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We extend the Ori and Thorne (OT) procedure to compute the transition from an adiabatic inspiral into a
geodesic plunge for any spin, with emphasis on near-extremal ones. Our analysis revisits the validity of the
approximations made in OT. In particular, we discuss possible effects coming from eccentricity and
nongeodesic past-history of the orbital evolution. We find three different scaling regimes according to
whether the mass ratio is much smaller, of the same order or much larger than the near extremal parameter
describing how fast the primary black hole rotates. Eccentricity and nongeodesic past-history corrections
are always subleading, indicating that the quasicircular approximation applies throughout the transition
regime. However, we show that the OT assumption that the energy and angular momentum evolve linearly
with proper time must be modified in the near-extremal regime. Using our transition equations, we describe
an algorithm to compute the full worldline in proper time for an extreme mass ratio inspiral (EMRI) and the
resultant gravitational waveform in the high spin limit.
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I. INTRODUCTION

The LIGO observation of the transient gravitational
wave (GW) signal from the collision of two stellar mass
black holes [1] in September 2015 spectacularly opened the
new field of gravitational wave astronomy. By the end of
the O2 observing run in August 2017, the LIGO/Virgo
detectors had observed ten binary black hole mergers and a
single binary neutron star inspiral [2]. This handful of
observations has already had a profound impact on our
understanding of the astrophysics of compact objects and
ruled out a number of modified theories of gravity [3–7].
During the ongoing O3 observing run new events are being
reported at the rate of one per week, so these constraints are
rapidly improving. However, the masses of the objects
being observed are all in the range of 1–100 M⊙, which is
determined by the frequency sensitivity of the instruments
[8]. Black holes with much higher masses are expected to
exist in the centres of most galaxies [9] and will be even
stronger sources of GWs, but these waves will be at

millihertz frequencies which are inaccessible to ground-
based detectors due to the seismic noise background.
The launch of the Laser Interferometer Space Antennae

(LISA) [10], scheduled for 2034, will open the millihertz
band from 10−4–10−1 Hz for the first time. Expected
sources in this frequency band include massive black hole
binaries, cosmic strings and extreme mass ratio inspirals
(EMRIs). Detection of these sources, and estimation of
their parameters, will rely on the comparison of accurate
theoretical models of the expected gravitational waveforms
to the observed data. Building these models for LISA is
extremely challenging, in particular for EMRIs, which are
expected to have a very rich structure and to be observed for
hundreds of thousands of waveform cycles prior to merger
with the central object [11]. In this paper we focus on
modeling of a particular class of EMRIs, in which the
central black hole has very large angular momentum (spin).
All of the LIGO observations to date are consistent with
zero or small spin [2], but the massive black holes that will
be probed by LISA are a different population. These black
holes are observed in high accretion states as quasars, and
accretion tends to spin the black holes up. Semi-analytic
models predict that the typical spins of these objects are
a≳ 0.95 [12].
The maximum spin of massive black holes is a quantity

of fundamental interest for understanding the origin of
black holes in the Universe. It was shown by Thorne [13]
that the angular momentum of black holes being spun up
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through thin disc accretion saturates at a limit of a ¼ 0.998
where an equilibrium is reached between spin up by
accreted material and spin down by captured retrograde
photons. Black holes with higher spin could in principle be
formed directly in the early Universe and for sufficiently
high mass these black holes can retain spins above the
Thorne limit for a Hubble time [14]. A direct observation of
a system with spin above the Thorne limit would thus have
profound implications for our understanding of the origin
and growth of black holes. It is therefore important to
understand how well observations of EMRIs can constrain
the spin of near-extremal black holes and to determine this
we first need to build accurate representations of the
gravitational waves emitted by such systems.
The near extremal limit is also relevant for more

theoretical considerations. Indeed, as the primary rotates
faster, its Hawking’s temperature decreases because the
distance between the inner ðr̃−Þ and outer ðr̃þÞ horizons in
Boyer-Lindquist (BL) coordinates reduces according to

r̃� ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
¼ 1þ ϵ; ð1Þ

where r̃ ¼ r=M and a the dimensionless Kerr spin param-
eter. The existence of a double pole in the function
determining the black hole horizons in this limit is
responsible for an enhancement of symmetry in the near
horizon geometry of the Kerr black hole [15], a feature that
remains true for any extremal black hole [16]. This
enhancement of symmetry from time translations to the
conformal group has allowed several groups to analytically
solve the master Teukolsky equation in the presence of the
in spiraling probe particle leading to an analytic expression
for the energy fluxes carried by the gravitational waves
generated by this source [17–25]. This provides a very
exciting opportunity where analytic tools developed in the
high energy theoretical physics community can provide
accurate predictions to generate gravitational waveform
templates. Future observations using such templates will be
directly testing these theoretical predictions.
It has already been shown that gravitational waveforms

emitted by these sources contain unique qualitative features
that provide a smoking gun for the existence of near-
extremal systems [23]. The amplitude of an EMRI wave-
form (averaged over a suitable amount of orbits) typically
increases linearly in time for moderate spin a ≈ 0.9. It was
shown in [23] that the amplitudes of these signals dampen
in the high spin limit due to behavior of the flux close to the
horizon. There has been progress in modeling the inspiral
from radial infinity to the innermost stable circular orbit
(ISCO) [23], by integrating the geodesic equations in the
near horizon geometry of the Kerr black hole [26] and
exploiting the enhanced set of symmetries to compute
the energy fluxes for more source trajectories [25].
However, no one has focused on providing a model which

encapsulates the inspiral and plunge in the limit of high
spins. This is precisely what this paper seeks to do.
In this work, we build such a model for an EMRI

comprised of a small compact object of mass μ gravita-
tionally bound to a supermassive Kerr black hole of massM
and study the transition from an adiabatic inspiral into a
geodesic plunge for any spin of the primary black hole.
This transition to plunge was originally discussed by Ori
and Thorne (OT) [27] for moderate values of the spin in the
limit of small mass ratios. A similar but independent
analysis conducted by Buonanno and Damour in [28]
solved the problem for Schwarzschild black holes with
arbitrary (reduced) mass ratio. The technical reason why
high spins require a separate discussion is because of the
existence of a second independent small parameter com-
peting with the mass ratio η ¼ μ=M ≪ 1. This new
parameter is the near-extremal parameter ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
encoding the distance of the spin parameter a from its
upper/lower bound, since Kerr black holes have spin
parameters a ∈ ½−1;þ1�. Since the dynamical equations
describing the transition depend on the spin, the near
extremal limit, i.e., ϵ → 0, modifies the original scaling
discussed by OT. The transition to plunge for near-extremal
EMRIs was previously considered in [29] and our work
clarifies and extends those results in a number of ways. We
point out the physical interpretation of the mathematical
procedure used in that paper, identify a missing term in the
near-extremal regime and incorporate recent analytic
results for the near-extremal energy flux for the first time.
In this paper, we will first review the treatment of the

transition regime given by OT in [27]. We analyze their
methodology and approximations and carefully estimate
the scaling of terms that are being omitted. In each of
[27,30,31] the notion of eccentricities and noncircular
motion was ignored. We discuss the potential growth of
eccentricities before and during the transition regime and
find that corrections to our equations due to eccentric
motion are sub-leading for any spin. We identify three
separate transition regimes, each with a slightly different
equation of motion: η ≪ ϵ, ϵ ∼ η and ϵ ≪ η. We then
discuss a numerical algorithm to generate full inspiral
trajectories in Boyer-Lindquist coordinates, alongside
the corresponding evolution of the integrals of motion
EðτÞ and LðτÞ. Finally, we extend the waveform from the
inspiral only results of [23] to include the plunge in the
regime ϵ ∼ η.
This paper is organized as follows. In Sec. II, we review

the properties of equatorial and circular orbits in the Kerr
black hole and, in Sec. II A, we review and compare the
results describing gravitational fluxes emitted by circular
EMRIs as a function of the spin. In Sec. III we set-up the
master transition equation of motion in general and, in
Sec. III C, we estimate corrections due to eccentricity and
nongeodesic past-history of the orbital evolution. The
transition equations of motion in the three different scaling
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regimes are described in Secs. III D, III E and III F
respectively. The numerical scheme to integrate our tran-
sition equations of motion for the ϵ ∼ η regime is presented
in Sec. IVA. We describe how to generate a near-extremal
EMRI gravitational waveform encapsulating inspiral and
plunge in Secs. IV B and IV C. We finish with a summary
of our main results in Sec. V.

A. Notation

Any quantity carrying a tilde refers to a dimensionless
quantity in units of the primary mass M, i.e., r̃ ¼ r=M,
τ̃ ¼ τ=M, t̃ ¼ t=M, Ẽ ¼ E=μ and L̃ ¼ L=Mμ, but we keep
a as the dimensionless Kerr spin parameter with no

tilde. Dotted quantities (eg _̃E) denote coordinate time
derivatives of that quantity. Finally, expressions A ∼
OðBÞ or, for brevity, A ∼ B stress that both A and B scale
in the same way with the small parameters under consid-
eration. We impose geometrized units by setting the
constants G ¼ c ¼ 1.

II. PRELIMINARIES

In Boyer-Lindquist (BL) coordinates ðr̃;ϕ; θ; t̃Þ, the
motion of a point particle with mass μ in a Kerr black
hole on the equatorial plane (θ ¼ π=2) is given by [32]

�
dr̃
dτ̃

�
2

¼ ½Ẽðr̃2 þ a2Þ − aL̃�2 − Δ½ðL̃ − aẼÞ2 þ r̃2�
r̃4

¼ Ẽ2 − Veffðr̃; Ẽ; L̃; aÞ ¼ Gðr̃; Ẽ; L̃; aÞ ð2Þ

dϕ
dτ̃

¼ −ðaẼ − L̃Þ þ aðẼ½r̃2 þ a2� − aL̃Þ=r̃
r̃2

¼ Φðr̃; Ẽ; L̃; aÞ ð3Þ

dt̃
dτ̃

¼ −ΔaðaẼ − L̃Þ þ ðr̃2 þ a2ÞðẼ½r̃2 þ a2� − aL̃Þ
Δr̃2

¼ Tðr̃; Ẽ; L̃; aÞ; ð4Þ

where the largest root of Δ ¼ r̃2 − 2r̃þ a2 corresponds to
the outer horizon r̃þ

r̃þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
;

τ̃ ¼ τ=M denotes proper time in units of the Kerr black
hole mass M and a is the dimensionless spin param-
eter a ∈ ½−1; 1�.
The particle is on a prograde (retrograde) orbit if it

follows the same (opposite) direction as the rotation of the
primary hole. Prograde (retrograde) orbits correspond to
a > 0ða < 0Þ while keeping the azimuthal component of
the angular momentum L̃ > 0. Since retrograde orbits do
not reach the near horizon geometry of the primary black
hole in the near-extremal limit (see Appendix B), while

prograde orbits do, we only consider the latter from
here on.
For an equatorial orbit to be circular, the BL radial

coordinate r̃ must be constant and to be stable, the latter
must be at a minimum of the potential Veff in (2) so that

G ¼ ∂G
∂r̃ ¼ 0; and

∂2G
∂r̃2 ≥ 0:

These conditions determine the energy Ẽ and angular
momentum L̃ of these orbits to be [33]

Ẽ ¼ 1 − 2=r̃þ a=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2a=r̃3=2

p ; ð5Þ

L̃ ¼ r̃1=2
1 − 2a=r̃3=2 þ a2=r̃2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2a=r3=2

p : ð6Þ

Substituting (5)–(6) into (3)–(4) gives rise to

dϕ
dτ̃

¼ 1

r̃3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2a=r̃3=2

p ; ð7Þ

dt̃
dτ̃

¼ 1þ a=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2a=r̃3=2

p ; ð8Þ

whose ratio defines the angular velocity Ω̃ of the particle

dϕ
dt̃

¼ Ω̃ ¼ ðr̃3=2 þ aÞ−1: ð9Þ

Equatorial circular orbits are also known to satisfy the
identity [34]

∂G
∂Ẽ ðr̃ÞΩ̃ðr̃Þ þ ∂G

∂L̃ ðr̃Þ ¼ 0; ð10Þ

where we stress the equality holds for any circular orbit
labeled by ðr̃; Ẽ; L̃Þ. Differentiating (10) with respect to r̃,
we can derive further equalities satisfied for any such
orbits. The ones below

∂2G

∂r̃∂Ẽ Ω̃þ ∂2G

∂r̃∂L̃ ¼ −
∂Ω̃
∂r̃

∂G
∂Ẽ ; ð11Þ

−
1

2

� ∂3G

∂r̃2∂Ẽ Ω̃þ ∂3G

∂r̃2∂L̃
�

¼ ∂Ω̃
∂r̃

∂2G

∂r̃∂Ẽþ 1

2

∂2Ω̃
∂r̃2

∂G
∂Ẽ ð12Þ

will play a role in our analysis later on.
The innermost stable circular orbit (ISCO) is the

marginal circular stable orbit satisfying

Gjisco ¼
∂G
∂r̃

����
isco

¼ ∂2G
∂r̃2

����
isco

¼ 0: ð13Þ
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The last equality, describing marginality, allows to solve for
its radius as a function of the spin [35]

r̃isco ¼ 3þ Z2 − ½ð3 − Z1Þð3þ Z1 þ 2Z2Þ�1=2
Z1 ¼ 1þ ð1 − a2Þ1=3½ð1þ aÞ1=3 þ ð1 − aÞ1=3�
Z2 ¼ ð3a2 þ Z2

1Þ1=2: ð14Þ

This is the last radii before plunging into the horizon
occurs. In Appendix A, we derive general formulas for (13)
and higher order derivatives of Gðr̃; Ẽ; L̃Þ, which are valid
for any spin a > 0, when evaluated at ISCO that will be
relevant in the rest of this work.
For near-extremal Kerr black holes, it is natural to

introduce the near extremal parameter

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
for ϵ ≪ 1; ð15Þ

to mathematically capture the large spin limit a → 1. For
these black holes, the ISCO location can be expanded in ϵ

r̃isco ¼ 1þ 21=3ϵ2=3 þOðϵ4=3Þ ð16Þ

and the physical parameters of this marginal orbit reduce to

Ẽisco →
1ffiffiffi
3

p ð1þ 21=3ϵ2=3Þ þOðϵ4=3Þ; ð17Þ

L̃isco →
2ffiffiffi
3

p ð1þ 21=3ϵ2=3Þ þOðϵ4=3Þ; ð18Þ

Ω̃isco →
1

2

�
1 −

3

25=3
ϵ2=3

�
þOðϵ4=3Þ: ð19Þ

Notice jr̃isco − r̃þj ∼Oðϵ2=3Þ for prograde orbits, whereas it
isOð1Þ for retrograde ones, as mentioned below (B2). This
further justifies our interest in prograde orbits in the near
extremal limit.

A. Gravitational wave flux

For equatorial orbits, the motion of a (point) particle on
the Kerr spacetime background generates gravitational
waves carrying energy and angular momentum, either
escaping toward infinity or being absorbed by the horizon
of the primary hole.
Due to energy and angular momentum conservation,

the orbit averaged rates of change h _̃Ei and h _̃Li satisfy

h _̃Ei ¼ −h _̃EGWi and h _̃Li ¼ −h _̃LGWi, where the averaged
gravitational wave dissipative fluxes are

h _̃EGWi ¼ h _̃EGW;Hi þ h _̃EGW;∞i ¼ hfdisst =uti;
h _̃LGWi ¼ h _̃LGW;Hi þ h _̃LGW;∞i ¼ −hfdissϕ =uti; ð20Þ

determined in terms of the time-averaged t and ϕ compo-
nents of the dissipative self-force f̃diss normalized by the
t–component of the four velocity ut. These quantities are
discussed in more depth in the next subsection III A [see
Appendix C, in particular the discussion around (C7), for a
derivation of relations such as (20)]. Notice we split these
fluxes into their horizon and asymptotic infinity contribu-
tions in the right-hand side. We stress here this flux balance
law only holds for adiabatically evolving binaries forcing
the small mass ratio limit η → 0. The (orbit-averaged and
dissipative) gravitational wave fluxes are determined by
solving the Teukolsky equation in the presence of the point
particle source [36–40]. From hereon, to avoid cumber-
some notation, we shall drop the angled-brackets to denote

time-averaging and simply write, for example, h _̃Ei ¼ _̃E.
In [41], Finn and Thorne (F&T) parametrise the energy

flux as the (Peters and Mathews [42]) leading order post
newtonian correction with an extra general relativistic
correction _E factor

dẼGW

dt̃
¼ 32

5
ηΩ̃10=3 _Eðr̃Þ: ð21Þ

These fluxes are spin dependent and are typically computed
through numerical means. See the tables in [41] for some of
the values of these relativistic corrections.
As we increase the spin of the black hole, the two roots

r̃� ¼ 1� ϵ of the function Δ determining the outer and
inner horizons of the rotating black hole coincide in the
extremal limit ϵ ¼ 0. In this limit, the geometry close to the
horizon of the black hole, which can be isolated using
the change of coordinates

r̃ − r̃þ ¼ λρ; t̃ ¼ T
λ
; ϕ̃ ¼ ϕþ t̃

2λ
ð22Þ

with λ → 0, has an enhancement of symmetry from
R × Uð1Þ, i.e., time translations and rotational symmetry,
to SLð2;RÞ × Uð1Þ. The resulting near horizon geometry is
warped AdS2 over a 2-sphere. The enhanced SLð2;RÞ, the
isometry group of AdS2, includes the scaling symmetry
ρ → cρ and T → T=c. This was already observed in the
original work [15] and it is true for any extremal black
hole [16].
Larger symmetry in physics implies larger kinematic

constraints which can provide further analytic control over
the given problem, in this case, the calculation of the
gravitational wave fluxes (20). It is precisely the emergence
of this conformal group ðSLð2;RÞÞ and the use of
asymptotic expansion matching methods that allowed to
find analytic expressions for these energy and angular
momentum fluxes for equatorial circular orbits close to the
horizon [17–20,22,23,25]. This body of work led to the
simple relationship for the flux given in [23]
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dẼGW

dt̃
≈ ηðC̃H þ C̃∞Þ

r̃ − r̃þ
r̃þ

: ð23Þ

The quantities C̃H and C̃∞ are constants representing how
much wave emission goes toward the horizon and infinity
respectively. These constants are given analytically in
Eqs. (76) and (77) of [20]. Numerically evaluating them
and summing the contribution of the first jmj ≤ l ¼ 30

modes gives C̃H ¼ 0.987 and C̃∞ ¼ −0.133.
The flux (23) is only reliable when working with

near extremal black holes and interested in near horizon
physics. This fact can be checked by comparing the exact
fluxes (21), using exact results found in the black hole
perturbation toolkit (BHPT), with the near extremal
approximation (23). This comparison is shown in Fig. 1.
Fixing the radial coordinate to r̃ ¼ r̃isco and varying the
spin parameter a, we observe in Table (I) that as a → 1, the
near-horizon extremal Kerr (NHEK) flux (23) converges
toward the exact value computed using the BHPT.
Furthermore, fixing the spin parameter to a ¼ 1 − 10−9,
as in Fig. 1, the NHEK flux (23) provides a nearly perfect
agreement up to a coordinate radii r̃ ≈ 1.012. The reason
for the (extremely small) discrepancy at the ISCO is
because Eq. (23) is only valid for ϵ → 0 and we consider
ϵ ≈ 10−5. Thus we can use (21) to build a trajectory

throughout the adiabatic inspiral regime. Then, as we near
the ISCO, we can use the powerful analytic result given by
Eq. (23). Using Eq. (23) allows for a more analytic
treatment of the analysis of the transition regime.

III. THE TRANSITION EQUATION OF MOTION

In this section we revisit the earlier work by OT [27]
describing how a small body following an initial equatorial
circular orbit around the large black hole inspirals and

FIG. 1. These plots show the deviation between using the exact results for the flux (21) and the near extremal approximation given
in (23). Notice that, to keep the error <5%, we require r̃≲ 1.01. For each of these plots, we used a spin parameter a ¼ 1 – 10−9. Similar
plots can be found in [20].

TABLE I. Comparing the NHEK flux (23) with exact flux data
found in the BHPT. We fix the radial coordinate at r̃ ¼ r̃isco and
change the spin parameter a. This data can also be found in [20].

a _̃EExact=η
_̃ENHEK=η j _ENHEK − _EExactj=η

1 – 10−5 0.0264197 0.0261523 0.0002674
1 – 10−6 0.0129344 0.0125200 0.0004143
1 – 10−7 0.0061516 0.0059484 0.0002031
1 – 10−8 0.0028875 0.0028082 0.0000793
1 – 10−9 0.0013472 0.0013193 0.0000280
1 – 10−10 0.0006273 0.0006176 0.0000097
1 – 10−11 0.0002915 0.0002883 0.0000031
1 – 10−12 0.0001354 0.0001344 0.0000009
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eventually transitions into a plunging trajectory falling into
the black hole.
Our discussion is organized as follows. First, we analyze

in Sec. III A the effects arising from the radial self-force
in the vicinity of the ISCO on the dynamics of this small
body, justifying the starting point in OT. Second, assuming
the dissipative fluxes of energy and angular momentum
for quasicircular and equatorial orbits are still related as in
circular orbits [34,43]

_̃E ¼ Ω̃ðr̃Þ _̃L; ð24Þ

we derive in Sec. III B the transition equation for arbitrary
black hole spins without the OT assumption that both
energy Ẽ and angular momenta L̃ evolve linearly in proper
time τ̃. Third, given the quasicircular nature of our assumed
orbits, we argue in Sec. III C there can be corrections to
(24) of the form

_̃E − Ω̃ðr̃Þ _̃L ∼ η _̃rþ ηe2; ð25Þ

whose scaling behavior on the trajectory of the small body
is determined. Finally, in Secs. III D–III F, we discuss in
great detail the existence of three different scaling regimes
in our transition equation, depending on the black hole
spin, paying special attention to the near-extremal ones
which contain new physics. We show the corrections due to
(25) are subleading in all the regimes.

A. The self-force

This subsection shows both that quasicircular and
equatorial orbits have vanishing dissipative effects and
the conservative piece of the radial self-force can be
neglected close to the ISCO.
Consider the radial geodesic equation, Eq. (2).

Differentiating it with respect to proper time, one obtains

d2r̃
dτ̃2

−
1

2

∂G
∂r̃ ¼ 1

2

�
dẼ
dτ̃

∂G
∂Ẽ þ dL̃

dτ̃
∂G
∂L̃

��
dr̃
dτ̃

�
−1
: ð26Þ

It is shown in Appendix C this is equivalent to

d2r̃
dτ̃2

þ Γr̃
ρσ
dx̃ρ

dτ̃
dx̃σ

dτ̃
¼ f̃r̃diss: ð27Þ

Hence, the terms on the left-hand side of Eq. (26) corre-
spond to the usual ones for geodesic motion, whereas the
one on the right-hand side can be understood as the
perturbing force f̃r̃diss exerted on the particle driving energy
ðdẼ=dτ̃Þ and angular momentum ðdL̃=dτ̃Þ loss due to
gravitational wave emission.
In [44], Mino recognised that the forcing term for general

geodesic motion can perturbatively be split into a radiative
reactive dissipative and a conservative piece at first order in
the mass ratio η

f̃r̃ ¼ ηðf̃r̃ð1Þdiss þ f̃r̃ð1ÞconsÞ þOðη2Þ: ð28Þ

More details on this splitting can be found in [45].
For circular orbits, as considered by OT, the dissipative

fluxes of energy and angular momentum are related by
[34,43]

_̃E ¼ Ω̃ðr̃Þ _̃L: ð29Þ

Hence, the dissipative part of the self-force f̃r̃ð1Þdiss vanishes,
leading to

d2r̃
dτ̃2

−
1

2

∂G
∂r̃ ¼ ηf̃r̃ð1Þcons þOðη2Þ ð30Þ

which is precisely Eq. (3.10) of OT in [27]. A gauge
invariant way to quantify the leading order in η effect on the
trajectory due to f̃r̃ð1Þcons is to study the orbital velocity Ω̃
(see [45] for a review). This generates a shifted orbital
velocity Ω̃shifted

isco with respect to the Kerr orbital velocity
Ω̃isco at ISCO given by [46,47]

ð1þ ηÞΩ̃shifted
isco ¼ Ω̃iscoð1þ ηCΩ̃ðaÞÞ þOðη2Þ ð31Þ

with the quantity CΩ̃ðaÞ discussed in depth and inde-
pendently (numerically) calculated in both [47,48].
According to [47], CΩ̃ðaÞ ∈ ð1.24; 1.39Þ. Hence, CΩ̃ðaÞ ∼
Oð1Þ for all spins, and since Ω̃isco ∼Oð1Þ, it follows that
for η ≪ 1

jΩ̃shifted
isco − Ω̃iscoj ≈ ηðCΩ̃ðaÞ − 1ÞΩ̃isco ∼ η: ð32Þ

It is further shown in [47] that CΩ̃ðaÞ → 1þ 1=2
ffiffiffi
3

p
as

a → 1 in an averaged sense.1 Using Eq. (19) in the high
spin limit and η ≪ 1, Eq. (31) becomes

jΩ̃shifted
isco − Ω̃iscoj ¼

η

4
ffiffiffi
3

p þOðη2Þ þOðηϵ2=3Þ: ð33Þ

This implies that the change in the orbital velocity at the
ISCO due to conservative self-force effects is an OðηÞ
quantity.
Since Ω̃shifted

isco is related to the shifted Boyer-Lindquist
radial coordinate at the ISCO by

r̃shiftedisco ¼
�

1

Ω̃shifted
isco

− a

�
2=3

; ð34Þ

1CΩ̃ðaÞ is shown to actually oscillate around this limiting value
as a → 1. This phenomenon is nontrivial and still not well
understood today. See [47] for more details.
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it follows, using Eq. (33), that the “radial thickness”

r̃ − r̃shiftedisco ∼ r̃ − r̃isco þOðηÞ; ð35Þ

differs by anOðηÞ quantity when including the conservative
self-force effects.
It will be shown in this paper that there are three different

transition regimes depending on the ratio of ϵ and η. The
“radial thickness” of the transition in each regime scales
according to

(i) For η ≪ ϵ ⇒ r̃ − r̃isco ∼ η2=5,
(ii) For η ∼ ϵ ⇒ r̃ − r̃isco ∼ ðη=ϵÞ2=5ϵ2=3 ∼ η2=3,
(iii) For η ≫ ϵ ⇒ r̃ − r̃isco ∼ η2=3.

Thus, the effect of the conservative piece of the self-force is
subleading in all regimes. For this reason, like in the
original OT analysis, we shall ignore these effects.

B. Transition equation—Generalities

To discuss the evolution of the orbit, we pursue the
following strategy: we assume the corrections in (25) are
subleading, and once the scaling behavior of the different
dynamical regimes is identified, we double check the
consistency of our original assumption.
To evolve the orbit, OT used the circular flux relationship

(29) and additionally assumed that the energy Ẽ and
angular momentum L̃ evolve linearly in proper time τ̃
throughout the transition regime

Ẽ − Ẽisco ¼ Ω̃isco
dL̃isco

dτ̃
ðτ̃ − τ̃iscoÞ;

L̃ − L̃isco ¼
dL̃isco

dτ̃
ðτ̃ − τ̃iscoÞ: ð36Þ

In our analysis of the transition, we will not assume a
strict equality in Eq. (36). Instead, we will keep track of the
evolution of Ω̃−1

iscoðẼ − ẼiscoÞ − ðL̃ − L̃iscoÞ, as also consid-
ered in [29].
OT proposed to analyse the transition to the plunging

geodesic by expanding (26) around the ISCO trajectory
ðr̃isco; Ẽisco; L̃iscoÞ, since the latter provides the natural
starting point for the plunging trajectory for equatorial
and circular orbits. It is physically natural to introduce the
new variables δE, δL and R

δE ¼ Ω̃−1
iscoðẼ − ẼiscoÞ

δL ¼ L̃ − L̃isco

R ¼ r̃ − r̃isco ð37Þ

to study the inspiral evolution of the small body perturba-
tively around the primary. The presence of Ω̃isco is for
technical convenience.
Instead of expanding (26), we find it more convenient to

expand (2). Our conclusions do not depend on this choice.
The latter is given by

�
dr̃
dτ̃

�
2

¼Gðr̃isco; Ẽisco; L̃iscoÞþ
X∞
i¼1

1

i!
∂iG
∂r̃i

����
isco

ðr̃− r̃iscoÞiþ
X∞
i¼0

1

i!

�∂iþ1G

∂r̃i∂Ẽ
����
isco

ðẼ− ẼiscoÞþ
∂iþ1G

∂r̃i∂L̃
����
isco

ðL̃− L̃iscoÞ
�
ðr̃− r̃iscoÞi

×
1

2

X∞
i¼0

1

i!

� ∂iþ2G

∂r̃i∂Ẽ2

����
isco

ðẼ− ẼiscoÞ2þ2
∂iþ2G

∂r̃i∂L̃∂Ẽ
����
isco

ðẼ− ẼiscoÞðL̃− L̃iscoÞþ
∂iþ2G

∂r̃i∂L̃2

����
isco

ðL̃− L̃iscoÞ2
�
ðr̃− r̃iscoÞi:

ð38Þ

Since Gðr̃; Ẽ; L̃Þ is quadratic in Ẽ and L̃, we have ignored the derivatives

∂nG

∂Ẽn ¼ ∂nG

∂L̃n−k∂Ẽk ¼
∂nG

∂Ẽn−k∂L̃k ¼
∂nG

∂L̃n ¼ 0 for n ≥ 3 and k < n: ð39Þ

Plugging the perturbative variables (37), using the definition of the coefficients (A8) and the results in (A9)–(A11), one can
rewrite the general transition equation as

�
dR
dτ̃

�
2

¼
X∞
n¼3

1

n!
AnRn þ δL

X∞
n¼1

1

n!
BnRn þ δL2

2

X∞
n¼0

1

n!
CnRn þ Γ⊙; ð40Þ

where Γ⊙ is defined by

Γ⊙ ¼ 1

2

X∞
n¼0

1

n!
Ω̃iscoðδE − δLÞ

�
2
∂nþ1G

∂r̃n∂Ẽ
����
isco

þ 2

� ∂nþ2G

∂r̃n∂Ẽ∂L̃
����
isco

þ Ω̃isco
∂nþ2G

∂r̃n∂Ẽ2

����
isco

�
δLþ Ω̃isco

∂nþ2G

∂r̃n∂Ẽ2

����
isco

ðδE − δLÞ
�
Rn:

ð41Þ
Notice that Γ⊙ ∝ δE − δL at leading order in R. Hence, it encodes the deviations from the OT approximation (36).
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The time evolution of δE − δL near r̃isco is controlled by
the fluxes and the angular velocity. Throughout a quasi-
circular inspiral far from ISCO, the compact object inspi-
rals on a sequence of circular geodesics defined by the
constants of motion Ẽðr̃circÞ ¼ Ẽcirc and L̃ðr̃circÞ ¼ L̃circ, as
given in Eq. (5) and Eq. (6) respectively. The evolution of
the constants of motion is linked through Eq. (29) above,
which simply states that circular geodesics evolve into
circular geodesics. It can be shown that solutions to the
Teukolsky equation for circular orbits obey this condition
[34,49]. For circular evolutions we therefore see that

d
dτ̃

ðδE − δLÞ ¼ Ω̃−1
isco

dẼ
dτ̃

−
dL̃
dτ̃

¼ ðΩ̃−1
iscoΩ̃ðr̃Þ − 1Þ dL̃

dτ̃

≈ −
∂ log Ω̃
∂r̃

����
isco

ηκR

⇒ ðδE − δLÞ ∼ ηRτ̃; ð42Þ

where we expanded Ω̃ðrÞ to first order in R and approxi-
mated dL̃=dτ̃ ≈ ðdL̃=dτÞisco ¼ −ηκ for κ constant
defined by

κ ¼
�
Ω̃−1 dt̃

dτ̃
dẼGW

dt̃

�
isco

∼Oð1Þ for a ∈ ½0; 1�: ð43Þ

Thus we deduce that δE − δL ∼ ηRτ̃ for circular inspirals
close to r̃isco. We shall see that these corrections are indeed
subleading in the regime considered by OT [27]. However,
they will not be negligible for near-extremal black holes.

C. Corrections arising from deviations
from adiabatic nearly circular inspiral

Given our assumption that the orbit is nearly circular
when it reaches the transition regime, one expects correc-
tions to the relation (29) between the fluxes of energy and
angular momentum satisfied for an exactly equatorial
circular adiabatic inspiral. We discuss below two possible
physical effects giving rise to such corrections: eccentricity
and the nongeodesic past-history of the orbital evolution.
These will give rise to the corrections (25).
Eccentricity can lead to corrections to the transition

equation which we will discuss further below, but eccen-
tricity corrections to the fluxes tend to be suppressed during
the transition regime. This is because the transition, for an
arbitrary eccentric inspiral, corresponds to the orbit passing
over the maximum of the effective potential given by
Eq. (2). The radial velocity throughout the transition regime
is therefore always small, while the angular velocity
remains Oð1Þ. Hence the orbit looks very much like a
circular orbit, even if it is technically eccentric or even
plunging. For nearly circular transitions, the orbit is passing
over a point of inflection of the effective potential and
corrections to this approximately circular assumption are
even smaller.

Corrections from nongeodesic past-history enter because
the self-force acting on the small object at a particular time
is generated by the intersection of the particle world line
with gravitational perturbations generated by the orbital
motion in the immediate past [50]. The self-force acting on
the orbit when it is at a particular radius will therefore have
corrections that depend on how far, in radius, the orbit has
moved over the relevant past-history. The latter is deter-
mined by the dominant, azimuthal, timescale, and is an
Oð1Þ quantity, when expressed in coordinate time.2 The
orbital radius therefore changes by an amount of Oð _̃rÞ over
the relevant past-history. This is the scaling of the fractional

change in the fluxes, and since _̃E ∼Oðηϵ23Þ, the non-
geodesic past-history corrections to the coordinate-time
fluxes thus scale like ηϵ2=3 _̃r. In the regime η ≪ _̃r, consid-
ered by OT, and discussed in Sec. III D, ϵ can be considered
Oð1Þ and so the scaling of this correction is η _̃r. This is the
first type of correction in Eq. (25). In the adiabatic inspiral
phase, these corrections are Oðη2Þ and form part of the
second-order component of the self-force. However, in the
transition phase these corrections can be larger.
We have argued above that eccentricity corrections to the

fluxes should be suppressed in the transition regime. We
now make this more concrete. Eccentricity corrections to
the fluxes enter as fractional corrections of Oðe2Þ, since
corrections to the orbit at linear order in eccentricity are
oscillatory and average to zero over a complete orbit [34].
The corrections to the coordinate time fluxes thus scale
like ηϵ

2
3e2 (which is ηe2 in the OT regime discussed in

Sec. III D). This is the second type of correction in Eq. (25).
If these corrections are to be small relative to the non-
geodesic past-history corrections, we need e2 < _̃r. In the
transition zone we will see that the proper timescales like
R−1=2, where R ¼ r̃ − r̃isco is the distance from the ISCO,
regardless of the spin of the primary. For non-near-extremal
black holes, i.e., those with η ≪ ϵ, proper time and
coordinate time scale in the same way and the scaling of
_̃r is therefore the same as that of R3=2. The constraint we
obtain on eccentricity is therefore e < R3=4. However, there
is also a geometric constraint, which is that the variation in
the orbital radius due to eccentricity should be small
compared to the variation due to radiation reaction through
the transition zone. The latter is the scaling of R, while the
former is a quantity of OðeÞ, so we deduce an additional
constraint e < R < R3=4, the latter inequality following
from the fact that R is a small quantity throughout the
transition. We deduce that the geometrical constraint is

2If we are more conservative, we could assume that the
timescale for radial oscillations is the appropriate averaging
timescale. This is not Oð1Þ, but OðTÞ, the scaling of the time
coordinate in the transition zone. While this condition is more
restrictive we will see below that even this condition does not
change the conclusion that past-history corrections can be
ignored in the transition zone.

OLLIE BURKE, JONATHAN GAIR, and JOAN SIMÓN PHYS. REV. D 101, 064026 (2020)

064026-8



stronger than the flux-correction constraint in the regime
η ≪ ϵ. In the near-extremal regime, η≲ ϵ, dt̃=dτ̃ ∼ ϵ−2=3

and so the constraint on the eccentricity changes to e <
ϵ1=3R3=4 if these corrections are to be subleading. This is
then more stringent than the geometric constraint.
However, in this regime we will see below that eccentricity
cannot grow until deep inside the transition zone, so even
the more stringent constraint is easily satisfied.
Eccentricity during the transition can arise either from

the presence of residual eccentricity prior to the start of the
transition zone, or due to the excitation of eccentricity
during the transition. The latter manifests itself as addi-
tional terms in the transition equation, the existence of
which we will check for carefully in our analysis. To
understand the former, we need to analyze the growth of
eccentricity during the adiabatic inspiral. We will assume
that at the beginning of the inspiral the orbit is nearly
circular. It was shown in [34] that, for small eccentricity, the
evolution of eccentricity under radiation reaction takes the
form _e ¼ fðr̃0Þe, where r̃0 is the mean orbital radius and
e is an eccentricity defined such that the orbital apoapsis is
at r̃ ¼ r̃0ð1þ eÞ. For large r̃0, fðr̃0Þ < 0 and so the
eccentricity decreases. In this regime any small eccentricity
that is excited by small perturbations arising due to inspiral
evolution or other effects is damped away and does not
grow. However, for all spins a < 1, as the innermost stable
circular orbit (or separatrix) is approached the sign of fðr̃0Þ
changes and is greater than zero in the vicinity of the ISCO.
This means that orbits near to the separatrix are unstable to
eccentricity growth. We would therefore expect any eccen-
tricity that is excited to begin to grow.
Denoting ṽ2 ¼ 1=r̃0, Kennefick [34] showed that the

evolution of the orbital parameters, for small eccentricity,
was governed by equations of the form

_̃r0
r̃0

¼ −
2ð1 − 3ṽ2 þ 2aṽ3Þ3=2

ṽ2ð1 − 6ṽ2 þ 8aṽ3 − 3a2ṽ4Þ
_̃E0 ð44Þ

_e
e
¼ 1

e2
ð _̃E0 −ΩðṽÞ _̃L0Þ − jðṽÞ½Γ − hðṽÞ _̃E0Þ�

where

jðṽÞ ¼ ð1þ aṽ3Þð1 − 2ṽ2 þ a2ṽ4Þð1 − 3ṽ2 þ 2aṽ3Þ1=2
ṽ2ð1 − 6ṽ2 þ 8aṽ3 − 3a2ṽ4Þ

hðṽÞ ¼ HðṽÞð1þ aṽ3Þ−1ð1 − 2ṽ2 þ a2ṽ4Þ−2
2ð1 − 6ṽ2 þ 8aṽ3 − 3a2ṽ4Þ

HðṽÞ ¼ 1 − 12ṽ2 þ 66ṽ4 − 108ṽ6 þ aṽ3 þ 8a2ṽ4

− 72aṽ5 − 20a2ṽ6 þ 204aṽ7 þ 38a3ṽ7 − 42a2ṽ8

− 9a4ṽ8 − 144a3ṽ9 þ 116a4ṽ10 − 27a5ṽ11: ð45Þ

Both Γ and _̃E0 are components of the self-force, which can
be evaluated by solving the Teukolsky equation. The
quantity Γ is in fact a linear combination of quantities

that are time derivatives and so the above equation takes the
same form for any choice of time coordinate with respect to
which to evaluate the fluxes. Kennefick’s analysis used
coordinate time and so we make the same choice in the
following discussion. An explicit expression for Γ is given

in [34] and the quantity _̃E0 is the energy flux given in (20).
Numerical calculations show that these are finite quantities
of Oð1Þ throughout parameter space. The first term in the
eccentricity evolution equation vanishes for evolution
driven by gravitational radiation reaction, while the quan-
tity hðṽÞ is singular at the ISCO. Therefore, close to ISCO
the eccentricity evolution takes the form

_e
e
≈ jðṽÞhðṽÞ _̃E0

⇒ r0
dlne
dr0

≈−
ṽ2ð1−6ṽ2þ8aṽ3−3a2ṽ4ÞjðṽÞhðṽÞ

2ð1−3ṽ2þ2aṽ3Þ3=2 : ð46Þ

Notice that the expression is entirely geodesic and inde-

pendent of the energy flux _̃E0. For nonextremal spin, both
jðṽÞ and hðṽÞ have simple poles at r̃ ¼ r̃isco and there is a
simple zero in the term ð1 − 6ṽ2 þ 8aṽ3 − 3a2ṽ4Þ in the
numerator. Therefore as ISCO is approached the eccen-
tricity evolves as

d ln e
dR

≈ −
kðaÞ
R

⇒ e ¼ e0

�
R0

R

�
kðaÞ

ð47Þ

with R ¼ r̃ − r̃isco as before, and e0 denotes the eccentricity
when R ¼ R0 and r̃0 ≫ r̃isco. The exponent kðaÞ is
given by

kðaÞ¼HðṽiscoÞ=DðṽiscoÞ
whereDðṽÞ¼ 2ṽ2ð1−2ṽ2þaṽ4Þð12ṽ−24aṽ2þ12a2ṽ3Þ

× ð1−3ṽ2þ2aṽ3Þ ð48Þ

and ṽ2isco ¼ 1=r̃isco. We find that kðaÞ ¼ 1=4 for all a < 1.
The behavior for near-extremal black holes is slightly
different, which we will discuss further below.
For extremal black holes the various factors in the

expression for d ln e=dr̃0 have repeated roots at the
ISCO. To understand the behavior for near-extremal black
holes we therefore need to do an expansion in both R and ϵ.
This takes the form

d ln e
dR

¼ a0ϵ4 þ a1ϵ4RþP
5
i¼2 aiϵ

2ð6−iÞ
3 Ri þ a6R6 þ � � �P

6
i¼1 biϵ

2ð7−iÞ
3 Ri þ b7R7 þ � � �

ð49Þ

The terms omitted from both the numerator and denom-
inator above are Oð1Þ in ϵ. The ratio a0=b1 ¼ −1=4,
agreeing with the result for kðaÞ found above. However,
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for ϵ ≪ R, the behavior is not dominated by this term, but
by the terms from a6 in the numerator and from b7 in the
denominator. The leading order behavior in this regime is
therefore

d ln e
dR

¼ a6
b7

1

R
: ð50Þ

This is also exponential, but we find the ratio a6=b7 ¼ 3=2,
i.e., it is greater than zero and therefore the eccentricity
decreases exponentially until we reach the regime R ∼ ϵ.
This is the statement that the critical curve, where the sign
of the eccentricity evolution changes, is in the near-horizon
region, which is consistent with results in [39]. We
conclude that for near-extremal black holes, eccentricity
can only grow once the inspiraling object is already very
close to the ISCO, which is typically already inside the
transition zone.
To complete this discussion we need to determine the

scaling of the initial eccentricity e0. If the orbit is truly
circular then the eccentricity remains zero, so there must be
some mechanism to excite an initial eccentricity which can
then grow. Eccentricity can be excited by other physical
processes, such as the presence of perturbing material, e.g.,
dust, or gravitational interactions with third bodies. Those
processes are important, but in the pure-vacuum case
eccentricity could still in principle be excited by the
evolution under radiation reaction. We argued earlier that
corrections to the fluxes far from the horizon scale like η _̃r
which is η2 during the adiabatic inspiral. These corrections
mean that the first term in Eq. (45) is no longer exactly zero.
Setting that term to η2 we find an evolution equation of the
form de2=dt̃ ∼ η2. After a few orbits the eccentricity is then
OðηÞ. This eccentricity induced by second order correc-
tions to the evolution is damped by the process described
above, until we reach the critical curve where it grows,
eventually exponentially near the ISCO. This suggests
appropriate initial conditions are e0 ∼ η and R0 ∼Oð1Þ.3
We note that this mechanism could also excite eccentricity

during the transition zone itself, but this would be of order
e2 ∼ η _̃rϵ

2
3 and hence no larger than the nongeodesic past-

history corrections described above. If eccentricity grew
coherently throughout the transition zone, the eccentricity
induced by this process would be no larger than e2 ∼ η _̃rϵ

2
3T,

where T is the coordinate time elapsed through the
transition zone, which is typically smaller than the eccen-
tricity grown during adiabatic inspiral prior to the start of
the transition zone.
To summarize, we expect corrections to the evolution

equations that arise from higher-order terms in the flux to
scale like ηϵ

2
3 _̃r (which is η _̃r in the OT regime discussed in

Sec. III D), and we expect residual eccentricity in the
transition zone to be no more than e ∼ ηR−kðaÞ. In the non-
near extreme case, these eccentricity corrections will be
important when e > R, which implies R < η1=ð1þkðaÞÞ. In
the near-extreme case, the corrections only become impor-
tant when R ∼ ϵ, so we simply need to check that this is
well inside the transition zone. In the analysis that follows
we will evaluate the scaling of these terms and show that
they are subdominant for inspirals into near-extremal
black holes.

D. Ori and Thorne regime

Consider nonextremal black holes, i.e., rotating black
holes where the extremality parameter ϵ is not close to zero
so that η ≪ ϵ. In this regime of spins and according to the
discussion below (A13)–(A18), all the coefficients con-
trolling the general transition equation (40) and (41) are
Oð1Þ. This is the regime originally discussed in [27].
Omitting coefficients of order one, the dominant con-

tributions to the transition equation are

�
dR
dτ̃

�
2

∼ R3 þ RδLþ Γ⊙

Γ⊙ ∼ δE − δL; ð51Þ

where we also omitted any further terms from (40) and (41)
since they are subleading. Looking for a scaling solution
R ∼ ηp and τ̃ ∼ ηq, it follows, using Eq. (36) that δL ∼ η1þq.
Requiring all dominant terms to have the same scaling fixes
p ¼ 2=5 and q ¼ −1=5, so that

R ¼ η2=5R; τ ¼ η−1=5T ; δL ¼ η4=5δL: ð52Þ

Notice the overall scaling of the transition equation is
ðdr̃=dτ̃Þ2 ∼ η6=5. The remaining question is whether the
dominant term in Γ⊙ ∼ δE − δL is subleading or not. From
(42), it follows δE − δL ∼ η6=5 in this regime, suggesting
the change of variables

Γ⊙ ¼ η6=5Y: ð53Þ

This allows us to write the schematic transition equation as

3A natural continuation of this argument would be to say that
the second-order self-force induced corrections continue to drive
eccentricity growth, over the whole of the inspiral, lasting a
coordinate time ∼η−1, leading to a final eccentricity of Oðη1=2Þ,
which can be larger than the eccentricity grown through the
mechanism discussed here. However, this assumes that the
eccentricity grows coherently and monotonically. In practice,
once the eccentricity isOðηÞ, the radial motion due to eccentricity
becomes larger than the amount the radius evolves over the
relevant past-history that determines the self-force and so the
argument that the latter is the dominant contribution to correc-
tions no longer applies. Knowledge of the second-order self-force
would be required to fully explore the further evolution of the
eccentricity and this is not currently available. However, we
expect that the growth of initial eccentricities ofOðηÞ through the
instability mechanism will be the dominant contributor to the
residual eccentricity in the transition zone.
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�
dR
dT

�
2

∼R3 þRδLþ Y: ð54Þ

Terms in Eqs. (40) and (41) that have been dropped can be
seen to scale like the above terms multiplied by additional
powers of R or δL. Since both R and δL are small
quantities in the transition zone, these terms are subleading
and we can ignore them.
The above scaling analysis proves the dominant terms in

(40) in the regime η ≪ ϵ are captured by

�
dR
dτ̃

�
2

≃ −
2

3
αR3 þ 2βδLRþ Γ⊙ þ � � � ð55Þ

where we neglected all subleading corrections, kept
the same original notation as in OT [27] for the
coefficients

α ¼ −
1

4

∂3G
∂r̃3

����
isco

ð56Þ

β ¼ 1

2

� ∂2G

∂r̃∂Ẽ Ω̃þ ∂2G

∂r̃∂L̃
�

isco
ð57Þ

and the dominant contribution to (41) reduces to

Γ⊙ ≃ Ω̃iscoðδE − δLÞ ∂G∂Ẽ
����
isco

þ… ð58Þ

Keeping all coefficients of order one, the natural scaled
variables to introduce are

R ¼ η2=5α−3=5ðβκÞ2=5X
τ̃ − τ̃isco ¼ η−1=5ðαβκÞ−1=5T
δE − δL ¼ η6=5Y

δL ¼ −η4=5ðαβÞ−1=5κ4=5T ð59Þ
where

κ ¼
�
Ω̃−1 dt̃

dτ̃
dẼGW

dt̃

�
isco

: ð60Þ

Plugging this into (55), one obtains

�
dX
dT

�
2

¼ −
2

3
X3 − 2XT þ C0

�
Ω̃
∂G
∂E

�
isco

Y þOðη2=5Þ

where we defined C0 ¼ α4=5ðκβÞ−6=5. From now on, we
ignore the subleading corrections.
The analogue of the acceleration equation (26)

reduces to

d2X
dT2

¼ −X2 − T −
1

2ðdX=dTÞ
�
2X − C0

�
Ω̃
∂G
∂Ẽ

�
isco

dY
dT

�
:

ð61Þ

This depends on the time evolution of the circularity
deviation parameter Y, whose dominant contribution is
derived in (42). Inserting the rescaled variables (59) into
Eq. (42)

dY
dT

¼ −
∂ log Ω̃
∂r̃

����
isco

ðβC0Þ−1X; ð62Þ

leads to a transition equation

d2X
dT2

¼ −X2 − T −
1

2ðdX=dTÞ
�
2X þ β−1

�∂Ω̃
∂r̃

∂G
∂Ẽ

�
isco

X

�
:

Evaluating (11) at ISCO, we find the term in square brackets
equals

�∂Ω̃
∂r̃

∂G
∂Ẽ

�
isco

¼ −2β ð63Þ

and so the last term vanishes. This was inevitable, since this
term is precisely the term that arises from the dissipative part
of fr̃ from Eq. (28), as identified earlier. The leading order
evolution of Y is driven by maintaining the circularity of the
orbit and sowith this conditionwe expect the radial self-force
corrections to be subleading.
The resulting transition equation of motion in the regime

of low spins η ≪ ϵ is

d2X
dT2

¼ −X2 − T ð64Þ

and Y is evolved through the ordinary differential equation
(ODE) (62). We note that the transition equation does not
depend on Y in this regime. Corrections to this equation
arising from evolution of Y enter at an order η2=5 higher
than leading and so are subdominant. As discussed earlier
the evolution of Y is related to deviations from the linear-in-
proper-time evolution of energy and angular momentum
and so the fact that these corrections do not enter the
transition equation for η ≪ ϵ demonstrate that the linear
evolution assumed by OT is appropriate in this regime.
Let us check the self-consistency of the transition equa-

tion (64) by verifying that all neglected corrections to it are
indeed smaller when evaluated on the scaling regime (59).
First, as discussed in Sec. III A, the corrections to the orbit
due to the conservative piece in the self-force are orderOðηÞ,
see (35). This is indeed smaller than the “radial thickness”
R ∼ η2=5 in (59). Second, corrections due to η _̃r, appearing
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in (25), are Oðη8=5Þ. Hence, these corrections are Oðη3=5Þ
smaller than the dominant δL and δE scaling in (59).4

Finally, corrections arising from eccentricity are sub-
leading provided e < r̃ − r̃isco, as discussed in Sec. III C. In
the nonextremal case we therefore need e < η

2
5, due to (47).

This yields the constraint

η1−2k=5 < η2=5 ⇒ 3 − 2k > 0 ⇒ k <
3

2
:

We saw previously that k ¼ 1=4 for all spins a < 1, which
satisfies this bound. We deduce that eccentricity corrections
are subdominant in the non-near-extremal regime.

E. General transition equation of
motion—Near-extremal

Let us consider rapidly rotating black holes with spin
parametrized by a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
for ϵ ≪ 1, as in (15). The

discussion below Eqs. (A13)–(A18) allows us to identify
the a priori dominant contributions to the transition
equation (40) as

�
dR
dτ̃

�
2

∼ R3 þ RδLϵ2=3 þ R2δLþ δL2ϵ4=3 þ Γ⊙

Γ⊙ ∼ ðδE − δLÞðϵ2=3 þ Rþ δLϵ2=3Þ: ð65Þ

Since the functional dependence of the above equation
does not depend on η, we learn the η scaling should be the
same as before if we keep the R3 and RδL terms. Hence, we
are left to determine any possible ϵ scaling. Proceeding as
before, we look for scalings of the form R ∼ η2=5ϵp and
τ̃ ∼ η−1=5ϵq. We learn from Eq. (36) that δL ∼ η4=5ϵq.
Requiring these dominant terms to scale in the same
way determines p ¼ 4=15 and q ¼ −2=15, so that

R ¼ η2=5ϵ4=15R; τ̃ ¼ η−1=5ϵ−2=15T ;

δL ¼ η4=5ϵ−2=15δL: ð66Þ

Hence, if η ∼ ϵ, the term R2δL scales like the velocity
squared ðdr̃=dτ̃Þ2 ∼ η6=5ϵ4=5 ∼ ϵ2 and must be kept in the
transition equation, whereas the term δL2ϵ4=3 is Oðϵ2=3Þ
smaller and, consequently, subdominant.
The only remaining question is whether Γ⊙ is relevant

in this regime or not. Using (42) and the scalings (66),
we infer ðδE − δLÞ ∼ η6=5ϵ2=15. Since in the regime η ∼ ϵ,

R ∼ δL ∼ ϵ2=3 we conclude Γ⊙ ∼ η6=5ϵ4=5 ∼ ðdr̃=dτ̃Þ2 and
must be kept in the transition equation. Introducing the
finite variable Y

Γ⊙ ¼ η6=5ϵ4=5Y; ð67Þ

the general transition equation in the η ∼ ϵ regime
reduces to

�
dR
dT

�
2

∼R3 þRδLþR2δLþ Y: ð68Þ

Notice the radial velocity throughout the transition regime
scales like dr̃=dτ̃ ∼ η3=5ϵ2=5 ∼ η in the regime ϵ ∼ η. This is
as in the adiabatic regime, but smaller than in the OT regime
where dr̃=dτ̃ ∼ η3=5.
As a self-consistency check, we can write the radial

geodesic equation using the change of variables (66)
and (67)

�
dR
dT

�
2

∼
X∞
i¼3

η2ði−3Þ=5ϵ4ði−3Þ=15Ri þ δLR

þ
X∞
m¼2

�
η

ϵ

�
2ðm−1Þ=5

ϵ2ðm−2Þ=3RmδLþ η2=5ϵ4=15δL2

þ
X∞
n¼1

�
η

ϵ

�
2ðnþ1Þ=5

ϵ2ð5n−1Þ=15δL2Rn þ Y: ð69Þ

It is apparent that the dominant terms are the i ¼ 3 and
m ¼ 2 terms, all others being subleading.
The above scaling analysis proves the dominant terms in

(40) in the regime η ∼ ϵ are captured by

�
dR
dτ̃

�
2

≃ −
2

3
αR3 þ 2βδLRþ γδLR2 þ Γ⊙ þ � � � ð70Þ

where α and β are defined as in (56)–(57) and γ ¼ B2 in
(40). As shown in Appendix A, they are approximated by

α → 1; β → 2−2=3
ffiffiffi
3

p
ϵ2=3 ≡ β̂ϵ2=3; γ →

ffiffiffi
3

p
:

ð71Þ

Furthermore, the dominant contributions to Γ⊙ are

Γ⊙ ¼ Ω̃iscoðδE − δLÞ
�∂G
∂Ẽ

����
isco

þ ∂2G

∂r̃∂Ẽ
����
isco

Rþ � � �
�
:

ð72Þ

Keeping all coefficients of order one, the natural scaled
variables to introduce are

4Using the more conservative assumption that the averaging
timescale is determined by the period of radial oscillations, which
scales with T ∼ η−

1
5, the corrections are still suppressed by a factor

of η
2
5. Third, corrections to dΓ⊙=dτ̃ arising from nongeodesic past

history corrections to the fluxes scale like η8=5 and those arising
from additional terms in the expansion of the azimuthal frequency
as a function of radius scale as η9=5, which are both subdominant
to the leading η7=5 scaling, albeit only by a factor of η1=5.
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R ¼ η2=5ϵ4=15α−3=5ðβ̂κÞ2=5X;
τ̃ − τ̃isco ¼ η−1=5ϵ−2=15ðαβ̂κÞ−1=5T;
δE − δL ¼ η6=5ϵ2=15Y

δL ¼ −η4=5ϵ−2=15ðαβ̂Þ−1=5κ4=5T: ð73Þ

Since η ∼ ϵ, it follows R ∼ ϵ2=3. Hence, the near ISCO
expansion corresponds to the near horizon geometry of the
primary black hole since, in Boyer-Lindquist coordinates,
jr̃isco − r̃þj ∼ ϵ2=3. As a result, we will be able to use the
(leading order and analytic) expression for the energy flux
due to gravitational radiation in (23). This allows us to
compute κ in (60) in this regime as

κ ¼
�
Ω̃−1 dt̃

dτ̃
dẼ
dt̃

�
isco

→
8ffiffiffi
3

p ðC̃H þ C̃∞Þ: ð74Þ

Notice κ ∼Oð1Þ since C̃H þ C̃∞ ∼Oð1Þ.
Ignoring subleading terms, the general transition equa-

tion (70) reduces to
�
dX
dT

�
2

¼ −
2

3
X3 − 2XT − ðη=ϵÞ2=5C1TX2 þ Γ̃⊙ ð75Þ

with

C1 ¼ γðαβ̂κÞ−3=5κ ð76Þ

Γ̃⊙ ¼ ϵ−4=5η−6=5α4=5ðβ̂κÞ−6=5Γ⊙: ð77Þ

Notice the appearance of the new term proportional to TX2,
compared to the OT regime, is due to the regime η ∼ ϵ.
Taking a further T derivative, we find the analogue of the

acceleration equation (26) in this regime

d2X
dT2

¼ −X2 − T − ðη=ϵÞ2=5C1XT

þ 1

2ðdX=dTÞ
�
−2X − ðη=ϵÞ2=5C1X2 þ dΓ̃⊙

dT

�
:

ð78Þ
The time evolution of Γ⊙ in (72) has two contributions: one
proportional to dY=dT, which can be computed using (42)
and a second one proportional to YðdX=dTÞ. Altogether
yields

dΓ̃⊙

dT
¼ 2X − ðη=ϵÞ2=5ðαβ̂κÞ−3=5κ

�∂Ω̃
∂r̃

∂2G

∂r̃∂Ẽ
�

isco
X2

þ ðη=ϵÞ2=5α1=5ðβ̂κÞ−4=5
�
Ω̃

∂2G

∂r̃∂Ẽ
�

isco
Y
dX
dT

ð79Þ

where we used (11) to simplify the first term. The latter
cancels the −2X term in (78). Using the dominant con-
tribution to the identity (12) evaluated at ISCO, the second

term cancels the C1X2 term in (78). Finally, the third term
gives a nontrivial contribution to the acceleration equation

d2X
dT2

¼ −X2 − T − ðη=ϵÞ2=5ðC1XT − C2YÞ ð80Þ

with constant defined by

C2 ¼
1

2
α1=5ðβ̂κÞ−4=5

�
Ω̃

∂2G

∂r̃∂Ẽ
�

isco
: ð81Þ

and evolution equation for Y such that

dY
dT

¼ −Λ
∂ log Ω̃
∂r̃

����
isco

X; with Λ ¼ α−4=5κ6=5β̂1=5: ð82Þ

In our treatment of the OT regime (non-near-extremal
spins), the terms in Eq. (80) were neglected since they
scaled with η2=5 and were subdominant. In the near-
extremal case, one can clearly see that the XT and Y term
are comparable to the (rescaled) radial acceleration pro-
vided η ∼ ϵ. As such, they must be included in the analysis.
Our final transition equation of motion differs from Eq. (43)
in [29], which correctly included the Y term but missed the
cross term XT, which is the same order as the terms being
retained. Our analysis improves on [29] in two additional
ways. First, Y was introduced in [29] as a mathematical
construct to ensure conservation of the four-velocity norm.
The evolution equation for Y was derived by forcing the
equation of motion obtained from differentiation of the
kinetic energy equation, Eq. (2), to agree with that obtained
by expansion of the left-hand side of the acceleration
equation, Eq. (26). This is equivalent to setting the radial
self-force term to zero, which is equivalent to imposing
the circular-to-circular condition. This physical interpreta-
tion of the procedure was not made clear in [29], nor the
interpretation of Y as representing departures from the
linear-in-proper-time evolution. Second, the scaling of
the flux given in Eq. (23) was not known at that time
and this was left as an unspecified power of ϵ. Now that we
know this scaling we can do a more complete analysis of
the near-extremal regime.
The quantities above can be computed in the near-

extremal limit, ϵ → 0,

Λ ¼ 252=15ðC̃H þ C̃∞Þ6=5=
ffiffiffi
3

p
þOðϵ2=3Þ

C1 ¼ 28=5ðC̃H þ C̃∞Þ2=5 þOðϵ2=3Þ
C2 ¼ 2−13=15 · 3−1=2ðC̃H þ C̃∞Þ−4=5 þOðϵ2=3Þ: ð83Þ

Equations (80) and (82) are a coupled set of ODEs which
will link the adiabatic inspiral to a plunging geodesic.
As in the previous section we now consider the size of

corrections to the transition equation. Corrections to the
circular flux-balance law in the geodesic part of the
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transition equation scale like η _̃rϵ
2
3 according to (25).

These are OðϵÞ smaller than the terms kept in this
regime.5 Similarly, corrections to the linear-in-proper-time
angular momentum evolution enter through corrections to
δE and δL and scale like dr̃=dτ̃ times terms that are
being retained. These are therefore subdominant since
dr̃=dτ̃ ∼ η3=5ϵ2=5 ≪ 1. These corrections also contribute
additional terms through corrections to the radial self-force
part of the transition equation. These are of order η · ∂G=∂Ẽ
and η · ∂G=∂L̃, which scale like ηϵ2=3 and so are a factor of
ðη=ϵÞ1=5ϵ1=3 smaller than the leading order terms in the
transition equation and are therefore subdominant.
Eccentricity corrections enter like fractional e2 correc-

tions to the fluxes, and are only more important than the
corrections described above if e > R ∼ η2=5 or e2 > _̃r. In the
near-extremal regime _̃r ∼ ϵ2=3dr=dτ ∼ η5=3 and so eccen-
tricity corrections become important when e > η5=6.
However, as shown in Sec. III C, for near-extremal inspirals
eccentricity can only grow once r̃ − r̃isco ∼OðϵÞ. In the
transition zone r̃ − r̃isco ∼ ðη=ϵÞ2=5ϵ2=3 ≫ ϵ and so eccen-
tricity has not started to grow when the transition zone is
reached. Residual eccentricity from the adiabatic inspiral
would be OðηÞ and eccentricity excited during the
transition would be Oðη4=5ϵ8=15Þ (or Oðη7=10ϵ7=15Þ if it
was coherently excited throughout the transition). These
are smaller than the threshold η5=6 at which the eccen-
tricity corrections become more important than the non-
geodesic past history corrections, which we have already
shown to be subleading.

F. General transition equation—Very near-extremal

The final regime concerns very rapidly rotating black
holes, where ϵ ≪ η. Using the results in Appendix A, one
can identify the a priori dominant contributions to the
transition equation (40) and (41) to be [ignoring coeffi-
cients of Oð1Þ]
�
dR
dτ̃

�
2

∼ R3 þ RδLϵ2=3 þ R2δLþ δL2ϵ4=3 þ Γ⊙

Γ⊙ ∼ ðδE − δLÞðϵ2=3 þ Rþ ϵ2=3δLÞ: ð84Þ

It is natural to expect that terms involving some explicit
factors of ϵ should be subleading in this regime. Assuming
a scaling solution of the form R ∼ ηα and τ̃ ∼ ηβ, we learn
using (36) that δL ∼ ηβþ1. Imposing the dominant terms R3

and R2δL scale like ðdR=dτ̃Þ2 yields the scaling solutions
α ¼ 2=3 and β ¼ −1=3, so that

R ¼ η2=3R; τ̃ ¼ η−1=3T ; δL ¼ η2=3δL: ð85Þ

As a consistency check, notice the terms ϵ2=3RδL ∼
η2ðϵ=ηÞ2=3 and ϵ4=3δL2 ∼ η8=3ðϵ=ηÞ4=3 are subdominant
compared to the leading scaling ðdr̃=dτ̃Þ2 ∼ η2.
The remaining question is whether Γ⊙ is negligible in

this regime or not. Using the scalings (85) together with
(42), we infer that δE − δL ∼ η4=3. It follows Γ⊙ ∼ η2 from
the term linear in R in the second equation in (84).
Introducing the finite variable Y

Γ⊙ ¼ η2Y ð86Þ

leads to the transition equation of motion

�
dR
dT

�
2

∼R3 þR2δLþ Y: ð87Þ

Notice the radial velocity throughout the transition regime
scales as dr̃=dτ̃ ∼ η, as it were throughout the adiabatic
inspiral regime and in the near-extremal case (see Sec. III E).
Thus the radial motion is fastest throughout the transition
regime when the primary is of moderate spin: η ≪ ϵ.
As a consistency check, we can substitute the scalings

(85) and (86) into the general transition equation (40)

�
dR
dT

�
2

∼
X∞
i¼3

η2ði−3Þ=3Ri þ ðϵ=ηÞ2=3δLR

þ
X∞
m¼2

η2ðm−2Þ=3RmδLþ ϵ2=3ðϵ=ηÞ2=3δL2

þ ϵ4=3δL2Rþ
X∞
n¼2

η2ðn−1Þ=3δL2Rn þ Y: ð88Þ

Clearly the dominant terms occur when both i ¼ 3 and
m ¼ 2 with the rest being subleading.
The above scaling analysis proves the dominant terms in

(40) in the regime ϵ ≪ η are captured by

�
dR
dτ̃

�
2

≃ −
2

3
αR3 þ γδLR2 þ Γ⊙ þ � � � ð89Þ

where α and γ are given in Eq. (71) with

Γ⊙ ≃ Ω̃iscoðδE − δLÞ ∂2G

∂r̃∂Ẽ
����
isco

Rþ � � � : ð90Þ

Keeping all coefficients of order one, the natural rescaled
variables in this regime are

R ¼ η2=3α−3=5κ2=5X

τ̃ − τ̃isco ¼ η−1=3ðακÞ−1=5T
δE − δL ¼ η4=3Y

δL ¼ −η2=3α−1=5κ4=5T: ð91Þ
5Using the conservative assumption about the averaging

timescale, these corrections are subleading by a factor of η
2
3.
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In these variables, the radial velocity equation (89) can be
expressed as

�
dX
dT

�
2

¼ −
2

3
X3 − K1X2T þ Γ̃⊙ ð92Þ

with

K1 ¼ γα−3=5κ2=5;

Γ̃⊙ ¼ η−2α4=5κ−6=5Γ⊙; ð93Þ

and κ as in (60).
Taking a further derivative with respect to T yields the

acceleration equation

d2X
dT2

¼−X2−K1XTþ 1

2ðdX=dTÞ
�
dΓ̃⊙

dT
−K1X2

�
: ð94Þ

Using (42) together with (91), one finds that

dΓ̃⊙

dT
¼ α1=5κ−4=5Ω̃isco

∂2G

∂r̃∂Ẽ
����
isco

dX
dT

Y

− α−3=5κ2=5
� ∂2G

∂r̃∂Ẽ
∂Ω̃
∂r̃

�
isco

X2: ð95Þ

Plugging this back in (94) and using the dominant con-
tribution to the identity (12), theK1X2 term cancels and one
is left with

d2X
dT2

¼ −X2 − K1XT þ K2Y ð96Þ

together with the evolution equation for YðTÞ given by

dY
dT

¼ −α−4=5κ6=5
∂ log Ω̃
∂r̃

����
isco

X; ð97Þ

where

K2 ¼
1

2
α1=5κ−4=5Ω̃isco

∂2G

∂r̃∂Ẽ
����
isco

:

In the limit ϵ → 0, the constants K1 and K2 approach the
values

K1 → 26=533=10ðC̃H þ C̃∞Þ2=5
K2 → 2−7=53−1=10ðC̃H þ C̃∞Þ−4=5:

As argued in previous sections, corrections to the circular
flux-balance law contribute terms to the transition equation
which scale like dr̃=dτ̃ ∼OðηÞ times terms that are being
retained and like ηϵ2=3. Corrections to the linear-in-time
angular momentum evolution enter with the same scaling

as the former. The retained terms in the transition equation
scale like η4=3 in the very near extremal regime and so these
corrections are both subleading. Eccentricity corrections
enter like fractional e2 corrections to the fluxes, but, as in
the near-extremal case, eccentricity cannot grow until the
transition zone has already been reached, and so these
corrections are no larger than Oðη5=3ϵ2=3Þ and are also
subleading.
We conclude this subsection by noting that the transition

equation of motion (96) is perfectly well behaved in the
limit ϵ → 0 and can therefore be used to compute an
inspiral into a maximally spinning black hole with a ¼ 1.
In this case, the horizon coincides with the ISCO in BL
coordinates. However, the proper distance is Δl ¼ −M

3
ln ϵ

(see Fig. 2 in [51] together with explanations in [51,52] and
more recently in Appendix A of [53]). Hence, we terminate
the integration of the ODE (96) at r̃ ¼ r̃þ, since our
numerics are specific to BL coordinates. The presence of
the horizon manifests itself in the transformation from
proper time to coordinate time, which will be discussed, for
nonextremal inspirals, in the next subsection.

IV. RESULTS

A. Numerical integration

We now seek to compute a full worldline r̃ðτ̃Þ for
∞ > r̃ ≥ r̃þ. Out of the three regimes just discussed, we
restrict ourselves to the ϵ ∼ η one. This is because the
η ≪ ϵ regime has already been considered in the literature
[27,29–31] and the ϵ ≪ η regime has been argued to be
inaccessible throughout the transition regime in [54]. The
latter conclusion follows from the observation that the
waves emanating from the secondary produce a spin down
effect on the primary leading to a maximum attainable spin
with ϵ ∼ η. For ϵ ∼ η, we try to find the solution to

d2X
dT2

¼ −X2 − T − ðη=ϵÞ2=5ðC1XT − C2YÞ
dY
dT

¼ −
3

4
ΛX ð98Þ

which deviates off the past adiabatic inspiral and evolves
into a geodesic plunge. The constants in Eq. (98) are given
by Eq. (83). We can derive an equation for an adiabatic
inspiral in proper time by using the quasicircular approxi-
mation. Using our far-horizon expression for the energy
flux defined by Eq. (21) with both Eqs. (8) and (5), one
derives

dr̃
dτ̃

¼ −η
64

5
Ω̃7=3 ð2a − 3r̃1=2 þ r̃3=2Þr̃

r̃2 − 6r̃þ 8ar̃1=2 − 3a2
_Eðr̃Þ: ð99Þ

This equation diverges at the ISCO which is a break down
of the quasicircular approximation. We shall use Eq. (98) to
smoothly transition from the adiabatic inspiral Eq. (99) into
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a geodesic plunge to the horizon. We used a cubic spline to
interpolate values for the relativistic correction _Eðr̃Þ using
exact flux data found in the BHPT. We then numerically
integrate Eq. (99) by stepping forwards in proper time until
L̃ðτ̃Þ − L̃isco ∼ η4=5ϵ−2=15. We feel this criteria is suitable for
turning on the transition equation of motion since our
model for the flux is well represented during the transition
regime. When this criteria is met we can be sure that our
model for flux evolution throughout the transition regime is
correct to leading order. Once this is satisfied, we stop
integrating our adiabatic inspiral solution and begin inte-
grating our transition equation of motion (98).
Since we do not terminate our adiabatic inspiral solution

at the ISCO, we do not know the precise proper time where
the particle crosses the ISCO. As such, the variable T is not
a good choice of variable to integrate on the right-hand side
of (98). Instead, we substitute T for δL from Eq. (73) into
our transition equation of motion, then

d2X
dT2

¼ −X2 þ B0δLþ ðη=ϵÞ2=5ðC1B0δLþ C2YÞ
dY
dT

¼ −
3

4
ΛX

dδL
dT

¼ B−1
0 ; B0 ¼ −η−4=5ϵ2=15ðαβ̂Þ1=5κ−4=5: ð100Þ

We use initial conditions determined by the end of the
adiabatic inspiral Eq. (99) at some time τ̃init.

XðT initÞ ¼ η−2=5ϵ−4=15α−3=5ðβ̂κÞ−2=5ðr̃ − r̃iscoÞ
dX
dT

����
T init

¼ η−3=5ϵ−2=5α2=5ðβ̂κÞ−3=5 dr̃
dτ̃

����
τ̃init

YðT initÞ ¼ η−6=5ϵ−2=15ðΩ̃−1
iscoδEinit − δLinitÞ

δLðT initÞ ¼ L̃circðr̃initÞ − L̃isco: ð101Þ
Where L̃circðr̃initÞ corresponds to the circular angular
momenta evaluated at the end of the inspiral, r̃init. Using
this prescription, we are able to integrate the coupled ODEs
Eq. (100) with initial conditions (101). Our results are
shown in Fig. 2. The transition solution smoothly deviates
away from the adiabatic inspiral (blue curve), passes
through the ISCO and reaches the horizon where the
solution terminates. The plot on the right shows the full
worldline in proper time r̃ðτ̃Þ where the inspiral starts at
r̃ ¼ 1.006 and terminates at the horizon. This method
ensures that r̃ðτ̃Þ is both continuous and once differentiable
everywhere.
Also, by our choice of integrating (100) using the

variable δL, we ensure continuity but not differentiability
in L̃ throughout the full inspiral. We note here that Apte and
Hughes in [31] also found discontinuities in their evolution
of both L̃ and Ẽ and added corrections to ensure both (first
order) differentiability and continuity at τ̃init. We consider a
correction of the form

L̃trans ¼ ΔL̃cor þ L̃isco þ
dL̃isco

dτ̃
ðτ̃ − τ̃iscoÞ: ð102Þ

We have discussed previously that the leading order term in
L̃ðτ̃Þ − L̃isco scales proportionally to η4=5ϵ−2=15. So we
choose to add a constant offset ΔL̃cor ∼ η6=5ϵ2=15 to the
angular momenta evolution to ensure continuity in the L̃trans
evolution.
To calculate the evolution in Ẽ, one computes Ẽcirc given

by Eq. (5) during the adiabatic inspiral regime. Then,
during the transition regime, one integrates

Ẽ ¼ ΔẼcor þ Ẽisco þ
Z

τ̃þ

τ̃isco

Ω̃ðr̃Þ _̃Ltransdτ̃ ð103Þ

from the flux balance law _̃E ¼ Ω̃ðr̃Þ _̃L. The correction to
ΔẼcor is chosen to ensure continuity with the end of the
inspiral energy given by Eq. (6) as previously discussed
after Eq. (102).
Notice here that this ensures that the energy flux obeys

_̃E ¼ Ω̃ðr̃Þ _̃Lisco and is thus not constant. This ensures that
we are still granted a full cancellation of the dissipative part
of the forcing term f̃r̃ in Eq. (28). This will yield a
continuous evolution Ẽ at the matching point with a
discontinuous first derivative. At this point we will have
a full trajectory r̃ðτ̃Þ with (continuous) integrals of motion
in proper time Ẽðτ̃Þ and L̃ðτ̃Þ. In each of [27,30,31], the
authors compute three separate worldlines in proper time;
Adiabatic inspiral, transition, geodesic plunge. Apte et al.
in [31], provide an algorithm in which they freeze the
constants of motion Ẽ and L̃ when the extra terms in
Eq. (64) exceed the leading order termsX2 and T by 5%. As
one would expect, as one ventures farther from the ISCO,
the Taylor expansion used to derive these transition
equations of motion will break down. As such, it is very
natural for each of the aforementioned authors to compute
a geodesic plunge to complete their worldlines in proper
time r̃ðτ̃Þ. Simply because, for moderate spins (non-near-
extremal), jr̃þ − r̃iscoj ∼Oð1Þ ≁ η2=5. For near-extreme
black holes the ISCO is close to the horizon in Boyer
Lindquist coordinates jr̃isco − r̃þj ∼ ϵ2=3. The scaling of the
near-extremal transition zone is also ϵ2=3 and so the horizon
is reached while the object is still in the transition zone. We
therefore do not expect to need to add a geodesic plunge to
compute full near-extremal inspirals. To verify this we
numerically calculate the extra terms in (100), which are

C3X3 ⇒C3¼
1

12

�
η

ϵ

�
2=5

ϵ2=3
∂4G
∂r̃4

����
isco

α−8=5ðβ̂κÞ2=5

C4XY⇒C4¼
1

2

�
η

ϵ

�
4=5

ϵ2=3
�
Ω̃

∂3G

∂r̃2∂Ẽ
�

isco
ðαβ̂κÞ−2=5:

ð104Þ
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We compare the solution to (100) when these terms
are omitted or included in Fig. 3. The difference is at most
1% even the horizon r̃þ. We conclude that we can
use the solution from (100) throughout the plunging regime,
for r̃ðτ̃Þ ∈ ½r̃þ; r̃isco�. It would be useful in the future to
compare our results with the analytic geodesic plunges
found in [25].

B. Worldline in Boyer-Lindquist coordinates

In the previous section, we computed the full worldline
comprised of inspiral, transition, and plunge parametrized
as r̃ðτ̃Þ. We now intend to do the same but in coordinate
time so that our worldline is in Boyer-Lindquist coordinates
ðt̃; r̃ðt̃Þ; θ ¼ π=2;ϕðt̃ÞÞ. Loosely speaking, this is the time
measured from Earth (at radial infinity) so is useful for
observable purposes.
For the quasicircular inspiral solution, we simply inte-

grate the circular relation relating coordinate time to proper
time via Eq. (8)

t̃ ¼
Z

τ̃init

0

1þ a=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2a=r̃3=2

p dτ̃ ð105Þ

where r̃ðτ̃Þ is the worldline constructed by integrating
Eq. (99) up to some suitable point to begin the transition
solution, in our case, r̃ðτ̃initÞ ¼ r̃init. To compute the
trajectory in coordinate time r̃ðt̃Þ throughout the transition
regime, we must integrate

t̃ ¼ t̃ðτ̃initÞ þ
Z

τ̃þ

τ̃init

Tðr̃; Ẽ; L̃; aÞdτ̃: ð106Þ

where Tðr̃; Ẽ; L̃; aÞ is given by (4) and t̃insp is defined
through t̃ðτ̃initÞ. Throughout the transition regime, we use
the model for both Ẽðτ̃Þ and L̃ðτ̃Þ given by Eq. (103) and

Eq. (102). This will yield the r̃ðt̃Þ throughout the transition
regime. Combining these results yield a full trajectory from
radial infinity to the horizon in coordinate time r̃ðt̃Þ given
by Fig. 4.
To then calculate the orbital velocity dϕ=dt̃ ¼ Ω̃ in

coordinate time we substitute r̃ðt̃Þ found previously into
Eq. (9). This now gives Ω̃ðt̃Þ valid throughout the adiabatic
inspiral regime. Using our solutions for Ẽðτ̃Þ and L̃ðτ̃Þ
defined through Eq. (102) and Eq. (103) and r̃ðt̃Þ through-
out the transition regime, we calculate

Ω̃ ¼ dϕ
dt̃

¼ 2aẼ r̃ − a2L̃þ Δðr̃ÞL̃
Ẽðr̃2 þ a2Þ2 − 2aL̃ r̃ − Δðr̃Þa2Ẽ : ð107Þ

where Δðr̃Þ ¼ r̃2 − 2r̃þ a2. This algorithm will provide a
worldline in coordinate time r̃ðt̃Þwhich will be used for our

FIG. 3. Solution to (100) (black dashed line) and difference
in solution when including the higher-order corrections
given in Eq. (104) (red solid line). The numerical difference is
small throughout the transition regime reaching a maximum at
plunge of ∼1%.

FIG. 2. In both plots we consider mass ratio η ¼ 10−5 and spin a ¼ 1 − 10−9. The transition regime begins at r̃init ≈ 1.0026 at
τ̃init ≈ 62.00. The particle plunges into the horizon r̃þ in proper time τ̃þ ≈ 93.19.
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waveforms. We stress here that r̃ðt̃Þ is continuous and
(once) differentiable.

C. Near-extremal waveform

Following [41], the root mean square (rms) amplitude of
gravitational waves emitted toward infinity at harmonic m

is given by ho;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh2þ;m þ h2×;mi

q
. The plus and cross

each represent individual transverse-traceless polarizations
of the gravitational wave strain h. The amplitudes are
averaged h·i over the direction and over the period of the
waves. Furthermore, the rms amplitude generated by a
particle on an equatorial circular orbit in the limit η → 0 is
related to the outgoing radiation flux in harmonic m by

ho;m ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η _̃E∞;m

q
mΩ̃D

ð108Þ

for distance D and outgoing fluxes defined by

_̃E∞;m ¼ ηAmΩ̃2þ2m=3 _E∞;m ð109Þ
where the amplitude Am equals

Am ¼ 8ðmþ 1Þðmþ 2Þð2mÞ!m2m−1

ðm − 1Þ½2mm!ð2mþ 1Þ!!�2 ; m ≥ 2

and _E∞;m is the relativistic correction to _̃E∞;m at each
harmonic m.
An EMRI signal is a superposition of infinitely many

harmonics of the fundamental frequency Ω̃

h ¼
X∞
m¼2

ho;m sinð2πf̃mt̃þ ϕÞ; ð110Þ

with 2πf̃m ¼ m · Ω̃. Recall that the total emission of
radiation through gravitational waves is related to the
outgoing and ingoing flux by

_̃EGW ¼ _̃E∞ þ _̃EH ¼
X∞
m¼2

ð _̃E∞;m þ _̃EH;mÞ ð111Þ

where _̃EH;m is the ingoing flux (toward the horizon) inclu-
ding the contribution from all l for each harmonic m.
Using the exact results from the BHPT for a spin parameter
of a ¼ 1–10−9, we constructed a cubic spline for each

outgoing flux _̃E∞;m. Our results are plotted in Fig. 5. It is
clear that including the higher order modes become

FIG. 4. The red curve shows the orbital velocity Ω̃ and the black
curve shows the trajectory in coordinate time r̃ðt̃Þ. Notice the
smooth evolution of both r̃ðt̃Þ and Ω̃ during the start of the
transition (green dashed curve). This smooth evolution continues
through the ISCO (blue dashed curve) and evolves toward the
horizon (black dashed curve).

FIG. 5. Comparison of the total energy flux at infinity (black curve) including different harmonic _̃E∞;m contributions. Note that at

r̃ ≈ 1.3, the m ¼ 2 harmonic energy flux _̃E∞;2 contributes ∼32% of the total energy flux, whereas including the first 11 harmonics
(violet curve) contributes ∼98% at the least.
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increasingly important as the spin parameter increases
toward unity. This has already been observed in [25].
Hence, for near-extremal systems, only using the m ¼ 2
harmonic is not an accurate representation of the EMRI
signal in general.
Figure 5 suggests that truncating the sum at the eleventh

harmonic in the outgoing flux (111) is a good approxima-
tion to model a near-extremal waveform encapsulating
quasicircular inspiral, transition, and then plunge with
suitable accuracy. The remaining difference from modes
withm > 11 contributes a small difference in the amplitude
of the waveform, but gravitational wave detectors are much
less sensitive to amplitude corrections than corrections to
the phase. The phase evolution is determined by the total

flux, in which we are including all modes. We therefore
believe that the approximate waveform with 11 modes is a
sufficiently accurate model for parameter estimation studies
and will use this henceforth

h ≈
X11
m¼2

ho;m sinð2πf̃mt̃þ ϕÞ: ð112Þ

Once the ISCO is reached, we smoothly extrapolate each
of the fluxes _̃E∞;m → 0, as r̃ → r̃þ. This is a similar
approach to that found in Taracchini et al. in [55].
Using (112) and the results obtained in this paper, we plot
a near-extremal waveform, including the transition from
inspiral to plunge, in Fig. 6. We notice that the waveform in

FIG. 6. (Top plot) Here we plot the root mean square gravitational waveform for both inspiral, transition and plunge using the first
eleven harmonics. Notice the smooth evolution of hðt̃Þ. We terminate evolution of the waveform close to the plunge r̃ ¼ r̃þ þ δ for
suitably chosen 0 < δ ≪ 1, otherwise the waveform will continue to decay for infinite coordinate time. This is obvious since the
(pointlike) particle as observed from infinity will never reach the horizon. In this example, we considered a ¼ 1 – 10−9 and η ¼ 10−5 so
that we are in the ϵ ∼ η regime. (Bottom plot) We plot a zoomed in version of the top plot to show the reader the smooth evolution of our
adiabatic inspiral waves into the transition waves. The faded black dot indicates the moment the transition solution is turned on.
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Fig. 6 exhibits the usual dampening before the ISCO is
reached as seen by Gralla et al. in [23]. This, qualitatively,
is a unique feature to near-extreme EMRIs as a gravita-
tional wave source.

V. CONCLUSION

This paper has presented a solution to the problem of the
transition from inspiral to plunge, for any primary spin, for
EMRIs on circular and equatorial orbits. This work has
extended the treatment of Ori & Thorne [27] which was the
first analysis of this problem but did not apply to systems
with near-extremal spins. This work also extended the
analysis of [29] which did consider near extremal spins, by
providing a better physical interpretation of the procedure,
identifying a missing term in the analysis and updating the
treatment to use recent calculations of the near-extremal
energy flux. We have also carefully identified the scaling of
the various higher order terms arising from effects such as
eccentricity and nongeodesic past-history to carefully
demonstrate that these are all subdominant. Previous treat-
ments have assumed that the quasicircular assumption
holds throughout the inspiral, but without rigorous justi-
fication. We have demonstrated that initial eccentricities
excited during the adiabatic inspiral regime grow by the
time the transition regime is reached, but are still suffi-
ciently small to be subdominant. We have shown that
corrections to the flux balance law (29) arising from
eccentricity and from the nongeodesic past-history of
the orbital evolution are also subdominant, if only margin-
ally, but there are nontrivial deviations from the linear-in-
proper-time evolution of energy and angular momentum in
(36) that was assumed in OT. These deviations are encoded
in the evolution of the parameter Γ̃⊙ through the transition
regime.
Based on these arguments, we have derived a transition

equation for each of the three scaling regimes: η ≪ ϵ, η ∼ ϵ
and η ≫ ϵ and described a numerical scheme to generate a
full inspiral trajectory in coordinate time, from radial
infinity to the horizon. For near-extremal black holes,
we found that there was no need to attach a geodesic
plunge onto the transition solution as the inspiraling object
reaches the horizon while still within the transition regime.
Finally, we used these inspiral trajectories to construct a
near-extremal waveform exhibiting the transition and
plunging dynamics using results from the BHPT [56].
The OT procedure is straightforward, but with surpris-

ingly rich phenomenology. Through semianalytic means,
one is able to derive an equation which describes the
dynamics within the vicinity of the ISCO. However, in
practice, the OT theory has several shortcomings. The
point at which the transition solution is taken to start has a
significant influence on the time it takes the particle to
reach the horizon and so the OT procedure does not define a
unique worldline given a particular set of parameters for the
source. This is clearly not physical behavior. We argued in

Sec. IVA that if the switch from the adiabatic inspiral to the
transition equation is made when the constraint δL ∼
η4=5ϵ−2=15 is satisfied, the solution will be almost unique.
This was verified numerically and we found it leads to
plunge times consistent within �0.5M. This very same
problem was found in [31] but they saw no effect in their
waveform analysis. For the η ≪ ϵ case, there is a further
degree of freedom as to when to attach the geodesic plunge.
To do so, one must “freeze” the integrals of motion Ẽ, L̃ at
the end of the transition regime and integrate the Kerr
geodesic equations forward in coordinate time. Attaching
the geodesic plunge is discussed, at length, in [31] but does
not have a unique solution. Care must be taken as to when
the transition solution and the geodesic plunge is attached
or comparatively different radial trajectories will be pro-
duced. Fortunately for the ϵ ∼ η case, there is no need to
attach a geodesic plunge as shown earlier in Sec. IVA.
Another issue with the OT method is that it can lead to

discontinuities in the constants of motion ẼðτÞ and L̃ðτÞ if
the OT equations are integrated backwards from the ISCO
rather than forwards from the point of the switch from the
adiabatic inspiral to transition regime. Discontinuities in the
constants of motion lead to discontinuities in the coordinate
time trajectories and in the waveforms which must be
avoided if these waveforms are to give physically reason-
able results in parameter estimation studies. Our solution,
which was to integrate forward not backwards, yields
continuous, but not first order differentiable, trajectories.
The procedure described in [31] provides both. For
parameter estimation studies we only require continuity
of Ẽ and L̃ and first order differentiability of r̃ðt̃Þ and so our
procedure should be sufficient, although this should be
examined more carefully.
There are natural extensions of this work. First, the

waveforms constructed in this paper can be used to carry
out a parameter estimation study to understand how well
the parameters of near-extremal EMRIs can be measured
with observations by LISA. Of particular interest is how
well the spin can be determined, since the identification of
an object that definitely has spin above the Thorne limit
would be of profound significance. Second, our waveforms
are missing the quasinormal mode ringdown contribution.
Hence, it would be very interesting to generate a full
waveform taking these into account, together with the
plunging dynamics discussed here. Details on how to
construct the waveform including this effect were discussed
in [57]. Finally, it would also be of interest to extend the
current analysis to inspirals that are not circular and
equatorial. The extension of OT was first performed in
[30] who attempted to solve the problem for generic orbits;
both eccentric and inclined orbits. Sundararajan’s treatment
was corrected by [31] in the case of arbitrary inclination.
Hence, no one, as of yet, has considered the transition from
inspiral to plunge in the case of eccentric orbits and
inclined orbits. These orbits are expected for EMRIs
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formed through standard astrophysical channels [11].
The extension to eccentric orbits will require more careful
modeling of the self-force and the use of the (eccentricity-
dependent) separatrix in place of the ISCO among other
complications. A model of the transition for inspirals on
generic orbits into black holes arbitrary spin will be
invaluable for the analysis of future LISA EMRI observa-
tions and is an important future topic of study.
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APPENDIX A: THE INNERMOST STABLE
CIRCULAR ORBIT

In this appendix we review the main properties of the
function Gðr̃; Ẽ; L̃Þ determining the radial geodesic (2)

Gðr̃; Ẽ; L̃Þ ¼ Ẽ2 − 1

þ a2ðẼ2 − 1Þ − L̃2

r̃2
þ 2ðaẼ − L̃Þ2

r̃3
þ 2

r̃
:

ðA1Þ

together with its derivatives when evaluated at the ISCO
orbit r̃isco. The spin dependence of these quantities will play
a critical role in the identification of the different transition
regimes discussed in Sec. III.
Remember the ISCO radial coordinate r̃isco is charac-

terized by marginal stability

Gðr̃; Ẽisco; L̃iscoÞ ¼
∂G
∂r̃

����
isco

¼ ∂2G
∂r̃2

����
isco

¼ 0: ðA2Þ

Labeling the energy and angular momentum of the ISCO
orbit by Ẽisco and L̃isco, we can solve the second and third
constraint equations by

L̃isco ¼
r̃2isco − 3a2 þ 6r̃isco

2
ffiffiffi
3

p
r̃isco

;

Ẽisco ¼
6r̃isco − 3a2 − r̃2isco

2
ffiffiffi
3

p
ar̃isco

: ðA3Þ

Plugging these into Gðr̃isco; Ẽisco; L̃iscoÞ ¼ 0, one derives
the relation

2

3r̃isco
¼ 1 − Ẽ2

isco; ðA4Þ

which combined with (A3) yields

r̃2isco − 6r̃isco þ 8a
ffiffiffiffiffiffiffiffi
r̃isco

p
− 3a2 ¼ 0; ðA5Þ

whose solution r0ðaÞ reproduces (14) [51]. This equality
allows to simplify the energy (5) and angular momentum
(6) of equatorial circular orbits when evaluated at ISCO to

Ẽisco ¼
1 − 2=r̃isco þ a=r̃3=2iscoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃isco þ 2a=r̃3=2isco

q ¼ 4
ffiffiffiffiffiffiffiffi
r̃isco

p
− 3affiffiffi

3
p

r̃isco
ðA6Þ

L̃isco ¼ r̃1=2
1 − 2a=r̃3=2 þ a2=r̃2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2a=r3=2

p ¼ 2
ffiffiffi
3

p
−

4affiffiffiffiffiffiffiffiffiffiffi
3r̃isco

p : ðA7Þ

Armed with these identities, we move toward the
evaluation of the derivatives controlling the expansions
(38) relevant to the transition regime. First, we introduce
some notation

An ¼
∂nG
∂r̃n

����
isco

;

Bn ¼
�∂nþ1G

∂r̃n∂Ẽ Ω̃þ ∂nþ1G

∂r̃n∂L̃
�

isco
;

Cn ¼
� ∂nþ2G

∂r̃n∂Ẽ2
Ω̃2 þ 2

∂nþ2G

∂r̃n∂L̃∂Ẽ Ω̃þ ∂nþ2G

∂r̃n∂L̃2

�
isco

ðA8Þ

with Ω̃ as in(9). Either by explicit calculation or by
induction, one can prove for any integer n ≥ 0
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∂nG
∂r̃n ¼ ð−1Þn

�ðnþ 2Þ!ðaẼ − L̃Þ2
r̃nþ3

þ ðnþ 1Þ!ða2ðẼ2 − 1Þ − L̃2Þ
r̃nþ2

þ 2n!
r̃nþ1

�
− δn0ð1 − Ẽ2Þ;

∂nþ1G

∂r̃n∂Ẽ ¼ ð−1Þn
�
2ðnþ 2Þ!ða2Ẽ − aL̃Þ

r̃nþ3
þ 2ðnþ 1Þ!a2Ẽ

r̃nþ2

�
þ 2δn0Ẽ;

∂nþ1G

∂r̃n∂L̃ ¼ −ð−1Þn
�
2ðnþ 2Þ!ðaẼ − L̃Þ

r̃nþ3
þ 2ðnþ 1Þ!L̃

r̃nþ2

�
;

∂nþ2G

∂r̃n∂L̃2
¼ ð−1Þn

�
2ðnþ 2Þ!

r̃nþ3
−
2ðnþ 1Þ!

r̃nþ2

�
;

∂nþ2G

∂r̃n∂L̃∂Ẽ ¼ −ð−1Þn
�
2aðnþ 2Þ!

r̃nþ3

�
;

∂nþ2G

∂r̃n∂Ẽ2
¼ ð−1Þn

�
2a2ðnþ 2Þ!

r̃nþ3
−
2a2ðnþ 1Þ!

r̃nþ2

�
þ 2δn0

where δn0 ¼ 1 for n ¼ 0 and zero otherwise. Finally, evaluating these derivatives at ðr̃isco; Ẽisco; L̃iscoÞ and using
the properties (A2)–(A7), we can derive the exact results

An ¼ ð1 − δn0Þ
ð−1Þnðn − 1Þðn − 2Þn!

3r̃1þn
isco

; ðA9Þ

Bn ¼ 2ð1 − δn0Þð−1Þnðnþ 1Þ! nða −
ffiffiffiffiffiffiffiffi
r̃isco

p Þ þ a − 2
ffiffiffiffiffiffiffiffi
r̃isco

p þ r̃3=2isco

r̃nisco
ffiffiffiffiffiffiffiffiffiffiffi
3r̃isco

p ða −
ffiffiffiffiffiffiffiffi
r̃isco

p Þðaþ r̃3=2iscoÞ
; ðA10Þ

Cn ¼ 2 ·
δ0n − ð−1Þnð2aþ ffiffiffiffiffiffiffiffi

r̃isco
p ½r̃isco − 2 − n�Þðnþ 1Þ!

r̃ð2nþ1Þ=2
isco ðaþ r̃3=2iscoÞ2

; ðA11Þ

Notice Eqs. (A9)–(A10) recover the familiar identities for circular orbits�∂G
∂Ẽ Ω̃þ ∂G

∂L̃
�

isco
¼ 0;

Gisco ¼
∂G
∂r̃

����
isco

¼ ∂2G
∂r̃2

����
isco

¼ 0:

Let us study the behaviour of these derivatives for near extremal black holes, i.e., in the limit ϵ → 0 as introduced in
Sec. II. Remember r̃isco is given by

r̃isco → 1þ 21=3ϵ2=3 þ 7

4 · 21=3
ϵ4=3 þOðϵ2Þ: ðA12Þ

Using this expansion together with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
, we can evaluate the leading terms of all previous derivatives to be

An → ð1 − δn0Þðn − 2Þðn − 1Þ
�
1

3
ð−1ÞnΓðnþ 1Þ þOðϵ2=3Þ

�
; ðA13Þ

Bn → ð1 − δn0Þ
ð−1ÞnΓðnþ 2Þffiffiffi

3
p

�
n − 1 −

4n2 þ nþ 1

25=3
ϵ2=3

�
þOðϵ4=3Þ; ðA14Þ

Cn → −
1

4
ð−1Þnðn − 1Þð−2þ 21=3ϵ2=3½2nþ 3�Þðnþ 1Þ!þ ð−1Þnð4n2 − 3n − 3Þðnþ 2Þ!

210=3
ϵ4=3 þ pn0 ðA15Þ

∂nþ1G

∂r̃n∂Ẽ
����
isco

→
2ffiffiffi
3

p ð−1Þnþ1ðnþ 1Þ!½ðnþ 1Þ − 21=3ðn2 þ 3nþ 3Þϵ2=3� þ 2ffiffiffi
3

p ð1þ 21=3ϵ2=3Þδn0 þOðϵ4=3Þ ðA16Þ

�∂nþ2G

∂r̃n∂Ẽþ Ω̃
∂nþ2G

∂r̃n∂Ẽ2

�
isco

→ ðδ0n − ð−1Þnðnþ 1Þ2n!Þ þ ð−1Þnð7þ 13nþ 4n2Þðnþ 1Þ! − 3δ0n
25=3

ϵ2=3 þOðϵ4=3Þ ðA17Þ
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∂nþ2G

∂r̃n∂Ẽ2

����
isco

→ 2ðð−1Þnð3þ nÞðnþ 1Þ!þ δ0;nÞ − 24=3ð−1Þnð4þ nÞðnþ 2Þ!ϵ2=3 þOðϵ4=3Þ ðA18Þ

where we defined

pn0 ¼
2 − 3 · 21=3ϵ2=3

4
δ0n þOðϵ2Þ: ðA19Þ

What we learn is that An ∼Oð1Þ for all n ≥ 3, B1 ∼ ϵ2=3,
Bn ∼Oð1Þ for n ≥ 2, C0 ∼ C1 ∼ ϵ4=3 and Cn ∼Oð1Þ for
n ≥ 2. Furthermore, (A16) and (A17) areOðϵ2=3Þ for n ¼ 0
and Oð1Þ for n ≥ 1, whereas (A18) is always Oð1Þ.

APPENDIX B: RETROGRADE ORBITS

In this section, we will restrict our attention to retrograde
orbits. That is, orbits opposing the direction with the
primaries angular momenta. These orbits are of interest
because the ISCO is much further away from the horizon,
which implies that the radial distance traveled during
plunge time is much longer. We plot the location of the
ISCO as a function of spin a in Fig. 7. Due to frame-
dragging, we expect the ISCO to be farther from the hole
since the space is dragged in the opposite direction to the
compact objects orbital direction. In our conventions,
retrograde orbits correspond to a < 0 and L̃ > 0. Hence,
near-extremal ones are characterised by a → −1, or equiv-
alently, by

a → −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; where ϵ ≪ 1: ðB1Þ

notice that the horizon takes the same form as in the case of
prograde orbits

r̃þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
¼ 1þ ϵ

as to be expected. Using a spin parameter of negative parity,
the expressions for Ẽ; L̃; Ω̃ and r̃isco remain the same.
However, each quantity will be different at the ISCO of a
retrograde orbit. By substituting Eq. (B1) into Eqs. (6), (5),
(14) and (9) for small ϵ ≪ 1, one finds

r̃isco ¼ 9 −
45

32
ϵ2 þOðϵ4Þ ðB2Þ

Ẽisco ¼
5

3
ffiffiffi
3

p −
1

96
ffiffiffi
3

p ϵ2 þOðϵ4Þ ðB3Þ

L̃isco ¼
22

3
ffiffiffi
3

p −
3

ffiffiffi
3

p

16
ϵ2 þOðϵ4Þ ðB4Þ

Ω̃isco ¼
1

26
þ 373

43264
ϵ2 þOðϵ4Þ: ðB5Þ

Notice here that the expansion in ϵ is no longer increasing
in powers of ϵ2=3 and now in ϵ2. Also notice that jr̃isco −
r̃þj ∼Oð1Þ rather than of order ϵ2=3 like in the case of near-
extremal prograde orbits. Like we have done previously, we
consider the Kerr radial velocity expanded around the
ISCO

�
dR
dτ̃

�
2

≃ −
2

3
αR3 þ 2βδLRþ γδLR2 þ Γ⊙ þ � � � : ðB6Þ

with small variables

Ẽ − Ẽisco ¼ Ω̃iscoδE ðB7Þ

L̃ − L̃isco ¼ δL ðB8Þ

r̃ − r̃isco ¼ R: ðB9Þ

The coefficients in (B6) can be approximated for ϵ → 0
under the retrograde condition Eq. (B1)

α ¼ −
1

4

∂3G
∂r̃3

����
isco

→
1

6561

β ¼ 1

2

� ∂2G

∂r̃∂L̃þ Ω̃
∂2G

∂r̃∂Ẽ
�

isco
→

4

351
ffiffiffi
3

p

γ ¼ 1

2

� ∂3G

∂r̃2∂L̃þ Ω̃
∂3G

∂r̃2∂Ẽ
�

isco
→ −

1

351
ffiffiffi
3

p :

and Γ⊙ in (B6) defined through equation (41). Notice that
none of the coefficients in our transition equation of motion

FIG. 7. This plot shows the relationship between r̃isco and r̃þ
with the spin parameter a ∈ ½−1; 1�. Notice that for a > 0
(prograde orbits), the ISCO and horizon locations coincide in
B-L coordinates, whereas for a < 0 (retrograde orbits), these
remain at a finite B-L coordinate distance.
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depend on the extremality parameter ϵ. This gives us no
reason to introduce any scalings on r̃, τ̃ and δL like we did
for prograde orbits around rapidly rotating black holes. As
such, let us introduce similar scalings to OT

R ¼ η2=5α−3=5ðβκÞ2=5X ðB10Þ

τ̃ − τ̃isco ¼ η−1=5ðαβκÞ−1=5T ðB11Þ

δE − δL ¼ η6=5Y: ðB12Þ

δL ¼ −η4=5ðαβÞ−1=5κ4=5T: ðB13Þ

Substituting these results into Eq. (B6) we find that

�
dX
dT

�
2

¼ −
2

3
X3 − 2XT þ α4=5ðηβκÞ−6=5Γ⊙: ðB14Þ

Since R ∼ η2=5, we only need the first term of Γ⊙

Γ⊙ ¼ η6=5
�
Ω̃
∂G
∂Ẽ

�
isco

Y; ðB15Þ

and taking derivatives of Eq. (B14) and following an
identical procedure to Sec. III D,

d2X
dT2

¼ −X2 − T ðB16Þ

with evolution equation for Y

dY
dT

¼ −
∂ log Ω̃
∂r̃

����
isco

ðC1K0Þ−1X ðB17Þ

for K0 ¼ α4=5ðβκÞ−6=5. Which is precisely the equation of
motion for the transition regime derived by OT in [27].
Although the quantities α, β and κ present in the change of
coordinates are different, the physics and ultimate end goal
are the same. As a result, we stop our analysis of retrograde
orbits here since we feel that this problem has already been
solved by the community for smaller spin values
a ≥ −0.999. We conclude that, for near-extremal retro-
grade orbits, there is nothing new to learn about the
transition regime. It can be solved in the matter of OT
in [27]. We do remark that the quantity κ can no longer be
computed using the near-extremal formula defined by
_̃EGW ¼ ðC̃H þ C̃∞Þðr̃ − r̃þÞ=r̃þ. This is because the tran-
sition region is far from the horizon of the primary hole (see
Fig. 1). Instead we have to use the numerical quantity

κ ¼
�
Ω̃−1 dt̃

dτ̃
dẼ
dt̃

�
isco

¼
�
−
32

5
Ω̃7=3 1þ a=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3=r̃þ 2a=r̃3=2
p _Eðr̃Þ

�
isco

:

Various results are tabulated (including retrograde orbits) in
[41]. The downside of this equation is that it can only be
evaluated numerically.

APPENDIX C: OSCULATING ELEMENTS
EQUATIONS

The proper time derivative of the radial geodesic
equation (2) yields (26)

d2 ˜̃r
dτ̃2

−
1

2

∂G
∂r̃ ¼ 1

2

�
dẼ
dτ̃

∂G
∂Ẽ þ dL̃

dτ̃
∂G
∂L̃

��
dr̃
dτ̃

�
−1
: ðC1Þ

The purpose of this appendix is to review how this equation
is equivalent to the radial component of a forced geodesic
equation

uν∇νur̃ ¼
d2x̃r̃

dτ̃2
þ Γr̃

ρσ
dx̃ρ

dτ̃
dx̃σ

dτ̃
¼ f̃r̃; ðC2Þ

where x̃μ ¼ ðr̃; t̃; θ;ϕÞ, ∇ν ¼ ∇x̃ν , uμ ¼ dx̃μ=dτ̃ is the four-
velocity of the particle and f̃μ a forcing term driving
deviations from geodesic motion.
To show the equivalence between (C1) and (C2), we use

the osculating elements formulation [58]. Since this method
does not take into account conservative effects arising from
the self-force [45], the component f̃r̃ in this appendix will
only account for the dissipative piece in (28). Its
conservative piece is treated in more detail in the main
text (See Sec. III A).
Since the four velocity uα is normalized, it follows f̃α is

normal to it by proper time differentiation

uαuα ¼ −1 ⇒ f̃αuα ¼ 0: ðC3Þ

Evaluating (C2) along the radial direction, solving (C3) for
f̃r̃ and plugging it into (C2) yields

d2r̃
dτ̃2

þ Γr
ρσ
dx̃ρ

dτ̃
dx̃σ

dτ̃
¼ −

f̃ϕũϕ þ f̃t̃ũt̃
ũr̃

: ðC4Þ

The left-hand side

Γr̃
ρσ
dx̃ρ

dτ̃
dx̃σ

dτ̃
¼ Γr̃

r̃ r̃

�
dr̃
dτ̃

�
2

þ Γr̃
ϕϕ

�
dϕ
dτ̃

�
2

þ Γr̃
t̃ t̃

�
dt̃
dτ̃

�
2

þ 2Γr̃
t̃ϕ
dt̃
dτ̃

dϕ
dτ̃

ðC5Þ

is computed using the Kerr Christoffel symbols and the
geodesic equations (2)–(4)

Γr̃
ρσ
dxρ

dτ̃
dx̃σ

dτ̃
¼ 3ðaẼ − L̃Þ2

r̃4
−
a2ðẼ2 − 1Þ − L̃2

r̃3
þ 1

r2

¼ −
1

2

∂G
∂r̃ :
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To evaluate the right-hand side, f̃r̃, we first notice the
existence of two Killing vectors: ξμ¼∂=∂ t̃ and ψμ ¼ ∂=∂ϕ,
associated with time and angular translational invariance,
respectively. There exists a conserved charge associated
with each:

Ẽ ¼ −ξμuμ; L̃ ¼ ψμuμ: ðC6Þ
It follows from Eq. (C6) that uϕ ¼ L̃ and ut̃ ¼ −Ẽ. Finally,
we relate the proper time derivatives of these charges with
the forcing terms in (C2). For example, consider the proper
time derivative of Ẽ

−
dẼ
dτ̃

¼ uβ∇βðξαuαÞ ¼ ξαðuβ∇βuαÞ þ uαuβð∇βξαÞ ¼ f̃t̃;

ðC7Þ
where Killing’s equation was used in the last step. A similar

calculation leads to dL̃=dτ̃ ¼ f̃ϕ. Solving the two equa-

tions dL̃=dτ̃ and dẼ=dτ̃ for f̃ϕ and f̃t̃ gives

f̃ϕ ¼ −
1

Δ

�
gt̃ t̃

dL̃
dτ̃

þ gϕt̃
dẼ
dτ̃

�
;

f̃t̃ ¼ 1

Δ

�
gt̃ϕ

dL̃
dτ̃

þ gϕϕ
dẼ
dτ̃

�
;

where we used the identity ðgϕt̃Þ2 − gϕϕgt̃ t̃ ¼ Δ for

Δ ¼ r̃2 − 2r̃þ a2. Since ur̃ ¼ gr̃ r̃ðdr̃=dτ̃Þ, it follows the
right-hand side of (C4) is

f̃r̃¼ 1

Δgr̃r̃

�
dẼ
dτ̃

½gϕt̃L̃þgϕϕẼ�þ
dL̃
dτ̃

½gt̃ t̃L̃þgt̃ϕẼ�
��

dr̃
dτ̃

�
−1

Noticing that

1

Δgr̃ r̃
ðgϕt̃L̃þ gϕϕẼÞ ¼

1

2

∂G
∂Ẽ ðC8Þ

1

Δgr̃ r̃
ðgt̃ t̃L̃þ gt̃ϕẼÞ ¼

1

2

∂G
∂L̃ ðC9Þ

we reach the desired conclusion

f̃r̃ ¼ 1

2

�
dẼ
dτ̃

∂G
∂Ẽ þ dL̃

dτ̃
∂G
∂L̃

��
dr̃
dτ̃

�
−1
: ðC10Þ
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