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Abstract

Knowledge is acquired by generalization and integration across learning experiences,  which can

then  be  applied  to  future  instances.  This  study  provides  novel  insights  into  how  linguistic

associative knowledge is acquired by systematically tracking schematic knowledge formation while

participants  were  learning an abstract  artificial  language organized  by  higher-order  associative

regularity.  During  learning,  we  found  activity  in  the  left  inferior  frontal  gyrus  in  response  to

knowledge updating during feedback presentation, as well as in response to available accumulated

knowledge  during  retrieval.  A  complementary  signal  was  found  in  the  caudate  nucleus,  where

activity correlated with the availability of recently acquired knowledge during retrieval, suggesting

it initially supports the retrieval of knowledge. Furthermore, we find that activity in a set of regions,

including  the  medial  prefrontal  cortex  and  hippocampus,  scaled  with  accumulated  knowledge

during feedback presentation, which might be indicative of increased generalization of features of

the hierarchical knowledge structure. Together, these results provide a mechanistic insight into how

linguistic associative knowledge is acquired by generalization across repeated learning experiences.
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Introduction

Associative knowledge structures, or schemas, capture consistent relationships amongst low-level

perceptual features as well as higher-order concepts across multiple episodes (van Kesteren et al.

2012; Ghosh and Gilboa 2014). Humans are driven towards discovering structure across seemingly

arbitrary low-level contingencies. In one demonstration, people studied geometric figures linked to

arbitrary letter strings (Kirby et al. 2008). When cued with the geometric figures and asked to type

the  associated  label,  they  were  generally  poorly  reproduced.  Interestingly,  when  using  one

participants'  output as labels  for the  next  participant,  and repeating this  process iteratively,  an

artificial language evolved with a higher-order hierarchical structure. This schematic structure was

imposed by iterative errors that drove the language to attain compositionality. One example of such

an evolved language involved a  structure  whereby each syllable  uniquely  denoted a perceptual

feature: the first syllable denoting the colour; the second, geometric shape; and the last syllable

denoting the movement trajectory of the figure (see left panel of figure 1).  Moreover, the language

developed a structure that was consistent across individual exemplars whilst remaining uniquely

identifiable for individual exemplars.

Schematic knowledge is thought to be stored in associative neocortical structures (Bartlett

1932; van Kesteren et al. 2012; Ghosh and Gilboa 2014; Wagner et al. 2015; van der Linden et al.

2017),  consisting  of  categorical  and  hierarchical  nodes  (Miller  et  al.  2002;  Barsalou  2009).

Schematic knowledge is acquired by extracting regularities across episodes to build a structure of

higher-order relationships that  can then be applied to novel  instances  (Brady and Oliva  2008).

Often, activated prior knowledge constrains the acquisition of novel, related knowledge (Markman

and  Hutchinson  1984),  and  this  learning  benefit  is  associated  with  hippocampal  and  medial

prefrontal  processing  (Tse  et  al.  2007,  2011,  van  Kesteren  et  al.  2010,  2014).  Without  prior

constraints,  however,  humans  typically  require  many  trials  to  acquire  generalizable  knowledge

structures (Seger et al. 2000; Seger and Cincotta 2006). In contrast with the hippocampal memory

system that stores event-specific information, the neocortex accumulates generalizable knowledge
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across multiple similar events to build the general statistical structure of environmental relations

(McClelland et al. 1995; O’Reilly and Norman 2002). A similar relationship is found in corticostriatal

loops  during  feedback-based learning  of  stimulus-response  associations,  with  the  basal  ganglia

responding on a trial-by-trial basis to reward-prediction-errors (reward-gated plasticity) and the

neocortex responding to the accumulation of reward across repetitions (reward-shaded plasticity;

Seger and Miller  2010).  Both the striatum and hippocampus thus learn on the basis  of  unique

exposures  to  exemplars  (Daw et  al.  2005;  Seger  and Cincotta  2006) in contrast  with  a  slower

learning neocortex (Pasupathy and Miller 2005). The distinct contribution of the striatum and the

hippocampus is often subtle as demonstrated by research on the probabilistic classification task.

Here, patient studies suggest learning to be dependent on the striatum (Holl et al. 2012; Dalton et

al.  2013) and the hippocampus  (Knowlton et al.  1994). Imaging studies report either a trade-off

with initial hippocampal activity and a slower build-up of prolonged activity in the caudate nucleus

of the striatum  (Poldrack et al.  2001),  or  both striatal  and hippocampal activity tracking initial

learning  (Kumaran et al.  2009).  In the latter study,  the pattern across many single associations

contained a higher-order structure consisting of two associative rules, and generalization of this

structure  was  related  to  initial  learning-related  activity  in  the  hippocampus  and  connectivity

between hippocampus and medial prefrontal cortex (Kumaran et al. 2009). Other imaging studies of

initial knowledge acquisition have also typically used tasks with one or two associative rules and

dichotomous choice options  (Seger et  al.  2000; Seger and Cincotta  2006).  However,  from these

studies it is not clear how activity dynamically unfolds across learning in the striatum, hippocampus

and neocortical knowledge representation areas.

This  fMRI  study  uses  a  novel  learning  paradigm  consisting  of  a  linguistic  hierarchical

knowledge structure that is gradually acquired (inspired by Kirby et al. 2008), allowing us to model

trial-by-trial  knowledge  build-up across  a  number of  interleaved trials  within  a  single  learning

session.  Critically,  participants learned associations between geometric  figures on the one hand

(defined by their colour,  shape and movement) and tri-syllabic word strings on the other hand.

These  associations  contained  higher-order  regularities  in  their  mappings  across  exemplars.

5

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/495168doi: bioRxiv preprint first posted online Dec. 13, 2018; 

http://dx.doi.org/10.1101/495168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Exemplar associations were replaced with new exemplars halfway through the learning session,

allowing the establishment of generalization across trials (see figure 1). We then tracked learning

from  an  initial  state,  where  associations  are  deemed  arbitrary,  to  an  end-state  where  these

associations have acquired meaning within the higher-order associative structure. The State-Space

model  (Smith et al.  2004) was then used to systematically  track accumulation and updating of

knowledge during the acquisition session during the cue presentation (test phase) and feedback

presentation (learning phase). This approach allows us to closely track how various brain regions

dynamically contribute to the gradual acquisition of a complex linguistic knowledge structure.
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Materials and Methods

Participants

Thirty-two healthy, right-handed subjects with normal or corrected-to-normal vision participated in

the experiment (age range: 19-32 years; 20 female). Subjects received monetary compensation for

participation and could earn extra money based on performance. One subject was excluded from

further analysis due to scanner malfunction,  and five subjects were excluded because they failed to

reach the learning criterion defined by reaching the critical  learning trial  (CLT,  see Behavioural

Analysis) over the course of the experiment.  One further participant was excluded from the MRI-

analysis  due to  excessive  movement inside the scanner.  All  subjects  provided written informed

consent. The study was conducted according to a protocol approved by the local review board (CMO

Region Arnhem-Nijmegen, the Netherlands).

Stimuli

The stimuli consisted of geometric figures described by artificial tri-syllabic word labels. The figures

and word labels did not have a meaningful association to real-life figures and words. As such, the

influence of prior knowledge on learning the associations was minimized. More specifically,  the

stimuli  consisted of  visual  geometric  figures defined by a specific  colour,  shape,  and movement

trajectory across the screen. There were eight isoluminant colours (red, green, blue, white, yellow,

cyan, magenta,  and black) presented on an isoluminant grey background,  eight different shapes

(square,  circular,  vertical  rectangle,  star,  diamonds,  vertical  rectangle,  hexagon,  and triangle,  all

made to fit into a rectangle of 142 pixels), and eight movement trajectories (all moving at two pixels

per screen refresh along a polar angle of respectively 0, 45, 90, 135, 180, 225, 270 and 315 degrees).

In total, these three features could be combined into 512 unique exemplars. Similarly, 512 unique

word labels could be made on the basis of the 24 syllables used (see figure 1).
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Figure 1. Stimulus materials.

Subjects  were  presented  with  pairs  of  geometric  figures  and  artificial  word  labels.  The  figures
consisted of a defining colour, shape and movement, and the words consisted of three corresponding
syllables that uniquely mapped onto the objects’ perceptual features. In the regular set, a particular
instantiation  of  a  perceptual  feature  was  always  associated  with  the  same  syllable  (left  panel),
whereas in the irregular set the same feature instantiation could be associated with different syllables,
depending on the exemplar configuration (right panel). Below: four examples of associations between
figures and artificial words from the regular set (left panel) and the irregular set (right panel) are
shown.

Two sets of associations were used for the acquisition session. Both sets contained four colours,

shapes, and movements and each particular perceptual feature was only used in one of the two sets.

Therefore,  each  set  contained  64  exemplars  with  a  unique  configuration  of  three  perceptual

features (colour, shape and movement). The syllables were distributed across both sets, each set

containing  64  word  exemplars  with  a  unique  configuration  of  three  syllables.  The  regular  set
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contained associative  regularities across exemplars that could be discovered and generalized to

novel exemplars.  Each visual feature was consistently associated with a syllable in a fixed position

within the tri-syllabic word (colour corresponded to the first, shape to the second, and movement to

the  third  syllable).  Furthermore,  each  instantiation  of  a  feature  corresponded  to  an  uppercase

syllable (e.g. red = ‘NI’, square geometry = ‘SA’, rightward movement = ‘ZA’, fig. 1).  In contrast, the

irregular  set  contained no regularity  across  individual  exemplars.  Here,  in  different  exemplars,

features (colours, shapes and movements) were paired with different syllable locations, and feature

instantiations (e.g. ‘red’, ‘square’ and ‘rightward movement’) were paired with different syllables.

Here, the pairings between figure and word labels were consistent only within repetitions of the

same exemplar, but not in different exemplars with overlapping features (see fig. 1 for examples).

Colours,  geometric  shapes,  movements  and  syllables  were  assigned  to  the  two  sets  in  a

counterbalanced manner across participants.

Task and procedures

Participants were instructed that they were to learn a new language consisting of geometric figures

denoted  by  a  tri-syllabic  word  label.  They  were  informed  that  there  was  regularity  in  the

associations  between  figures  and  artificial  words,  but  the  nature  of  this  regularity  was  not

disclosed. Participants viewed blocks consisting of either geometric figures or word labels, such

that  all  perceptual  features  and  syllables  had  been  seen  across  this  pre-exposure  period.  This

served to familiarize participants with the stimuli on a perceptual level and to rule out stimulus

novelty effects during the ensuing scan session. To become familiarized with the requirements of

the task, participants were briefly trained on nine trials similar to those that were presented later

during the acquisition session. This training used colours, shapes, movements and syllables that

were randomly sampled from the entire set.

During  the  scanned  acquisition  session  participants  were  presented  with  trials  from  both

regular and irregular sets distributed across 8 blocks (see figure 2). During the first four blocks,

twelve  regular  figure-word  combinations  and  four  irregular  figure-word  combinations  were
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repeated in each block. In the second set of four blocks, 12 new regular and four new irregular

combinations were introduced and repeated across the remaining blocks.  As such, participants’

ability to generalize across exemplars of block 4 and 5 could be assessed. The order of regular and

irregular trials within a block was randomized. In total, 96 trials from the regular set and 32 trials

from the irregular set were presented across four runs (each run contained two blocks). In each

trial, the figure was presented for 3s (the test phase), then participants were asked to select the

corresponding tri-syllabic word from three options per syllable (the response phase, duration 6s),

and lastly the correct response was presented (feedback phase,  duration 3s).   Participants were

instructed  to  retrieve  the  word label  immediately  upon seeing  the  figure  and to  maintain  that

information until they could give the correct response (see figure 2).

Figure 2. Task design and task performance.

After  pre-exposure  to  stimulus  materials  and  pre-training,  participants  learned  figure-word
associations across eight blocks. Each block contained 12 regular trials and 4 irregular trials, these
were repeated four times. After the first four blocks, the exemplars were switched. In each trial, first
the figure was presented (the test phase, duration 3s), then the corresponding tri-syllabic word was
selected (the response phase, duration 6s), and lastly the correct response was presented (learning
phase, duration 3s).  Participants were instructed to retrieve the word label upon seeing the cue, and
maintain that information until the correct response could be given. Inset: Plot of overall performance
for irregular and regular trials demonstrates a steadily improving learning curve for regular trials.
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During the response-phase,  participants were asked to select three syllables comprising the

complete word, by selecting one out of three alternatives for each syllable location (first, second,

and  third  syllable  of  the  word).  The  chance  level  for  having  one  individual  syllable  correct  is

therefore 1/3, and the chance level for having the entire word correct is 1/27 (1/3 * 1/3 * 1/3). A

blue bar underlined the syllable location where at each moment a syllable needed to be selected

(first, second, and third syllable of the word). To reduce interference across sets, the irregular set

was clearly distinguishable from the regular set. Specifically, the three syllable alternatives were

underlined with light-blue bars,  such that participants were able to distinguish the regular and

irregular sets. The regular and irregular trials were similar, but participants could not generalize

learned  associations  across  exemplars.  For  the  alternative  response  options,  syllables  were

pseudorandomly selected from all syllables that occurred across regular and irregular associations

at that particular syllable location (first, second, and third syllable of the word). This ensured that

both syllables from the regular and irregular set were repeated to a roughly equal extent across

learning, and effects of syllable familiarity were ruled out.

In  the  feedback-phase,  the  figure  was  presented  again  with  the  correct  word  underneath,

presented in red if one of the selected syllables had been incorrect and green if the entire word was

correct. Participants were instructed to compare feedback with their initial response and learn from

the  discrepancies  between  response  and  feedback.  All  trials  and  phases  within  a  trial  were

separated by a jittered interval of 2-5 seconds. During the entire experiment the participants were

instructed to fixate on a white fixation dot that remained visible at the centre of the screen. After

each block, a baseline block with a jittered length of 9-11 seconds was presented. The stimuli were

presented  using  a  projector  at  the  rear  of  the  scanner  bore  (60  Hz  refresh  rate,  1024 by 768

resolution) viewed by the participants through a mirror attached to the headcoil (covering 6° of

horizontal and 7° of vertical visual angle). The experiment was programmed in Matlab, using the

Psychophysics Toolbox extensions (Brainard 1997).

Following  completion  of  the  acquisition  session,  participants  were  debriefed  to  assess

whether they had discovered the organizing principles underlying the associations. They were first
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asked to provide the meaning of all 24 syllables from the regular set (e.g. by writing ‘red’ for colour,

writing  ‘hexagon’  or  making  a  small  drawing  for  shape,  and  ‘to  the  right’  or  an  arrow  for

movement). Next, they were asked whether they knew which perceptual feature corresponded to

the first, second, and third syllable in the word label. As such, this questionnaire probed explicit

knowledge of the associative regularity inherent in the regular set.

Behavioural analysis

In the current paradigm, each word label consisted of a sequence of three syllables. The participant

was presented with three response options per syllable (33 % chance probability of selecting a

correct  syllable)  and  thus  with  a  total  of  27  possible  word  responses  per  trial  (~4%  chance

probability  of  correct  response for  the  entire  word).  Vectors  coding (0 to  3 for the  number of

features correct) for trial-by-trial performance across all 128 trials were extracted for individual

subjects.

To track the state of knowledge across the acquisition session, individual learning curves

were estimated using the State-Space model (Smith et al. 2004). In this model the accumulation of

knowledge is described as an increase in the probability of a correct response across trials. The

model  is  characterized  by  two  equations:  an  observation  equation  and  a  state  equation.  The

observation equation describes how the observed binary choice data (e.g. ‘correct’ or ‘incorrect’)

relates to a hidden state or latent learning process. Each trial involves a sequence of three responses

to select the correct syllable for each perceptual feature. Therefore, the observation equation is best

characterized as a binomial process (i.e. a sequence of three Bernoulli trials). The state equation

describes  the  hidden  learning  process  that  evolves  across  trials  and  is  defined  as  a  Gaussian

random-walk process. Therefore, learning in this model is reflected by an increase in the latent state

process  that  ultimately  leads  to  an  increase  in  the  number  of  correct  responses  (i.e.  higher

probability of selecting the correct syllable for each feature). In the state-space model, inferences on

the  learning  process  are  made  from  the  perspective  of  an  ideal  observer,  using  the  complete

sequence of trials to estimate the time-course of learning. The state-space model was fitted to the

12

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/495168doi: bioRxiv preprint first posted online Dec. 13, 2018; 

http://dx.doi.org/10.1101/495168
http://creativecommons.org/licenses/by-nc-nd/4.0/


data  using  numerical  optimization  techniques  based  on  the  Expectation  Maximization  (EM)

algorithm (code obtained from www.neurostat.mit.edu).

To verify that the state-space model provided the best account of the behavioural data, three

alternative models were also fitted to the learning data: the Rescorla-Wagner model (Rescorla and

Wagner 1972), the learning component of the memory chain model (MCM; Chessa and Murre 2007;

Murre 2013) and the moving average model (MA; Smith et al. 2004). The models were fitted to the

data  using  customized  code  adapted  from  freely  available  online  resources  and  Maximum

Likelihood fitting routines. Fitting of the state-space model was carried out using custom code for

MATLAB® (adapted from Smith et al., 2004). Fitting of the Rescorla-Wagner model was done by

calculating  the  equilibria  of  the  model  (Danks  2003) using  functions  implemented  in  the  R®

package  ‘ndl’ (Arppe et al. 2015). Fitting of the MCM model was carried out using custom code and

standard optimization routines for Mathematica®. Last, the moving average model was fitted to the

data using the toolbox Forecast (Hyndman et al. 2013) for R®.

Model  selection  was  carried  out  by  calculating  Bayesian  Information  Criterion  scores

(Schwarz 1978) for each model, which is a measure of the goodness-of-fit that penalizes for the

number  of  free  parameters.  Therefore,  the  model  with  the  lowest  score  represents  the  most

parsimonious  account of  the  data.  In line  with  previous studies  (Kumaran et  al.  2009),  results

indicated that the state-space model provided the best description of the observed data (see table

1). The fit of learning curves generated by the moving average method was worse than the state-

space model,  but  superior to the  Rescorla-Wagner model.  The memory chain model  performed

better than the RW, but worse than the state-space model or moving-average model.  The state-

space model thus provides the most accurate description of the experimentally observed individual

learning curves and therefore the estimated ‘p mode’ parameter (the mode of the distribution of

estimated probabilities  per trial)  from the state-space-model  was used as model  parameter for

parametric model-based fMRI analyses. Furthermore, the critical learning trial (CLT, see Smith et al.

2004) was defined as the first  trial where it can be concluded with reasonable certainty that a

subject  performs  better  than  a  certain  threshold  (95%  confidence  interval  exceeds  chance
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performance). This threshold performance was here defined as 66%, which corresponds roughly to

having two syllables correct.

Model BIC Description
RW 545 Rescorla-Wagner model
MCM 252 memory chain model
MA 234 moving average model
STA 62 state-space model

Table 1. Model comparison. Bayesian Information Criterion (BIC) scores for each of the four learning
models. The model with the lowest score represents the most parsimonious account of the data.

Imaging parameters and acquisition

T2*-weighted echo planar images (EPI) with BOLD (blood-oxygen-level-dependent) contrast were

acquired on a 3 Tesla Siemens Skyra MRI scanner. We scanned 45 oblique axial slices angled at 30°

in the anterior-posterior axis, TR 2.44 s, 2 mm thickness (0.5 mm gap), in-plane resolution 2.5 × 2.5

mm, field-of-view 212 mm. To minimize signal dropout in the temporal lobes and medial prefrontal

cortex a dual-echo sequence (Halai et al. 2015) was used (TE1 = 15 ms and TE2 = 36). Additionally,

a  structural  T1-weighted 3D magnetization prepared rapid acquisition (MPRAGE) gradient echo

sequence image (192 slices, voxel size =1 × 1 × 1 mm) was acquired for each participant.

fMRI data preprocessing

The first six volumes were discarded to permit T1 relaxation, and the next thirty volumes were used

to calculate the weighting for recombining the two echo images.  The images within a run were

realigned  to  the  first  image,  and  subsequently  the  two  echo  images  for  each  volume  were

recombined  using  custom  scripts  and  weighting  parameters  (Poser  et  al.  2006).  Subsequently,

images  were  preprocessed  using  the  statistical  parametric  mapping  software  SPM

(http://www.fil.ion.ucl.ac.uk/spm/)  and  custom  scripts  written  in  Matlab

(http://www.mathworks.com/products/matlab).  Next,  structural  and  functional  images  were

segmented and normalized to MNI-space on the basis of  their grey and white matter templates
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using DARTEL. Compartment maps were generated for grey matter, white matter and CSF, and non-

specific  nuisance  regressors  were  created  modelling  signal  from  white  matter  and  CSF-

compartments.  Normalized images were smoothed using a Gaussian kernel with full-width half-

maximum of 5 mm. Custom scripts were used to detect and remove spike artifacts.  

FMRI analyses

The fMRI data was analyzed in SPM12 using the general linear model (GLM), estimated in two

stages. Subject-specific experimental effects were modelled at the first-level using GLMs. Then, a

random-effects analysis was performed at the second level using one-sample t-tests, resulting in

group-level statistical parametric maps. Task regressors were included in GLMs to model the cue-

phase,  response-phase and feedback-phase separately for regular and irregular trials,  while the

inter-trial interval and baseline blocks served as implicit baseline. Events were modelled as a boxcar

function and convolved with the canonical haemodynamic response function (HRF). Furthermore,

button presses were modelled as stick functions and convolved with the canonical haemodynamic

response function (HRF). Movement parameters were included as regressors of no interest. To deal

with non-specific  signal  fluctuations,  signal  time-courses were extracted from white-matter and

cerebrospinal fluid compartments and included as regressors of no interest. We employed a high-

pass  filter  with  a  low  cut-off  of  1/835  Hz,  as  the  task  power  spectrum  revealed  that  a  more

conventional cut-off of 1/128 Hz removed gradual learning-related fluctuations in the BOLD-signal.

Runs  were  also  concatenated  to  prevent  the  removal  of  gradual  learning  signals.  Temporal

autocorrelation was modelled using AR(1).

Analyses of regional activation focused on parametric modulations,  namely regressors in

GLMs to  detect  brain  regions  where  BOLD-activity  was  modulated  by  the  trial-by-trial  state  of

knowledge during regular trials (the irregular trials were not considered here as the amount of

trials  was  low).  The  first  model  included subject-specific  vectors  denoting  the  probability  of  a

correct response on any given trial (probability range: 0-1) as estimated by a state-space model

(Smith et al. 2004). This vector is a proxy for the level of knowledge accumulated at any given trial,
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and thus approximates the amount of knowledge that could be retrieved at any trial (see figure 3a).

The accumulation function was included as a parametric modulator in the GLM to model the cue-

period, as a higher value here approximates the amount of knowledge that can be retrieved. During

the  feedback-period,  knowledge  is  not  actively  retrieved,  and  once  more  knowledge  has

accumulated less  updating occurs.  Therefore,  activity  related to  accumulated knowledge during

feedback presentation might represent a variety of  factors (see Discussion).   The second model

included  the  difference  function  of  the  first  regressor  (the  state-space  learning  curve),  which

indicates the change in probability of a correct response on each trial compared to the previous trial

(see figure 3b). The updating parameter was used to model the cue period, as it is an estimate for

recently acquired knowledge that can be recruited in the current test phase. This function was given

the  value  of  zero  for  the  first  trial,  where  no knowledge  was  present  by  definition.  The  same

updating function was used to model the feedback period, but shifted by one trial earlier in the

sequence (such that the updating function represents the change in knowledge on the current trial

compared to the next),  and the updating function was appended with a 0 in the last trial.  Both

model 1 and model 2 thus included 10 task regressors (test-phase, response-phase and feedback-

phase  for  regular  and  irregular  trials,  button  presses,  parametric  modulator  for  test-phase,

response-phase and feedback-phase of regular trials), along with the compartment and movement

regressors.  Condition-specific  experimental  effects  (regression  coefficients)  were  obtained  in  a

voxel-wise manner for each participant. At the second (random-effects) level, participant-specific

linear contrasts of the parameter estimates were entered in a one-sample t-test to construct the

group-level  statistical  map.  We  considered  results  that  survived  correction  for  multiple

comparisons  (family-wise  error  (FWE)  correction)  at  p<0.05  across  the  whole  brain  or  within

independently defined anatomical masks (small-volume correction, SVC) after initial thresholding

at  p=0.001  uncorrected.  Anatomical  masks  were  defined  using  the  WFU  PickAtlas  Tool  2.4  as

implemented in SPM.
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Figure 3. Learning parameters estimated from the State-Space model.

Top panel: Group-averaged probability of making a correct response on each trial as estimated by the
State-Space model.  Bottom panel: Averaged change of the probability of making a correct response on
each trial compared to the previous trial, as estimated by the State-Space model.

Beta-series extraction

To  characterize  the  temporal  dynamics  of  regional  activity  across  learning,  beta-values  were

analysed from regions of interest across all learning trials.  Specifically, trial-specific beta-images

were obtained for all cue- and feedback-presentations by running one GLM with separate columns

for  each  cue-presentation.  A  second  GLM  was  run  with  separate  columns  for  each  feedback-

presentation. The resulting beta-images were sorted according to their temporal trial order for cue

and  feedback  presentations,  and  signal  was  extracted  across  beta-images  for  each  ROI.

Furthermore, to control for subject-specific differences in the learning rate, the timeseries were also

centered around the critical learning trial. These subject-specific timeseries were then smoothed

using a  centered moving average  with  a  sliding  window of  three  timepoints,  and the  resulting

vectors were then averaged across all participants.  
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Results

Behavioural learning

Participants studied object-word associations across 128 trials in eight scanner blocks of 16 trials.

Each block contained 16 unique associations that were repeated across the first four blocks, after

which the associations were changed and a different set of 16 associations was repeated across the

next four blocks. Twenty-six participants reached the critical learning trial (mean CTL = 39.96, SD =

19.12), and exceeded chance level performance on the last block (proportion of all words correct on

last  block,  mean  =  0.74,  SD  =  0.11,  chance  level  =  0.037,  t(25) =  33.54,  p <  0.001).  Each  block

contained twelve exemplars from the regular set and four exemplars from the irregular set. In both

conditions,  learning  was  evident  by  above-chance  performance  in  the  eighth  and  last  block

(proportion regular correct, mean = 0.92, SD = 0.12, versus chance level = 0.037,  t(25) = 37.84,  p <

0.001, mean proportion irregular correct, mean = 0.19, SD = 0.18, versus chance level = 0.037, t(25) =

4.46, p < 0.001). However, performance on regular trials was better than on irregular trials (mean

proportion difference = 0.73, SD = 0.18,  t(25) = 20.75,  p < 0.001).  Consistency of mappings across

exemplars  in the  regular  set  might  benefit  learning through  generalization of  mappings  across

exemplars,  while  reducing  interference  between  similar  exemplars.  This  was  confirmed  by

comparing behavioural  performance  in  the  fourth to  the  fifth  block,  when the  exemplars  were

changed.  Indeed,  performance  on  regular  exemplars  showed  a  consistent  increase  (proportion

correct increase regulars,  mean = 0.13,  SD = 0.17,  t(25) = 3.97,  p < 0.001),  which is in line with

generalization  of  acquired  knowledge  across  different  exemplars.  In  contrast,  there  was  no

performance  increase  for  irregular  trials  between  block  4  and  5  (proportion  correct  increase

irregulars, mean = 0.01, SD = 0.27, t(25) = 0.18, p = 0.86) and the performance increase was larger for

regular than irregular exemplars (t(25) = 2.11, p =0.045).

Further  evidence  of  the  learning  of  associative  regularity  is  provided  by  analysing

performance on specific features of the regular objects. By the eight block of acquisition on regular

trials, all subjects managed to learn the syllables associated to colour (mean colours correct: 11.85
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out of 12, SD = 0.61, chance level = 4, t(25)  = 65.30, p<0.001), shape (mean correct: 11.69, SD = 0.84,

t(25)  = 46.83, p<0.001), and motion (mean correct: 11.38, SD = 0.94, t(25)  = 40.00, p<0.001). When

probing explicit knowledge of associative regularities at debriefing, all participants could indicate

that colour was associated with the first syllable, geometric shape with the second, and movement

with the third syllable. Furthermore, when presented with syllables that had occurred in the regular

set, along with lures, participants could indicate the meaning of the syllables from the regular set

when explicitly probed (mean correct = 11.33 out of 12, SD = 1.52).

Brain activity associated with feedback-based learning

At the start of learning, participants had no access to prior knowledge of the associative knowledge

structure. Therefore, they were required to use information provided during feedback to update

their  knowledge.  To  probe  brain  areas  associated  with  the  updating  of  knowledge,  individual

learning parameters were fitted to functional  MRI  data.  Learning models were used to capture

variations in the shape of individual learning curves.  Specifically, the State-Space model provided a

better fit to the behavioural data than other learning models (see table 1 and figure 3). The State-

Space model was used to analyse the performance pattern across the whole trial history, in order to

estimate  for  each  trial  the  amount  that  knowledge  was  updated  compared  to  the  next  trial.

Specifically, a large area (see figure 4, top right panel) spanning the left ventrolateral and lateral

prefrontal cortex (z = 4.45; cluster size = 239 voxels; MNI coordinates: -38 22 22, p<0.001 FWE

corrected for the whole brain) was found to exhibit activity that covaried with the extent to which

knowledge is updated based on feedback in the current trial. This region thus may contribute to the

updating  of  representations  of  the  associative  knowledge  structure.  When  modeling  the

accumulated  knowledge  during  feedback,  activity  was  found to  covary  in  several  large  midline

regions,  including  bilateral  medial  prefrontal  cortex  and  posterior  cingulate  cortex,  bilateral

superior/middle  temporal  gyrus,  and  left-lateralized  hippocampus,  angular  gyrus,  and

somatosensory cortex (see figure 4, lower right panel, and table 2). These regions were more active

during feedback presentation when more knowledge had already been accumulated.
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Brain region Cluster size

(voxels)

Laterality Z-score Local maxima
x y z

Medial Prefrontal Cortex 1740 L/R 6.45 -8 55 2
Inferior Parietal Cortex 230 L 5.45 -52 -62 38
Somatosensory Cortex

Inferior Parietal Cortex

Inferior Parietal Cortex

260 R 5.34

4.89

4.32

-65

62

55

-22

-30

-32

38

45

40
Posterior  Cingulate

Cortex

853 L/R 5.26 -2 -12 38

Middle Temporal Gyrus 203 L 5.18 -62 -18 -15
Hippocampus 85 L 4.75 -25 -18 -18
Middle/Superior

Temporal Gyrus 91

R

4.66

60 -10 -10

Table 2. Brain areas where activity significantly correlated trial-by-trial with accumulated knowledge
during the feedback trials of the acquisition session. All coordinates are in MNI space.

Brain activity associated with cued retrieval

When presented  with  the  figure  during the test-phase,  participants  were asked to immediately

recall  the associated tri-syllabic  word.  Participants updated their knowledge of the associations

based on  feedback,  which  they could  then apply  in  the  next  test-phase.  To  probe  which  brain

regions aid the deployment of this recently updated knowledge, the updated knowledge parameter

was found to track brain activity specifically in the right caudate nucleus (z = 4.01; cluster size = 8

voxels;  peak  MNI  coordinates:  8  18  5,  p<0.05  corrected  for  a  reduced  search  volume  in  an

anatomical mask defined by the right caudate nucleus). Thus, the caudate nucleus appears to be

involved in the deployment of recently updated knowledge during the test phase (see figure 4,

upper left panel). Complementary to this, the knowledge accumulation parameter could be used to

probe  which  regions  covary  with  the  total  amount  of  knowledge  that  had accumulated  across

previous learning trials and could thus be recruited in the current trial. Several regions were found,

including low-level  and associative  visual  regions,  primary,  premotor and supplementary motor

areas, and frontal and parietal cortices (see lower left panel in figure 4, and table 3). Importantly,
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the left inferior frontal gyrus that we had found to track feedback-based knowledge updating was

found to also track accumulated knowledge during the test phase (peak MNI coordinates: -50 12 32,

p<0.001 FWE corrected for the whole brain, and peak MNI coordinates: -50 30 22, p<0.001 FWE

corrected for the whole brain). In sum, we found a set of regions spanning visual and motor cortex,

as well as frontoparietal regions that were more active when more accumulated knowledge was

recruited during the test phase.

Brain region Cluster size

(voxels)

Laterality Z-

score

Local maxima
x y z

Premotor Cortex

Inferior frontal gyrus

460 L 5.60

5.00

-48

-50

-8

12

50

32
Posterior  Cingulate

Cortex

Occipital Cortex

Retrosplenial Cortex

1176 L/R 5.46

5.32

4.32

8

2

-8

-50

-80

-58

5

-5

8

Suppl. Motor Area

Pre-Supp. Motor Are

Anterior  Cingulate

Cortex

473 L/R 5.43

5.14

4.21

-2

2

-8

10

18

12

58

45

38

Superior Parietal Cortex

Posterior Parietal Cortex

Intraparietal Sulcus

238 L 5.24

4.29

3.70

-20

-18

-28

-62

-82

-65

52

40

35
Fusiform Gyrus

Occipitotemporal Cortex

Fusiform Gyrus

257 L 4.89

4.76

4.54

-45

-48

-38

-40

-60

-35

-20

-12

-25
Occipital Cortex 73 L 4.69 -35 -85 18
Supplementary  Motor

Cortex / Broca’s Area 48

L

4.44

-58 10 0

Thalamus 44 L 4.38 -10 -12 10
Intraparietal Sulcus 105 R 5.35 18 -65 55
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Occipitoparietal Cortex

Precuneus

3.89

3.74

18

20

-78

-70

45

38
Somatosensory Cortex

Auditory Cortex 80

L 4.27

3.57

-58

-62

-18

-22

20

10
Inferior Parietal Cortex

Somatosensory Cortex

Intraparietal Sulcus 52

L 3.96

3.91

3.68

-55

-50

-45

-30

-30

-40

48

58

60

Table 3. Brain areas where activity significantly correlated trial-by-trial with accumulated knowledge
during the retrieval trials of the acquisition session. All coordinates are in MNI space.
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Figure 4. Model-based parametric modulation analysis of learning-related activity

A) Top left panel. Activity in the right caudate nucleus shows a significant correlation with recently
updated knowledge available at each test-phase.
B) Lower left panel. Regions where activity is correlated with accumulated knowledge  at each test-
phase, including left inferior frontal gyrus, and visual, motor, and frontoparietal regions.
C) Top right panel. Activity in the left ventral and lateral prefrontal cortex is correlated with updated
knowledge during the feedback-phase.
D) Lower right panel. Regions where activity is correlated with the accumulated knowledge during the
feedback-phase, including medial prefrontal cortex, posterior cingulate cortex, left hippocampus, and
inferior parietal cortex.

Beta-series extraction

We found regions that responded specifically to the knowledge updating parameters, namely the

left inferior frontal gyrus and right caudate nucleus. These regions might thus be involved in the

active updating and retrieval of knowledge. Our model detected a wide variety of regions covarying

with accumulated knowledge during feedback presentation. Of these regions, the hippocampus is

implicated in enabling the generalization across individual learning instances in interaction with

the medial prefrontal cortex (Kumaran et al. 2009).  It could be that these regions, which covaried

with accumulated knowledge during feedback, had some role in generalization of knowledge during

feedback-based learning, as more accumulated knowledge might benefit knowledge generalization.

To visualize the relative unfolding of activity of these regions across both the test phase and the

feedback phase, we extracted the beta time-series from these regions of interest (see figure 5). The

left hippocampus and right caudate nucleus were defined by anatomical masks, whereas functional

regions  found in  respective  contrast  maps  (thresholded at  p<0.001 uncorrected)  were  used to

define the left inferior frontal gyrus (based on feedback-based knowledge updating) and medial

prefrontal cortex (feedback-based accumulated knowledge). The activity across trials estimated by

this analysis is displayed in figure 5, and some patterns become apparent upon visual inspection.

During feedback-based learning, the left inferior frontal gyrus displays initially high activity, which

levels off as more knowledge has already accumulated and less updating takes place. During cue-

based  retrieval,  on  the  other  hand,  activity  is  initially  low,  but  increases  as  more  knowledge

accumulates and becomes available to be retrieved. The caudate nucleus displays both initially high
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activity during feedback-based learning and cue-based retrieval, suggesting it might aid the initial

updating  and subsequent  retrieval  of  knowledge.  Both  the hippocampus and medial  prefrontal

cortex display an increase in activity during feedback-based learning, corroborating the parametric

modulation results. During cue-based retrieval, both the hippocampus and the medial prefrontal

cortex  display  an initially  high  but  gradually  decreasing  activity  across  retrieval  trials  as  more

knowledge is accumulated, suggesting these regions, contrary to expectations, do not become more

involved with retrieval as more knowledge is accumulated. 

Figure 5. Beta-series analysis of learning

Beta-values  were  extracted  during  successive  test  (left  column)  respectively  successive  feedback
presentations (right column) across learning. Signal was extracted for the left inferior frontal gyrus
(functional region that displayed modulation during feedback by knowledge updating; red colours),
right caudate nucleus (anatomical mask, this region displayed modulation during the test-phase by
recently  updated  knowledge;  green  colours)  in  top  row.  Signal  was  also  extracted  for  the  left
hippocampus (anatomical mask, region displaying modulation during feedback-phase by accumulated
knowledge, yellow colours) and medial prefrontal cortex (functional region that displayed modulation
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during feedback-phase by accumulated knowledge, blue colours. L-IFG = left inferior frontal gyrus, R-
CN = right caudate nucleus, L-HC = left hippocampus, MPFC = medial prefrontal cortex.

Discussion

Few studies have tracked how brain regions dynamically contribute to the gradual acquisition of a

complex knowledge structure (Kumaran et al. 2009), and even fewer have disentangled the effects

of  retrieval  and feedback during  such learning tasks.  The present  study addressed this  gap by

systematically  tracking  brain  activity  while  learners  acquired  a  novel  linguistic  associative

knowledge structure. The key findings of this study are that feedback-based knowledge updating is

associated with  activity  in  the  left  inferior  frontal  gyrus.  Mirroring  this  result,  the  left  inferior

frontal  gyrus  displayed  a  gradual  increase  in  activity  during  retrieval  as  more  knowledge  had

accumulated. A complementary signal was found in the right caudate nucleus, where activity during

retrieval  was found to correlate  with the  amount of  recently updated knowledge that could be

retrieved.  The results are in line with a model in which the acquisition of  linguistic  associative

knowledge is subserved by the left inferior frontal gyrus, which is initially being supported by fast-

learning subcortical regions such as the caudate nucleus.  The hippocampus and medial prefrontal

cortex,  two other regions generally  implicated in acquiring generalizable  knowledge structures,

covaried with accumulated knowledge during feedback presentation. This potentially suggests that

as  more  knowledge  accumulates,  more  generalizable  features  are  extracted  through  inferential

computations performed by the medial prefrontal cortex and hippocampus.

The  left  inferior  frontal  gyrus  is  thus  important  for  linguistic  knowledge  acquisition.  A

search on Neurosynth (http://neurosynth.org/) revealed that the peak of the region (x=-38, y=22,

y=22) displays the strongest meta-analytical association with the terms “BA44” (z=5.58), “syntax”

(z=5.52), “word” (z=4.93) and “semantic” (z=4.82). Indeed, this region has widely been suggested to

be involved in language processing (Bookheimer 2002; Friederici 2002; Hagoort 2003; Hagoort et

al.  2004).  Specifically,  it  was also implicated in the learning of sequences  (Peigneux et al.  1999;

Forkstam et al. 2006), and sequences that are hierarchically organized  (Gelfand and Bookheimer
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2003; Petersson et al. 2004).  It has also been argued that the area described here, overlapping with

Broca’s area, is involved in retrieving word information from memory and combining them in larger

sentence units (Hagoort 2005). The current experiment includes elements from these prior studies,

requiring participants to parse hierarchically organized syntactical sequences of feature-syllable

associations based on repeated exposures to larger word units (during feedback-based learning),

and retrieve word information from memory (during cue-based retrieval). 

A particularly interesting finding during retrieval is the initial striatal learning signal, where

the right caudate nucleus covaried with the retrieval of recently updated knowledge. This phasic

signal during retrieval was complemented by activity in neocortical regions that increased during

retrieval as a function of the amount of knowledge that had accumulated. Most of the regions found

here were visual, motor, or attentional regions, suggesting they were involved in preparing for the

ensuing  visuomotor  responses  and  might  have  been  unspecific  to  the  retrieval  of  knowledge.

However,  interestingly,  the  left  inferior  frontal  gyrus,  the  region  that  was  found  to  update

knowledge on the basis of feedback, was also one of the regions found to display an increase in

activity when more accumulated knowledge was available for retrieval, suggesting this region has a

function in both active updating of knowledge and subsequent retrieval of accumulated knowledge.

This is congruent with a model where this region actively stores the syntactic associative structure:

the more this knowledge structure is updated based on feedback, the higher the activity would be in

regions that store the knowledge structure, and the more knowledge about the linguistic structure

has accumulated across previous trials when recruiting it during retrieval,  the more this region

would be activated too. 

An explanation for a striatal rather than a hippocampal involvement during initial retrieval

might be given by the nature of the learning task involved here. The caudate nucleus has generally

been found to be important for reward-based reinforcement learning (Haruno et al. 2004; Haruno

and Kawato 2006). In a word learning task, signals in the ventral striatum have been related to an

implicit or self-generated reward when the meaning of novel word was acquired  (Ripolleés et al.

2015), while also showing strong connectivity with the more dorsal caudate nucleus and the left
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inferior frontal gyrus during word learning. In our study, the updating signal observed during the

retrieval of knowledge in the caudate nucleus may not have been an explicit reward signal itself

(although the feedback provided was probably also experienced as a reward). Rather, the caudate

nucleus is more broadly involved in the excitation of correct action schemas and the selection of

appropriate sub-goals based on an evaluation of action-outcome contingencies (Grahn et al. 2008).

Moreover,  prior  studies  investigating  the  learning  of  spatial  locations  have  shown  that  the

hippocampus is involved in incidental configural learning, whereas the dorsal striatum is primarily

involved in associative reinforcement learning of stimulus-response contingencies  (McDonald and

White 1993; Doeller and Burgess 2008; Doeller et al. 2008; Lee et al. 2008). In our task, it might be

that participants initially processed associations entirely based on configurations, but then learned

to associate certain perceptual  features of the figure (color,  shape or movement) with a certain

syllable at a particular location in the word. This possibility hints at an intriguing trade-off between

hippocampal-dependent and striatal-dependent learning, in line with earlier learning studies (using

simpler knowledge structures) showing an initial peak in activity in the medial temporal lobe and a

somewhat slower build-up of activity in the caudate nucleus  (Poldrack et al.  2001).  It  could be

hypothesized  that  the  initial  process  of  discovering  regularities  requires  a  recurrent  similarity

computation  by  the  hippocampus  (Kumaran  and  McClelland  2012).  The  uncovered  component

parts of the associative structure are then established in stimulus-response associations between

single  features  and  syllables,  supported  by  the  striatum.  The  acquired  linguistic  associative

knowledge structure could then ultimately be stored and retrieved from the left inferior frontal

gyrus.   Indeed,  beta-time  series  extraction  demonstrated  an initial  increase  in  retrieval-related

activity in both the right caudate nucleus and the hippocampus, as well as the left inferior frontal

gyrus, the latter of which continued to increase in activity across retrieval trials (see figure 5).

The hippocampus and medial prefrontal cortex are thought to contribute to the acquisition

of generalizable knowledge across trials. Kumaran et al. (2009) found that activity in these regions

covaries with accumulated knowledge during learning, and that this learning-related performance

was predictive  of performance on a transfer test  (Kumaran et al.  2009).  However,  they did not
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distinguish  between  retrieval  of  knowledge  when  presented  with  a  cue,  and  the  subsequent

updating of knowledge based on the provided feedback. In our report, we find that the accumulated

knowledge  covaries  with  activity  in  the  hippocampus,  medial  prefrontal  cortex  and  posterior

cingulate cortex, similar to the report by Kumaran et al.  However, we find this relation specifically

during the presentation of feedback. Even though the associative structure acquired in our task

consisted of linguistic material and is more complex, the basic computations needed to acquire the

associative knowledge structure are quite similar (Kumaran and McClelland 2012).  Thus, despite

the fact that recurrent similarity computations subserved by the hippocampus and its connectivity

with the medial  prefrontal  cortex might initially already take place to enable an acceleration of

learning, these computations are continuously needed to acquire all associative rules (associations

between single  feature  and syllables,  and the  larger  hierarchical  associative  structure)  until  an

optimal performance is reached. Thus, activity in the medial prefrontal cortex and the hippocampus

would  track  recurrent  similarity  computations  underlying  generalization  of  knowledge,  which

would track accumulated knowledge during feedback presentation.  Alternative  factors might be

postulated to explain a relation of these brain regions and accumulated knowledge, such as reward

processing:  the  accumulated  knowledge  parameter  scales  with  the  correctness  of  feedback,

potentially eliciting an implicit reward signal. Moreover, various other regions in posterior cingulate

cortex, temporal and parietal cortices were also found to covary with accumulated knowledge. More

detailed behavioural paradigms are needed that can be performed in short learning sessions to

better assess the neural dynamics of these learning systems.

A cautionary note should be made. It could be argued that the learning benefit for regular

trials is not solely due to an ability to generalize knowledge across trials. For instance, in irregular

trials,  feature-syllable  associations  are  constantly  changing,  potentially  creating  interference

between associations that partially share the same features. However, increased interference across

trials is an inherent outcome of reduced consistency.  Similarly,  consistency across trials reduces

interference, and therefore inherently promotes generalization across trials. Furthermore, not only

did we establish that generalization took place by comparing learning performance in regular and
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irregular trials, we also find that participants generalized between the first half and the second half

of the learning session when exemplars were switched.

In conclusion, this study provides novel insights into how linguistic associative knowledge is

acquired  by  systematically  tracking  schematic  knowledge  formation  while  participants  were

learning an abstract  artificial  language  organized  by higher-order  associative  regularity.  During

learning, we find signals in the left inferior frontal gyrus, which responds both to feedback-based

knowledge  updating,  and  available  accumulated  knowledge  during  retrieval.  A  complementary

signal is found in the caudate nucleus,  where activity correlates with the availability of recently

acquired knowledge during retrieval,  suggesting it  initially supports  the retrieval  of  knowledge.

Furthermore, we find that activity in a set of regions, including the medial prefrontal cortex and

hippocampus, scaled with accumulated knowledge during feedback presentation, which might be

indicative of increased generalization of features of the hierarchical knowledge structure. Together,

these results provide a mechanistic insight into how linguistic associative knowledge is acquired by

generalization across repeated learning experiences.
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