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Introduction

In order to get a better understanding of the linear and nonlinear interaction of microinsta-

bilities and associated turbulence with different specific modes, an ad-hoc "antenna" is imple-

mented in the global electromagnetic gyrokinetic PIC code ORB5 [1, 2]. It consists in apply-

ing time-dependent external charge- and current-density perturbations or, alternatively, external

electrostatic and magnetic potentials, to the system. The fields created by the antenna are con-

sidered separately from the fields of the plasma response and can thus be accounted for even in

linear simulations where the perturbed self-consistent plasma field contributions to the particle

orbits are neglected.

(De-)stabilization of linear ITG modes by steady and oscillatory applied sheared flows

In a first step, the antenna is used to excite zonal structures in a Cyclone-base case (ITG,

adiabatic electrons). Simulation parameters are taken from [3]. Without antenna, the linear

growth rate of the ITG mode with toroidal mode number n = 20 (corresponding to kθ ρ = 0.3)

is γ = 8.12 ·10−2 cs0/a, where cs0 is the sound velocity at a reference surface and a the plasma

minor radius. The ad-hoc antenna radial profile is chosen such that the associated shearing rate

is ωE×B(s) = ωE×B(s0)s/s0, where s is the radial coordinate defined as
√

ψ/ψedge, ψ being the

poloidal flux, and s0 is a reference surface. To begin with, the antenna field is constant in time.

Figure 1 shows the effect of the applied sheared flow on the mode growth rate. A total sta-

bilization is achieved when ωE×B & 3 · 10−2 cs0/a, which is comparable to the linear growth

rate without antenna. The growth rate is maximal for ωE×B(s0) = ωE×B,0 :=−8.5 ·10−3 cs0/a,

when antenna shearing rate compensates the ω? shearing effect, as shown in [4].

A sinusoidal time dependence is then added to the shearing rate, with a frequency ωant and

an amplitude ∆ωE×B = 9 ·10−3 cs0/a around the steady value ωE×B,0.
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Figure 1: Time-averaged linear growth rate of ITG mode with toroidal mode number n = 20 as a function of

antenna’s steady shearing rate. Colored area height is plus or minus the standard deviation of the instantaneous

growth rate. Circles indicate references for upcoming Figure 2.
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"Adiabatic" response with ωant = 10−2cs0/a
ωE×B(t) = ωE×B,0 +∆ωE×B cos(ωantt) with ωant = 10−2cs0/a
ωE×B(t) = ωE×B,0 +∆ωE×B cos(ωantt) with ωant = 3.6 ·10−2cs0/a

Figure 2: Instantaneous growth rate as a function of time for stationary and oscillatory applied sheared flows. The

so-called "adiabatic" response is the growth rate corresponding to the instantaneous antenna shearing rate in the

limit of steady sheared flows, interpolated from Figure 1 data.

Time traces of the instantaneous growth rate of the mode in presence of oscillatory sheared

flows are depicted in Figure 2. For a low frequency ωant = 10−2 cs0/a, the instantaneous growth

rate oscillates closely following the "adiabatic" response with a small time lag. For a higher

frequency ωant = 3.6 ·10−2 cs0/a, corresponding oscillations have a weaker amplitude and the

average growth rate gets closer to the one with a steady applied flow ωE×B,0 only.

This behavior is further analyzed in Figure 3 by computing the effective shearing rate

ωE×B,eff, meaning the static shearing rate corresponding to the average growth rate, as a func-

tion of ωant. In other words, ωE×B,eff satisfies γ(ωE×B,0 +ωE×B,eff) = γ̄(ωant) where .̄ stands

for the time average. For a given ωant, two solutions are interpolated from Figure 1’s γ(ωE×B)

data. Results show a good agreement with previous analytical work [5], using an equivalent

turbulence decorrelation time ∆ωT = 6.3 ·10−3cs0/a (providing best fit).
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Figure 3: Effective shearing rate as a function of the antenna oscillation frequency. Turbulence decorrelation time

∆ωT in Hahm’s formula [5] has been set to 6.3 ·10−3cs0/a providing best fit with simulation results.

Non-linear TEM with self-consistent and applied zonal flows

As a second application, the nonlinear plasma response is included to study the effectiveness

of the turbulence saturation by sheared flows. In a case of TEM-dominated system, chosen with

electron to ion temperature at reference surface Te0/Ti0 = 1, electron temperature logarithmic

gradient R/LTe = 7, and electron and ion stability factors ηe = 3 and ηi = 1. Detailed parameters

can be found in [1]. ORB5’s hybrid electron model [2] is used. For these parameters, the effect

of zonal flows on transport is significant, in agreement with [6]. Indeed, as depicted in Figure

4, the quasisteady electron heat diffusivity is about 3 times higher when self-consistent zonal

flows are filtered out from the simulation than when they are included.
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Figure 4: Temporal evolution of the electron heat diffusivity χH,e and shearing rate averaged from ρvol = 0.3 to

ρvol = 0.7.

After t = 555 cs0/a, steady zonal flows are applied by the antenna. Their profile is chosen

as the time-averaged self-consistent zonal flows from t = 278 cs0/a to t = 555 cs0/a. The self-

consistent zonal flow amplitude is observed to decrease so that the total (self-consistent and

applied) zonal flows regain their previous level after a transient phase (orange curves in Figure
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4). As a consequence, the heat diffusivity is not affected by the applied zonal flows. The same

behavior appears when the opposite zonal flow profile is applied after t = 555 cs0/a (green

curves in Figure 4), but this time the plasma zonal flow level is doubled after a transient phase

so that total quasisteady zonal flows and heat diffusivity are unchanged.

Linear GAM excitation

The antenna has also been used to address the question of the origin of nonlinear zonal struc-

tures (avalanche-like features) observed to propagate in the TCV tokamak at a frequency similar

to the one of local GAMs at the edge. Those structures have been experimentally observed in

[7], and numerically reproduced in [8, 9]. Even though we managed to linearly excite GAMs

with the antenna, they were not found to propagate below the local GAM frequency [10], unlike

the avalanche-like features observed in nonlinear simulations.

Conclusion

First, linear studies have shown the effectiveness of stationary and oscillatory sheared flows

to stabilize or destabilize ITG modes. Second, the heat transport has been found to be unaf-

fected by applied stationary E ×B flows, because plasma self-consistent zonal flows reorganise

themselves to compensate the applied ones. Finally, linear GAM excitation revealed that the

global coherent mode propagating in TCV cannot be explained by linear theory alone. Future

work will include plasma turbulence in those simulation to see if it can act as a support for the

avalanche propagation.
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