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Global kinetic computations of quasi-steady plasma parameters in 3D toroidal fusion devices

with help of test particle methods such as kinetic modelling of 3D plasma equilibria [1] or ki-

netic modelling of edge plasmas put specific requirements on guiding center orbit integration

methods. Namely, they should be computationally efficient, tolerant to statistical noise in the

electromagnetic field and efficient in scoring statistical data from the orbits. Geometric integra-

tors address these targets by releasing the requirement to the accuracy of guiding center orbits

while preserving physically correct long time orbit dynamics. Such a 3D integrator preserving

total energy, magnetic moment and phase space volume is presented here.

As a starting point, equations of guiding center motion in general curvilinear coordinates xi

are considered with invariants of motion w = mαv2/2+ eαΦ and J⊥ = mαv2
⊥/(2ωc) being to-

tal energy and perpendicular adiabatic invariant, respectively, used as independent phase space

variables,

ẋi =
v‖ε i jk

√
gB∗‖

∂A∗k
∂x j , A∗k = Ak +

v‖
ωc

Bk. (1)

Here, eα , mα , Ak, Bk, ωc, Φ and
√

g are α-species charge and mass, covariant components

of vector potential and magnetic field, electrostatic potential, cyclotron frequency and metric

determinant, respectively, and
√

gB∗‖ = ε i jk(Bi/B)∂A∗k/∂x j. The parallel velocity v‖ in (1) is

not an independent variable but a known function of coordinates,

v2
‖ = 2U, U =U(x) =

1
m
(w− J⊥ωc(x)− eαΦ(x)) . (2)

Treating now v‖ as an independent variable, i.e. replacing the first expression of (2) with the

differential equation v̇‖ = (ẋi∂U/∂xi)/v‖, the set (1) turns into

B∗‖
√

g ẋi =
dxi

dτ
= ε

i jk
(

v‖
∂Ak

∂x j +2U
∂

∂x j
Bk

ωc
+

Bk

ωc

∂U
∂x j

)
,

B∗‖
√

g v̇‖ =
dv‖
dτ

= ε
i jk ∂U

∂xi

(
∂Ak

∂x j + v‖
∂

∂x j
Bk

ωc

)
. (3)

Note that no invariant of motion has been completely replaced by v‖ in (3) because U , being a

function of coordinates, is still defined by the second expression of (2). Besides that, the time
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variable is replaced by an orbit parameter τ related to time by dt = B∗‖
√

gdτ . If needed, the time

evolution can be obtained implicitly from the integral t(τ) of the equation above.

The special form (3) allows to reduce computational effort and noise sensitivity by indepen-

dently approximating field quantities Ak, Bk/ωc, ωc and Φ by continuous piecewise linear func-

tions. This is achieved by splitting the space into tetrahedral cells. As a result, in each cell,

equations of motion (3) turn into a set of four linear ODEs with constant coefficients

dzi

dτ
= ai

lz
l +bi, (4)

where zi = xi for i = 1,2,3 and z4 = v‖. Since piecewise-constant coefficients of set (4) are

discontinuous at the cell boundaries, orbit intersections with tetrahedra faces must be com-

puted exactly when integrating particle trajectories. For this, equation set (4) is numerically

solved within each cell using the Runge-Kutta 4 method in an iterative scheme, where New-

ton’s method is used to obtain the integration step ∆τ required to reach the cell boundary.

In fact, a linear approximation of field quantities which locally breaks the physical connection

between them does not destroy the Hamiltonian nature of the original set (1). Indeed, despite the

approximation made, equation set (3) can still be cast to the non-canonical Hamiltonian form

dzi

dτ
= Λ

i j ∂H
∂ z j , Λ

i j(z) =
{

zi,z j}
τ
, (5)

where the Hamiltonian function is H(z) = v2
‖/2−U(x) and Λi j(z) is an antisymmetric Poisson

matrix. The latter is linked to Poisson brackets that are slightly re-defined from those in Ref. [3]

due to a different orbit parameter,

{ f ,g}
τ
= bi
∗

(
∂ f
∂xi

∂g
∂v‖
− ∂g

∂xi
∂ f
∂v‖

)
+ ε

i jk ∂g
∂xi

∂ f
∂x j

Bk

ωc
, bi

∗ = ε
i jk
(

∂Ak

∂x j + v‖
∂

∂x j
Bk

ωc

)
. (6)

To get set (3), one occurrence of v2
‖ is replaced by 2U(x). A geometric Poisson integrator with

conservative features of symplectic integrators follows since first of (2) is accurately preserved

during integration.

The iterative scheme converges after roughly two Newton steps, due to an analytic estimation

for the necessary initial step length using a parabolic solution of the simplified ODE set (4),

where ai
l = 0 for 1 ≤ i, j ≤ 3 and a4

4v‖(τ) = a4
4v‖,0. This initial guess in fact ignores terms

linear in Larmor radius. Furthermore, for similar reasons the error of the RK4 method can be

brought below computer accuracy, since the relative integration error of a single step between

cell boundaries strongly scales with the Larmor radius ρ and is of the order of

δR(∆τ)

a
∼ ρ3

q4R3 ∆ϕ
5, (7)

with R, a, q and ∆ϕ denoting major radius, plasma radius, safety factor and toroidal cell length.

By properly orienting the tetrahedra with respect to the symmetry direction, axisymmetry in
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case of 2D fields is exactly preserved upon linearization. Consequently, the canonical toroidal

angular momentum pϕ = mv‖Bϕ/B+Aϕe/c remains invariant. Fig. 1 depicts Poincaré plots of

107 toroidal turns for equivalent starting parameters in cylindrical and symmetry flux coordi-

nates, compared to an exact orbit for the full non-linearized 3D system. It can be seen that even

for the coarse grid in Fig. 1, leading to differences in orbits obtained in different coordinate

systems, the effect of the integration error (7) is negligible.
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Figure 1: (a) Poincaré plot with 107 toroidal turns of a 1.5 keV D ion in axisymmetric ASDEX Upgrade

configuration with a tetrahedral grid size of 20x20x20. 3D Geometric Integrator: red (cylindrical coordinates),

green (symmetry flux coordinates) - Exact orbit: blue. (b) and (c) are magnifications of the pertinent zones in (a).

In case of 3D magnetic fields the consequence of linearization of field quantities is that KAM

surfaces do not exist anymore. This is demonstrated in Fig. 2 where a small harmonic per-

turbation has been added in unperturbed flux coordinates (s,ϑ ,ϕ) to the axisymmetric vector

potential Aϕ = ψpol(s)(1+ εM cos(m0ϑ +n0ϕ)) with εM = 0.01, m0 = n0 = 2 leading to a vis-

ibly ergodic passing particle orbit at coarse grid resolution. This behaviour is diffusive and its

variance, computed in the normalized toroidal flux s for the ensemble of test particles starting

from the same perturbed flux surface, can be described by a field line diffusion coefficient Dss
M

as
〈
δ s2〉 = 2Dss

MN where N is the number of toroidal orbit turns. Nevertheless, due to a strong

inverse scaling of Dss
M with poloidal Nϑ and toroidal Nϕ grid sizes, which roughly agrees with

Dss
M =

2π2

3

(
ψpolεM

ψa
tor

)2 q4m2
0n2

0
(
m0Nϑ +n0Nϕ

)2

N2
ϑ

N2
ϕ

(
qNϕ −Nϑ

)2 (8)

estimated from the quasilinear theory (ψa is toroidal flux at the edge) this numerical diffusion

can be put below the level of classical electron diffusion using a mild grid refinement.
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Figure 2: (a) Poincaré plot with 77 000 toroidal turns of two low energy particles with negligible FLR effects in

ASDEX Upgrade configuration with typical non-axisymmetric 0.1 % relative helical perturbation of vector

potential Aϕ and different grid sizes. (b) Magnetic field line diffusion coefficient with respect to grid size of the

3D Geometric Integrator compared to quasilinear estimate.

When applied to a stellarator field in symmetry flux coordinates computed by the VMEC code

numerical diffusion in the solver is also effectively minimized by grid refinement because it

results only from the FLR effects which lead roughly to the same order of perturbations as in

weakly perturbed tokamaks, εM ∼ ρ/a.

Similar to the 2D geometric integrator of Ref. [2], the 3D geometric integrator is less sensitive

to noise in field data than methods relying upon high order polynomial interpolation and auto-

matically computes dwell times within spatial grid cells without extra effort. The later quantities

are required for statistical scoring of orbits in Monte Carlo computations of macroscopic pa-

rameters, such as plasma response currents and charges caused by external non-axisymmetric

perturbations in tokamaks or parameters of the edge plasma in devices with 3D field geometry.
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