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Abstract.  The repeated breaking of a linear object, for example a stick, is a 
fundamental process which underlies numerous natural phenomena. Here we 
compare two distinct ensembles of stick-breaking: (i) a stick is broken with a 
certain rate over time; and (ii) a stick is broken a finite number of times. Both 
ensembles are deduced from appropriate integral equations and related to each 
other. The analyses performed here and the comparison of the two ensembles 
enables us to better understand the stick-breaking process by itself.

Keywords: dynamical processes, evolutionary processes, fracture, bioinformatics

P F Arndt

Sequential and continuous time stick-breaking

Printed in the UK

064003

JSMTC6

© 2019 IOP Publishing Ltd and SISSA Medialab srl

2019

2019

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/ab1dd8

PAPER: 

6

Journal of Statistical Mechanics: Theory and Experiment

© 2019 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

* This paper is dedicated to the memory of Vladimir Rittenberg.

1742-5468/19/064003+8$33.00

mailto:arndt@molgen.mpg.de
stacks.iop.org/JSTAT/2019/064003
https://doi.org/10.1088/1742-5468/ab1dd8
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ab1dd8&domain=pdf&date_stamp=2019-06-18
publisher-id
doi


Sequential and continuous time stick-breaking

2https://doi.org/10.1088/1742-5468/ab1dd8

J. S
tat. M

ech. (2019) 064003

Contents

1. Introduction	 2

2. The stick-breaking process	 3

2.1.  The distribution of stick lengths after a finite time of random breaking..........3

2.2.  The distribution of stick lengths after a finite number of random breaks........4

2.3.  An alternative derivation of the length distribution after a finite  
number of breaks...............................................................................................5

2.4.  Relationship between the two ensembles..........................................................5

2.5.  Collections of broken sticks..............................................................................6

3. Summary	 7

Acknowledgments................................................................................... 7

References	 7

1.  Introduction

The analysis and understanding of complex phenomena that are associated with 
mechanical failure and fragmentation of objects is of great importance in basic research 
and applied material science. In engineering for example, the geometry and material 
composition of macroscopic objects is significant for the functioning as well as the 
manufacturing process and accordingly well studied and optimized. Here, methods 
borrowed from a diverse range of fields from molecular dynamics [1] to finite element 
methods [2] are used.

In statistical physics however, the interest is more focused on quantities which do 
not refer to macroscopic or microscopic details of such a system. Models are hence 
more general and can subsequently be used to describe a multitude of other seemingly 
unrelated phenomena (see [3] and references therein). A prominent subject in models 
of fragmentation is the distribution of a conserved quantity—such as the mass, energy, 
or momentum—among the pieces of a disintegrated object. Such a model may be used 
to describe the mass distribution of a meteorite shower [4] but has also been used to 
describe the distribution of resources among competing species in an environmental 
niche [5].

The stick-breaking model is conceptually one of the simplest models of fragmen-
tation and describes the breaking of a one dimensional object or interval at random 
positions. Furthermore, since the stick-breaking process can be used to construct a 
Dirichlet or beta measure, it attracted a lot of attention in the mathematical commu-
nity and is used to construct priors in Bayesian analysis [6–8].

Often the breaking of an object is described as a process that is continuous in space 
and time [3, 9, 10]. In this framework, breaks occur with a certain rate over time as 
specified by the model. Due to the probabilistic nature of this process, the total number 
of breaks after a certain time is not fixed but follows a specific distribution, a Poisson 
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distribution in the simplest case of uniform breakage. However, when observing bro-
ken objects in nature, the rates and times of the fragmentation process are often not 
accessible and only the total number of broken pieces can be observed as final products 
of the process. For the theoretical analysis we therefore need to consider at least two 
dierent ensembles of broken sticks, one continuous time ensemble in which the rate 
and time of breaking is fixed, and one sequential stick-breaking ensemble, in which the 
total number of breaks is fixed.

In this article we aim to explore these two alternative ensembles and point out 
dierences between them. First we will shortly introduce both ensembles, i.e. the one in 
continuous time and the one in the number of breaks. Next, we will deduce the length 
distribution of the resulting smaller sticks, which follows an exponential function in the 
continuous time framework, but is polynomial in the framework of sequential breaks. 
After computing key quantities, as for instance the mean length of broken sticks, we 
further recover the length distribution of broken sticks in the continuous time ensem-
ble by summing up such length distributions for appropriate numbers of breaks. We 
also show that considering a collection of sticks with a uniform distributed number of 
breaks gives rise to a scale-free distribution of broken stick lengths, which has been 
observed in natural phenomena [11, 12].

2. The stick-breaking process

Consider an interval or stick of length K that is randomly broken at positions, which 
are chosen uniformly along the stick (see figure 1, left panel). This process will generate 
a collection of smaller intervals whose lengths add up to K.

After introducing periodic boundary conditions and identifying the beginning and 
the end of the interval as well as introducing an auxiliary break at 0 (figure 1, right 
panel) the system is invariant under rotations and therefore the length distribution of 
small intervals will be the same for all pieces irrespective on where they are located and 
whether they include one of the two ends of the original stick or not.

2.1. The distribution of stick lengths after a finite time of random breaking

In a continuous time model of a breaking stick an interval of initial length K is assumed 
to break with a certain rate in time. Assuming that breaks occur homogeneously we can 
denote this rate per length and time interval by µ, i.e. the probability that a break will 

Figure 1.  A linear interval of length K with b  =  2 breaks (left panel). Its circular 
representation after identifying its beginning and end and introducing an auxiliary 
break at 0 (right panel).

https://doi.org/10.1088/1742-5468/ab1dd8
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occur in an infinitesimal small length interval dK  in an infinitesimal small time interval 
dt is given by µ dK dt. In this formulation breaks will occur after exponentially distrib-
uted waiting times with mean ∆̄t = 1/(Kµ). Observing a large ensemble of breaking 
sticks one will therefore find sticks with dierent number of breaks.

If we denote the length distribution of small pieces after breaking for a time t by 
m(r, t) then this quantity follows the dierential equation

∂m(r, t)

∂t
= −µrm(r, t) + 2µ

∫ K

r

m(s, t) ds,� (1)

where the first term describes the loss of sticks of length r due to breaks which will 
occur with rate µr in time. The second term encodes the gain of sticks of length r due 
to breaks of longer sticks of length s occurring at a distance r from one of its end. With 
initial length distribution m(r, 0) = δ(r −K) and δ being the Kronecker delta function, 
this dierential equation can be solved by

m(r, t) =

{
(2µt+ µ2t2(K − r)) exp(−µtr) for r < K

exp(−µtK) for r = K� (2)

as deduced previously [10, 12]. As expected the length distribution of the resulting 
broken sticks after a certain time exhibits an exponential tail as well as an exponen-
tially vanishing delta peak at r  =  K representing the presence of unbroken sticks in this 
ensemble.

2.2. The distribution of stick lengths after a finite number of random breaks

Let us now consider a dierent ensemble of breaking sticks, one where the number of 
breaks b is fixed. We denote the length distribution of broken sticks after b breaks with 
initial length K by m(r, b). This length distribution can be recursively computed using 
the following integral equation which involves the same length distribution for b  −  1 
breaks only:

m(r, b) = m(r, b− 1)− r

K
m(r, b− 1) +

2

K

∫ K

r

m(s, b− 1) ds,� (3)

i.e. the dierence m(r, b)−m(r, b− 1) is again given by two terms. The first describes 
the loss of a stick of length r if it is broken anywhere in between, which happens with 
probability r/K and the other term reflects the gain of a piece if a piece of length s  >  r 
is broken at one out of two possible sites.

This length distribution for an unbroken stick, b  =  0, of length K is clearly

m(r, 0) = δ(r −K).� (4)
With equation (3) we compute that the length distribution of sticks after one break is 
uniform

m(r, 1) =
2

K
,� (5)

where the factor 2 reflects the fact that we now have two smaller sticks. In the general 
case for all b  >  1, the above recursion is solved by

https://doi.org/10.1088/1742-5468/ab1dd8
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m(r, b) =
b(b+ 1)

K

(
1− r

K

)b−1

� (6)

a polynomial function in the length r. With this distribution in hand we can check that 
the total number of pieces is given by

∫ K

0

m(r, b) dr = b+ 1� (7)

and that the total length of these pieces is
∫ K

0

rm(r, b) dr = K� (8)

as expected.

2.3. An alternative derivation of the length distribution after a finite number of breaks

It is instructive to also deduce the above length distribution m(r, b) in equation (6) in 
a dierent way. Consider an interval of length K (see figure 1) and let us first focus 
on the first interval, which is flanked on its right side by the break with the smallest 
coordinate (denoted by r1 in the figure). The cumulative probability, that the length 
of this first interval, r1, is smaller than a given length r, prob(r1 < r), is one minus the 
probability of all b breaks falling in the interval (r,K) [13]. Therefore

prob(r1 < r) = 1−
(
K − r

K

)b

.� (9)

The probability density function for the length of the first interval is the derivative of 
this function with respect to r and therefore:

m1(r, b) =
b

K

(
1− r

K

)b−1

.� (10)

The other b intervals stemming from the b breaks are statistically equivalent to the 
first one as discussed above. Their length distribution is therefore finally the one given 
in equation (6). The mean length of a single interval is

r̄ =

∫ K

0

rm1(r, b) dr =
K

b+ 1
� (11)

clearly reflecting that all intervals are in fact equivalent. The variance of this distribu-
tion can be computed to be

∫ K

0

r2 m1(r, b) dr − r̄2 =
K2

b+ 1

(
2

b+ 2
− 1

b+ 1

)
.� (12)

2.4. Relationship between the two ensembles

The two discussed ensembles can be related to each other. If a stick of length K is 
dynamically broken by a random process with rate µ per length interval and time as 

https://doi.org/10.1088/1742-5468/ab1dd8
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described above, then the number of breaks b after a given time t follows a Poisson 
distribution

(µKt)b

b!
exp(−µKt),� (13)

where the mean number of breaks is b̄ = µKt and increases linearly in time. Therefore 
the length distribution of sticks after time t, m(r, t), and with b breaks, m(r, b) are 
related by the equation

m(r, t) =
∞∑
b=0

m(r, b)
(µKt)b

b!
exp(−µKt),� (14)

which holds true for the above distributions in equations (2) and (6). The two length 
distributions for various numbers of breaks or given times are compared in figure 2. 
The times are conveniently scaled, such that curves of the same color have on aver-
age equal number of breaks and therefore the mean length of a single break is equal. 
Interestingly the curves for the stick-breaking process in continuous time have more 
weight for smaller stick length r than its counterpart for a defined number of breaks. 
This is due to the presence of sticks with more than b̄ = Kµt, see equation (13), in this 
ensemble. Similarly, the presence of sticks with less than the mean number of breaks 
leads to more weight in this distribution for large r once b is larger than one.

2.5. Collections of broken sticks

The random stick-breaking process was previously discussed [12] because it could 
explain the power-law distribution of exactly matching substrings in genomic sequences 

Figure 2.  The distributions of stick length m(r, b) for a defined number of breaks 
(dashed lines) and m(r, t) for given times (continuous lines). The initial interval 
has length K  =  1. The number of breaks b for m(r, b) and scaled times b̄ = Kµt 
for m(r, t) are color coded. Note that curves with the same color have on average 
equal numbers of breaks.

https://doi.org/10.1088/1742-5468/ab1dd8
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as observed in [14]. A similar power-law distribution with exponent  −3 can be found 
by collecting sticks with dierent number of breaks, i.e. one with 1 break, one with 2 
breaks, one with 3 breaks, and so on. The resulting length distribution is

m(r) =
∞∑
b=1

m(r, b) =
∞∑
b=1

b(b+ 1)

K

(
1− r

K

)b−1

=
2K2

r3
.� (15)

Also higher order power-laws, corresponding to scenarios with dierent distributions of 
breaks as described in [15] can be derived

∞∑
b=1

bm(r, b) =
∞∑
b=1

b2(b+ 1)

K

(
1− r

K

)b−1

=
2K2(3K − 2r)

r4� (16)

or more general 
∑∞

b=1 b
κ m(r, b) ∼ r−(κ+3) for large r.

3. Summary

In this article we considered two ensembles of stick-breaking. One, in which a stick is 
broken with a constant rate over time and one, in which the stick is broken a definite 
number of times. The first ensemble is often considered describing natural phenomena 
[3]. However, the second ensemble, where the number of breaks is fixed, is more appro-
priate in other situations, for instance when considering the dierences of a random 
sample of size b when the samples are arranged in order of their magnitude as already 
discussed in [13, 16]. Here we relate these two ensembles with each other leading to a 
more comprehensive understanding of stick-breaking processes.
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