am, B, B̄

}
 constitute the multiplet of old minimal supergravity.

In the parametrisation (4.13) for spacetime diffeomorphisms, the component fields in (4.9) 
are densities. In order to deal with true tensor fields, we have to switch to the following para-
metrisation [42]

Hm(θ, θ̄) =
i
2

e
(
θ2Sm − θ̄2S̄m

)
+ e θσaθ̄ea

m + i e
3
2

(
θ̄2θαΨm

α − θ2θ̄α̇Ψ̄
mα̇

)

+ e2 θ2θ̄2
(

Am − i
4e

[
Sn∂n(eS̄m)− S̄n∂n(eSm)

])
.

�

(4.17)

Some of the parameters in (4.13) should also be re-defined, in particular

sm → esm, ∇msm = 0 ⇐⇒ sm = εmnrs∇nfrs.� (4.18)

We now discuss the λ-transformations with Berezinian different from one. Since they lead 
out of the special gauge (4.9) they should be accompanied by a compensating gauge trans-
formation. Alternatively their action could be calculated using their unconstrained form using 
(4.7) with H having the special form. These transformations are all anomalous. In particular 
they include S-supersymmetry, Weyl transformations and R-symmetry. In addition there is the 
transformation of the Sm gauge field with transformation

δsSm = sm� (4.19)

which in this scheme is anomalous if ∂msm �= 0.
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5. The Wess–Zumino gauge and scheme

Starting with the generating functional Γ[H,ϕ, ϕ̄], an extended class of ‘ultralocal’ super-
Weyl and λ-transformations allows us to reach the configuration

Hm
WZ(θ, θ̄) = θσaθ̄ea

m + i θ̄2θαΨm
α − i θ2θ̄α̇Ψ̄

mα̇ +
1
2
θ2θ̄2

(
Am +

1
2

ea
mεabcdωbcd

)
,� (5.1)

and

ϕ = ϕ̄ = 1,� (5.2)

where ωbcd denotes the torsion-free spin connection. This defines the WZ gauge, whose field 
content is that of conformal supergravity. The transformations leading to this configuration are 
anomalous, so we cannot have a ‘gauge fixing’ in the usual sense. We can, however, restrict Γ 
to this configuration, i.e. define an effective action in this gauge by

ΓWZ[HWZ] ≡ Γ[H = HWZ,ϕ = 1, ϕ̄ = 1].� (5.3)

It is ΓWZ  which corresponds to the analysis carried out in [43, 44].
Under infinitesimal λ-transformations ΓWZ[HWZ] transforms as

δλΓWZ[H|WZ] = −
∫

d4xd2θΣ(λ)〈T〉+ c.c.,� (5.4)

where Σ(λ) is defined in (4.6), and the anomalous supertrace 〈T〉, equation (3.17), is evalu-
ated at ϕ = 1 and H = HWZ. Here we have to restrict the λ-transformations to those which 
preserve the WZ gauge for Hm. They will be discussed at the end of this section.

Any further action of ultralocal symmetries on ΓWZ  is known already for nonsupersym-
metric theories (like e.g. the shift of the Weyl anomaly to diffeomorphisms) so in the super-
conformal framework the WZ gauge represents an extremal situation. The exact action of the 
symmetries in the WZ gauge is completely fixed by the algebra in superspace. Their restric-
tion to the WZ gauge is unique and it is valid independently of any assumption on the anoma-
lies. A characteristic feature of this algebra is the local dependence of the structure ‘constants’ 
on the gauge fields, reflecting the compensating gauge transformations needed to stay in the 
WZ gauge. The cohomological analysis of this algebra was done in [44] with the conclusion 
that in addition to S-supersymmetry current, Weyl transformations and R-symmetry gauge 
anomalies there are anomalies also in the Q-supercurrent. There are exactly two cohomologi-
cally nontrivial solutions labelled by the a and c coefficients. In the Introduction we argued on 
general grounds that in such a situation one can ‘uplift’ the WZ gauge, i.e. find a ‘scheme’ in 
superspace such that ΓWZ  is the gauge fixing of Γ supplemented by local counterterms which 
define the scheme. We now construct this scheme explicitly.

Consider a WZ gauge configuration of the form (5.1) and perform a finite λ-transformation 
defined by f (y, θ):

y′m = f m(y, θ) ≡ ym − θ2Sm(y) , θ′α = θα, θ̄′α̇ = θ̄α̇.� (5.5)

Using the transformation rule

x′m + i H′m(x′, θ′, θ̄′) = f m(xm + i HWZ)� (5.6)

and its complex conjugate and the terminating expansion in θ2, it is easy to show that

H′(x, θ, θ̄) = H̃(x, θ, θ̄)� (5.7)
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where H̃  is the configuration defined in the minimal Q-supersymmetric scheme (4.9). 
Moreover, the Berezinian of the transformation (5.6) is

B3 = 1 + θ2∂mSm = 1 + θ2B.� (5.8)

Then using the minimal Q-supersymmetric scheme we obtain

Γ̃[H̃] = Γ̃[HWZ]− K[H̃, 1, 1; B, B̄] .� (5.9)

Combining this with (4.1) we obtain

ΓWZ[HWZ] = Γ[H,ϕ, ϕ̄] + K[H,ϕ, ϕ̄;ϕ−1, ϕ̄−1] + K[H̃, 1, 1; B, B̄].� (5.10)

In the second K term above we could replace H̃  with the generic configuration H by using the 
λ-transformation group element f 0(H).

The rhs of (5.10) depends only on HWZ, together with ϕ = ϕ̄ = 1. This proves that the 
action restricted to the WZ gauge corresponds to a ‘scheme’, i.e. starting with the ‘standard 
superspace scheme’ represented by Γ[H,ϕ, ϕ̄], we have added explicit local counterterms, i.e. 
the two K-functionals. All the properties of the WZ gauge can now be read off from (5.10). In 
particular the violation of Q-supersymmetry is all in the second K-term. It explicitly breaks 
supersymmetry due to the presence of B, which is not scalar chiral superfield. But the anomaly 
in Q-supersymmetry does not have any fundamental significance: it can be removed by simply 
adding a local counterterm −K[H̃, 1, 1; B, B̄]. We could be more specific about the shifting of 
the anomalies we used: comparing with the minimal Q-symmetric scheme it is evident that 
Q-supersymmetry became anomalous when we gauged away the Sm field, even though the 
required transformation

δSm = sm� (5.11)

with ∂msm �= 0 is anomalous. Therefore we simply shifted the anomaly from the transforma-
tion of Sm to Q-supersymmetry. In appendix B we will discuss similar well known shifts of 
anomalies in non-supersymmetric theories.

Let us now discuss the residual symmetries which preserve the gauge (5.1). They are para-
metrized by

λm(θ) = am + 2iθσaε̄ea
m + 2θ2ε̄Ψ̄m, ām = am,� (5.12a)

λα(θ) = eα +
1
2
(σ + iρ)θα − Kα

βθ
β

+ θ2
[
ηα − i(∇bε̄σ̃

b)α + (ε̄σ̃b)
α
( i

2
ωc

cb +
1
4
εbcdeωcde

)]
.

�

(5.12b)

Here the component parameters correspond to spacetime reparametrisations (am), local Lorentz 
(Kαβ = Kβα), Q-supersymmetry (eα), S-supersymmetry (ηα), local scale (σ) and R-symmetry 
(ρ) transformations, i.e. the parameters of the superconformal group. The transformations 
under which ΓWZ  is non-anomalous, i.e. which satisfy Σ(λ) = 0, can be parametrized as

λm(θ) = am, λα(θ) =
1
2
θα∂mam + Kα

βθ
β .� (5.13)

These are diffeomorphisms and local Lorentz transformations.
With this parametrisation (5.13) for spacetime diffeomorphisms, the component fields in 

(5.1) are no longer vector fields with respect to the index ‘m’, instead they are vector densities. 
In order to work with true vector fields, we have to switch to the following parametrisation 
(compare with [42])
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Hm(θ, θ̄) = e θσaθ̄ea
m + i e

3
2

(
θ̄2θαΨm

α − θ2θ̄α̇Ψ̄
mα̇

)

+
1
2

e2 θ2θ̄2
(

Am +
1
2

ea
mεabcdωbcd

)
,

�
(5.14)

with e = det(em
a). The gauge freedom is then described by parameters

λm(θ) = am + 2ie
1
2 θσaε̄ea

m + 2e θ2ε̄Ψ̄m,� (5.15a)

λα(θ) = e−
1
2 eα − 1

2

(
3(σ + i ρ)− ∂mam + i(εσbΨ̄

n −Ψnσbε̄)en
b
)
θα − Kα

βθ
β

+ e
1
2 θ2

[
ηα − i(∇bε̄σ̃

b)α + (ε̄σ̃b)α
(
− i

2
eb ln e +

i
2
ωc

cb +
1
4
εbcdeω

cde
)]

,
� (5.15b)

with ea = ea
m∂m. For Σ(λ) we obtain

Σ(λ) = σ + i ρ+
i
3
(εσaΨ̄

m −Ψmσaε̄)em
a +

2
3

e
1
2

(
θη + 2iθσa∇aε̄

)

+
2
3

eθ2∇m(ε̄Ψ̄
m)

� (5.16)

which is independent of the parameters for general coordinate transformations (am) and local 
Lorentz-transformations (Kα

β), the only remaining non-anomalous symmetries of ΓWZ .

6.  Discussion

While anomalies in supersymmetric theories obey the general constraints of any relativistic 
QFT following from analyticity and unitarity, they have specific features caused mainly by 
the proliferation of ‘ultralocal null operators’. Related to that it is tempting to study anoma-
lies in gauges in which most of these operators are put to zero and one concentrates on the 
anomalies related to ‘null divergences’. We called these gauges WZ gauge generically. In such 
a situation, when the operators are coupled to source gauge fields, the algebra of symmetry 
transformations becomes field dependent.

The cohomology problem for this algebra has nontrivial solutions where locality, essential 
for the formulation of the cohomology, is defined in terms of the still unfixed gauge fields. 
The dimension of the space of nontrivial solutions of the cohomology problem is correctly 
obtained by this procedure but the characterization of the solutions in terms of the necessarily 
anomalous symmetries is not always valid. The reason is that the class of allowed local coun-
terterms is much larger than the ones realized in the WZ gauges. Polynomials in momenta can 
be added to correlators in the microscopic theory or, equivalently, local terms in the gauge 
field can be added to the effective action. This is the case even when the operators are null, i.e. 
their correlators do not have an imaginary part: then the added correlators are just polynomials 
or, equivalently, the added local terms contain gauge fields which are not really coupled in the 
microscopic theory. This freedom is missed when one goes to the fixed gauge and therefore 
the possibility of shifting the anomaly from one symmetry to another is reduced.

A similar situation occurs already in nonsupersymmetric theories for trace anomalies, as 
we discuss in appendix B. The trace of the energy-momentum tensor is an ‘ultralocal null 
operator’ and we can go to a gauge where all its correlators are put to zero. Then in this gauge 
an anomaly appears in the conservation of the energy-momentum tensor. The dimension of the 
space of cohomologically nontrivial solutions (one type A and a number of space time dimen-
sion dependent type B [45]) is correctly reproduced, but it would be incorrect to conclude that 
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the conservation of the energy-momentum tensor is necessarily anomalous. When one adds 
the ‘Weyl mode’ in the enlarged gauge field space, the anomaly can be shifted to the trace in 
a new scheme and the conservation of the energy-momentum tensor is reinstated: by adding 
pure polynomials in momenta for the correlators of the trace the Ward identities following 
from conservation are satisfied.

In this paper we discussed in detail examples of N = 1 supersymmetric theories in four 
dimensions. The superspace formulation is very convenient as it provides a large enough 
space of gauge directions or, equivalently, operators in the microscopic theory for which the 
local counterterms could appear. Then we could discuss systematically the restrictions which 
appear in a given gauge and to what scheme they correspond in superspace. The relation 
between the superspace formulation and the WZ gauge is an equivalence: to every solution of 
the cohomology problem in the WZ gauge there corresponds a scheme in superspace such that 
the generating functional reproduces the exact dependence on the gauge fixed fields in the WZ 
gauge. Then one can make changes in the scheme in superspace and thereby shift the anomaly.

In the flavour case there is a well-known apparent violation of global Q-supersymmetry 
in the WZ gauge. In superspace, however, this turns out to be just another scheme where 
a nonsupersymmetric counterterm was added to the action. Removing this term restores 
supersymmetry.

Microscopic superconformal models allow different partial gauge fixings. Having a scheme 
in superspace where the super-Weyl mode is put to one is shown to be equivalent to fixing 
the gauge to the minimal one preserving non-anomalous Q-supersymmetry. The field content 
in this gauge contains, in addition to the vierbein, gravitino and R-current gauge field, an 
additional field Sm. This field content is enough to realize the anomalies for S-supersymmetry, 
R-symmetry and Weyl invariance, leaving diffeomorphism invariance and Q-supersymmetry 
non-anomalous.

If one does an additional gauge fixing putting Sm to zero, one reaches a WZ gauge in which 
Q-supersymmetry is anomalous. This can be understood as a result of shifting the anomaly in 
the Sm shift invariance to Q-supersymmetry. Obviously the Q-supersymmetry anomaly can be 
removed by the opposite process.

One can continue to an even ‘more physical’ gauge where also the Weyl mode of the metric 
is fixed, in which case not only Q-supersymmetry but also diffeomorphism invariance would 
look anomalous.

The common feature of the above examples is the apparent anomaly in Q-supersymmetry. 
The explicit realizations show exactly how the apparent anomalies in Q-supersymmetry were 
produced, by simply choosing schemes where Q-symmetry violating local counterterms were 
added to the effective action.

In terms of physical applications, an apparent anomaly in Q-symmetry would not change 
the consequences of anomaly matching, provided the same gauge is used in the UV and IR. 
On the other hand, if one wants to make supergravity fields dynamical, the matter (micro-
scopic) theory should couple in an anomaly free way. Therefore, while generically we will not 
be able to couple superconformal matter to dynamical superconformal gravity, by choosing 
a scheme where Q-supersymmetry is non-anomalous we could couple to dynamical Einstein 
supergravity.

The analysis presented in this paper, in particular the nonexistence of anomalies in 
Q-supersymmetry, relied on the existence of a superspace formulation. In principle this is not 
necessary: an analysis of the correlators of the microscopic theory taking into account all the 
possible ‘ultralocal null operators’ could replace it. In any case, the existence of a nonremov-
able anomaly in Q-supersymmetry requires more solid arguments than just seing the anomaly 
in a particular WZ-like gauge.
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Appendix A.  Generating the super-Weyl anomaly

The discussion of section 4 used the existence of the local action (3.21) whose Weyl varia-
tion produces the anomaly. It was used to construct a counterterm which allowed us to go to 
Wess–Zumino gauge without encountering an anomaly in the required symmetry transforma-
tions. In this appendix we present an alternative derivation of this super-space effective action, 
which was originally derived by integrating the Weyl anomaly in superspace [29], using the 
procedure of Wess and Zumino [46]. For a related construction see also [47].

As preparation we need to collect some facts about our approach to N = 1 conformal 
supergravity [12, 13] in superspace, which uses the Grimm–Wess–Zumino geometry [17, 18], 
in conjunction with the super-Weyl transformations discovered by Howe and Tucker [21]. 
They leave the algebra of supergravity covariant derivatives

DA = (Da,Dα, D̄α̇) = EA
M∂M +ΩA

βγMβγ +ΩA
β̇γ̇M̄β̇γ̇� (A.1)

invariant. Here Mβγ = Mγβ and M̄β̇γ̇ = M̄γ̇β̇ are the Lorentz generators. The algebra is given 
in equation (5.5.6) in [7], where other details of the construction can also be found.

A super-Weyl transformation is associated with a chiral parameter Σ, D̄α̇Σ = 0, and its 
complex conjugate Σ̄. Its infinitesimal form is

δΣDα = (
1
2
Σ− Σ̄)Dα −DβΣMαβ ,� (A.2a)

δΣD̄α̇ = (
1
2
Σ̄− Σ)D̄α̇ − D̄β̇Σ̄M̄α̇β̇ ,� (A.2b)

δΣDαα̇ = −1
2
(Σ + Σ̄)Dαα̇ − i

2
D̄α̇Σ̄Dα − i

2
DαΣD̄α̇

−Dβ
α̇ΣMαβ −Dα

β̇Σ̄M̄α̇β̇ ,
�

(A.2c)

which implies that the torsion tensors transform as follows:

δΣR = (Σ̄− 2Σ)R − 1
4
D̄2Σ̄,� (A.3a)

δΣGαα̇ = −1
2
(Σ + Σ̄)Gαα̇ + iDαα̇(Σ̄− Σ),� (A.3b)

δΣWαβγ = −3
2
ΣWαβγ .� (A.3c)
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Finally, δΣE = (Σ + Σ̄)E and δΣE = 3Σ E .
Consider now the following functional

I =
∫

d4|4z E
{
ln(ΩΩ̄)(GaGa + 2RR̄)− 1

4

[
RD2 lnΩ + R̄D̄2 ln Ω̄

]

+
1
2

Gαα̇D̄α̇ ln Ω̄Dα lnΩ +
1
16

D2 lnΩ D̄2 ln Ω̄ + RR̄
}

.
�

(A.4)

Using the super-Weyl transformation of Ω, equation (3.22), the super-Weyl variation of I is

δΣI = −
∫

d4|4z E (Σ + Σ̄)(GaGa + 2RR̄).� (A.5)

To prove this, we use results obtained in [48, 49]. First, if we convert the first line of (A.4) 
into an integral over chiral superspace plus its complex conjugate, we notice the combination 
Ξ lnΩ where

Ξ := −1
4
(D̄2 − 4R)

{
GaGa + 2RR̄ − 1

4
D2R

}
� (A.6)

whose super-Weyl variation can be shown to be

δΣΞ = −3ΣΞ +∆Σ̄.� (A.7)

Here ∆ denotes the following higher-derivative operator

∆Φ̄ := − 1
64

(D̄2 − 4R)
{
D2D̄2Φ̄ + 8Dα(Gαα̇D̄α̇Φ̄)

}
, D̄α̇∆Φ̄ = 0.

� (A.8)
Next we use the relation

δΣ

{
D2D̄2Φ̄ + 8Dα

(
Gαα̇D̄α̇Φ̄

)}
= −(Σ + Σ̄)

{
D2D̄2Φ̄ + 8Dα

(
Gαα̇D̄α̇Φ̄

)}
+ D̄α̇

(
. . .

)
� (A.9)

which is valid if δΣΦ̄ = 0. Finally we need

δΣ

∫
d4|4z E R R̄ = −1

4

∫
d4|4z E (RD2Σ+ R̄ D̄2Σ̄).� (A.10)

The above observations are sufficient to prove (A.5).
We can rewrite I in a different form with the help of the identity

D̄2 ln Ω̄ =
(D̄2 − 4R)Ω̄

Ω̄
+ 4R − (D̄ ln Ω̄)2� (A.11)

and its conjugate. Then I becomes

I =
∫

d4|4z E
{
ln(ΩΩ̄)(GaGa + 2RR̄) +

1
2

Gαα̇D̄α̇ ln Ω̄Dα lnΩ +
1

16
(D lnΩ)2(D̄ ln Ω̄)2

}

− 1
16

∫
d4|4z E

{
(D2 − 4R̄)Ω

Ω
(D̄ ln Ω̄)2 +

(D̄2 − 4R)Ω̄
Ω̄

(D lnΩ)2
}

+
1
16

∫
d4|4z E

(D2 − 4R̄)Ω
Ω

(D̄2 − 4R)Ω̄
Ω̄

.

�

(A.12)

The last line in (A.12) is super-Weyl invariant and can be dropped. The resulting expression 
will be called Ĩ. It is then clear that the combination
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Γ = −2(c − a)
∫

d4x d2θ E lnΩWαβγWαβγ + c.c + 2 a Ĩ� (A.13)

solves (3.18). Using the relations

− i
4

∫
d4|4z E Dαα̇ lnΩ D̄α̇ ln Ω̄Dα lnΩ = − 1

16

∫
d4|4z E (D lnΩ)2D̄2 ln Ω̄

� (A.14)
and its conjugate and

− 1
16

∫
d4|4z E

{
(D2 − 4R̄)Ω

Ω
(D̄ ln Ω̄)2 +

(D̄2 − 4R)Ω̄
Ω̄

(D lnΩ)2
}

=
1
4

∫
d4|4z E

{
R(D lnΩ)2 + R̄(D̄ ln Ω̄)2 + iDαα̇

(
ln Ω̄− lnΩ

)
D̄α̇ ln Ω̄Dα lnΩ

− 1
2
(D lnΩ)2(D̄ ln Ω̄)2

}

�

(A.15)

one shows that (A.13) coincides with the functional −K[H,ϕ, ϕ̄;Ω, Ω̄], see (3.21).
We remark that if we interpret Ω = e−Φ as the dilaton superfield, as was done in [29], we 

can complete the dilaton effective action obtained from −K[H,ϕ, ϕ̄;Ω, Ω̄] by adding a Weyl 
invariant kinetic term

∫
d4|4z E Ω̄ΩF

( (D̄2 − 4R)Ω̄
Ω2 ,

(D2 − 4R̄)Ω
Ω̄2

)
,� (A.16)

where F(ζ, ζ̄) is a real function of one complex variable. Schwimmer and Theisen [29] made 
the simplest choice F(ζ, ζ̄) = 1.

Given the above results, we can construct a non-local action which contains only the super-
gravity fields Hm and ϕ. One possibility is to choose Ω such that it satisfies the super-Weyl 
invariant massless equation

(D2 − 4R̄)Ω = 0� (A.17)

in which case the last two lines of (A.12) vanish. The resulting effective action was con-
structed in [50]. More precisely, the chiral scalar Ω was chosen to coincide with the unique 
solution to (A.17), which was proposed in [51] as a non-local functional of the supergravity 
multiplet, Ω = Ω[H,ϕ, ϕ̄], and is given by

Ω = 1 +
1

4�+
(D̄2 − 4R)R̄,� (A.18)

where �+ denotes the chiral d’Alembertian defined by �+φ = 1
16 (D̄

2 − 4R)(D2 − 4R̄)φ, for 
any covariantly chiral scalar φ12. With this choice of Ω the anomalous action (A.13) is the non-

local effective action of [50] which we denote Γ(I)
anom[H,ϕ, ϕ̄].

There exists a different non-local effective action constructed in [48], Γ(II)
anom[H,ϕ, ϕ̄], which 

makes use of the Green function of the superconformal operator (A.8) and which generates 

the super-Weyl anomaly. Both actions Γ(I)
anom[H,ϕ, ϕ̄] and Γ(II)

anom[H,ϕ, ϕ̄] have the following 

12 This solution is a supersymmetric extension of of the composite scalar field ω = 1 + 1
6 (�− 1

6R)−1R, with R 
the scalar curvature, proposed by Fradkin and Vilkovisky [52]. The scalar field ω  was used by Fradkin and Tseytlin 
[53] to integrate the ordinary Weyl anomalies [45, 54, 55].
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fundamental properties: (i) they are manifestly locally supersymmetric and (ii) they possess 
the same super-Weyl variation,

δΣΓ
(I)
anom[H,ϕ, ϕ̄] = δΣΓ

(II)
anom[H,ϕ, ϕ̄] = δΣΓ[H,ϕ, ϕ̄],� (A.19)

with δΣΓ[H,ϕ, ϕ̄] as in equation (3.18).
It should be mentioned that the above choice for Ω, equation  (A.18), is not unique. A 

slightly different chiral superfield was also used in [50] to integrate the super-Weyl anomaly. 
Interesting options emerge when we consider a solution to the equations of motion of the 
dilaton effective action, see [29] a discussion.

The important question of the analytic properties of these effective actions, i.e. whether they 
correctly reproduce the correlation functions of the supercurrent multiplet, is not addressed 
here. However, the ‘true’ effective action differs from either one by at most a (non-local) 
super-Weyl invariant functional of Hm.

Appendix B.  Conformal anomalies in the ‘physical’ gauge and scheme

Conformal anomalies, in addition to being components of the superconformal anomalies, 
present in a simplified setup the issues we faced in the main text. In a conformal theory, impos-
ing the equations of motion, the energy-momentum tensor Tmn is conserved while its trace Tm

m  
vanishes. In special situations, the free massless scalar in d  =  2 or Maxwell theory in d  =  4, 
the vanishing of the trace does not even require the equations of motion. In every case the trace 
is an ultralocal null operator and therefore the system can be studied in ‘physical’ (analogue of 
Wess–Zumino) gauges using the ultralocality of gauge transformations.

In the general situation we couple the energy-momentum tensor to a metric g on which the 
symmetries act: diffeomorphisms related to conservation of the energy-momentum tensor and 
Weyl transformations related to its tracelessness. The vanishing trace of the energy-momen-
tum tensor means that not all components of the metric are coupled and in a ‘physical’ gauge 
we could restrict the metric to a special class of metrics ĝ which obey det ĝ = 1.

We start by studying the cohomology problem in this special gauge. The only symmetries 
left in this gauge are spacetime diffeomorphisms parametrized by the infinitesimal parameters 
ζm(x). The transformation of ĝ is

δζ ĝmn = ∇̂mζ̂n + ∇̂nζ̂m − 2
d
∇̂ · ζ̂ ĝmn ,� (B.1)

where the covariant derivatives and the operations of raising and lowering indices are per-
formed using the metric ĝ, i.e. ζ̂m = ĝmnζ

n, and the last term is added in order to remain in the 
gauge after the transformation.

The cohomological problem is defined by asking for variations of functionals Γ̂[ĝ] such that

δζ Γ̂ =

∫
ddx ζmAm(ĝ),� (B.2)

where Am is local and the Wess–Zumino condition is obeyed:

δζ1

∫
ddx ζm

2 Am − δζ2

∫
ddx ζm

1 Am =

∫
ddx (ζ1 ∗ ζ2)

mAm,� (B.3)

with

(ζ1 ∗ ζ2)
m ≡ ζn

1∂nζ
m
2 − ζn

2∂nζ
m
1 .� (B.4)
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The nontrivial solutions Am of (B.2) and (B.3) should be such that they do not correspond to 
the variation of a local Γ̂.

In any even dimension there are cohomologically nontrivial solutions given by

Am(ĝ) = ∂mA(g = ĝ).� (B.5)

Here A are the standard Weyl anomalies, i.e.

A(g) = a Ed +
∑

ci Wi� (B.6)

where Ed is the d-dimensional Euler characteristic and Wi are the Weyl invariant type B anom-
alies [45]. This will be discussed further below.

The anomaly modified conservation equation is obtained by taking a functional derivative 
of (B.2) with respect to ζm  and using the chain rule for the lhs We obtain

∇̂mT̂mn =
1
2
∂nA(ĝ),� (B.7)

where T̂  is the automatically traceless energy-momentum tensor defined as

T̂mn ≡ δΓ̂

δĝmn − 1
d

ĝmn ĝrs δΓ̂

δĝrs .� (B.8)

The special form of (B.7) (with the gradient on the rhs) indicates that the anomaly is ‘remov-
able’, i.e. the conservation can be reinstated in another scheme. Indeed, defining

T̃mn ≡ T̂mn −
1
2

ĝmnA� (B.9)

the new energy-momentum tensor will be conserved, but of course will not be traceless.
The special form of (B.7) is also related to the fact that while diffeomorphism invariance 

becomes anomalous in this scheme, the special class of diffeomorphisms with unit determi-
nant continue to be an anomaly free symmetry. Consider for a generic diffeomorphism with 
parameters ζm  the corresponding transformation with parameters:

ζ̃m ≡ ζm − ∇̂m 1
�̂
∇̂ · ζ.� (B.10)

They have vanishing divergence. We expect that the variation of the action vanishes for these 
special transformations:

0 =

∫
ddx ζ̃n∇̂mT̂mn.� (B.11)

Using (B.10) we see that this is indeed the case, after integration by parts, provided the rhs of 
(B.7) is a gradient.

Following our general procedure we would now like to enlarge the space of couplings such 
that we can shift the anomaly away from diffeomorphisms. We add the Weyl mode Σ coupled 
to the trace null operator. This produces an unconstrained metric gmn related to the physical 
gauge metric ĝmn by

gmn = (exp 2Σ) ĝmn� (B.12)

and

exp (2 d Σ) = det (gmn).� (B.13)
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We want to relate Γ̂ to a generating functional Γ in the enlarged space, which depends on gmn, 
preserves diffeomorphism invariance and has an anomaly in the Weyl transformation of the 
metric δσgmn = 2σgmn. This generating functional Γ[gmn] has therefore the properties

δζΓ = 0� (B.14)

and

δσΓ =

∫
ddx

√
gσA.� (B.15)

For a finite Weyl transformation one has

Γ[gmn exp (2σ)] = Γ[gmn] + K[gmn; exp (2σ)],� (B.16)

where e.g. in d  =  4 [56]

K[gmn; exp(2σ)] = a
∫

d4x
√

g
{
σ E4 − 4

(
Rmn − 1

2
gmnR

)
∇mσ∇nσ − 4(∇σ)2�σ + 2(∇σ)4

}

+ c
∫

d4x
√

gσ C2.

�

(B.17)

Then Γ̂ becomes the restriction of Γ, i.e.

Γ̂(ĝ) = Γ[gmn det (g)
− 1

d ].� (B.18)

The anomaly in diffeomorphisms following from the above definition can be easily calculated 
since the variation of the argument has automatically the form (B.1):

δζ Γ̂ = Γ[ĝ + δζ ĝ]− Γ[ĝ].� (B.19)

The first two terms in the variation (B.1) correspond to a diffeomorphism transformation of Γ 
under which it is invariant while the third term is a Weyl transformation where we can identify 
the σ-parameter as − 1

d∇ · ζ . Using (B.15) we obtain therefore

δζ Γ̂ = −1
d

∫
ddx

√
ĝ∇ · ζA(ĝ).� (B.20)

The restriction of Γ to configurations ĝmn ≡ gmn(det g)−
1
d reproduces the cohomology of Γ̂ 

calculated directly in the ‘physical’ gauge. Then it should be possible to find a scheme in 
which a generating functional of gmn depends automatically only on ĝmn. This should be a 
scheme where the σ direction is not anomalous, thus making the restriction to ĝ anomaly free. 
Such a scheme can be obtained using (B.16)

Γ[gmndet (g)
− 1

d ] = Γ[gmn] + K[gmn; det (g)−
1
d ].� (B.21)

Defining

Γ̃ ≡ Γ[gmn] + K
[
gmn; det (g)−

1
d
]

� (B.22)

we have a new scheme since K is a local functional. Moreover Γ̃ is independent of the Weyl 
mode, i.e. multiplying the metric becomes a genuine non-anomalous invariance. Therefore Γ̃ 
depends automatically only on ĝ, which is a legal representative of the gauge orbit. The break-
ing of diffeomorphism invariance is manifest by the appearance of the scalar density in the 
Wess–Zumino functional.
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The above treatment exemplifies the general pattern we discuss. One can start solving 
the cohomology problem in a ‘physical’ gauge. Then one adds a ‘spurious’ direction which 
is coupled to an on-shell null operator such that the ‘physical’ cohomology is a particular 
restriction of the ‘spurious’ direction. Using then the possibility of adding local counterterms, 
i.e. changing the scheme, one arrives at a new generating functional for which the ‘spuri-
ous’ direction is non-anomalous and the ‘physical’ gauge expression becomes equivalent to 
the generating functional in the new scheme13. The addition of the mode coupled to the null 
operator allowed for a systematic treatment of the local counterterms which are needed to shift 
the diffeomorphisms anomaly seen in the physical gauge. All the local counterterms in this 
case were for amplitudes with vanishing imaginary parts, i.e. pure polynomials in momentum 
space, in exact analogy to the situation discussed for supersymmetric models.
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