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Abstract

To prepare for an impending event of unknown temporal distribution, humans internally

increase the perceived probability of event onset as time elapses. This effect is termed the

hazard rate of events. We tested how the neural encoding of hazard rate changes by provid-

ing human participants with prior information on temporal event probability. We recorded

behavioral and electroencephalographic (EEG) data while participants listened to continu-

ously repeating five-tone sequences, composed of four standard tones followed by a non-

target deviant tone, delivered at slow (1.6 Hz) or fast (4 Hz) rates. The task was to detect a

rare target tone, which equiprobably appeared at either position two, three or four of the

repeating sequence. In this design, potential target position acts as a proxy for elapsed time.

For participants uninformed about the target’s distribution, elapsed time to uncertain target

onset increased response speed, displaying a significant hazard rate effect at both slow and

fast stimulus rates. However, only in fast sequences did prior information about the target’s

temporal distribution interact with elapsed time, suppressing the hazard rate. Importantly,

in the fast, uninformed condition pre-stimulus power synchronization in the beta band (Beta

1, 15–19 Hz) predicted the hazard rate of response times. Prior information suppressed

pre-stimulus power synchronization in the same band, while still significantly predicting

response times. We conclude that Beta 1 power does not simply encode the hazard rate,

but—more generally—internal estimates of temporal event probability based upon contex-

tual information.

Introduction

How do humans successfully prepare for future event onset? When uninformed about the

event’s temporal distribution, attention mounts with elapsed time, concurrently increasing

response speed and accuracy at event onset [1–17]. This time-dependent performance gain

seems to depend on a time-dependent accrual in perceived event probability, termed the
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hazard rate of events. The hazard rate is thought to be endogenously generated by normalizing

implicit estimates of target probability (probability density), by the ever-diminishing, time-

dependent probability that the event has not yet occurred (survival probability) [12, 18].

Neural circuits are sensitive to the hazard rate. Shadlen and colleagues [10, 19] showed that

neurons in the macaque Lateral Intraparietal Area (LIP) maintain a neocortical representation

of the hazard rate. Firing rates in LIP neurons increase with elapsed time irrespective of

whether a motor response is given ([19–20]; for a similar result in monkey prefrontal cortex,

[21]). In humans, hazard rate effects on cortical activity have been found in regions homolo-

gous to the LIP area (Intraparietal Sulcus, IPS: [22–24]; Inferior Parietal Cortex, IPC, [3]), but

also in motor, sensory, and prefrontal regions (Supplementary Motor Area, SMA, and the

right Superior Temporal Gyrus, STG, for auditory stimuli, 8; premotor cortex, [25]), suggest-

ing the existence of a distributed brain network encoding the hazard rate [5].

We asked how the hazard rate and its neural underpinnings change when participants are

informed about the temporal distribution of an event. To this end, we collected human behav-

ioral and electroencephalographic (EEG) data while participants detected an auditory target

events which rarely occurred at different positions within a continuous repeating, five-tone

sound sequence. Optimal performance required participants to cycle through potential target

onset positions in preparing to respond, in case a target did eventually onset. Humans typically

build temporal expectations for uncertain future events. For example, at any given time a soc-

cer player may or may not receive the ball, but she still needs to update her probability esti-

mates about when the ball will be kicked in order to be ready to catch it. The repeating

sequence was composed of four standard tones (440 Hz) and a final higher-pitch one (494 Hz;

for an overview of the experimental paradigm, see [26–27]). A rare low-pitch target tone (349

Hz) appeared only in 20% of the sequences, substituting a standard tone at either position two,

three, or four, with equal probability (Fig 1A and Experimental design). In this design, elapsed

time is represented by the within-sequence isochronous unfolding of potential event onset

positions within each repeating tone sequence. We expected participants to update target

probability estimates within each sequential cycle and response times to reflect a hazard rate

distribution (Fig 1B). An increase in perceived temporal probability estimates should also

boost early neural sensory processes for events that eventually occur [28–33] as well as late

attention-capturing responses [34–39].

However, if prior information is provided to participants about target probability across

positions within a sequence, the hazard rate should not be generated as participants would not

need to build the survival probability to respond, as simply relying on prior information (equi-

probable distribution) would suffice. Our experiment was organized into two sessions. In a

first session, participants were uninformed about the target’s distribution. In a second session,

participants were informed about the equiprobable target distribution within each repeating

sequence. Importantly, in both sessions stimulus sequences were delivered using two different

rhythms: first slow (1.66 Hz, resulting from a constant 750 ms Stimulus-Onset-Asynchrony,

SOA), and then fast (4 Hz, 250 ms SOA). We hypothesized that fast sequences should favor the

perception of five-tone sequences as an auditory object per se, making it easier for participants

to apply prior information about target position probability.

Recent work suggests that activity in the beta band (13–30 Hz) is a likely candidate for the

neural encoding of event probability estimates. Beta-band activity tracks the temporal regular-

ity of isochronous tone sequences [40–42] and correlates with behavioral accuracy [43–45]. In

purely perceptual tasks, beta-band power synchronizes [46] with the immediate onset a stimu-

lus [40–41]. Engel and Fries [47] first framed a role for beta-band oscillations in endogenously

registering the maintenance or change of a current internal state via cortical feedback projec-

tions [48–52]. While previous work analyzed power across the whole beta band, three

Beta power reflects contextual temporal probabilities
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independent lines of evidence point to a specific role of the low beta-band range, also termed

Beta 1 rhythm (< 20 Hz) in perception: 1) Simulation work on neural activity across cortical

layers suggests a role for Beta 1 oscillations in distinguishing between novel and standard

events [51]; 2) Motor output inhibition has been more frequently linked to high beta-band or

Beta 2 activity (> 20 Hz) [52]; 3) Low beta-band (~15 Hz) activity of basal ganglia origin

appears to encode an event’s task relevance (target vs. non-target) regardless of motor output

[53].

Results show that in fast sequences lower beta band power (Beta 1 rhythm, 15–19 Hz)

encodes the hazard rate of events. Providing prior information on target probability sup-

pressed Beta 1 activity as well as the hazard rate of response time, hence reflecting the discrete

uniform distribution of targets. Crucially, suppressed Beta 1 power still predicted behavior,

suggesting that it does not simply encode the hazard rate, but more generally context-specific

temporal probability estimates.

Results

Twenty-six young adults participated in the experiment, which was organized according to a 2

x 2 design with factors prior information and Stimulus Onset Asynchrony (SOA). Prior

Fig 1. Experimental design. A: Continuously repeating five-tone sequences (left panel, four A4 tones followed by a B4 tone) were rarely (20% of the

times) interspersed with sequences containing a target tone (F4) at either of three, equally probable, positions (position 2, 3, and 4, right panel). Elapsed

time refers to within-sequence effects of target onset at positions 2, 3 or 4. B: Left, the ensuing discrete probability density function: all potential target

onset positions have the same probability. Right, the resulting hazard rate model. The first standard tone and the last non-target tone never hosted a

target.

https://doi.org/10.1371/journal.pone.0222420.g001
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information tested the effect of providing participants with explicit information about the dis-

tribution of target tones, while SOA tested whether the effects of presentation rate on extract-

ing stimulus statistics [32–33]. In a first session (uninformed), participants were asked to

detect the low pitch tone (target) with tones delivered first at a slow rate (constant SOA = 750

ms) and then at a fast rate (constant SOA = 250 ms). In a second session (informed), partici-

pants were explicitly informed about the repeating sequence structure and the target’s equal

probability distribution across standard positions two, three and four. Each participant

received four conditions in the following order: 1) slow uninformed; 2) fast uninformed; 3) slow
informed; 4) fast informed.

The hazard rate of response times

Accuracy in target detection, as reflected by task sensitivity (d’) measures, was very high and

did not differ among conditions (all Fs(1,25)� 2.82, all ps� 0.12; Fig 2A). To analyze response

times, we fitted nonparametric Theil-Sen estimators [54–55] to single-trial response times

across successive potential target positions, our predictor variable. The Theil-Sen estimator is

the median of all the lines connecting two data points, and is more robust to outliers as com-

pared to least-squares fit. There resulted one intercept and one regression coefficient (or slope)

per participant/condition. Intercept estimates reflect changes in response speed magnitude

unrelated to elapsed time, while regression coefficients specifically partial out the effects of

elapsed time. The analysis of intercepts showed that participants were overall quicker at

responding to targets appearing within faster rather than slower sequences (F(1,25) = 40.25,

p< 0.001; Fig 2B), suggesting a generic facilitation effect for target processing in faster

sequences, but we found no effect of prior information and no interaction (all Fs(1,25)� 1.12,

all ps� 0.30). The average response speed for fast sequences was 348 ms (Standard Error of

the Mean, SEM = 22), and 411 ms for slow sequences (SEM = 36).

Slopes convey time-dependent changes in response speed using a signed value: a negative

value indexes the presence of the hazard rate, as response latencies decrease with elapsed time.

Slopes distribution was normal in all conditions (all Shapiro-Wilks Statistics� 0.84, all

ps> 0.21). We found a significant prior information × SOA interaction (F(1,25) = 4.73,

p< 0.05) driven by a significant effect of prior information in fast sequences (t(1,25) = -3.33,

p< 0.01, all pairwise t-tests fdr-corrected, here and in the following): the hazard rate was pres-

ent in the fast uninformed condition (t(1,25) = 0.05, p = 0.95), but not in the fast informed con-

dition (t(1,25) = 0.05, p = 0.95). The hazard rate was present for both slow conditions regardless

of information status (all ts(1,25)� -6.06, all ps< 0.001). Overall, when significant, the hazard

rate effect resulted in a speed gain between 10 and 15 ms per potential target position (Fig 2C).

The suppression of the hazard rate effect by prior information in fast sequences might also

have been caused to the cancelling out of random behavioral patterns at the group level, rather

than to individually consistent cognitive changes. To verify whether that was the case, we sub-

tracted slope estimates obtained in the uninformed condition from those obtained in the

informed condition at either SOA level, and tested the observed data against the null hypothe-

sis that prior information was equally likely to suppress or enhance the hazard rate. A binomial

test indicated that in fast sequences prior information suppressed the hazard rate in 20 out 26

participants, that is, in 77% of our sample (p< 0.01, Fig 2C), suggesting a non-random effect.

The hazard rate of sensory processing

First, we verified whether attention had been effectively captured by the five-tone sequence

cycle. We hypothesized that if participants perceived non-target tones as the last of each

sequence, their onset should have elicited a Mismatch Negativity response signaling pitch-

Beta power reflects contextual temporal probabilities
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Fig 2. Behavioral results. A: Accuracy as reflected by target detection sensitivity measures (collapsed across potential

target position). Error bars represent the Standard Error of the Mean (SEM). B: Means ± SEM of estimated response

time intercepts across potential target positions, showing no statistically significant difference among conditions. C:

Boxplot with median (middle of each box), interquartile range and whiskers (1.5 time the interquartile range) of

estimated response time slopes suggesting the presence of the hazard rate driving response speed in slow stimulus

trains, regardless of prior information (participants being uninformed or informed about actual target probabilities),

and in fast stimulus trains with uninformed participants. Providing prior information in fast stimulus trains effectively

cancelled time-dependent (position-wise) changes in response time, that is, the hazard rate.

https://doi.org/10.1371/journal.pone.0222420.g002
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change detection: this hypothesis was verified in all conditions (all ps< 0.05, see S1A Fig), sug-

gesting that the non-target deviant effectively reset attention at the end of each five-tone

sequence.

We then analyzed the components of the event-related potentials reflecting the elapsed-

time component of target onset. A single-trial Theil-Sen regression was run for each time sam-

ple at electrode level (epoch duration: 750 ms, including 250-ms pre-stimulus time) and

repeated for each participant and condition. There resulted event-related regressions coeffi-

cients (ERRCs), which encode the effect of elapsed time on event-related potentials as a differ-

ence wave across potential target position, and event-related intercepts (ERIs), which instead

encode brain activity unrelated to the passing of time, on a pair with the behavioral analysis

[56].

We ran a hypothesis-free, cluster permutation analysis [57] condition-wise to determine

the presence of significant activation relative to a surrogate distribution obtained by randomiz-

ing data points along the time axis, and then analyzed the effect of prior information by con-

trasting informed and uninformed conditions within each SOA level. ERIs showed significant

characteristic peaks of activity labelled as CNV (Contingent Negative Variation; [25]), N1,

N2b, and P3 in all conditions (all ps< 0.001). Stimulus rate and prior information resulted in

larger N2b/P3 deflections for slower vs. faster sequences, and uninformed vs. informed condi-

tions, respectively (all ps< 0.01, S1B Fig; [35]). This confirms previous findings that increasing

perceptual expectations reduces surprise-related attentive sound processing.

As for ERRCs, we first looked at the fast, uninformed condition. We found significant N1

and P3 deflections, with a characteristic topography [58] (p< 0.001; Fig 3A, upper panel), and

a significant late negativity cluster in the informed condition (> 410 ms post onset, p = 0.05,

not shown). When testing the effects of prior information, two significant clusters emerged

again at N1 and P3 latencies (Fig 3A, lower panel).

We found a larger N1 deflection (cluster latency 58–156 ms, p = 0.018), and a larger P3

deflection in the uninformed condition (cluster latency 257–322 ms, p = 0.016). Notably, N1

amplitude significantly predicted response time slopes regardless of information status (unin-

formed, rho = 0.51, p< 0.01; informed, rho = 0.61, p = 0.001, Steiger’s Z = -0.52, p> 0.60, Fig

3B, upper panel), while P3 amplitudes predicted behavior only in the informed condition

(uninformed, rho = 0.01, p = 0.99; informed, rho = 0.43, p< 0.05, Fig 3B, lower panel). A topo-

graphical analysis (TANOVA, [59]) showed that prior information attenuated P3 activity with-

out changing the underlying generator configuration, while N1 suppression likely depended

on changing neural generator between 55 and 100 ms post target onset (S1C Fig). We conclude

that for fast sequences, elapsed time enhanced neural afferent activity (N1 wave, [60]) for unin-

formed participants, thereby increasing response speed. Factoring out elapsed time via prior

information correlatively reduced sensory processing and response speed.

ERRCs in slow sequences showed significant brain activity in the P3 range regardless of

information status (all ps< 0.001), while the N1 deflection was significant only in the unin-

formed condition (p< 0.05, informed: p = 0.28; see Fig 3C). However, we found no significant

prior information effect (p = 0.23). P3 ERRCs significantly predicted response time slopes

regardless of information status (all rhos> 0.48, ps< 0.01). Thus, EEG and behavioral data

concur to suggest that the down effects of prior information are more likely to be detected

using faster stimulus rates [61].

The hazard rate of neural power

We then focused the analysis of EEG power in sequences. The Theil-Sen estimator was applied

to each time-frequency bin, obtaining a distribution of signed time-frequency regression

Beta power reflects contextual temporal probabilities
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Fig 3. The hazard rate of sensory processing. In the uninformed, fast condition, significant deflections in ERRC

activity were found at N1 and P3 latencies. There was no significant activity in the informed condition for the first

~400 ms after target onset. ERRC cluster statistic values averaged across the electrode space show a significant effect of

prior information at N1 and P3 latencies, with a central distribution for the negative cluster and a left-sided

centroparietal distribution for the positive cluster, consistent with the N1 and P3 interpretations. B. ERRCs at N1

Beta power reflects contextual temporal probabilities
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coefficients (TFRCs), measured as μV2 unit change per potential target position with negative/

positive sign equaling time-dependent decrease/increase. A rank correlation analysis was run

between each TFRC bin and response time slopes for the entire epoch (from 250 ms pre-stim-

ulus to 500 ms post-stimulus), in order to isolate the task-relevant components of spectral

power.

In the following, we focus on fast sequences in order to highlight the effect prior informa-

tion. For participants who were uninformed about the target’s temporal distribution, we

expected single-trial power in the Beta 1 range (< 20 Hz) to increase with elapsed time, encod-

ing the task relevance of a potential target onset. We measured the power spectrum of each

trial epoch, from 5 to 28 Hz. A concentration in Beta 1 power (15–19 Hz, averaged across all

scalp electrodes) at a latency of about -150 ms (pre-stimulus baseline), inversely correlated

with response time slopes (p< 0.05, Fig 4A, left panel). Notice that, by design, participants

could not foresee whether a target would appear or not at any potential position within the

current sequence. This suggests that synchrony in the beta band encodes the update of time-

dependent probability estimates for potential future events, driving an increase in response

speed for targets which eventually did appear. Beta 1 power synchrony was significant at left

centroparietal electrodes (p< 0.05, Fig 4A, right panel). Importantly, Beta 1 power also pre-

dicted post-stimulus ERRC N1 amplitudes (p = 0.01), establishing for the first time a direct

connection between pre-stimulus probability update and post-stimulus sensory processing.

With prior information, probability update processes in the Beta 1 band were suppressed at

central electrodes, and a significant decrease in spectral power was found at parietal electrodes

(p< 0.05, Fig 4A, right panel). This may reflect how the brain silences the hazard rate at sen-

sory-specific central electrodes. Notably, the correlation of Beta 1 power with response time

slopes remained significant (p< 0.05, average across all scalp electrodes, Fig 4A, left panel).

Similarly, Beta 1 power maintained a significant correlation with post-stimulus N1 amplitudes

(p< 0.05), confirming the inference of a causal link between pre-stimulus Beta 1 power and

sensory processing. We found no significant correlation with response times for either Alpha

(8–12 Hz, all ps> 0.2) or Beta 2 (21–25 Hz, all ps> 0.08) bands, suggesting the encoding of

perceived event probability was specific to Beta 1 rhythm.

Discussion

To prepare for future events, humans could simply estimate the probability density function of

target onset over trials and use that information to respond [62, 63]. However, “that is not the

natural way one thinks about it as the [waiting] process unfolds in time. Rather, if the event

has not yet occurred, one senses there is some tendency for it to occur the next instant in time”

[10,12,19]. We found that such a “feeling” is present also for target events that may or may not

onset within a given interval. Participants naïve to target distribution probabilities used

elapsed time to progressively increase their temporal expectations about potential target onset,

regardless of whether stimulus rate was slow or fast. However, when informed about the equi-

probable potential target onset within each five-tone sequence, a suppression effect of prior

information on the hazard rate was detected in fast sequences only. We ascribe the absence of

a prior information effect in slow sequences to a difficulty for participants to represent five-

tone sequences as an integrated percept within sensory memory [26–27, 64–66]. Notice that

latency in fast sequences significantly predict behavior regardless of prior information; this link is preserved for later,

attentive processing (P3) in the informed condition. C. ERRCs in slow sequences show significant ERRC activity at N1

in the uninformed condition, and at P3 latencies in either information condition, highlighting a hazard rate effect of

late attentive processing. No statistically significant effect of prior information was found.

https://doi.org/10.1371/journal.pone.0222420.g003
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Fig 4. Oscillatory hazard rate in fast sequences. A. Left panel, pre-stimulus Beta 1 (14–19 Hz) oscillatory power

(median across all scalp electrodes) significantly predicts response speed to target onset, for both uninformed and

informed conditions. Right panel, topography of Time-Frequency Regression Coefficients (TFRCs, measured in μV2

Beta power reflects contextual temporal probabilities
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the attenuation of the hazard rate in fast sequences was not due to increased variance at group

level but rather to suppressive processes acting at individual level (in ~ 77% of our sample).

We suggest that prior information factored out elapsed-time dependent processes, such as the

calculation of survival probability, from the computation of position-wise target probability.

However, it is important to underlie that the discreet uniform probability density, which is

assumed to be endogenously computed by participants, coincides with the distribution

highlighted by prior information, so at present their contribution to the effect prior informa-

tion on response times in fast sequences indistinguishable.

We found an increase in early post-stimulus sensory activity in the N1 range in the unin-

formed condition in fast sequences. This increase in brain activity explained a significant pro-

portion of individual level variance in response speed, suggesting that modulations of N1

coefficients encode time-dependent information. However, prior information significantly

suppressed the N1 deflection, while remarkably maintaining a consistent predictive relation-

ship to response behavior, suggesting that encoding temporal probability changes the weights

of sensory processing.

Low beta-band power (Beta 1 = 15–19 Hz), ~150–125 ms before the potential onset of the

target event, consistently predicted the effect of elapsed time on response speed and sensory

processing in both uninformed and informed fast sequence conditions. For uninformed par-

ticipants, with elapsed time factored in, Beta 1 increased at central electrodes. When elapsed

time was factored out by prior information, Beta 1 did not change at central electrodes and

was significant suppressed at parietal electrodes. The latter result could reflect how a distrib-

uted neural system silences the sensory effects of elapsed time.

The finding of a Beta 1 power modulation as a neural correlate of the hazard rate expands

on the original proposal of Engel and Fries [50], as well as the findings of Arnal et al. [43] and

Fujioka et al. [40–41], by demonstrating that beta power does not simply reflect temporal

tracking of event onset, but rather subjective estimates of temporal probability. Todorovic and

colleagues [67] found beta-band desynchronization for expected auditory events, but only in a

passive listening condition, with no difference when attention was deployed on sound

sequences. Spitzer and Haegens [50] suggest a primary role of beta band in the endogenous re-

activation of neuronal ensembles coding for task-relevant information (see also [48–49, 51]).

A potentially fruitful endeavor for future research would be to bridge human and animal

research by specifically testing the relationship between cortical Beta 1 power and the encoding

of the hazard rate at the neuronal level [10, 19].

The neural mechanisms underlying elapsed time to target under most distribution func-

tions (except exponential ones, also termed memoryless functions, for which no hazard rate is

elicited [12]) constitute a particular case of perceptual bias. Participants gain a substantial

behavioral advantage by constructing subjective temporal expectations rather than relying on

probability density estimates. We showed that providing truthful prior information on the tar-

get’s uniform probability density cancels any behavioral advantage in fast sequences. It follows

per potential target position, median across Beta 1 frequencies) at the behaviorally significant pre-stimulus interval. In

the uninformed condition, the hazard rate is reflected at central electrodes; in the informed condition, prior

information about actual target onset cancels the hazard rate at central electrodes and leads to a significant

desynchronization at parietal electrodes. B. Grand median time-frequency representation of oscillatory power

regression coefficient distribution at both Beta 1 and Beta 2 in uninformed (right panel) and informed (left panel) fast

sequences. White squares indicate the time-frequency bins averaged to obtain the B1/behavior fit in 4A. C. Left panel,

cluster-based significance distribution of prior information across beta-band frequencies at Ps electrode. The center of

gravity lies in the Beta 1 rhythm range, between 150 and 50 ms before the eventual onset of the uncertain target: These

bins are fully included in the independently identified behaviorally significant pre-stimulus interval. Right panel,

topography of the effect of prior information.

https://doi.org/10.1371/journal.pone.0222420.g004
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that the hazard rate of events represents a conceptual challenge for active sensing models of

perception that construe the fit between brain and behavior as based on precise internal mod-

els of actual event statistics, which invariably ascribe a facilitative effect to veridical prior infor-

mation [28].

Contrary to previous work with deterministic targets within a foreperiod design [68–69],

we did not find significant effects of elapsed time in the alpha band. This may be due to the

sequential cycling of attention, which may have entrained sub-bands of the alpha rhythm or to

the fact that we used an uncertain target. It is also possible that the use of target sounds may

have accentuated the relevance of low beta relative to alpha activity [70].

It has been postulated that changes in neural rhythms may underlie different cognitive

operations [71]. Notably, simulations studies of cortical rhythm formation postulate that the

Beta 1 rhythm reflects memory of stimulation history [51]. The importance of cortical Beta 1

in defining the task-relevance of sensory stimuli could depends on contributions from basal

ganglia generator circuits [53]. Interestingly, recent clinical work purports that beta desyn-

chronization in Parkinson’s disease (PD), predominantly of basal ganglia origin, specifically

impairs pre-stimulus beta-band activity in rhythmic auditory perception, suggesting a causal

relationship with timing deficits that are typically present in PD [72]. This patient group could

provide a test case to better analyze the functional specificity of synchronization and desyn-

chronization in the low vs. high beta band, contrasting movement initiation and task relevance

[46].

Conclusions

Modulations of Beta 1 rhythm reflect how participants internally prepare to respond to uncer-

tain events, keeping into account what they know about their temporal distribution.

Materials and methods

Participants

The experiment was conducted at the Max Planck Institute for Human and Cognitive

Brain Sciences, Leipzig (Germany). Thirty healthy young adult individuals (15 female; age

range = 19–31, mean = 25, SD = 3.5) were recruited from the institute’s database of partici-

pants. All individuals had university-level education and were paid for their participation.

Four participants were excluded from further analysis: two for below-average behavioral per-

formance (less than 50% target detection), one for misinterpreting task instructions, one for

excessive number of rejected target epochs (cut-off: 80%, i.e. at least 16 target trials per position

and condition). The final pool of 26 participants (13 females) reported no neurological or psy-

chiatric disorders or therapies involving the central nervous system. Individually measured,

bilateral audiometric thresholds of at least 30 dB Hearing Level at 0.25–8 KHz octave frequen-

cies [73]. All participants signed a written informed consent complying with the Declaration

of Helsinki on human experimentation. This study was approved by the Ethics Committee of

the University of Leipzig.

Stimuli

Stimuli were three 50-ms pure tones (5 ms rise/fall), binaurally presented via loudspeakers at

~80 dB SPL and generated using Matlab (version 7, Mathworks, Natick, MA). A 440 Hz tone

(A4 on the equal tempered scale), termed standard tone, was presented 900 times per condi-

tion (75% global probability). A 494 Hz tone (B4, two semitones higher than the standard),

termed non-target tone, was presented 240 times per condition (20% global probability). A 349
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Hz tone (F4, four semitones lower than the standard), termed target tone, was presented 60

times per condition (5% global probability). Fig 1 illustrates stimulus organization. Standard

and non-target tones were organized as a continuously repeating sequence of four standard

tones followed by a non-target tone always in fifth position. Target tones appeared in 20% of

the sequences, randomly at either standard position two, three or four, with a uniform distri-

bution. There was a maximum of one target per sequence, and minimally two successive

sequences without targets before a target-containing sequence. Stimulus sequences were deliv-

ered using Presentation software (version 12.0, www.neurobs.com) running on a Windows

PC.

Experimental design

Participants sat in an electrically shielded, sound-attenuated chamber, and fixated a white

cross on black computer screen at a distance of ~1 meter while listening to the auditory sti-

muli. They responded to target tone onset by pressing a button on an external response box.

Targets were equiprobably distributed across standard position two, three and four, yield-

ing a discrete uniform distribution function: f(t) = 1/3, for each of standard positions two,

three, and four. Denoting the survival probability (“the event has not yet occurred”) as 1 − F

(t), where F(t) is the cumulative distribution function, the hazard function is then: h(t) = f(t)/

(1-F(t)).

The experiment was organized into two successive sessions, with a fixed order. In the first

session, participants were unaware of target distribution and instructed to respond to the

onset of target tones as accurately and fast as possible by pressing a button on a response box.

They trained in a short block of 60 experimental randomly distributed tone sequences contain-

ing three targets. If errors were made (Missing, False Alarm), the training block was repeated

until no errors were detected. Experimental tone sequences were first delivered with a constant

750-ms stimulus onset asynchrony (SOA), corresponding to 1.6 Hz stimulus rate (three 5-min

blocks; first condition), and then—after a short break—with a constant 250-ms SOA, corre-

sponding to 4 Hz stimulus rate (one 5-min block; second condition). The first two conditions

were tagged as slow uninformed and fast uninformed, respectively. In a second session, after a

15-min break, participants were informed, both verbally and using visual aids, both about the

repeating tone sequence and target probability distribution within a sequence. The instruction,

therefore, changed: they were asked to respond to target tones whose onset would break the

sequence at either standard position two, three, or four. They again trained with a short block

of 60 tones and 3 targets. If errors were made (Missing, False Alarm), the training block was

repeated until no errors were detected. The experimental tone trains were again first delivered

with a 750-ms constant SOA (three 5-min blocks; third condition), and then—after a short

break—with a 250-ms constant SOA (one 5-min block; fourth condition). These conditions

were tagged as slow informed and fast informed, respectively. Participants completed the exper-

iment in about one hour.

Behavioral data analysis

Hits were all button presses whose response time ranged between 150 and 1250 ms from the

onset of a target tone. Button presses recorded after 1250 ms were considered as false alarms

(FA). Accuracy was measured by z-transforming hit and false alarm counts (5% adjustment

for ceiling effects) to obtain a d’ index of task sensitivity (zFA—zHit, [74]). A single-trial linear

fit allowed detecting the presence/absence of the hazard rate: slope sign indicates an increase

or decrease in response times for long awaited events, while slope magnitude measures the

strength of change with elapsed time. The Theil-Sen estimator represents an unbiased, robust,
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non-parametric simple linear regression method, which extracts the median slope among all

possible pairwise combinations of points (54–55). Accuracy and reaction time data entered a

two-way, repeated-measures ANOVA, with the factors SOA (slow, fast) and prior information

(uninformed, informed). Results with p� 0.05 (fdr-correction was applied to protect against

family-wise error rate) were declared significant.

EEG data acquisition and pre-processing

Electroencephalographic (EEG) data were collected using a 26 scalp Ag/AgCl electrode set

(BrainAmp), mounted in an elastic cap according to the 10–20 International system. The elec-

trode space was composed by: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FC4, FT8, T7, C3,

Cz, C4, T8, CP5, CP6, P7, P3, Pz, P4, P8, O1, O2. Two external electrodes were placed at right

and left mastoid sites. For electrooculographic (EOG) data recording, four additional elec-

trodes were placed at both eye canthi, and above and below the right eye. For participants 19

to 26 (21–30 in the original dataset), the cap contained 38 more electrodes (10–10 system), not

used in the current analysis for comparability across participants (Fpz was excluded from par-

ticipants 1–18 as it was conversely not present in participants 19–26). An online reference was

placed on the tip of the nose and the sternum served as ground. Electrode impedance was kept

below 5 kO. EEG/EOG sampling rate was set to 500 Hz, with online high-pass filtering at 0.01

Hz. The resulting continuous recordings were visually inspected and pruned from non-stereo-

typical artefacts or extreme voltage changes values. An Independent Component Analysis

(ICA, extended Infomax, [75]) was performed on the pruned continuous data, offline band-

pass filtered 1–100 Hz (Kaiser window, Beta 5.6533, filter order 1812 points, transition band-

width 1 Hz, see [76]). The maps of exemplar Independent Components (ICs) reflecting blinks

or vertical eye movements and horizontal eye movements from one participant were selected

as spatial templates in a semi-automatic artefact search across all ICs of the remaining datasets

(correlation threshold, r = 0.94; [77]). Eye-movement-related ICs, both vertical/blink-related

and horizontal, ranged between 1 and 3 per participant. Selected ICs were verified in their

spectral power distribution before being subtracted [78]. The resulting continuous datasets

were low-pass filtered at 35 Hz (filter order 184, transition bandwidth 10 Hz).

Event-related potential and coefficient analysis

Epochs were separately extracted for the onset of standard, non-target and target stimuli,

beginning 1000 ms before and ending 1000 ms after stimulus onset. Epochs were selected

based on their contribution to increasing the signal-to-noise ratio [79]. On average, 12.3% of

epochs were rejected. Epochs of interest for regression analysis began 250 ms before the onset

of target tone, and ended 500 ms thereafter. Neural responses for non-target tones were calcu-

lated in sequences that did not contain a target trial, by subtracting the response of the fourth

standard tone. Stimulation was isochronous, so that target position directly reflects elapsed

time. For each time point of each Target trial, a Theil-Sen estimate of the linear relationship

between target position as predictor and event-related electrical activity was calculated. There

resulted event-related regression coefficients (ERRCs, slopes) and event-related intercepts

(ERIs). ERRCs encode neural estimates of elapsed time [56, 80]. We took a data-driven

approach to analyze the distribution and polarity of neural effects within a post-stimulus win-

dow of interest (0–600 ms). The presence of differences in the effects of Target position

(elapsed time) as determined by prior information was tested for all channels/time points

separately at each SOA level: slow uninformed vs. slow informed; fast uninformed vs. fast

informed. ERRCs entered a non-parametric, cluster-based permutation test of significance,

testing the effect of prior information at each SOA level [57]. Clusters were minimally
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composed of two electrodes. Cluster-level statistics was determined by summating significant

paired T-test values (cluster alpha = 0.05) across adjacent points within each cluster, and evalu-

ated under the distribution obtained by drawing 1000 within-subject, random permutations of

the observed data. Cluster-based tests against zero were run by contrasting each condition

with a surrogate distribution obtained by randomizing individual data points along the time

axis. Significance was set at p = 0.05. Topographical differences in the distribution of current

density were investigated using the Global Dissimilarity Index, which measures the configura-

tion of electric fields (and their linear transformations), normalized by their individual

strength [59].

Time-frequency analysis

To increase signal-to noise ratio, data were subject to a Principal Component Analysis, and the

first four components, accounting on average for 93% of variance, were retained for further

processing. Zero-padded (5 s), individual target epochs were submitted to a time-frequency

analysis at each electrode using a Morlet wavelet (7 cycles, [81]), for frequencies comprised

between 5 and 28 Hz, in steps of 0.25 Hz. Event-related power estimates of target position

effects at each frequency/time point were extracted from 500 ms pre-stimulus to 500 ms

post-stimulus (sliding window = 25 ms). Each time-frequency bin entered a Theil-Sen, non-

parametric regression analysis with Target position as predictor, obtaining time-frequency

regression coefficients (TFRCs), and time-frequency intercepts (TFIs). We obtained median

TFRC power estimates across all electrodes at Alpha (8–12 Hz), Beta 1 (14–19 Hz) and Beta 2

(20–25 Hz) rhythms, and calculated a Kendall-type [82] rank correlation between each TFRC

and response time slopes in order to determine which time-frequency band were relevant for

behavior. A permutation resampling approach (1000 repetitions) was used to test the signifi-

cance of rank correlation results.

To analyze the effect of prior information within each SOA level, we again resorted to a

cluster-based permutation approach of power estimates between 250 ms pre-stimulus and 500

ms post-stimulus, using paired T-tests (significance set at 0.05, minimal N electrodes per clus-

ter = 1, T-test cluster parameter = maxsize, 1000 permutations, cluster alpha set at 0.1; [57]).

All analyses were run using EEGLAB [75], FieldTrip [81], and custom Matlab scripts. The

datasets generated during and/or analyzed during the current study are available from the cor-

responding author on reasonable request for researchers who meet the criteria for access to

confidential data of the Max Planck Institute for Human Brain Sciences.

Supporting information

S1 Fig. Attention cycles, event-related intercepts (ERI) and N1-P3 event-related coeffi-

cients (ERRCs). We first used brain data to verify whether participants’ attentive searchlight

was effectively deployed on individual five-tone sequences during the experiment, as per our

assumption. If the fifth, non-target tone reliably indexed the end of each sequence, it would

generate a prediction error response relative to the preceding standard, resetting attention to

the next incoming sequence. Indeed, we found a significant prediction error response in all

conditions (all ts(1,25)� -2.69, all ps< 0.05), with non-target deviant N1 being more negative

than the standard N1 in the fourth position, with no significant difference among conditions

(all Fs(1,25)� 1.60, all ps� 0.21, S1A Fig). Thus, the fifth, non-target tone similarly favored in

all condition the extraction of individual five-tone sequences from the attended stream of

sounds. Event-related intercepts showed CNV, N1, N2b, and P3 deflections in all conditions

(all ps< 0.001, S1B Fig). However, prior information suppressed only the N2b component of

event-related intercepts in both slow and fast sequences (slow: cluster latency 220–332 ms,
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p = 0.01; fast: cluster latency 172–308 ms, p< 0.001; cluster overlap across SOA levels = 78%).

Similarly, short SOA suppressed activity for late components in the informed condition

(cluster latency > 312 ms, p< 0.01). This was further verified by calculating the correlation

between N1 and at P3 activity at each scalp electrode for either information condition. A per-

mutation resampling analysis showed that only in the informed condition did deviant N1

activity significantly predict P3 activity (p< 0.01; see S1C Fig, upper panel). This led to a sig-

nificant difference between informed and uninformed conditions (p< 0.001). To detect any

qualitative difference over and beyond the quantitative changes in the time domain, we mea-

sured the degree of dissimilarity between the scalp configurations of the cortical ERRC genera-

tors by means of a Topographical Analysis of Variance (TANOVA), which corrects for

differences in overall response magnitude at electrode level. We found a significant effect of

prior knowledge in two adjacent clusters roughly between 55 and 100 ms post-onset, corre-

sponding to the early deviant N1 deflection (S1C Fig, lower panel).
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76. Widmann A, Schröger E, Maess B. Digital filter design for electrophysiological data—a practical

approach. J Neurosci Methods 2015; 250: 34–46. https://doi.org/10.1016/j.jneumeth.2014.08.002

PMID: 25128257

77. Viola FC, Thorne J, Edmonds B, Schneider T, Eichele T, Debener S. Semi-automatic identification of

independent components representing EEG artefact. Clin Neurophysiol. 2009; 120: 868–877. https://

doi.org/10.1016/j.clinph.2009.01.015 PMID: 19345611

78. Onton J, Makeig S. Information-based modelling of event-related brain dynamics. Prog Brain Res.

2006; 159: 99–120. https://doi.org/10.1016/S0079-6123(06)59007-7 PMID: 17071226

79. Rahne T, von Specht H, Mühler R. Sorted averaging. Application to auditory event-related responses. J

Neurosci Methods 2008; 172: 74–78. https://doi.org/10.1016/j.jneumeth.2008.04.006 PMID: 18499265

80. Dien J, Frishkoff GA, Cerbone A, Tucker DM. Parametric analysis of event-related potentials in seman-

tic comprehension: evidence for parallel brain mechanisms. Brain Res Cogn Brain Res. 2003; 15: 137–

153. PMID: 12429366

81. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open Source Software for Advanced Analysis

of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci. 2011; Article ID 156869:

https://doi.org/10.1155/2011/156869 PMID: 21253357

82. Kendall M. A New Measure of Rank Correlation. Biometrika 1938; 30: 81–89.

Beta power reflects contextual temporal probabilities

PLOS ONE | https://doi.org/10.1371/journal.pone.0222420 September 26, 2019 19 / 19

https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1016/j.jneumeth.2014.08.002
http://www.ncbi.nlm.nih.gov/pubmed/25128257
https://doi.org/10.1016/j.clinph.2009.01.015
https://doi.org/10.1016/j.clinph.2009.01.015
http://www.ncbi.nlm.nih.gov/pubmed/19345611
https://doi.org/10.1016/S0079-6123(06)59007-7
http://www.ncbi.nlm.nih.gov/pubmed/17071226
https://doi.org/10.1016/j.jneumeth.2008.04.006
http://www.ncbi.nlm.nih.gov/pubmed/18499265
http://www.ncbi.nlm.nih.gov/pubmed/12429366
https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
https://doi.org/10.1371/journal.pone.0222420

