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Abstract We provide a mapping procedure to describe the radial profile evolution of energetic

particles (EPs) (interacting with Alfvén Eigenmodes (AEs)), by means of an equivalent beam-

plasma system (BPS). This technique is applied to reproduce an ITER relevant case, outlining

good agreements and relevant deviations from the pure diffusive quasi-linear (QL) evolution.

Beam-plasma interaction We adopt the Hamiltonian formulation and integration methods

of the BPS addressed in [1, 2] (and refs. therein). The background plasma is assumed as a 1D

cold linear dielectric medium (periodic slab of length L) supporting m longitudinal Langmuir

modes ϕ j(k j, t), with mode number k j, while the beam is taken tenuous having density nB much

smaller than the plasma one np (η ≡ nB/np� 1). The dynamical equations write as follows:

x̄′i = ui , u′i =
m

∑
j=1

(
i` j φ̄ j ei` j x̄i + c.c.

)
, φ̄

′
j =−iφ̄ j +

iη
2`2

jN

N

∑
i=1

e−i` j x̄i− γ̄d jφ̄ j . (1)

Beam particle positions (velocities) are labeled by xi (vi) (N being the total particle number)

and scaled as x̄i = xi(2π/L) (ui = x̄′i = vi(2π/L)/ωp). The plasma frequency is ωp and τ = tωp

(the prime indicates τ-derivative). Moreover ` j = k j(2π/L)−1, φ j = (2π/L)2eϕ j/meω2
p and

φ̄ j = φ je−iτ , while barred frequencies and growth rates are in ωp units. In particular, we include

in the dynamics an external damping rate γ̄d j for each mode. Linearly unstable modes satisfy

the resonance conditions ` jur j = 1 (ur denotes a resonant velocity) and we deal with a warm

beam initially distributed with a given FB0(u) in the velocity space. Linear drives γ̄D j are defined

by means of the dimensionless dispersion relation (here M =
∫

duFB0)

2(ω̄0 j + iγ̄D j−1)− η

` jM

∫ +∞

−∞

du
∂uFB0(u)

u` j− ω̄0 j− iγ̄D j
= 0 , (2)

where the dielectric is expanded near ω̄ ' 1 (according to the motion equations (1)) and we

use ω̄ = ω̄0 + iγ̄D. The effective mode growth rates are, thus, γ̄ j = γ̄D j− γ̄d j. We also note that

the non-linear spread ∆NL j of beam particle due to the resonant interaction with a single given

mode results proportional to the growth rate [3], i.e., ∆NL j ∝ γ̄ j/` j.
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Mapping procedure We now describe the technique to map the reduced radial profile of the

burning plasma scenario to the velocity space of the BPS. This corresponds to a one-to-one

link, once the EP/AE system is dimensionally reduced by using suitable averaged distribution

functions. The map should be defined for a single reference resonance (resulting in a linear

relation then extended to the multi-mode case) by preserving non-linear particle redistribution

(for an application to the nonlinear dynamics of EP driven geodesic acoustic modes, see [4]).

For a chosen reference resonance (dropping the j index), the map is derived using resonance

conditions ω̄AE(s)− ω̄AE(sr) ∝ `(u− ur), where ωAE is the AE frequency and the subscript r

indicates the resonance value of a quantity. Here, the normalized Tokamak radius reads s = r/a

(a is the minor radius), while, barred frequencies (growth rates and damping) are in ωA0 unities,

where ωA0 = vA0/R0 (vA0 is the Alfvén speed at the magnetic axis and R0 the major radius).

Furthermore, nAE will denote the toroidal mode number. We address a local map trough the

linear expansion ω̄AE(s) = ω̄AE(sr) + (s− sr)∂sω̄
AE : imposing boundary conditions s = 0 7→

u = umax and s = 1 7→ u = 0, the relation between velocity and radial profile finally writes

u = (1− s)/`1 , (3)

where `1 is an arbitrary parameter related to the periodicity length L of the BPS 1D slab.

The BPS can be properly simulated once the density parameter η is fixed in Eqs.(1) and it is

important to stress how the EP/AE system has an higher dimensionality (3D). In this respect, the

EP response is intrinsically different: in the BPS no modulation of power exchange is present,

dealing with only one class of resonant particles. Thus, the transport results more efficient for

equal drive. In order to qualitatively compare the non-linear redistribution of the two systems,

we impose that linear drives normalized to the mode frequencies are proportional, i.e., γ̄D/ω̄0 =

α γ̄AE
L /ω̄AE , with α 6 1 to reduce the drive in the BPS simulations. The η parameter is now

given integrating Eq.(2) with FB0(u)→ FH0(s) (assigned initial EP radial profile). This closes

the single mode mapping and the whole spectrum is addressed using resonance conditions:

` j = `1/(1− sr j). Finally, to preserve asymptotic mode decay, we set γ̄d j/ω̄0 j = γ̄AE
d j/ω̄AE

j .

We conclude by writing the mapped QL evolutive equations [5] for the EP profile fH(τ,s):

fH = FH0−π ¯N R∂s[(1− s)−5Ī ] , (4a)

∂τĪ =−ηR−1(1− s)2 Ī ∂sFH0 +πη(1− s)2 ¯N Ī ∂
2
s [(1− s)−5Ī ] , (4b)

where R=
∫

dsFH0, while the spectrum is Ī (τ,s)= `5
1|φ̄ |2/η (φ̄(τ,s) is the continuous spectrum

derived from the discrete one, specified by means of resonance conditions). We have defined

also the spectral density ¯N = m/∆` (with ∆`= Max[` j]−Min[` j] denotes the spectral width).
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Application to a realistic case We now apply the mapping technique above to the reduced

ITER 15MA beseline scenario in [6]. In particular, we run simulations for the BPS Eqs.(1)

mapped back to the normalized radial dimension. We deal with an initial EP slowing down

FH0(s), with the least damped 27 toroidal AEs (TAEs) (Fig.1, left panel): nAE ∈ [12,30] (main

branch) and nAE ∈ [5,12] (low branch, almost linearly stable). The reference resonance is set
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Figure 1: Left: initial EP profile FH0(s) (colored lines indicate the resonances: high-nAE branch in red, low-

branch in blue). Center: growth rates γ̄ j and γ̄AE
j , for α = 0.4. Right: Self-consistent evolution of the 27 modes

(bright colors) plotted over the correspondent single mode behaviors (opaque colors).

nAE = 21 and we consider α = 0.4 to obtain optimized EP profiles with respect to [6]. Thus, we

get η ' 0.07 and, by integrating Eq.(2) and setting the damping profile, we obtain the growth

rates in Fig.1, center panel, plotted with the corresponding γ̄AE
j for the TAEs. The growth rate

profile results reliable for the main branch (considering the scaling), while the discrepancy for

the low branch is due to the ω̄AE changes, not accounted in the BPS, i.e., ω̄0 j ∼ 1∀ j.
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Figure 2: Upper panels: EP profile (left) and its radial gradient (right) at different times. Lower panels: EP

redistribution (left) and its radial gradient (right) as evolved from QL model (4) for the same times.

In Fig.1, right panel, we compare 27 runs of single mode (opaque colors) to the multi mode

simulations (bright colors). As a result, the low-branch (blue) is more efficiently exited in the

multi mode dynamics, despite the negative drive. This feature is in perfect agreement with [6]

and it is due to an avalanche particle transport in the correspondent resonance radial portion.

Such a spectral behavior reflects on the EP profile fH(s) evolution, plotted in Fig.2, upper left
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panel, together with its radial gradient (upper right). Transport toward large s is clearly outlined,

in particular, a second peak (resonating with the low branch) is shifting toward s' 0.65.

We now compare the QL evolution, by integrating Eqs.(4) using the same initial FH0 and a

Gaussian profile for Ī (0,s) to model the discrete mode spectrum. The results are given in Fig.2,

lower panels: the avalanche and the related radial transport is absent, outlining, as in Ref.[6],

the convective evolutive character not reproducible with a pure diffusive QL model.
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Figure 3: Left: γ̄D(h) (blue) and γ̄(h) (yellow) for the additional 20 modes. Center: Self-consistent mode evolution.

Right: EP redistribution for the same times of Fig.2.

In the self-consistent analysis, since we are dealing a chosen fixed spectrum (Fig.2, upper

panels), EP transport results bounded due to the absence of further unstable modes. In fact, an

outer redistribution around s ' 0.85 is found in [6], and this discrepancy is due to the poloidal

harmonics spectrum filling a wide resonance region. To model this feature, we include 20

additional modes resonating in 0.55 6 s 6 0.95: each mode has a drive γ̄D(h) (h = 1, ..., 20)

from Eq.(2) and, to reproduce the morphology of the harmonic spectrum, we address damping

rates γ̄d(h) giving rise to Gaussian distribution for γ̄(h) = γ̄D(h)− γ̄d(h) (Fig.3, left panel). From

the simulation results, the spectral transfer clearly emerges (Fig.3, center panel): the additional

modes are progressively exited producing an increased avalanche transport toward large radial

positions (Fig.3, right panel).

Concluding remarks Nonetheless the agreement of the mapping procedure compared to [6]

is on a qualitative level, the merit of this analysis is to underline and confirm the effective

mechanism yielding non-pure diffusive transport: the presence of neighboring resonances in

the spectrum induces avalanche processes able to trigger EP transport toward the edge.
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