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Abstract

We present a linear, second order fully discrete numerical scheme on a staggered grid for a
thermodynamically consistent hydrodynamic phase field model of binary compressible fluid flow
mixtures derived from the generalized Onsager Principle. The hydrodynamic model not only
possesses the variational structure, but also warrants the mass, linear momentum conservation
as well as energy dissipation. We first reformulate the model in an equivalent form using the
energy quadratization method and then discretize the reformulated model to obtain a semi-
discrete partial differential equation system using the Crank-Nicolson method in time. The
numerical scheme so derived preserves the mass conservation and energy dissipation law at the
semi-discrete level. Then, we discretize the semi-discrete PDE system on a staggered grid in
space to arrive at a fully discrete scheme using the 2nd order finite difference method, which
respects a discrete energy dissipation law. We prove the unique solvability of the linear system
resulting from the fully discrete scheme. Mesh refinements and two numerical examples on phase
separation due to the spinodal decomposition in two polymeric fluids and interface evolution in
the gas-liquid mixture are presented to show the convergence property and the usefulness of the
new scheme in applications.

1 Introduction

Material systems comprising of multi-components, some of which are compressible while others
are incompressible, are ubiquitous in nature and industrial applications. For example, in growing
tissues, cell proliferation makes the material volume changes so that it can not be described as
incompressible [20]. Another example of the mixture of compressible fluids is the binary fluid flows
of non-hydrocarbon (e.g. CO2) and hydrocarbons encountered in the enhanced oil recovery(EOR)
process. Since gas (e.g. CO2) injection offers considerable potential benefits to oil recovery and is
attracting the most new market interest since 1972, properties (viscosity, density et al.) of multi-
component compressible mixtures of nonhydrocarbon and hydrocarbons have been studied by a
number of investigators [11,26,35].
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Phase field methods have been used successfully to formulate models for fluid mixtures in many
applications ranging from life sciences [38, 39, 46, 61] (cell biology [22, 33, 38, 55, 62, 63], biofilms
[50–52], cell adhesion and motility [6,28,32–34,38], cell membrane [2,3,16,44,47], tumor growth [46]),
to materials science [5,7,13], fluid dynamics [29,30,43], image processing [4,25,59] et al. The most
widely studied phase field model for binary fluid mixtures is the one for fluid mixtures of two
incompressible fluids of identical densities [1, 21, 27]. While modeling binary fluid mixtures using
phase field models, one commonly uses a labeling or a phase variable (a volume fraction or a
mass fraction) φ to distinguish between distinct material phases. For instance φ = 1 indicates one
fluid phase while φ = 0 denotes another fluid phase in the immiscible, binary fluid mixture. For
immiscible mixtures, the interfacial region is described by 0 < φ < 1. A transport equation for
the volume fraction φ along with conservation equations of mass and momentum constitute the
governing system of equations for the binary incompressible fluid mixture.

In the compressible fluid flow, we use the mass density ρi or molar density ni in place of volume
fraction φi (i = 1, 2), to represent the distribution of each compressible component in the fluid
mixture. The material compressibility comes from two sources. One is the material compressibility
itself and the other is the mass-generating source. In general, the transport equation for the mass
density of each component is given by

∂ρi
∂t +∇ · (ρivi) = ji, i = 1, · · · , N, (1.1)

or

∂ni
∂t +∇ · (nivi) = ji, i = 1, · · · , N, (1.2)

where vi is the velocity of the ith component, ji is the mass source or molar source of the ith
component. The transport equations for the mass or molar densities along with the conservation
laws of mass and momentum constitute the governing equations of the hydrodynamic phase field
models of the compressible fluid mixtures.

Distinguishing properties of the compressible hydrodynamic phase field models include that the
density of each compressible material component is a variable, the mass average velocity of the
fluid flow is most likely not solenoidal, and the pressure is determined by the equation of state or
the free energy of the mixture system (at least in the isothermal case). In [30], Truskinovsky and
Lowengrub derived the Navier−Stokes−Cahn−Hilliard (NSCH) system for a binary mixture of two
incompressible fluid flows with unmatched densities in the fluid components, in which the mass
concentration of one fluid component in the binary fluid flow is used as the phase variable. They
termed the hydrodynamic phase field model quasi-incompressible. In [23,24], Sun et al. propose a
general diffuse interface model with a given equation of state (e.g. Peng-Robinson equation of state)
to describe the multi-component fluid flow based on the principles of the NVT-based framework.
In [58], we systematically derived a thermodynamically consistent hydrodynamic phase field model
for multi-component compressible fluid mixtures through a variational approach coupled with the
generalized Onsager Principle [49] and discussed various means to arrive at the quasi-incompressible
limit and the fully incompressible limit. In this paper, we develop an unconditionally energy stable
numerical algorithm to solve the thermodynamically consistent, hydrodynamic phase field model.

The hydrodynamic phase field model is nonlinear, exemplified in its free energy, mobility coeffi-
cients and in the advection in the transport equations. Higher order approximation, unconditional
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energy stability as well as computational efficiency are desired properties to attain in developing
its numerical approximation. To preserve the energy dissipation property, several time-marching
approaches have been developed in the past: convex splitting method [8, 10, 14, 15], stabilization
method [41,60], and energy quadratization (EQ, including SAV) approach [19,19,54,57].The convex
splitting method has been used to obtain a series of first order energy stable schemes for various
PDE models exhibiting energy dissipation properties. However, the convex-splitting scheme is usu-
ally nonlinear and therefore can be expensive to solve from time to time. On the other hand, even
though it is possible to construct a second order convex splitting scheme in some cases, it was usu-
ally done on a case by case basis and a general formulation is not yet available. The stabilization
method is another method for obtaining energy stable numerical approximations, which is equiv-
alent to a convex splitting method in some cases. By adding a linear, stablizing operator in the
order of the truncation error, one can obtain an energy stable algorithm. In general, a second order
stabilizing scheme can be derived, it preserves the discrete energy decay but not the dissipation
rate. The energy quadratization(EQ), also known as the invariant energy quadratization(IEQ),
method was proposed recently [48] and well developed in various gradient flows and hydrodynamic
phase field models [19,54,57]. By introducing intermediate variables, one can rewrite the nonlinear
free energy functional into a quadratic from, from which a linear second order or even higher order
numerical scheme can be constructed [17,53,56].

Recently, Sun et al. [23,24] used the convex splitting approach and the scalar auxiliary variable
method [42], which is developed based on the EQ strategy, to solve binary compressible hydrody-
namic phase field models, respectively. They obtained some first order semi-discrete schemes. In
this paper, we develop a linear, second order, fully discrete numerical scheme for the hydrodynamic
phase field model for binary fluid mixtures based on the energy quadratization strategy. We will
show that this scheme is unconditionally energy stable and the linear system resulting from the
second order numerical scheme is uniquely solvable. At each time step, the linear algebraic system
is solved within 3 iterations, with a linear pre-conditioner. Two examples on phase separation
dynamics in viscous polymeric blends and interface evolution in gas-liquid mixtures are presented
to show the usefulness of the new scheme in some practical applications.

The paper is organized as follows. In §2, we briefly recall the derivation of the compressible
hydrodynamic phase field model. Its non-dimensionalization is given in §3. In §4, we reformulate
the model using the energy quadratization method. The fully discrete numerical scheme, where
we use second order finite difference in space and ”linearized” Crank-Nicolson method in time, is
given in §5 where the unique solvability of the scheme and the property of energy dissipation are
proved as well. In §6, we show several numerical experiments that validate the accuracy, stability
and efficiency of the numerical scheme. We give concluding remarks in §7.

2 Thermodynamically Consistent Hydrodynamic Phase Field Mod-
els for Binary Compressible Viscous Fluid Flows

A general thermodynamically consistent hydrodynamic phase field model for fluid mixture of n
viscous fluid components has been derived in [58]. Here, we brief recall the basic ingredients in the
binary fluid model and discuss its energy dissipation property. We consider a fluid mixture flow
of two compressible viscous fluids with densities ρ1 and ρ2, respectively. The mass conservation
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equation for each fluid component is respectively given by

∂ρi
∂t

+∇ · (ρivi) = 0, i = 1, 2, (2.1)

where vi is the velocity of the ith fluid component, i = 1, 2. We define the total mass of the fluid
mixture as ρ = ρ1 + ρ2 and the mass average velocity as v = 1

ρ(ρ1v1 + ρ2v2). Then, the mass
conservation equation for the total mass density ρ is given by

∂ρ
∂t +∇ · (ρv) = 0. (2.2)

Using the mass average velocity, we rewrite the mass transport equation as follows

∂ρi
∂t +∇ · (ρiv) = ji = ∇ · Ji, i = 1, 2, (2.3)

where Ji = ρi(v − vi) is the excessive mass flux of fluid i = 1, 2, and j1 + j2 = 0 according to the
total mass conservation law. The linear momentum conservation law of the fluid mixture is given
by

∂(ρv)
∂t +∇ · (ρvv) = ∇ · σ + b (2.4)

from the momentum conservation for each fluid component, where b is the body force, σ is the
total stress tensor, σ = σs + σe, σs is the symmetric viscous stress tensor, and σe is the Ericksen
stress tensor. Both Ji, i = 1,2 and σs would be determined by constitutive relations later.

For the compressible fluid mixture, we assume the free energy of the system is given by

F =
∫
V f(ρ1, ρ2,∇ρ1,∇ρ2)dx, (2.5)

where f is the free energy density function and V is the domain in which the fluid mixture occupies.
The total energy of the fluid system is given by the sum of the kinetic energy and the free energy:

Etotal =
∫
V [1

2ρ||v||
2 + f ]dx. (2.6)

Considering the conservation laws of mass and linear momentum, we calculate the energy dis-
sipation rate as follows

dEtotal
dt =

∫
V [−σs : D + (b +∇ · σe + ρ1∇µ1 + ρ2∇µ2) · v + µ1j1 + µ2j2]dx

+
∫
∂V [(σs · v) · n− 1

2(ρv‖v‖2) · n + (−µ1ρ1v − µ2ρ2v + ∂f
∂(∇ρ1)

∂ρ1
∂t + ∂f

∂(∇ρ2)
∂ρ2
∂t ) · n]dS.

(2.7)

where D = 1
2(∇v +∇vT ) is the rate of strain tensor, n is the unit external normal of the domain

boundary ∂V , µ1 = ∂f
∂ρ1
−∇ · ∂f

∂∇ρ1 , µ2 = ∂f
∂ρ2
−∇ · ∂f

∂∇ρ2 are the chemical potentials with respect
to ρ1 and ρ2, respectively. We identify the Erickson stress by the equation

∇ · σe = −ρ1∇µ1 − ρ2∇µ2. (2.8)
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The energy dissipation rate reduces to

dEtotal
dt =

∫
V [b · v − σs : D + µ1j1 + µ2j2]dx +

∫
∂V [(σs · v) · n− 1

2(ρv‖v‖2) · n

+(−µ1ρ1v − µ2ρ2v + ∂f
∂(∇ρ1)

∂ρ1
∂t + ∂f

∂(∇ρ2)
∂ρ2
∂t ) · n]dS.

(2.9)

In the bulk integral, we propose the following constitutive relations following the generalized On-
sager principle

σs = 2ηD + ηtr(D)I,

ji = −
∑2

k=1∇ ·Mik · ∇µk,
(2.10)

where η, η̄ are the shear and volumetric viscosity respectively, and M = (Mik)2×2 ≥ 0 is the
symmetric mobility matrix. Since

∑2
i=1 ji = 0 according to the mass conservation law, this imposes

a constraint M · 1 = 0, where 1T = (1, 1). Examining the surface integral, we notice that if we
assume the following conditions

v|∂V = 0, n · ∇µi|∂V = 0, n · ∂f
∂(∇ρi) |∂V = 0, i = 1, 2. (2.11)

on the boundary, the surface integral vanishes in the energy dissipation function. So, at the absence
of the body force b = 0, the total energy dissipation rate reduces to

dEtotal
dt = −

∫
V [2ηD : D + ηtr(D)2 + (∇µ1,∇µ2) · M · (∇µ1,∇µ2)T ]dx ≤ 0, (2.12)

provided η, η ≥ 0,M≥ 0.

Remark 2.1. If we choose the boundary conditions as follows

v · n = 0, σs · n = −β(I− nn) · v, n · ∂f
∂(∇ρ1) = −γ1

∂ρ1
∂t , n · ∂f

∂(∇ρ2) = −γ2
∂ρ2
∂t , (2.13)

where β, γ1, γ2 ≥ 0, the energy dissipation rate is given by

dEtotal
dt = −

∫
V [2ηD : D + ηtr(D)2 + (∇µ1,∇µ2) · M · (∇µ1,∇µ2)T ]dx

−
∫
∂V [β(I− nn)‖v‖2 + γ1(∂ρ1∂t )2 + γ2(∂ρ2∂t )2]ds.

(2.14)

These boundary conditions allow fluid flows slip at the boundary and mass fluxes to move through
the boundary, which leads to additional energy dissipation due to energy dissipation at the surface.
We will not pursue these boundary conditions in this study, which worthy of a complete study of
its own.

We summarize the governing equations of the compressible binary fluid system in the hydrody-
namic phase field model as follows:

∂ρ1
∂t +∇ · (ρ1v) = ∇ ·M11 · ∇µ1 +∇ ·M12 · ∇µ2,
∂ρ2
∂t +∇ · (ρ2v) = ∇ ·M21 · ∇µ1 +∇ ·M22 · ∇µ2,
∂(ρv)
∂t +∇ · (ρvv) = 2∇ · (ηD) +∇(η∇ · v)− ρ1∇µ1 − ρ2∇µ2,

(2.15)

5



where
∑2

i,k=1∇·Mik ·∇µk = 0. One particular mobility matrix satisfying the constraint is consisted
of the entries M1 = M11 = −M12 = −M21 = M22. The governing equations reduce to

∂ρ1
∂t +∇ · (ρ1v) = ∇ ·M1 · ∇(µ1 − µ2),
∂ρ2
∂t +∇ · (ρ2v) = −∇ ·M1 · ∇(µ1 − µ2),
∂(ρv)
∂t +∇ · (ρvv) = 2∇ · (ηD) +∇(η∇ · v)− ρ1∇µ1 − ρ2∇µ2.

(2.16)

For the viscosity coefficients, we denote η1, η2 as the shear viscosities of the fluid component 1 and
2 respectively, and η1, η2 as the volumetric viscosities of the two components. η, η are chosen as
the mass average viscosities of the two components:

η =
1

ρ
[ρ1η1 + ρ2η2], η =

1

ρ
[ρ1η1 + ρ2η2]. (2.17)

In this study, we focus on the free energy density function f in the following form

f(ρ1, ρ2,∇ρ1,∇ρ2, T ) = h(ρ1, ρ2, T ) +
1

2
[κρ1ρ1(∇ρ1)2 + 2κρ1ρ2(∇ρ1,∇ρ2) + κρ2ρ2(∇ρ2)2]. (2.18)

where h(ρ1, ρ2, T ) is the homogeneous or the bulk free energy density function, T is the absolute
temperature, assumed a constant in this study, and κρiρj , i, j = 1, 2 are model parameters measuring
the strength of the conformational entropy (which are assumed constant in this study).

Sometimes, we have to use molar densities ni as the fundamental variables in the model i = 1, 2,
system (2.16) can be rewritten as follows

m1(∂n1
∂t +∇ · (n1v)) = ∇ ·M1 · ∇( 1

m1
µn1 − 1

m2
µn2),

m2(∂n2
∂t +∇ · (n2v)) = −∇ ·M1 · ∇( 1

m1
µn1 − 1

m2
µn2),

∂(ρv)
∂t +∇ · (ρvv) = 2∇ · (ηD) +∇(η∇ · v)− n1∇µn1 − n2∇µn2,

(2.19)

where ni = ρi
mi

, mi is the molar mass of the ith component and µni = δf
δni

= δf
δρi
mi, i = 1, 2. Corre-

spondingly, The shear and volumetric viscosities are given respectively by η =
∑2

i=1
nimi

n1m1+n2m2
ηi

and η =
∑2

i=1
nimi

n1m1+n2m2
ηi.

With molar densities ni, i = 1, 2 as the primitive variables, we rewrite free energy density f as
follows

f(n1m1, n2m2,m1∇n1,m2∇n2, T ) = h(m1n1,m2n2, T )

+1
2 [κn1n1(∇n1)2 + 2κn1n2(∇n1,∇n2) + κn2n2(∇n2)2].

(2.20)

Where κnini = m2
iκρiρi , i = 1, 2 and κn1n2 = m1m2κρ1ρ2 .

The free energy density function is specific to the fluid system studied.

• For polymeric binary fluid mixtures while approximated as a viscous fluid, the Flory-Huggins
type free energy density function can be used to describe fluid mixing [12,30]

h(ρ1, ρ2, T ) = kBT
m ρ( 1

N1

ρ1
ρ ln

ρ1
ρ + 1

N2

ρ2
ρ ln

ρ2
ρ + χρ1ρ2

ρ2
), (2.21)

Where kB is the Boltzmann constant, T is the absolute temperature and m the average mass
of a molecule.
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• For compressible gas-liquid mixtures, the semi-empirical Peng-Robinson free energy density
is often used [23],

h(n1, n2, · · · , nN , n, T ) = f ideal + f repulsion + fattraction, (2.22)

where

f ideal = RT
∑

i=1 ni(ln(ni)− 1),

f repulsion = −nRTln(1− bn),

fattraction = a(T )n

2
√

2b
ln
(1+(1−

√
2)bn

1+(1+
√

2)bn

)
.

(2.23)

Here n =
∑N

i=1 ni is the total molar density. The corresponding chemical potential of the ith
component is given by

µni = ∂h
∂ni
−∇ · ∂h

∂∇ni = RT
(
ln(ni) + bin

1−bn − ln(1− bn)
)

+ abin
b((
√

2−1)bn−1)(1+(1+
√

2)bn)

+ 1
2
√

2
(

2
∑M
j=1 nj(aiaj)

1/2(1−kij)
bn − abi

b2
)ln(1+(1−

√
2)bn

1+(1+
√

2)bn
)− κnini∆ni − κninj∆nj , j 6= i,

(2.24)

where b(n1, n2) is the volume parameter and a(n1, n2, T ) is the interaction parameter. This
free energy was proposed to improve that of the Van der Waals’ to mitigate the deviation
away from the ideal gas model.

3 Non-dimensionalization

For system (2.16), using characteristic time t0, characteristic length l0, and characteristic density
ρ0, we nondimensionalize the physical variables and parameters as follows

t̃ = t
t0
, x̃ = x

l0
, ρ̃i = ρi

ρ0
, i = 1, 2, ṽ = vt0

l0
, M̃1 = M1

t0ρ0
, 1

Res
= η̃ = t0

ρ0l20
η,

1
Rev

= η̃ = t0
ρ0l20

η, µ̃i =
t20
l20
µi, i = 1, 2, κ̃ρiρj = κρiρj

ρ0t20
l40
, i, j = 1, 2,

(3.1)

where Res, Rev are the Reynolds numbers. We rewrite the dimensionless governing equations, after
dropping the s̃ for simplicity, as follows

∂ρ1
∂t +∇ · (ρ1v) = ∇ ·M1 · ∇(µ1 − µ2),
∂ρ2
∂t +∇ · (ρ2v) = −∇ ·M1 · ∇(µ1 − µ2),
∂(ρv)
∂t +∇ · (ρvv) = 2∇ · ( 1

Res
D) +∇( 1

Rev
∇ · v)− ρ1∇µ1 − ρ2∇µ2.

(3.2)

where

µ1 =
∂h

∂ρ1
− κρ1ρ1∆ρ1 − κρ1ρ2∆ρ2, µ2 =

∂h

∂ρ2
− κρ1ρ2∆ρ1 − κρ2ρ2∆ρ2. (3.3)
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Similarly, for system (2.19) with molar density as fundamental variables, using characteristic
molar density n0 (mol ·m−d), characteristic mass density ρ0 = n0m2(kg ·m−d, d = 3) and char-
acteristic temperature T0 (Kelvin), we nondimensionalize the physical variables and parameters as
follows

t̃ = t
t0
, x̃ = x

l0
, ρ̃ = ρ

ρ0
, ñ = n

n0
, T̃ = T

T0
, 1

Res
= η̃ = t0

ρ0l20
η, m̃1 = m1n0

ρ0
, m̃2 = m2n0

ρ0
,

1
Rev

= η̃ = t0
ρ0l20

η, µ̃ni =
n0t20
ρ0l20

µni, i = 1, 2, M̃1 = M1
t0ρ0

, ˜κninj = κninj
n2
0t

2
0

ρ0l40
, i, j = 1, 2.

(3.4)

Dropping s̃ for simplicity, we rewrite the dimensionless governing equations as follows
m1(∂n1

∂t +∇ · (n1v)) = ∇ ·M1 · ∇( 1
m1
µn1 − µn2),

(∂n2
∂t +∇ · (n2v)) = −∇ ·M1 · ∇( 1

m1
µn1 − µn2),

∂(ρv)
∂t +∇ · (ρvv) = 2∇ · (ηD) +∇(η∇ · v)− n1∇µn1 − n2∇µn2.

(3.5)

where we set m̃2 = m2n0
ρ0

= 1, i.e. m1 is the ratio of the specific masses, a dimensionless model
parameter. The dimensionless chemical potentials are given by

µn1 =
∂h

∂n1
− κn1n1∆n1 − κn1n2∆n2, µn2 =

∂h

∂n2
− κn1n2∆n1 − κn2n2∆n2. (3.6)

In the following, we focus on developing an energy stable numerical scheme for system (3.2) on
staggered grids. An energy stable numerical scheme for system (3.5) can be obtained analogously.
First, we reformulate the equation system using the energy quadratization strategy.

4 Reformulation of the Model using Energy Quadratization

In order to use the Energy Quadratization (EQ) method to design numerical schemes, we need
to reformulate the model equations. We first transform the energy of the system into a quadratic
form

Etotal =
∫
V [1

2ρv
Tv + f ]dx =

∫
V [1

2uTu + q2
1 + 1

2pT ·K · p−A]dx. (4.1)

where u =
√
ρv, q1 =

√
h(ρ1, ρ2, T ) +A and A is a constant such that h(ρ1, ρ2, T ) + A > 0. We

note that we can always find a constant A if the bulk free energy density function is bounded below.
In addition, p = (∇ρ1,∇ρ2)T and K is the coefficient matrix of the conformational entropy

K =

 κρ1ρ1 κρ1ρ2

κρ1ρ2 κρ2ρ2

 > 0. (4.2)

Using identity

∂(
√
ρu)
∂t = 1

2
√
ρ
∂ρ
∂tu +

√
ρ∂u∂t = − 1

2
√
ρ∇ · (

√
ρu)u +

√
ρ∂u∂t , (4.3)
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we rewrite the governing equations into

∂ρ1
∂t +∇ · ( ρ1√ρu) = ∇ ·M1 · ∇(µ1 − µ2),
∂ρ2
∂t +∇ · ( ρ2√ρu) = −∇ ·M1 · ∇(µ1 − µ2),
∂u
∂t + 1

2( 1√
ρ∇ · (uu) + u · ∇ u√

ρ) = 1√
ρ∇ · σ,

∂q1
∂t = ∂q1

∂ρ1
∂ρ1
∂t + ∂q1

∂ρ2
∂ρ2
∂t ,

(4.4)

where

σ = σs + σe, σs = 2 1
Res

D + 1
Rev

(∇ · u√
ρ)I,

σe = (f − ρ1µ1 − ρ2µ2)I− ∂f
∂∇ρ1∇ρ1 − ∂f

∂∇ρ2∇ρ2,

∇ · σ = ∇ · (σs + σe) = 2∇ · ( 1
Res

D) +∇( 1
Rev
∇ · u√

ρ)− ρ1∇µ1 − ρ2∇µ2,

µ1 = δf
δρ1

= ∂f
∂ρ1
−∇ · ∂f

∂∇ρ1 = 2q1
∂q1
∂ρ1
− κρ1ρ1∆ρ1 − κρ1ρ2∆ρ2,

µ2 = δf
δρ2

= ∂f
∂ρ2
−∇ · ∂f

∂∇ρ2 = 2q1
∂q1
∂ρ2
− κρ2ρ2∆ρ2 − κρ1ρ2∆ρ1,

D = 1
2(∇ u√

ρ + (∇ u√
ρ)T ), 1

Res
= ρ1

ρ
1

Res1
+ ρ2

ρ
1

Res2
, 1

Rev
= ρ1

ρ
1

Rev1
+ ρ2

ρ
1

Rev2
.

(4.5)

Remark 4.1. We define the inner product of two functions f and g as follows:

(f, g) =

∫
V
fgdx. (4.6)

Theorem 4.1. System (4.4) is dissipative, and the corresponding energy dissipation rate is given by

∂E
∂t = −2( 1

Res
,D : D)− ( 1

Rev
∇ · u√

ρ ,∇ ·
u√
ρ)− (∇µ1,∇µ2) · M · (∇µ1,∇µ2)T ≤ 0, (4.7)

where Res, Rev ≥ 0,M =

 M1 −M1

−M1 M1

 ≥ 0.

Proof: By the definition of E, we have

∂E
∂t =

∫
V

[
uT ∂u∂t + 2q1

∂q1
∂t + (∇ρ1,∇ρ2) ·K · (∇∂ρ1

∂t ,∇
∂ρ2
∂t )T

]
dx. (4.8)

Taking the inner product of (4.4-3) with u and using integration by parts, we obtain

(u, ∂u∂t ) = −2( 1
Res

,D : D)− ( 1
Rev
∇ · u√

ρ ,∇ ·
u√
ρ)− (u, ρ1

1√
ρ∇µ1 + ρ2

1√
ρ∇µ2). (4.9)

Taking the inner product of (4.4-4) with 2q1, using the identities of µi, i= 1,2, and performing
integration by parts, we obtain

(2q1,
∂q1
∂t ) = −(∇µ1,∇µ2) · M · (∇µ1,∇µ2)T + ( ρ1√ρu,∇µ1) + ( ρ2√ρu,∇µ2)

−(∇ρ1,∇ρ2) ·K · (∇∂ρ1
∂t ,∇

∂ρ2
∂t )T .

(4.10)
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Figure 5.1: Staggered grid in 2D space.

Combining (4.9) and (4.10), we obtain

∂E
∂t = −2( 1

Res
,D : D)− ( 1

Rev
∇ · u√

ρ ,∇ ·
u√
ρ)− (∇µ1,∇µ2) · M · (∇µ1,∇µ2)T ≤ 0 (4.11)

provided M≥ 0.
We next design a second order energy stable numerical scheme based on the reformulated

governing system of equations.

5 Linear, Second Order Energy Stable Numerical Scheme

5.1 Notations and Useful Lemmas

We first introduce some notations, finite difference operators and useful lemmas. Here, we follow
the notations in [9,40,45]. Let Ω = [0, Lx]×[0, Ly] be the computational domain with Lx = hx×Nx,
Ly = hy ×Ny, where Nx, Ny are positive integers, and hx, hy are spatial step sizes in the x and y
direction, respectively. We define three sets for the grid points as follows

Ex := {xi+1/2 = i · h | i = 0, 1, · · · , Nx},

Cx := {xi = (i− 1
2) · h | i = 1, · · · , Nx},

Cx := {xi = (i− 1
2) · h | i = 0, 1, · · · , Nx, Nx + 1},

(5.1)

where Ex is a uniform partition of [0, Lx] of size Nx in the x-direction and its elements are called
edge-centered points. The elements of Cx and Cx are called cell-centered points. The two points
belonging to Cx\Cx are called ghost points. Analogously, we define Ey as the uniform partition
of [0, Ly] of size Ny, called edge-centered points in the y-direction, and Cy, Cy the cell-centered
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points of the interval [0, Ly]. In Figure 5.1, we show the staggered grid in 2D space. In this paper,
we discretize the variables with the Neumann boundary conditions at the cell-center and the ones
with the Dirichlet boundary conditions at the edge-center. We define the corresponding discrete
function space on this staggered grid as follows

Cx×y := {φ : Cx × Cy → R}, Cx×y := {φ : Cx × Cy → R}, Cx×y := {φ : Cx × Cy → R},

Cx×y := {φ : Cx × Cy → R}, Eewx×y := {φ : Ex × Cy → R}, Eewx×y := {φ : Ex × Cy → R},

Ensx×y := {φ : Cx × Ey → R}, Ensx×y := {φ : Cx × Ey → R}, Vx×y := {φ : Ex × Ey → R}.

(5.2)

Cx×y, Cx×y, Cx×y and Cx×y are the sets for discrete cell-centered functions, and Eewx×y, Ensx×y east-west
and north-south edge-centered functions, respectively.

5.1.1 Average and Difference Operators

Assume u, r ∈ Eewx×y ∪ Eewx×y, v, w ∈ Ensx×y ∪ Ensx×y, φ, ψ ∈ Cx×y ∪ Cx×y ∪ Cx×y ∪ Cx×y and f ∈ Vx×y,
we define the east-west-edge-to-center average and difference operator as ax, dx : Eewx×y ∪ Vx×y →
Cx×y ∪ Ensx×y component-wise as follows

axui,j := 1
2(ui+ 1

2
,j + ui− 1

2
,j), dxui,j := 1

hx
(ui+ 1

2
,j − ui− 1

2
,j),

axfi,j+ 1
2

:= 1
2(fi+ 1

2
,j+ 1

2
+ fi− 1

2
,j+ 1

2
), dxfi,j+ 1

2
:= 1

hx
(fi+ 1

2
,j+ 1

2
− fi− 1

2
,j+ 1

2
).

(5.3)

The north-south-edge-to-center average and difference operators are defined as ay, dy : Ensx×y ∪
Vx×y → Cx×y ∪ Eewx×y component-wise as follows

ayvi,j := 1
2(vi,j+ 1

2
+ vi,j− 1

2
), dyvi,j := 1

hy
(vi,j+ 1

2
− vi,j− 1

2
),

ayfi+ 1
2
,j := 1

2(fi+ 1
2
,j+ 1

2
+ fi+ 1

2
,j− 1

2
), dyfi+ 1

2
,j := 1

hy
(fi+ 1

2
,j+ 1

2
− fi+ 1

2
,j− 1

2
).

(5.4)

We denote the center-to-east-west-edge average and difference operators as Ax, Dx : Cx×y ∪Ensx×y →
Eewx×y ∪ Vx×y in component-wise forms:

Axφi+ 1
2
,j := 1

2(φi+1,j + φi,j), Dxφi+ 1
2
,j := 1

hx
(φi+1,j − φi,j),

Axvi+ 1
2
,j+ 1

2
:= 1

2(vi+1,j+ 1
2

+ vi,j+ 1
2
), Dxvi+ 1

2
,j+ 1

2
:= 1

hx
(vi+1,j+ 1

2
− vi,j+ 1

2
).

(5.5)

Analogously, the center-to-north-south-edge average and difference operator are defined as Ay, Dy :
Cx×y ∪ Eewx×y → Ensx×y ∪ Vx×y in component-wise forms:

Ayφi,j+ 1
2

:= 1
2(φi,j+1 + φi,j), Dyφi,j+ 1

2
:= 1

hy
(φi,j+1 − φi,j),

Ayui+ 1
2
,j+ 1

2
:= 1

2(ui+ 1
2
,j+1 + ui+ 1

2
,j), Dyui+ 1

2
,j+ 1

2
:= 1

hy
(ui+ 1

2
,j+1 − ui+ 1

2
,j).

(5.6)

The standard 2D discrete Laplacian operator is defined as ∆h : Eewx×y ∪Ensx×y ∪Cx×y → Eewx×y ∪Ensx×y ∪
Cx×y:

∆hu := Dx(dxu) + dy(Dyu), ∆hv := dx(Dxv) +Dy(dyv), ∆hφ := dx(Dxφ) + dy(Dyφ). (5.7)
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5.1.2 Boundary Conditions

The homogenous Neumann boundary conditions are discretized as follows

φ0,j = φ1,j , φNx,j = φNx+1,j , j = 0, 1, 2, · · · , Ny + 1,

φi,0 = φi,1, φi,Ny = φi,Ny+1, i = 0, 1, 2, · · · , Nx + 1.
(5.8)

We denote it as n · ∇hφ|∂V = 0.
The homogeneously Dirichlet boundary conditions are discretized as follows

u 1
2
,j = uNx+ 1

2
,j = 0, j = 1, 2, · · · , Ny,

Ayui+ 1
2
, 1
2

= Ayui+ 1
2
,Ny+ 1

2
= 0, i = 0, 1, 2, · · · , Nx,

vi, 1
2

= vi,Ny+ 1
2

= 0, j = 1, 2, · · · , Nx,

Axv 1
2
,j+ 1

2
= AxvNx+ 1

2
,j+ 1

2
= 0, j = 0, 1, 2, · · · , Ny,

(5.9)

We denote it as uh|∂V = 0 and vh|∂V = 0.
If f ∈ Vx×y satisfies homogenous Dirichelet boundary condition, we have

f 1
2
,j+ 1

2
= fNx+ 1

2
,j+ 1

2
= fi+ 1

2
, 1
2

= fi+ 1
2
,Ny+ 1

2
= 0. (5.10)

where i = 0, 1, 2, · · · , Nx, j = 0, 1, 2, · · · , Ny. We denote is as fh|∂V = 0.

5.1.3 Inner products and norms

We defined the following inner products for discrete functions

(φ, ψ)2 := hxhy
∑Nx

i=1

∑Ny
j=1 φi,jψi,j , [u, r]ew := (ax(ur), 1)2, [v, w]ns := (ay(uw), 1)2,

(f, g)vc := (ax(ay(fg)), 1)2, (∇φ,∇ψ)h := [Dx(φ), Dx(ψ)]ew + [Dy(φ), Dy(ψ)]ns,
(5.11)

The corresponding norms are defined as follows

‖φ‖2 := (φ, φ)
1
2
2 , ‖u‖ew := [u, u]

1
2
ew, ‖v‖ns := [v, v]

1
2
ns, ‖f‖vc := (f, f)

1
2
vc. (5.12)

For φ = Cx×y, we define ‖∇φ‖2 as

‖∇φ‖2 :=
√
‖Dxφ‖2ew + ‖Dyφ‖2ns, (5.13)

For the edge-centered velocity vector v = (u, v), u ∈ Eewx×y, v ∈ Ensx×y, we define ‖v‖2, ‖∇v‖2 as

‖v‖2 :=
√
‖u‖2ew + ‖v‖2ns, ‖∇v‖2 :=

√
‖dxu‖22 + ‖Dyu‖2vc + ‖Dxv‖2vc + ‖dyv‖22,

‖D‖2 :=
√
‖dxu‖22 + 1

2‖Dyu‖2vc + 1
2‖Dxv‖2vc + (Dyu,Dxv)vc + ‖dyv‖22,

(φ,D : D)2 :=√
(φ, (dxu)2)2 + 1

2(Ax(Ayφ), (Dyu)2)vc + 1
2(Ax(Ayφ), (Dxv)2)vc + (Ax(Ayφ)Dyu,Dxv)vc + (φ, (dyv)2)2.

(5.14)

Where D = 1
2(∇v +∇vT ). From these definitions, we obtain the following lemmas [18]:
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Lemma 5.1. (Summation by parts): If φ ∈ Cx×y, u ∈ Eewx×y, v ∈ Ensx×y, and uh|∂V = 0 and vh|∂V = 0,
then

[Axφ, u]ew = (φ, axu)2, [Ayφ, v]ns = (φ, ayv)2,

[Dxφ, u]ew + (φ, dxu)2 = 0, [Dyφ, v]ns + (φ, dyv)2 = 0,
(5.15)

Lemma 5.2. If f ∈ Vx×y, and fh|∂V = 0, u ∈ Eewx×y, v ∈ Ensx×y, then

[ayf, u]ew = (f,Ayu)vc, [axf, v]ns = (f,Axv)vc. (5.16)

Lemma 5.3. If f ∈ Vx×y, u ∈ Eewx×y, v ∈ Ensx×y, and uh|∂V = 0 and vh|∂V = 0, then

[dyf, u]ew + (f,Dyu)vc = 0, [dxf, v]ns + (f,Dxv)vc = 0. (5.17)

With these notations and lemmas, we are ready to introduce the fully-discrete numerical scheme
in the following section.

5.2 Semi-discrete scheme in time

First, we discretize the governing equations using Crank-Nicolson method in time. We denote

δt(·)n+1/2 = 1
∆t((·)

n+1 − (·)n), (·)n+1/2
= 1

2(3(·)n − (·)n−1). (5.18)

The second order algorithm is given below.

Algorithm 1.

δtρ
n+1/2
1 +∇ · (ρn+1/2

1
1√
ρ

n+1/2
un+1/2) = ∇ ·M1 · ∇µn+1/2

1 −∇ ·M1 · ∇µn+1/2
2 ,

δtρ
n+1/2
2 +∇ · (ρn+1/2

2
1√
ρ

n+1/2
un+1/2) = −∇ ·M1 · ∇µn+1/2

1 +∇ ·M1 · ∇µn+1/2
2 ,

δtu
n+1/2 + 1

2( 1√
ρ

n+1/2
∇ · (un+1/2un+1/2) + un+1/2 · ∇( 1√

ρ

n+1/2
un+1/2)) =

1√
ρ

n+1/2
(2∇ · ( 1

Res
Dn+1/2) +∇( 1

Rev
∇ · ( 1√

ρ

n+1/2
un+1/2))− ρ1

n+1/2∇µn+1/2
1 − ρ2

n+1/2∇µ2
n+1/2),

δtq
n+1/2
1 = ∂q1

∂ρ1

n+1/2
δtρ

n+1/2
1 + ∂q1

∂ρ2

n+1/2
δtρ

n+1/2
2 ,

(5.19)

where

µ
n+1/2
1 = 2q

n+1/2
1

∂q1
∂ρ1

n+1/2
− κρ1ρ1∆ρ

n+1/2
1 − κρ1ρ2∆ρ

n+1/2
2 ,

µ
n+1/2
2 = 2q

n+1/2
1

∂q1
∂ρ2

n+1/2
− κρ1ρ2∆ρ

n+1/2
1 − κρ2ρ2∆ρ

n+1/2
2 ,

Dn+1/2 = 1
2(∇( 1√

ρ

n+1/2
un+1/2) +∇( 1√

ρ

n+1/2
un+1/2)T ),

1
Res

= ρ1
ρ

n+1/2 1
Res1

+ ρ2
ρ

n+1/2 1
Res2

, 1
Rev

= ρ1
ρ

n+1/2 1
Rev1

+ ρ2
ρ

n+1/2 1
Rev2

.

(5.20)

For the scheme, we have the following theorem.
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Theorem 5.1. Scheme (5.19) is unconditional energy stable, and satisfies the following discrete
energy identity

En+1−En
∆t = −2( 1

Res
,Dn+1/2 : Dn+1/2)− ( 1

Rev
∇ · ( 1√

ρ

n+1/2
un+1/2),∇ · ( 1√

ρ

n+1/2
un+1/2))

−(∇µn+1/2
1 ,∇µn+1/2

2 ) · M · (∇µn+1/2
1 ,∇µn+1/2

2 )T < 0,
(5.21)

Where

En =
∫
V [1

2 ||u
n||2 + (qn1 )2 + 1

2(pn)T ·Kn · pn −A]dx. (5.22)

and pn = (∇ρn1 ,∇ρn2 ).

Remark 5.1. We note that a useful identity in the proof of the theorem.

(un+1/2, 1
2( 1√

ρ

n+1/2
∇ · (un+1/2un+1/2) + un+1/2 · ∇( 1√

ρ

n+1/2
un+1/2))) = 0. (5.23)

Proof: By the definition of En, we have

En+1−En
∆t =

∫
V un+1/2δtu

n+1/2 + 2q
n+1/2
1 δtq

n+1/2
1 + κρ1ρ1∇ρn+1/2δt∇ρn+1/2

1

+κρ2ρ2∇ρ
n+1/2
2 δt∇ρn+1/2

2 + κρ1ρ2 [∇ρn+1/2
1 δt∇ρn+1/2

2 +∇ρn+1/2
2 δt∇ρn+1/2

1 ]dx,
(5.24)

Taking the inner product of (5.19)-3 with un+1/2, using identity (5.23), and performing integration
by parts, we obtain

(un+1/2, δtu
n+1/2) = −2( 1

Res
Dn+1/2 : Dn+1/2)− ( 1

Rev
∇ · ( 1√

ρ

n+1/2
un+1/2),∇ · ( 1√

ρ

n+1/2
un+1/2))

−(un+1/2, 1√
ρ

n+1/2
ρ1
n+1/2∇µn+1/2

1 + 1√
ρ

n+1/2
ρ2
n+1/2∇µ2

n+1/2)).
(5.25)

Taking the inner product of (5.19-4) with 2q
n+ 1

2
1 , using (5.19-1,2), and performing integration by

parts, we obtain

2(q
n+1/2
1 , δtq

n+1/2
1 ) = ( 1√

ρ

n+1/2
ρ
n+1/2
1 ,∇µ1

n+1/2) + (ρ2
n+1/2 1√

ρ

n+1/2
,∇µ2

n+1/2)

−κρ1ρ1∇ρ
n+1/2
1 δt∇ρn+1/2

1 − κρ2ρ2∇ρ
n+1/2
2 δt∇ρn+1/2

2 − κρ1ρ2 [∇ρn+1/2
1 δt∇ρn+1/2

2

+∇ρn+1/2
2 δt∇ρn+1/2

1 ]− (∇µn+1/2
1 ,∇µn+1/2

2 ) · M · (∇µn+1/2
1 ,∇µn+1/2

2 )T .

(5.26)

Utilizing (5.24), (5.25) and (5.26), we arrive at the conclusion

En+1−En
∆t = −2( 1

Res
Dn+1/2 : Dn+1/2)− ( 1

Rev
∇ · ( 1√

ρ

n+1/2
un+1/2),∇ · ( 1√

ρ

n+1/2
un+1/2))

−(∇µn+1/2
1 ,∇µn+1/2

2 ) · M · (∇µn+1/2
1 ,∇µn+1/2

2 )T ≤ 0
(5.27)

provided M≥ 0.
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5.3 Fully Discrete Numerical Scheme

We discretize the semidiscrete equations in (5.19) using the second order finite difference dis-
cretization on staggered grids in space to obtain a fully discrete scheme as follows

Algorithm 2.

{
δtρ

n+1/2
1 + dx(Ax(ρ

n+1/2
1

1√
ρ

n+1/2
)un+1/2) + dy(Ay(ρ

n+1/2
1

1√
ρ

n+1/2
)vn+1/2) =

M1∆hµ
n+1/2
1 −M1∆hµ

n+1/2
2

}
|i,j , i = 1, · · · , Nx, j = 1, · · · , Ny,

{
δtρ

n+1/2
2 + dx(Ax(ρ

n+1/2
2

1√
ρ

n+1/2
)un+1/2) + dy(Ay(ρ

n+1/2
2

1√
ρ

n+1/2
)vn+1/2) =

−M1∆hµ
n+1/2
1 +M1∆hµ

n+1/2
2

}
|i,j , i = 1, · · · , Nx, j = 1, · · · , Ny,

{
δtu

n+1/2 + 1
2(un+1/2Dx( 1√

ρ

n+1/2
axu

n+1/2) +Ax( 1√
ρ

n+1/2
dx(un+1/2un+1/2)))

+1
2(ax(Axv

n+1/2Dy(Ax( 1√
ρ

n+1/2
)un+1/2)) +Ax( 1√

ρ

n+1/2
)dy(Ayu

n+1/2Ax(vn+1/2))

= gv1

}
|i+ 1

2
,j , i = 1, · · · , Nx − 1, j = 1, · · · , Ny,

{
δtv

n+1/2 + 1
2(ax(Ayu

n+1/2Dx(Ay(
1√
ρ

n+1/2
)vn+1/2)) +Ay(

1√
ρ

n+1/2
)dx(Ayu

n+1/2Axv
n+1/2))

+1
2(vn+1/2Dy(

1√
ρ

n+1/2
ayv

n+1/2) +Ay(
1√
ρ

n+1/2
dy(v

n+1/2vn+1/2)))

= gv2

}
|i,j+ 1

2
, i = 1, · · · , Nx, j = 1, · · · , Ny − 1,

{
δtq

n+1/2
1 = ∂q1

∂ρ1

n+1/2
δtρ

n+1/2
1 + ∂q1

∂ρ2

n+1/2
δtρ

n+1/2
2

}
|i,j , i = 1, · · · , Nx, j = 1, · · · , Ny,

(5.28)

where

gv1 = Ax( 1√
ρ

n+1/2
)(2Dx( 1

Re
n+1/2
s

dx(Ax( 1√
ρ

n+1/2
)un+1/2)) + dy(Ax(Ay

1

Re
n+1/2
s

)Dy(Ax( 1√
ρ

n+1/2
)un+1/2)))

+Ax( 1√
ρ

n+1/2
)dy(Ax(Ay

1

Re
n+1/2
s

)Dx(Ay(
1√
ρ

n+1/2
)vn+1/2))

+Ax( 1√
ρ

n+1/2
)Dx( 1

Re
n+1/2
v

dx(Ax( 1√
ρ

n+1/2
)un+1/2)) +Ax( 1√

ρ

n+1/2
)Dx( 1

Re
n+1/2
v

dy(Ay(
1√
ρ

n+1/2
)vn+1/2))

−Ax(ρ1
n+1/2 1√

ρ

n+1/2
)Dx(µ

n+1/2
1 )−Ax(ρ2

n+1/2 1√
ρ

n+1/2
)Dx(µ

n+1/2
2 ),

(5.29)

gv2 = Ay(
1√
ρ

n+1/2
)(dx(Ax(Ay

1

Re
n+1/2
s

)Dx(Ay(
1√
ρ

n+1/2
)vn+1/2)) + 2Dy(

1

Re
n+1/2
s

dy(Ay(
1√
ρ

n+1/2
)vn+1/2)))

+Ay(
1√
ρ

n+1/2
)dx(Ax(Ay

1

Re
n+1/2
s

)Dy(Ax( 1√
ρ

n+1/2
)un+1/2))

+Ay(
1√
ρ

n+1/2
)Dy(

1

Re
n+1/2
v

dx(Ax( 1√
ρ)un+1/2)) +Ay(

1√
ρ

n+1/2
)Dy(

1

Re
n+1/2
v

dy(Ay(
1√
ρ

n+1/2
)vn+1/2))

−Ay(ρ1
n+1/2 1√

ρ

n+1/2
)Dy(µ

n+1/2
1 )−Ay(ρ2

n+1/2 1√
ρ

n+1/2
)Dy(µ

n+1/2
2 ).

(5.30)
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For any time step tn, ρni , µ
n
i , i = 1, 2 and qn1 satisfy discrete homogeneous Neumann boundary

conditions (5.8), un, vn satisfy the discrete homogeneous Dirichlet boundary conditions (5.9). The
discrete Reynolds numbers are defined as follows

{ 1

Re
n+1/2
s

= (ρ1ρ )
n+1/2 1

Res1
+ (ρ2ρ )

n+1/2 1
Res2
}|i,j , i = 1, · · · , Nx, j = 1, · · · , Ny,

{ 1

Re
n+1/2
v

= (ρ1ρ )
n+1/2 1

Rev1
+ (ρ2ρ )

n+1/2 1
Rev2
}|i,j , i = 1, · · · , Nx, j = 1, · · · , Ny.

(5.31)

Theorem 5.2. Scheme (5.28) is unconditionally energy stable, and the discrete total energy satisfies
the following identity

En+1
h −Enh

∆t = −2( 1
Res

,D
n+1/2
h : D

n+1/2
h )2 − ( 1

Rev
tr(D

n+1/2
h ), tr(D

n+1/2
h ))2

−M1(∇(µ
n+1/2
1 − µn+1/2

2 ),∇(µ
n+1/2
1 − µn+1/2

2 ))2 ≤ 0,
(5.32)

where

Enh = 1
2 [un, un]ew + 1

2 [vn, vn]ns + (qn1 , q
n
1 )2 − (A, 1)2

+1
2κρ1ρ1(∇ρn1 ,∇ρn1 )h + 1

2κρ2ρ2(∇ρn2 ,∇ρn2 )h + κρ1ρ2(∇ρn1 ,∇ρn2 )h.
(5.33)

and

D
n+1/2
h =

 dx(Ax( 1√
ρ

n+1/2
)un+1/2)) 1

2S

1
2S dy(Ay(

1√
ρ

n+1/2
)vn+1/2))

 (5.34)

where S = Dx(Ay(
1√
ρ

n+1/2
)vn+1/2) +Dy(Ax( 1√

ρ

n+1/2
)un+1/2)).

Remark 5.2. We note that using lemmas (5.1)-(5.3), we could obtain identities as follows

(un+1/2, 1
2(un+1/2Dx( 1√

ρ

n+1/2
axu

n+1/2) +Ax( 1√
ρ

n+1/2
dx(un+1/2un+1/2)))

+1
2(ax(Axv

n+1/2Dy(Ax( 1√
ρ

n+1/2
)un+1/2)) +Ax( 1√

ρ

n+1/2
)dy(Ayu

n+1/2Ax(vn+1/2)) = 0,

(vn+1/2, 1
2(ax(Ayu

n+1/2Dx(Ay(
1√
ρ

n+1/2
)vn+1/2)) +Ay(

1√
ρ

n+1/2
)dx(Ayu

n+1/2Axv
n+1/2))

+1
2(vn+1/2Dy(

1√
ρ

n+1/2
ayv

n+1/2) +Ay(
1√
ρ

n+1/2
dy(v

n+1/2vn+1/2)))) = 0.

(5.35)

Proof: It follows from the definition of Enh that

En+1
h −Enh

∆t = [u
n+1+un

2 , u
n+1−un

∆t ]ew + [v
n+1+vn

2 , v
n+1−vn

∆t ]ns + 2(
qn+1
1 +qn1

2 ,
qn+1
1 −qn1

∆t )2

+κρ1ρ1(
∇ρn+1

1 +∇ρn1
2 ,

∇ρn+1
1 −∇ρn1

∆t )h + κρ2ρ2(
∇ρn+1

2 +∇ρn2
2 ,

∇ρn+1
2 −∇ρn2

∆t )h

+κρ1ρ2 [(
∇ρn+1

1 +∇ρn1
2 ,

∇ρn+1
2 −∇ρn2

∆t )h + (
∇ρn+1

2 +∇ρn2
2 ,

∇ρn+1
1 −∇ρn1

∆t )h]

(5.36)
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Taking the inner product of (5.28-3,4) with un+1/2, vn+1/2 respectively and using identify (5.35),
we obtain

[u
n+1+un

2 , u
n+1−un

∆t ]ew + [v
n+1+vn

2 , v
n+1−vn

∆t ]ns

= −2( 1
Res

,D
n+1/2
h : D

n+1/2
h )2 − ( 1

Rev
tr(D

n+1/2
h ), tr(D

n+1/2
h ))2

−[un+1/2, Ax(ρ1
n+1/2 1√

ρ

n+1/2
)Dx(µ

n+1/2
1 ) +Ax(ρ2

n+1/2 1√
ρ

n+1/2
)Dx(µ

n+1/2
2 )]ew

−[vn+1/2, Ay(ρ1
n+1/2 1√

ρ

n+1/2
)Dy(µ

n+1/2
1 ) +Ay(ρ2

n+1/2 1√
ρ

n+1/2
)Dy(µ

n+1/2
2 )]ns,

(5.37)

Where we used lemmas (5.1) and (5.3). Taking the inner product of (5.28-5) with 2q
n+1/2
1 , and

performing integration by parts, we obtain

2(
qn+1
1 +qn1

2 ,
qn+1
1 −qn1

∆t )2 = −M1(∇(µ
n+1/2
1 − µn+1/2

2 ),∇(µ
n+1/2
1 − µn+1/2

2 ))h

+[Ax(ρ
n+1/2
1

1√
ρ

n+1/2
)un+1/2, Dx(µ

n+1/2
1 )]ew + [Ay(ρ

n+1/2
1

1√
ρ

n+1/2
)vn+1/2, Dy(µ

n+1/2
1 )]ns

+[Ax(ρ
n+1/2
2

1√
ρ

n+1/2
)un+1/2, Dx(µ

n+1/2
2 )]ew + [Ay(ρ

n+1/2
2

1√
ρ

n+1/2
)vn+1/2, Dy(µ

n+1/2
2 )]ns

−κρ1ρ1(
∇ρn+1

1 +∇ρn1
2 ,

∇ρn+1
1 −∇ρn1

∆t )h − κρ2ρ2(
∇ρn+1

2 +∇ρn2
2 ,

∇ρn+1
2 −∇ρn2

∆t )h

−κρ1ρ2 [(
∇ρn+1

1 +∇ρn1
2 ,

∇ρn+1
2 −∇ρn2

∆t )h + (
∇ρn+1

2 +∇ρn2
2 ,

∇ρn+1
1 −∇ρn1

∆t )h],

(5.38)

where we used lemma (5.1). Combining (5.36), (5.37) and (5.38), we obtain

En+1
h −Enh

∆t = −2( 1
Res

,D
n+1/2
h : D

n+1/2
h )2 − ( 1

Rev
tr(D

n+1/2
h ), tr(D

n+1/2
h ))2

−M1(∇(µ
n+1/2
1 − µn+1/2

2 ),∇(µ
n+1/2
1 − µn+1/2

2 ))2 ≤ 0,
(5.39)

provided M1 ≥ 0. Having established unconditional energy stability, we now turn to the solvability
issue of the linear system of equations.

5.4 Unique Solvability of the Fully Discrete, Linear Numerical Scheme

The linear system resulting from scheme (5.28) can be written into

A ·X = G, (5.40)

where A is the coefficient matrix of the system given in Appendix, X := (µ1, µ2, u, v, q1, ρ1, ρ2) is
the solution of the linear system and the right hand term G = (g1, g2, g3, g4, g5, g6, g7)T denotes all
the terms at the nth time step.

Theorem 5.3. Linear system (5.28) admits a unique solution.
Proof: To prove the well-posedness of the system (5.28), we only need to prove the corresponding
homogeneous system admits only the zero solution. We assume that there is a solution X =
(µ1, µ2, u, v, q1, ρ1, ρ2) such that A ·X = 0. Using (8.1), we have

0 = (A ·X,X)2 = M1(∇(µ1 − µ2),∇(µ1 − µ2))2 + 2
∆t [u, u]ew + 2

∆t [v, v]ns + 4
∆t(q1, q1)2

+2( 1
Res

,Dh : Dh)2 + ( 1
Rev

tr(Dh), tr(Dh))2 + 2
∆t [κρ1ρ1(∇ρ1,∇ρ1)h + κρ2ρ2(∇ρ2,∇ρ2)h]

+ 4
∆tκρ1ρ2(∇ρ1,∇ρ2)h ≥ C((∇ρ1,∇ρ2)h + (∇ρ2,∇ρ2)h + [u, u]ew + [v, v]ns + ‖q1‖22),

(5.41)
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where we used K > 0, C is a positive constant and Dh is defined in (8.3). Thus, we obtain

Dxρ1 = Dyρ1 = 0, Dxρ1 = Dyρ2 = 0, u = v = 0, q1 = 0, (5.42)

Based on linear system (8.1), we have

µ1 = µ2 = 0, ρ1 = ρ2 = 0, (5.43)

i.e. X = 0. Thus, linear system (5.28) admits an unique solution.

Remark 5.3. A second order in time, energy stable BDF scheme can be developed as well, which
will not be presented here.

6 Numerical results and discussions

6.1 Accuracy Test

We conduct a mesh refinement test to verify the convergence rate of the numerical scheme by
considering (3.2) with a double-well bulk free energy

h(ρ1, ρ2, T ) = ρ2
1(ρ1 − 1)2 + ρ2

2(ρ2 − 1)2, (6.1)

in a rectangular domain Ω = [0, 1]× [0, 1]. We use the following initial conditions

ρ1(x, y, t = 0) = 0.5 + 0.01cos(2πx), ρ2(x, y, t = 0) = 0.5− 0.01cos(2πx), v = (0, 0). (6.2)

We denote the number of spatial grids as Nx = Ny = N , the time step as ∆t. To test the
convergence rate in time, we first fix N = 256 and vary the time step from 4×10−3 to 0.125×10−3

to calculate the l2 norm of the difference between the numerical solutions obtained using consecutive
step sizes at T = 0.1, i.e. ‖(·)∆t(T ) − (·)2∆t(T )‖2. Then, we fix time step ∆t = 10−4, vary the
spatial grid number from 8 to 256 and calculate the l2 norm of the difference between the numerical
solutions obtained using consecutive grid sizes at T = 0.1, i.e. ‖(·)h(T )− (·)2h(T )‖2. In both space

and time, we calculate the convergence rate using p = log2

(
‖(·)2h(T )−(·)4h(T )‖2
‖(·)h(T )−(·)2h(T )‖2

)
, where h is the mesh

size in time or space. The refinement results are tabulated in Table 6.1 and Table 6.2, respectively.
We observe that the proposed scheme is indeed second-order accurate in both time and space for
all variables.

6.2 Phase Separation in binary compressible viscous fluids

To demonstrate stability and efficiency of the new scheme, we simulate phase separation dy-
namics using system (3.2) with the Flory-Huggins mixing energy

h(ρ1, ρ2, T ) = kBT
m ρ( 1

N1

ρ1
ρ ln

ρ1
ρ + 1

N2

ρ2
ρ ln

ρ2
ρ + χρ1ρ2

ρ2
), (6.3)
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∆t ‖(ρ1)∆t − (ρ1)2∆t‖2 order ‖(ρ2)∆t − (ρ2)2∆t‖2 order ‖(u)∆t − (u)2∆t‖2 order

4 ×10−3

2 ×10−3 0.5237 ×10−8 0.5240 ×10−8 0.1498 ×10−7

1 ×10−3 0.1348 ×10−8 1.96 0.1349 ×10−8 1.96 0.3806 ×10−8 1.98

0.5 ×10−3 0.3425 ×10−9 1.98 0.3428 ×10−9 1.98 0.9594 ×10−9 1.99

0.25 ×10−3 0.8644 ×10−10 1.99 0.8651 ×10−10 1.99 0.2435 ×10−9 1.98

0.125 ×10−3 0.2129 ×10−10 2.02 0.2130 ×10−10 2.02 0.5779 ×10−10 2.08

Table 6.1: Temporal refinement result for all variables. The model parameter values are chosen as
Res = 100, Rev = 300,M1 = 10−7, κρ1ρ1 = κρ2ρ2 = 10−4, κρ1ρ2 = κρ2ρ1 = 0.

N ‖(ρ1)h − (ρ1)2h‖2 order ‖(ρ2)h − (ρ2)2h‖2 order ‖(u)h − (u)2h‖2 order

8

16 0.2281 ×10−5 0.2282 ×10−5 0.2676 ×10−7

32 0.3417 ×10−6 1.74 0.3421 ×10−6 1.74 0.3487 ×10−8 1.85

64 0.4452 ×10−7 1.94 0.4457 ×10−7 1.93 0.4607 ×10−9 1.88

128 0.5623 ×10−8 1.98 0.5631 ×10−8 1.99 0.5898 ×10−10 1.95

256 0.7050 ×10−9 2.00 0.7059 ×10−9 2.00 0.7444 ×10−11 1.98

Table 6.2: Spatial refinement result for all variables. The model parameter values are chosen as
Res = 1, Rev = 3,M1 = 10−3, κρ1ρ1 = κρ2ρ2 = 10−4, κρ1ρ2 = κρ2ρ1 = 0.
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(a) Flory-Huggins mixing energy density func-
tion with respect to ρ1

ρ

(b) Unstable mode

Figure 6.1: (a) Flory-Huggins mixing energy density function with respect to the mass density
fraction ρ1

ρ at the chosen parameter values. The two minima are labeled by dots in the curve. (b)

The unstable mode with parameter values: N1 = N2 = 1, χ = 2.5, M1 = 10−3, Res = 100, Rev =
300, κρ1ρ1 = κρ2ρ2 = 0.0004, κρ1ρ2 = 0.

where we choose the characteristic scales so that kBT
m = 1 in the simulation, N1, N2 are the poly-

merization indices and χ is the mixing coefficient, which are given in the simulation by

N1 = N2 = 1, χ = 2.5. (6.4)

The plot of this energy density with the chosen parameter values as a function of ρ1
ρ is shown

in 6.1-(a). The other dimensionless model parameters are chosen as follows

M1 = 10−3, Res = 100, Rev = 300, κρ1ρ1 = κρ2ρ2 = 4× 10−4, κρ1ρ2 = 0. (6.5)

In order to identify the spinodal decomposition that drives the phase separation in the binary
polymer blend, we conduct a simple linear stability analysis on the hydrodynamic phase field model.
We note that this compressible model admits a family of constant solutions:

v = 0, ρ1 = ρ0
1, ρ2 = ρ0

2, (6.6)

where ρ0
1, ρ

0
2 are constants. We perturb the constant solutions with a normal mode as follows:

v = εeαt+ik·xvc, ρ1 = ρ0
1 + εeαt+ik·xρ1

c, ρ2 = ρ0
2 + εeαt+ik·xρ2

c, (6.7)

where ε is a small parameter, representing the magnitude of the perturbation, and vc, ρc1, ρ
c
2 are

constants, α is the growth rate, and k is the wave number of the perturbation. Without loss of
generality, we limit our study to 1 dimensional perturbation in k in the (x, y) plane. Substituting
these perturbations into the equations in (3.2) and truncating the equations at order O(ε), we
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obtain the linearized equations. The dispersion equation of the linearized equation system of the
compressible model [58] is given by an algebraic equation of α:

(η0k2 + αρ0){α3ρ0 + α2k2[η + ρ0M1(hρ1ρ1 + κρ1ρ1k
2) + ρ0M1(hρ2ρ2 + κρ2ρ2k

2)]

−α2k2[2ρ0M1(hρ1ρ2 + κρ1ρ2k
2)] + α[pT ·C · p + pT ·K · pk2]k2

+αηM1[(hρ1ρ1 + κρ1ρ1k
2) + (hρ2ρ2 + κρ2ρ2k

2)− 2(hρ1ρ2 + κρ1ρ2k
2)]k4

+k4M1(ρ0
1 + ρ0

2)2[(hρ1ρ1 + κρ1ρ1k
2)(hρ2ρ2 + κρ2ρ2k

2)− (hρ1ρ2 + κρ1ρ2k
2)2]} = 0,

(6.8)

where η = 2η0 + η0, p = (ρ0
1, ρ

0
2)T . In the following, we set ρ0

1 = ρ0
2 = 0.5. K is the coefficient

matrix of the conformational entropy and C is the Hessian of bulk energy h(ρ1, ρ2, T ) with respect
to ρ1 and ρ2,

K =

 κρ1ρ1 κρ1ρ2

κρ1ρ2 κρ2ρ2

 ,C =

 hρ1ρ1 hρ1ρ2

hρ1ρ2 hρ2ρ2

 . (6.9)

Obviously, α = −η0

ρ0
k2 < 0 is a solution of the dispersion equation (6.8), which contributes a stable

mode. To resolve the other modes, we use numerical calculations. Based on the model parameters
listed above, we obtain only one unstable mode, shown in Figure 6.1-(b). This unstable mode is
dominated by the mixing energy of the model, independent of hydrodynamics of the model. Next,
we will numerically simulate phase separation phenomena due to the unstable perturbation on the
constant steady state without and with hydrodynamics to show how hydrodynamics can affect the
path of phase separation and its outcome.

6.2.1 Phase separation without hydrodynamics

Based on unstable mode shown in Figure (6.1-b), we add a 1D perturbation with wave number
k = 10π to the steady state and observe its ensuing nonlinear dynamics. Since the eigenvector
corresponding to the unstable mode shown in Figure (6.1-b) is (ρc1, ρ

c
2) = (1, -1), we impose the

initial conditions specifically as follows

ρ1(x, y, t = 0) = 0.5 + 0.005× cos(10πy), ρ2(x, y, t = 0) = 0.5− 0.005× cos(10πy). (6.10)

Since ρ1+ρ2 = 1 in the thermodynamic model without hydrodynamics, we show the phase behavior
of ρ1 only. The time evolution of ρ1 at a few selected times are depicted in Figure 6.2. Firstly,
we observe that the growth rate of the numerical solutions ρ1 near the equilibrium state is α =
0.2077, which matches with the linear stability analysis result shown in Figure (6.1-b). In the
long-time behavior, we observe that ρ1 develops small-scale structures and then coarsens to large-
scale structures eventually. In Figure 6.2, we show numerical solutions at several time slots and
the corresponding total energy up to t = 15000. The system goes through three coarsening events
which are captured by the phase morphology at different times shown as well as the total energy
evolution in Figure 6.2. The outcome at the end of the computation is a four-band structure.
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(a) ρ1 at t = 0 (b) ρ1 at t = 300 (c) ρ1 at t = 2000 (d) ρ1 at t = 15000

(e) Total Energy (f) Difference of total mass of the
component 1 with its initial total
mass

(g) Difference of total mass of the
component 2 with its initial total
mass

Figure 6.2: (a-d) Snapshots of ρ1 at different times as solutions of system (3.2) with the Flory-
Huggins mixing energy (6.3) without hydrodynamics. (e) The total free energy of system (3.2).
Two major coarsening events bring the phase of the binary system into the final state shown in
(d). ρ2 is given by 1− ρ1. The total mass of both phases are conserved as shown in (f-g).
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6.2.2 Phase separation with hydrodynamics

When hydrodynamics is coupled with the thermodynamical phase evolution, its role must show
up somewhere. Here, we investigate how hydrodynamic impact on phase separation dynamics.
Since the eigenvector corresponding to the unstable mode shown in Figure (6.1-b) is (ρc1, ρ

c
2) = (1,

-1, 0), we adopt the same initial conditions for ρ1 and ρ2 as before and a zero velocity condition:

ρ1(x, y, 0) = 0.5 + 0.005× cos(10πy), ρ2(x, y, 0) = 0.5− 0.005× cos(10πy), v(x, y, 0) = (0, 0).(6.11)

When hydrodynamics is considered, the local total mass density ρ is no longer spatially homoge-
neous anymore. However, phase separation goes on as shown in Figure 6.3 and Figure 6.4. In
Figure 6.3, we observe that the total energy of the system is dissipative and the total mass of com-
ponent 1 and 2 are conserved in the domain globally. The velocity field in the domain is plotted
at the selected times. Some vorticities form and disperse eventually as the phase morphology ap-
proaches a steady state. The induced nontrivial velocity field promotes the transport of materials
and mixing across the domain leading to a two-band structure phase morphology eventually, which
is a global energy stable state. In contrast, the final phase morphology developed in the phase
separation without hydrodynamics may have only reached a local energy stable state, which can
be explained by the comparison of the total energy evolutions shown in Figure (6.2-e) and Figure
(6.3-i), respectively. This tells us that hydrodynamics indeed changes local densities, the path of
phase evolution and even the final energy steady states of fluid mixtures. This is alarming, indicat-
ing that hydrodynamic effects are instrumental in determining the correct spatial phase diagram
for the binary fluid mixture. The total energy in the solution with hydrodynamics is smaller than
that without it. So, hydrodynamics in a binary compressible fluid flow promotes fluid mixing and
thereby speeds up phase separation.

6.3 Dynamics of gas-liquid Mixtures

The compressible fluid model has many applications in the petroleum industry, where mixtures
of non-hydrocarbons and hydrocarbons are abundant, such as in petroleum reservoirs or natural
gas pipelines. Understanding their thermodynamic and hydrodynamic properties can help one to
improve petroleum quality and yield significantly.

In the past, several equations of state had been developed to describe the relation among state
variables (e.g. the volume, pressure and temperature) under a given set of physical conditions for
compressible fluids. The Peng-Robinson equation of state (PR-EOS) [36] is one of the popular
ones, which has been successfully applied to thermodynamic and volumetric calculations in both
industries and academics. Specifically, PR-EOS provides a reasonable accuracy near the critical
point, which makes it a good choice for gas-condensate systems in the petroleum industry. For this
reason, we adopt it in a hydrocarbon mixture of methane and n-decane to show the performance of
our model and numerical scheme in simulating hydrodynamics of the hydrocarbon mixtures. Many
properties of the mixture can be studied by our mathematical model, such as mass adsorption of
one component in the mixture on the interface between two phases near the equilibrium state,
surface tension and even verification of mixing rules in the mixture. In this example, we will focus
on hydrodynamics of a hydrocarbon mixture with an unstable gas-liquid interface and study the
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(a) ρ1 at t = 0 (b) ρ1 at t = 50 (c) ρ1 at t = 100 (d) ρ1 at t = 150

(e) ρ1 at t = 200 (f) ρ1 at t = 400 (g) ρ1 at t = 600 (h) ρ1 at t = 1400

(i) Total Energy (j) Difference of total mass of the
component 1 with its initial total
mass

(k) Difference of total mass of the
component 2 with its initial total
mass

Figure 6.3: (a-h) Snapshots of ρ1 at different times as a solution of system (3.2) with the Flory-
Huggins mixing energy (6.3) and hydrodynamic interaction. (i) Total energy of the system (3.2)
with the Flory-Huggins bulk free energy (6.3); (j, k) Difference of the total mass of component 1 and
2 compared with the initial mass, indicating mass conservation of both phases in the simulation.
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(a) ρ2 at t = 0 (b) ρ2 at t = 50 (c) ρ2 at t = 100 (d) ρ2 at t = 150

(e) ρ2 at t = 200 (f) ρ2 at t = 400 (g) ρ2 at t = 600 (h) ρ2 at t = 1400

(i) v at t = 0 (j) v at t = 50 (k) v at t = 100 (l) v at t = 150

(m) v at t = 200 (n) v at t = 400 (o) v at t = 600 (p) v at t = 1400

Figure 6.4: (a-h) Snapshots of ρ2 at different times as a solution of system (3.2) with the Flory-
Huggins mixing energy given in (6.3) and hydrodynamic interaction. (i-p) Snapshots for velocity
field v = (v1, v2) at different times. Weak flows are present due to hydrodynamic effect during the
phase evolution. The nontrivial velocity leads to different phase morphology in the end compared
to the case without hydrodynamic interaction at the end of our simulation.
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Table 6.3: Dimensional critical parameters

Symbol Tc(K) Pc(MPa) w m (kg ·mol−1)

n-decane (C10H22) 617.7 2.103 0.4884 0.14228

methane (CH4) 190.564 4.5992 0.01142 0.0160428

mass adsorption phenomena at the interface from the point of view of the free energy near an
equilibrium state.

The free energy density function derived from PR-EOS reads

f = fb + h(n, T ), (6.12)

where fb = 1
2

∑N
i,j=1 ci,j∇ni · ∇nj is the conformational energy. The bulk free energy density

function h(n, T ) is given in (2.22).

Remark 6.1. Since f ideal changes rapidly near the origin which may introduce singularity in nu-
merical simulations, we regularize this term near the origin as follows

f ideal =

{
RTni(ln(ε)− 1) +RT ( 1

2εn
2
i − ε

2), if ni < ε,

RTni(ln(ni)− 1), otherwise,
(6.13)

where ε > 0. Corresponding to the modification, the chemical potential is changed to

µideal =

{
RT (ln(ε)− 1) +RT (1

εni), if ni < ε,

RT ln(ni), otherwise.
(6.14)

We consider a mixture of methane and n-decane in a square domain with the length of 80 nm on
each side. We denote the molar density of n-decane as n1 and that of methane as n2, respectively.
In Table 6.3, we list the dimensional parameters related to these two components. Other parameter
values [11] are chosen as follows

η1 = η2 = 1× 10−4Pa · s, η1 = η2 = 0.33× 10−4Pa · s, M1 = 1× 10−12m2 · s−1,

κn1n1 = 1.1246× 10−18, κn2n2 = 2.8649× 10−20, κn1n2 = 8.9748× 10−20.
(6.15)

The gas constant is R = 8.3144598J ·mol−1 ·K−1, the temperature T = 330K.
The initial conditions are given by

ni =

{
nliquidi , (x2 + y2) ≤ (r1 + r2 × cos(n× arctan(xy )))2 in [−4× 10−8m, 4× 10−8m]2,

ngasi , otherwise in [−4× 10−8m, 4× 10−8m]2,
(6.16)
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Table 6.4: Dimensionless critical parameters

Symbol Tc Pc w m

n-decane (C10H22) 2.2626 1.3495 0.4884 8.8688

methane (CH4) 0.6980 2.9513 0.01142 1

where r1 = 1, r2 = 0.2, n = 8 and

nliquid1 = 3814.6mol ·m−3, ngas1 = 26.5mol ·m−3,

nliquid2 = 3513.2mol ·m−3, ngas2 = 7133.9mol ·m−3.
(6.17)

If we take characteristic molar density n0 = 103mol · m−3, characteristic density ρ0 = n0m2 =
16.0428kg ·m−3, characteristic length h = 2×10−8m, characteristic time t0 = 6.4171×10−11s, and
characteristic temperature T0 = 273K, we obtain dimensionless parameter values as follows

Re1s = Re2s = 1, Re1v = Re2v = 3, M1 = 9.7136× 10−4,

κn1n1 = 0.0018, κn2n2 = 4.5961× 10−5, κn1n2 = 1.4398× 10−4.
(6.18)

Other dimensionless critical parameters of the methane and n-decane are given in table 6.4.
Through the non-dimensionalization, the gas constant R results in a constant R0 = 1.4566, the
dimensionless temperature T = 1.2088. The corresponding dimensionless initial conditions become

ni =

{
nliquidi , (x2 + y2) ≤ (r1 + r2 × cos(n× arctan(xy )))2 in [−2, 2]× [−2, 2],

ngasi , otherwise in [−2, 2]× [−2, 2],
(6.19)

where r1 = 1, r2 = 0.2, n = 8 and

nliquid1 = 3.8146, ngas1 = 0.0265, nliquid2 = 3.5132, ngas2 = 7.1339. (6.20)

Shown in Figure 6.5, we perturb the initial condition with certain roughness on the interface,
which is unstable due to the surface tension. As time elapses, the roughness vanishes, leading to
a surface with the minimal surface tension on it, shown in Figure (6.7-b). The corresponding time
evolution of velocities are depicted in Figure 6.6, which show that hydrodynamics indeed speed up
the evolution of the system to the steady states.

6.3.1 Density profiles and mass absorption at the interface in equilibrium

Near equilibrium (t = 6000), we show the density profiles of the two fluid components at y = 0
in Figure (6.8-a) and observe mass absorption of methane at the interface. At the equilibrium of
co-existing phases, two (or more) bulk phases have equal chemical potentials, i.e. the corresponding
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(a) Initial condition of n-decane
(C10H22)

(b) Initial condition of methane
(CH4)

Figure 6.5: Initial conditions of two components in gas-liquid mixture

bulk free energies lie on the same tangent line (or surface). For the Peng-Robinson free energy,
it is not straightforward to find the equilibrium states by observing the graph of the free energy
function directly. Following the work reported in [31,37], we subtract the tangent line (or surface)
from the Helmoholtz free energy density function to make the equilibrium states as the minimum
points, which are then easily observed,

hm(n, T ) = h(n, T )−
∑2

i=1 µ
0
ini, (6.21)

where µ0
i , i = 1, 2 represent the chemical potential of the ith component at the bulk equilibrium

state. We show the modified free energy contour in Figure (6.8-b). The circled curve represents the
energy path of density profiles at the equilibrium state. To avoid high free energy, n-decane and
methane change from one equilibrium state (Gas) to another equilibrium state (Liquid) through
the saddle point of the free energy surface. Thus, the methane has a higher density on the interface
than in the bulk states, leading to the mass absorption phenomena at the interface.

The total energy and total mass difference with the initial condition for each component are
shown in Figure 6.7, which verifies energy stability and mass conservation of our numerical scheme.

This numerical experiment not only demonstrates that our mathematical model can be applied
to study thermodynamic and hydrodynamic properties of the fluid mixture in an application rel-
evant to the petroleum industry, but also showcases that our numerical scheme can handle the
Navier-Stokes-Cahn-Hilliard equation system with a highly nonlinear free energy (6.12).

7 Conclusion

In this paper, we present a second order, fully-discrete, linear and unconditionally energy stable
numerical scheme for the hydrodynamic phase field model of compressible fluid flow. Firstly, we
reformulate the model by introducing a couple of intermediate variables, based on the Energy
Quadratization approach. Using the reformulated model equations, we develop a second order,
energy stable, semi-discrete numerical scheme in time. Then, we obtain a fully discrete numerical
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(a) n1 at t = 1 (b) n1 at t = 3 (c) n1 at t = 5 (d) n1 at t = 6000

(e) n2 at t = 1 (f) n2 at t = 3 (g) n2 at t = 5 (h) n2 at t = 6000

(i) v at t = 1 (j) v at t = 3 (k) v at t = 5 (l) v at t = 6000

Figure 6.6: (a-d) Snapshots of n1 at t = 1, 3, 5, 6000. (e-h) Snapshots of n2. (i-l) The corresponding
velocity fields.
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(a) Total Energy (b) Surface tension

(c) The difference of total mass of
the component 2 with its initial to-
tal mass

(d) The difference of total mass of
the component 2 with its initial to-
tal mass

Figure 6.7: (a) Total energy of the system (3.5) with the Peng-Robinson bulk free energy (6.12);
(b) Surface tension of the mixture; (c, d) Total mass of the component 1 and 2 on the rectangular
domain Ω = [−2, 2] × [−2, 2], solved in the system (3.5) with the Peng-Robinson bulk free energy
(6.12). (e) Density profiles of n-decane and methane (y = 0) at the equilibrium state; (f) Free
energy contour. Green points represent the densities of n-decane and methane at bulk area and
red circles represent their densities on the interface at equilibrium state.

(a) Density profiles at the equilib-
rium state (t = 6000)

(b) Free energy contour at the
equilibrium state (t = 6000)

Figure 6.8: (a) Density profiles of n-decane and methane (y = 0) at the equilibrium state; (b) Free
energy contour. Green points represent the densities of n-decane and methane at bulk area and
red circles represent their densities on the interface at equilibrium state.
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scheme applying the finite difference method on the staggered grid, which preserves a fully discrete
energy dissipation law. In addition, the well-posedness of the linear system resulting from the linear
numerical scheme is proved rigorously. Several numerical experiments are presented to verify the
accuracy, stability and efficiency of our numerical scheme. The comparison between the simulations
with and without hydrodynamics is used to demonstrate the mixing role played by hydrodynamics
in phase separation phenomena in binary compressible fluid flows. The scheme can be readily
extended to models N-component compressible fluid flows with N > 2.

8 Appendix

8.1 Linear system resulting from the numerical scheme

We summarize the linear system resulting from the numerical scheme as follows.

{
2 ρ1∆t + dx(Ax(ρ

n+1/2
1

1√
ρ

n+1/2
)u) + dy(Ay(ρ

n+1/2
1

1√
ρ

n+1/2
)v) =

M1∆hµ1 −M1∆hµ2 + g1

}
|i,j , i = 1, · · · , Nx, j = 1, · · · , Ny,

{
2 ρ2∆t + dx(Ax(ρ

n+1/2
2

1√
ρ

n+1/2
)u) + dy(Ay(ρ

n+1/2
2

1√
ρ

n+1/2
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−M1∆hµ1 +M1∆hµ2 + g2

}
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1
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ρ
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n+1/2 1√
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2
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(8.1)
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

{
4 q1

∆t = 4 ∂q1∂ρ1

n+1/2
ρ1
∆t + 4 ∂q1∂ρ2
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ρ2
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}
|i,j , i = 1, · · · , Nx, j = 1, · · · , Ny,

{
− 2

∆tµ1 = −4q1
1

∆t
∂q1
∂ρ1

n+1/2
+ 2

∆tκρ1ρ1∆hρ1 + 2
∆tκρ1ρ2∆hρ2 + g6,

}
|i,j ,

i = 1, · · · , Nx, j = 1, · · · , Ny,

{
− 2

∆tµ2 = −4q1
1

∆t
∂q1
∂ρ2

n+1/2
+ 2

∆tκρ2ρ2∆hρ2 + 2
∆tκρ1ρ2∆hρ1 + g7,

}
|i,j ,
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(8.2)

where ρi, µi, i = 1, 2 and q1 satisfy discrete homogeneous Neumann boundary conditions (5.8), u, v
the discrete homogeneous Dirichlet boundary conditions (5.9). We define Dh as dx(Ax( 1√

ρ

n+1/2
)u)) 1

2(Dx(Ay(
1√
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 (8.3)
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