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ABSTRACT: Innovative reactor concepts show evidence to
significantly improve the reaction performance in comparison
to conventional reactor systems. To evaluate the reactor
concepts, experimental investigation of the process behavior is
indispensable. In this contribution, a reactor tandem
comprising a repeatedly operated semibatch reactor (RSBR)
followed by a continuously stirred tank reactor (CSTR) is
analyzed for the hydroformylation of 1-dodecene. This reactor
tandem was suggested by N. M. Kaiser et al. [Ind. Eng. Chem.
Res. 2017, 56, 11507−11518] to increase the selectivity
toward the linear aldehyde at high conversion levels of 1-
dodecene. An additional degree of freedom is gained because
of the combined utilization of a batchwise and continuously operated reactor. By using a dynamic process model for planning of
the experiments, comparability is ensured with studies of a single CSTR from literature. The experiments confirm an increase in
conversion and target product yield applying the RSBR + CSTR tandem, so that up to 90% selectivity is achieved with closed
byproduct recycle.

1. INTRODUCTION

Nowadays, the major part of the produced chemicals are made
from petroleum and natural gas,2 and in more than 80% of
these processes, catalysts are used.3 In the near future, the
availability of fossil raw materials is going to decrease. Hence,
new production methods and techniques must be investigated
for the usage of renewable resources. To achieve this goal, it is
required that experts from all involved areas (e.g., chemists,
engineers, mathematicians, ect.) join together. With this in
mind, the collaborative research center Transregio 63 (CRC/
TR63), Integrated Chemical Processes in liquid multiphase
Systems, InPROMPT, has been established in Germany, funded
by the German research foundation DFG. The goal of this
research center is the development of production processes
using homogeneous catalysts and novel multiphase solvent
systems.4 As model reaction the hydroformylation of 1-
dodecene was chosen. A special feature of the CRC/TR63 is
the demonstration and validation of these processes in
miniplants to study their feasibility over a long time period.
For the present study, a repeatedly operated semibatch

reactor (RSBR) is integrated into an already existing miniplant
that was constructed by Zagajewski et al.5 The integration of
the RSBR was suggested by Kaiser et al.,1 in order to maximize

the selectivity toward the target product. Two long-term
experiments have been performed with the new setup,
consisting of the RSBR and a continuously operated stirred
tank reactor (CSTR) connected in series. The aim of the first
experiment (later denoted as OP1) is the comparison of the
performance of this tandem reactor system with the previous
results where only a single CSTR was used by Dreimann et al.6

In the second experiment (OP2), the behavior of the RSBR +
CSTR setup is studied with a closed byproduct recycle.
Therefore, the recycle of byproducts from the final distillation
column in the original process setup is simulated by adding the
corresponding byproducts manually. This allows to realize the
integrated overall process while avoiding the operation of the
distillation column. The rigorous process model derived by
Raẗze et al.7 is used to determine the flow rates for the
experiments as well as the batch reaction times. Finally, all
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results will be discussed and compared to the literature and the
model prediction.

2. BACKGROUND
In the following, the reaction network and the applied catalyst
recycle technique are described. In addition, experimental
results of the original setup are presented and more details on
the derivation of the tandem reactor system, used in this work,
are given.
2.1. Hydroformylation Reaction. Hydroformylation

denotes the reaction between olefins and synthesis gas to
synthesize aldehydes. This reaction is widely used to enlarge
the chain length of hydrocarbons in order to synthesize
alcohols, plasticizers, or solvents.3 A challenging task of the
hydroformylation is to ensure high chemoselectivities and
regioselectivities with respect to the desired aldehyde.8

Therefore, transition metals such as rhodium and cobalt are
used as catalysts, along with phosphorus-based ligands.8,9 For
the present study, rhodium is used in combination with a
proper ligand leading to an excellent activity and selectivity
toward the desired linear aldehyde.3,8 The ligand BiPhePhos
was chosen by Markert et al.10 because it proved to provide the
highest selectivity with respect to the linear aldehyde.11,12 The
reaction network, proposed by Kiedorf et al.13 and refined by
Hentschel et al.,14 is shown in Figure 1.

Besides the main hydroformylation reaction toward the
linear and branched aldehdyes, hydrogenation and isomer-
ization reactions occur. The reaction rates of these side
reactions are strongly dependent on the synthesis gas
composition, as well as the reaction temperature and therefore
can be suppressed by applying specific conditions.14,15

2.2. Catalyst Recovery. The quantitative recovery of the
homogeneous catalyst is the key to enable an economic and
sustainable process design. Since the used rhodium and
BiPhePhos ligand are dissolved homogeneously in the reaction
mixture, this recovery is a challenging task in the case of high
boiling products. Consequently, new recycling techniques,
such as aqueous-phase catalysis, aqueous−organic biphasic
catalysis, organic−organic biphasic techniques, catalysis using

ionic liquids, the usage of supercritical solvents, or soluble
polymer-bound catalysts were developed.16,17 Since the
majority of these solvent systems consist of more than one
liquid phase, they are often accompanied by additional mass-
transfer limitations at the interphases. This led to the
development of temperature-controlled multiphase systems.
The idea behind these systems is to perform the chemical

reaction in a one phasic system and afterward use a
temperature decrease for the separation of the catalyst and
the products.18 This technique is used in the present study for
the catalyst recovery in form of a thermomorphic multiphase
system (TMS). The TMS used is composed of three solvents
with different polarities: (i) a polar solvent A, (ii) a semipolar
solvent B, and (iii) a nonpolar solvent C.18 The solvents are to
be chosen in a way, such that the polar and nonpolar solvent
are not miscible under separation conditions, i.e., decreased
temperature. The semipolar solvent B acts as a temperature-
dependent mediator between solvent A and solvent C.19 Such
a system forms a single phase at higher reaction temperatures
and two separate phases at lower temperatures. Depending on
the type of reaction, one of these solvents, normally solvent B,
might even be the reactant itself.19 In this work, 1-dodecene is
used as substrate for the reaction and as the semipolar solvent
for the TMS. Besides 1-dodecene, the TMS consists of 42 wt %
n-decane as nonpolar solvent and 42 wt % N,N-dimethylfor-
mamide (DMF) as polar solvent. The rhodium and ligand are
dissolved in the polar DMF phase, because of their polarity and
hence, can be separated from the reaction mixture at low
temperatures. The composition of this system was developed
and examined by Schaf̈er et al.20 and Brunsch and Behr.21

2.3. Hydroformylation Miniplant. The miniplant con-
sists of a CSTR with a total volume of 1 L, connected to a
settler for the phase separation of the TMS.5 During the first
operation, the requirement of a steady ligand feed was noticed,
since branched aldehydes were synthesized in high amounts.
Consequently, a separate makeup stream (DMF, rhodium, and
ligand) was installed.22 With this stream, a conversion of up to
78% and a tridecanal yield of up to 70% were achieved, using a
molar catalyst:olefin ratio of 1:2000.5,22 Later, Dreimann et al.6

reported results of another miniplant experiment where only
half the catalyst amount used in the reported research of
Zagajewski et al.5,22 was used. Overall, a tridecanal yield of
63.5% and a 1-dodecene conversion of 83.5% to internal
dodecenes and linear and branched aldehydes was achieved.
These results will be used for the comparison to the outcomes
of this study.
In a next step, a distillation column for the separation of the

aldehydes from the n-decane and byproducts was integrated
and operated within the miniplant.23 The distillate from the
column was fed back into the CSTR to close the second
recycle loop of the TMS. Because the recycle stream from the
distillation column contained internal olefins, the reaction rate
of the 1-dodecene isomerization decreased significantly. A
mean tridecanal yield of 54% and a 1-dodecene conversion of
67% were achieved, with a ratio between the linear and
branched aldehydes of 95:5, while using a ratio of
catalyst:ofelin ratio of 1:4000.

2.4. Optimal Reactor Design. The optimal reactor design
by Kaiser et al.1 was performed for the hydroformylation
process with closed recycles while considering the restrictions
of the miniplant setup from Dreimann et al.23 The goal for the
reactor design was to maximize the selectivity, with respect to
the linear aldehyde at high conversions of 1-dodecene (X ≥

Figure 1. Hydroformylation reaction network (R = CnH2n+1; R′ =
C11−nH23−2n; R″ = C10−nH21−2n; n = 1, ..., 5). [Redesigned figure,
adopted with permission from Hentschel et al.14 Copyright 2015,
American Chemical Society, Washington, DC.]
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90). The model-based analysis indicates the beneficial use of a
reactor tandem consisting of a distributed sidestream reactor
and a back-mixed reactor in series.1 The first reactor requires
an initial dosing of reactant and distributed dosing of gas, while
the second one can be realized with a CSTR. For the technical
design of this reactor tandem, two realization possibilities were
suggested: (i) a continuous flow reactor followed by a CSTR
and (ii) a repeated semibatch reactor followed by a CSTR. An
advantage of both realizations is the possibility to use the
already-installed CSTR of the miniplant. In addition to the
SBR unit, the second realization requires two buffer vessels
before and after the reactor. The vessels are periodically
charged and discharged during the batch reactions. Further-
more, Kaiser et al.1 performed a parameter optimization for
both derived tandem reactor systems, which indicates a
conversion and selectivity gain of 24% and 40% respectively,
in comparison to the original miniplant setup.23

The RSBR was constructed and first operated with a closed
catalyst recycle by Ra ̈tze et al.7 to demonstrate the
experimental feasibility of the reactor concept. However, in
contrast to the suggested reactor volume of 550 mL by Kaiser
et al.,1 the RSBR rig was constructed with a reactor volume of
240 mL.7 Raẗze et al.7 developed a rigorous dynamic process
model and validated this dynamic model with the steady-state
model used by Kaiser et al.1 for the parameter optimization.
The developed model of Raẗze et al.7 is used in this work to
perform simulations of the process behavior and to determine
the flow rates for the experiments.

3. PROCESS MODEL

The repeated operation of a semibatch reactor in a continuous
overall process is experimentally challenging due to various
degrees of freedom presented to the process operator. Besides
different vessel temperatures and pressures, the batch time in
each process cycle as well as the volumetric flow rates for all
process units need to be controlled. As a consequence,
thorough knowledge of the process and experience is required
by the operating staff for a successful operation, especially with
respect to process startup.

Model-based simulations using time-resolved process
models allow for a priori predictions of the dynamic process
behavior and may support the experimental investigation.
Raẗze et al.7 introduced a dynamic model of the RSBR process
in the TMS miniplant and verified its convergence to the same
cyclic steady state predicted by a steady-state process model.
Therefore, it is adapted in this contribution and used for
planning the experiments and predicting the experimental
process behavior.
Based on these predictions, all internal and external

volumetric flow rates including the necessary makeup streams
can be estimated and used for the experimental operation.
Furthermore, the process model is extended to allow for the
distribution of the overall process residence time onto each
process unit. As a consequence, the batch time for each process
cycle can be set, such that a predetermined overall residence
time is maintained and comparability between different process
setups is ensured.
In the following, the process model variants for both

experimental operating points are introduced and the
methodological approach for distributing the process residence
time is explained. For a detailed description of the different
process unit models, the solution procedure of the dynamic
model and the initial conditions for the process model, the
reader is referred to Raẗze et al.7

3.1. Process Model Variants. In accordance with the
experimental setup, the process model consists of the RSBR,
the required feed, and flash buffer vessels, as well as a CSTR
and a decanter for liquid−liquid phase separation. In contrast
to the process model by Raẗze et al.,7 the distillation column is
neglected. For evaluating the performance of the new reactor
in the miniplant setup, two operating points that are visualized
in Figure 2 are considered.
At the first operating point, the focus lies on the reactor

performance without the recycle of internal dodecenes. To
compensate for the losses of catalyst, polar and nonpolar
solvent, makeup streams are available which ensure the correct
solvent to substrate ratio and an adequate liquid holdup in the
SBR, in accordance with Dreimann et al.6

For the second operating point, the byproduct recycle is
considered. In the experimental setup, the nonpolar recycle is

Figure 2. Process flowchart and process units considered in the model for operating points 1 and 2 (dashed lines denote periodical flow; solid lines
represent continuous flow).
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simulated using a mixture of internal dodecenes (see section
3.2), which is fed alongside the 1-dodecene in each batch. To
ensure comparability between the simulations and the
experimental investigations, a constant makeup stream for
the internal dodecenes is added to the process model (see
Figure 2) and determined using

ϕ= − ·n t n0 ( )iC12en
UBuffer

D iC12en,1C12en 1C12en,fresh
SBR

(1)

Here, tD indicates the time of one process cycle, niC12en
UBuffer

represents the molar amount of internal dodecene isomers in
the feed buffer tank, and n1C12en, fresh

SBR symbolizes the molar
amount of fresh 1-dodecene, which is fed in the next batch.
The ratio of internal dodecene isomers and 1-dodecene is
represented by

ϕ =
m t
m

( )
iC12en,1C12en

iC12en
UBuffer

D

1C12en,fresh
SBR

(2)

and adjusted in accordance with the desired operating point.
Because of the increase in dodecene isomers in the reaction
mixture, the solvent and catalyst makeup streams must be
adjusted via the equations

ϕ=
i
k
jjjjj

y
{
zzzzz

m
m

t( )C10an

DMF

UBuffer

D C10an,DMF
(3)

ϕ
+

=
i

k
jjjjjj

y

{
zzzzzz

m t
m t m

( )

( )
C10an
UBuffer

D

1C12en,iC12en
UBuffer

D 1C12en,fresh
SBR C10an,1C12en

(4)

ϕ=
i

k
jjjjj

y

{
zzzzz

n t
n

( )cat D

1C12en,iC12en

UBuffer

cat,1C12en
(5)

to ensure a substrate:solvent ratio that allows for phase
separation in the decanter.
3.2. Experimental Operation Parameters. The oper-

ation parameters used in this study are determined semi-
empirically. Since the comparability to the work of Dreimann
et al.6 is aspired, the residence time, as well as catalyst and
ligand amounts, are chosen to be the same. The reactor
temperatures are selected based on former selectivity
optimizations of the 1-dodecene hydroformylation network.
The studies revealed a temperature increase from ∼95−115 °C
within the first 30−40 min of reaction time.14,15 Afterward, a
constant temperature is required to increase the back-
isomerization rate of synthesized internal olefins to 1-
dodecene, which then can be hydroformylated to tridecanal.
Therefore, the temperature in the CSTR is set to 115 °C. For
the temperature in the SBR, a constant temperature of 105 °C
is chosen because it is the mean temperature between 95 °C
and 115 °C. Since no adjustment of the CO and H2 ratio was
considered in the work of Dreimann et al.,6 an equal synthesis
gas composition is used in this study as well.
During the second experiment (OP2), two different

amounts of internal olefins will be fed, in order to study
their influence on the reaction performance. First, a ratio of
ϕiC12en,1C12en = 0.5 g g−1 is chosen, based on the work of
Dreimann et al.,23 from a former operation of the single CSTR
setup with the closed byproduct recycle from the product
distillation column. This olefin ratio is denoted as OP2.1,
whereas the higher ratio of internal olefins (ϕiC12en,1C12en = 0.75
g g−1) is denoted as OP2.2. An overview of all process and

simulation parameters can be found in Table S.1 in the
Supporting Information.

3.3. Distribution of Residence Time. For the exper-
imental investigation of the RSBR + CSTR setup, a constant
residence time of τtotal = 3.50 h is chosen, which is in
accordance with the data presented by Dreimann et al.6 Since
the reference setup only consists of a CSTR as a reaction
vessel, the residence time τtotal of the RSBR + CSTR reactor
tandem must be distributed onto the SBR, flash buffer vessel,
and the CSTR, which are all considered as reaction zones. The
feed buffer vessel is not considered as a reaction zone, since the
1-dodecene is directly fed into the SBR. By operating the SBR
in cycles, a preparation time for charging and emptying the
reactor is necessary. It is generally taken into account in the
production cycles of batch processes,24 because this additional
time is lost for the reaction. Therefore, it reduces the space
time yield, in comparison to a fully continuous approach. For
the total residence time of the RSBR + CSTR setup, the
preparation time is taken into account, so that the distribution
of the residence time onto the different reaction zones can be
calculated with

τ τ τ= + + +t ttotal B I
DBuffer CSTR

(6)

where tB and tI represent the batch and preparation time,
respectively, and τDBuffer and τCSTR abbreviate the residence
time in the flash buffer vessel and the CSTR.7 The sum of the
batch and preparation time,

= +t t tD B I (7)

is denoted as the time of one process cycle to ensure a
continuous process operation.
The residence time of an ideally mixed CSTR is defined as

τ = ̇
V

V
CSTR L

CSTR

out (8)

where the volumetric flow rate ̇Vout leaving the flash buffer
vessel is equal to the volumetric flow rate entering and leaving
the CSTR. For the flash buffer vessel, a mean residence time is
defined as follows:

τ =
· =

̇
V t

V
0.5 ( 0)DBuffer L

DBuffer

out (9)

By using the dynamic process model7 and eqs (6−9) as
constraints in the optimization problem, the required batch
time to fulfill eq (6) can be calculated for each process cycle.

3.4. Simulation Results. With the extensions for the
dynamic process model of Raẗze et al.7 from section 3,
simulations of the process behavior as well as the distribution
of the process residence time onto the different process units
can be performed. In the following, the calculation results from
the distribution of the residence time in steady state are shown
for OP1 in Table 1, since neither the flash buffer vessel and

Table 1. Steady-State Residence Times of Different Process
Units for Operating Point 1

process unit steady-state residence time, τ/min

SBR 28.71
SBR idle 30.00
DBuffer 31.35
CSTR 119.93
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CSTR liquid holdup, nor the volumetric flow rate in the
continuous process change significantly between both
operating points. For better applicability in the experiments,
the calculated batch time is rounded to τB ≈ 30 min and used
for the process simulations for operation points 1 and 2.
All dynamic optimization problems (DOPs) are reformu-

lated in accordance with Raẗze et al.7 as nonlinear programs
(NLPs) using direct collocation on 20 finite elements with 3
collocation points and solved to local optimality using
CasADi25 and Ipopt 3.12.326 with the linear solver MA2727

on a machine with an Intel Core i5−7200U with 8 GB of
RAM. Initialization of the optimization problem is done via
integration and a pre optimization step of the SBR to generate
a good initial guess for the gas dosing profiles. The process
parameters, used in all calculations, can be found in Table S.1
in the Supporting Information. In the following, the simulation
results are presented for each operating point.
3.4.1. Operating Point 1. For OP1, the tandem reactor

system is operated without the recycle of dodecene isomers
(see Figure 2). Figure 3 shows the yield and conversion

according to eqs (S.1) and (S.2) in the Supporting Information
for 10 process cycles, including the start-up process as well as
steady-state operation. After two process cycles, the polar
recycle stream is active leading to minor corrections, so that a
tridecanal yield of 66.82% achieved in steady state.
3.4.2. Operating Point 2. The second operating point

includes the additional feed of internal dodecenes via eq (1)
under consideration of adjusted makeup constraints eqs (3)−
(5). Here, two different dodecene isomer to 1-dodecene ratios
are used, analogous to the experiments (see section 4.3.2) and
the conversion as well as the yield calculations are adjusted
according to eqs (S.4) and (S.5) (see the Supporting
Information) to account for the additional conversion of
dodecene isomers. Figures 4a and 4b show the conversion and
yield of tridecanal, branched aldehydes, and dodecane over 15
process cycles, including the start-up and steady-state phase for
operating point 2.1 and 2.2, respectively. For OP2.1, the
product yields show minor changes in the first 8 h until
converging to a constant product distribution. During startup,
the tridecanal yield reduces from 62.62% to 62.16%, which is
due to the increase in recycled aldehydes via the polar decanter
recycle and the subsequent decrease in hydroformylation
activity.

For OP2.2, the corrections during startup are more
pronounced, since the percentage of dodecene isomers
doubled, in comparison to OP2.1. After two process cycles,
the polar recycle becomes active, which allows for (by)-
products to be recycled. As a consequence, a significant
amount of tridecanal is recycled, which leads to a lower
concentration of dodecene isomers in the reaction mixture.
Besides an increased hydroformylation activity, all product
yields in Figure 4b increase during startup due to the
consideration of dodecene isomers as the substrate in eq
(S.5) (see the Supporting Information). In the case of
tridecanal, the yield increases from 56.37% to 57.91%.
An overview of the mean yield and selectivity toward the

linear aldehyde SnC13al, as well as the mean conversion of olefin
XC12en in steady state can be found in Table 3 in section 5 for
the simulations of the different operation points.

4. MINIPLANT SETUP AND RESULTS
In the following, the experimental setup and procedure are
described. Furthermore, details on the synthesis of the internal
olefins are given, and the results from both miniplant
experiments are presented.

4.1. Experimental Setup. A simplified flowchart of the
process is shown in Figure 2. In addition, Figure 5 depicts a
photograph of the miniplant. The RSBR rig is comparable to
the one used by Raẗze et al.7 for the proof of concept. The n-
decane and the DMF makeup streams are fed continuously
with pumps (ProMinent GmbH, Pra ̈zisionskolbendosier-

Figure 3. Prediction of the yield and conversion calculated with eqs
(S.1) and (S.2) in the Supporting Information of different reaction
products for the course of 10 batch cycles for the first operating point.

Figure 4. Prediction of the yield and conversion calculated with eqs
(S.4) and (S.5) (see the Supporting Information) of different reaction
products over the course of 15 process cycles.
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pumpe, Model MDLA400600 and Model MDLA4006150)
into the feed buffer vessel. For the OP2 experiment, the n-
decane is substituted by a mixture of n-decane and internal
olefins. For the start of a new batch, a specified amount from
the feed buffer vessel is pumped (KNAUER Wissenschaftliche
Geraẗe GmbH, Model Smartline 1000) into the SBR (Büchi
AG, miniclave drive Typ 3, V = 240 mL), while 1-dodecene is
pumped (KNAUER Wissenschaftliche Geraẗe GmbH, Model
Smartline 1050) into the separate substrate vessel (Swagelok
DOT-compliant, V = 150 mL). After the preparation time is
passed, the substrate vessel is pressurized with synthesis gas by
two mass flow controllers (Brooks Instrument, series
SLA5800). When the pressure of 24 bar (abs) is reached
inside the substrate vessel, the ball valve to the SBR is opened.
The pressure difference between both vessels is used to
transfer the 1-dodecene into the reactor and the reaction starts
immediately. The reaction mixture inside the reactor is stirred
continuously with a gassing stirrer (700 rpm).
Temperature and pressure of the SBR are continuously

controlled by a thermostat (Julabo GmbH, Model FP40HL)
and a pressure controller. This controller is implemented into
the process control system and operates the two mass flow
controllers. When the reaction time is over, the gas feed into
the reactor is stopped. Afterward, the reaction mixture is
transferred into the flash buffer vessel by the usage of the
pressure difference between the two vessels. This is done 4−6
times by alternatingly pressurizing and depressurizing both
vessels. Subsequently, the reaction mixture is continuously
pumped (KNAUER Wissenschaftliche Geraẗe GmbH, Model
Smartline 1050) from the flash buffer vessel into the CSTR
(Büchi AG, V = 1 L). The temperature and the pressure inside
the CSTR are controlled by a thermostat (Julabo GmbH,
Model 6-ME) and two mass flow controllers (Bronkhorst
High-Tech B.V., Model F200 CV). The vessel is stirred with a
speed of 800 rpm. The liquid holdup inside the CSTR is kept
constant by means of an overflow pipe which is directly
connected to the decanter (self-built, made from stainless steel,
Vtot = 495 mL). For pressure compensation, the gas phases in
both vessels are connected to each other. The temperature
inside the decanter is controlled by a thermostat (Julabo

GmbH, Model F33-ME). The reaction mixture is cooled to 5
°C inside the decanter and hence, splits into two phases.
Samples from the product phase are taken and analyzed via gas
chromatography (GC) (Agilent Technologies, Model 7890A,
HP-5 column, FID) in intervals of 60 min. The catalyst phase
is continuously pumped (KNAUER Wissenschaftliche Geraẗe
GmbH, Model S4.1S) back into the feed buffer vessel. For the
compensation of the negative pressure difference between the
decanter (21 bar (abs)) and the buffer vessel (4−7 bar (abs)),
a relief valve (Swagelok R-Series) is installed directly after the
pump. The product phase is continuously taken out of the
decanter with an overflow pipe and a liquid detector (ACS
Control-Systems GmbH, Model Vibrocont SCM) combined
with an electromagnetic valve (Bürkert GmbH & Co. KG,
Model 0255). A separate flash vessel (self-built from stainless
steel) is then used to depressurize the product phase.
The electronic devices of the RSBR rig are operated from

the process control system (Siemens PCS7, Version 8.1). The
other part of the miniplant setup is controlled by a LabVIEW
system (National Instruments, Version 2010). All pipes
through which the TMS flows and the two buffer vessels are
heated by electric heating ducts (Horst GmbH) to prevent
phase separation of the TMS. Sight glasses (Herberts
Industrieglas GmbH & Co KG) are integrated into the two
buffer vessels (made from Swagelok 1 ft fittings) for a visual
observation of the liquid level. The chemicals used in the
miniplant experiments are listed in Table 2.

4.2. Isomerization of 1-Dodecene. For the simulated
byproduct recycle during the OP2 experiment, internal C12
olefins are required. Since the isomers are not commercially

Figure 5. Image of the miniplant with highlighted process units.

Table 2. Chemicals for the Miniplant Experiments

substance manufacturer purity

n-decane VWR >95%
DMF VWR >99%
1-dodecene Merck >94%
BiPhePhos Molisa >99%
Rh(acac)(CO)2 Umicore >39% Rh
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available, 1-dodecene is isomerized to synthesize a mixture of
internal olefins. This is done batchwise in a 1 L autoclave from
Büchi AG (versoclave type 4). The vessel is filled with 348 g of
n-decane (Merck, >99% purity), 232 g of DMF (Sigma−
Aldrich, >99% purity), 145 g of 1-dodecene (Alfa Aesar, >97%
purity), 0.0222 g of catalyst precursor Rh(acac)(CO)2
(Sigma−Aldrich, >98% purity) and 0.2234 g of BiPhePhos
(Molisa, >99% purity). The molar ratios of catalyst:substrate
and catalyst:ligand are 1:10000 and 1:3.3, respectively. For
activating the catalyst, the reactor is flushed and evacuated five
times with synthesis gas under intensive stirring. Afterward, the
vessel is pressurized to 9 bar (abs) with the inert gas argon and
heated up to 115 °C. When the temperature is reached, liquid
samples are taken after 20, 50, and 90 min, respectively. The
samples are immediately diluted with 2-propanol (Honeywell
Riedel-de Haen̈, >99% purity) to prevent phase separation of
the TMS at room temperature. After 120 min, the autoclave is
cooled to room temperature and depressurized. The catalyst
containing DMF phase is then separated from the n-decane/
dodecene phase under an argon atmosphere. All samples are
analyzed by GC and GC/MS (Agilent Technologies, Model
9820 with a HP5 column and flame ionization detection (FID)
detector; Agilent Technologies, Model 7890B with a HP5
column and FID/TCD detectors). The results showed that the
1-dodecene was almost completely isomerized after 20 min. As
the isomer mixture is fed during the experiment, along with the
n-decane feed stream, no separation of the olefins and n-decane
is necessary. Six batch isomerizations were necessary to
synthesize enough dodecene isomers for the OP2 experiment.

The dodecene/n-decane mixtures contained 29−30 wt %
dodecene isomers and <1 wt % DMF.

4.3. Experimental Results. The miniplant was operated
continuously during both experiments for more than 90 h. The
results are presented in the following.

4.3.1. Results from Experiment OP1. In the first miniplant
experiment, 93 batch reactions with the RSBR rig were
performed. The catalyst recycle loop was closed 6 h after the
startup. The yields calculated from the online GC data are
shown in Figure 6. According to eq (S.1), a mean 1-dodecene
conversion of 95.1% (SD = 12.5%) during the entire operation
time and a tridecanal yield (according to eq (S.2)) of 63.2%
(SD = 8.9%) were achieved. A dodecane yield of 11% is visible
in Figure 6 during the entire experiment. The yield of the
undesired branched aldehydes increased during the middle
part of the experiment (see Figure 6). Therefore, the flow rate
of the DMF makeup stream was increased by 8 mL/min for 6
h to enhance the ligand concentration in the miniplant.
However, this increased the concentration of catalyst, because
the stream also contains 0.015 wt % Rh-precursor. Becuase of
the higher BiPhePhos concentration, the ratio between the
linear and branched aldehyde increased again, from 90:10 at
hour 67 to 97:3 until the end of the campaign.
For analyzing the rhodium and phosphorus leaching by ICP-

OES, samples from the product phase were taken. The average
leaching of rhodium and phosphorus was 1.4%/h and 1.39%/h,
respectively, based on the initial amount used.

4.3.2. Results from Experiment OP2. The synthesized
dodecene isomer/n-decane mixture (see section 4.2) is diluted

Figure 6. Achieved yields and conversion during the miniplant experiment OP1.

Figure 7. Achieved yields and conversion during the second miniplant experiment OP2.
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with n-decane until the specified amount of internal olefins is
reached. This mixture is fed into the miniplant instead of the n-
decane. To evaluate the data of this experiment, one must
consider that the additionally fed isomers are a potential educt
for all chemical reactions (see Figure 1). Since it is not possible
to differentiate between the fed dodecene isomers and the
synthesized ones in the miniplant, the sum of the fed 1-
dodecene and internal olefins is considered as educt for the
evaluation of the conversion eq (S.4) (see the Supporting
Information), as well as the yield eq (S.5) (see the Supporting
Information) and selectivity eq (S.6) (see the Supporting
Information). The achieved yields of the second miniplant
experiment with 100 completed batch reactions are shown in
Figure 7. Compared to the first experiment, less fluctuations
are observable, indicating a more-stable operation than in the
previous experiment. After 60 h, the dodecene isomer to 1-
dodecene ratio was enhanced to 0.75g/g−1. The miniplant then
needed ∼25 h (7.1 times the residence time) to stabilize again
(Figure 7). This period indicates that the composition inside
the decanter and therefore the catalyst recycle stream were also
influenced by the feed ratio of dodecene isomers. Equation
(S.4) reveals, with the lower dodecene isomer amount, a
conversion of 59.2% (SD = 0.3%) and eq (S.5) reveals a
tridecanal yield of 53.4% (SD = 1.0%). With the conditions of
OP2.2, a conversion of 59.3% (SD = 7.9%) and a tridecanal
yield of 47.0% (SD = 0.1%) were achieved during the last 7 h.
The small standard deviations confirm the more stable
operation of the miniplant during this experiment. The ratio
of the linear to branched aldehydes is always >97:3 and hence
higher than that observed in the first experiment. Again, a large
mean yield (OP2.1: 6.6% and OP2.2: 6.6%) of the hydro-
genation product can be observed in Figure 7. The results of
the ICP-OES analysis show an average leaching of 0.74%/h for
rhodium and 1.35%/h for phosphorus based on the initial
amount used. These values were stable over the entire time of
operation.

5. DISCUSSION

Finally, the results of the miniplant experiments are compared
to the results published by Dreimann et al.6 and the
predictions of the model. For this purpose, the tridecanal
selectivities and yields, together with the dodecene con-
versions, are summarized in Table 3. A comparison of the OP1
experiment to the results of Dreimann et al.6 exhibits a higher
conversion and yield but a lower tridecanal selectivity, because
more byproducts, especially dodecane, were synthesized. The
reaction time used in this study was 30 min shorter than the
reaction time used by Dreimann et al.6 as the preparation time
of the SBR is considered in the total residence time as well.
Hence, the total reaction time was not equal to the total
reaction time of Dreimann et al.6 This time difference was
finally missing to gain more tridecanal selectivity.

A comparison of OP1 and OP2.1 selectivities reveals an
increase of ∼10%. This gain in selectivity is the result of the
internal olefin feed, which lowered the reaction rate of the
dodecene isomerization. However, as the dodecene isomer
feed rate of OP2.2 was applied, the selectivity decreased down
to the level of OP1, but the conversion remained the same.
The outcome of the OP2 experiment cannot be directly
compared to the work of Dreimann et al.,23 who actually fed
the distillate stream back from the column, because different
reaction times were applied.
The experimental tridecanal selectivity of OP1 and the

prediction of the model are in excellent agreement, although a
yield difference of up to 4% occurs. This difference is slightly
bigger than the error ranges of the model and the experimental
data. The selectivity and conversion predictions for OP2.1
show a distinction of ∼3%, which is still very good. However,
for OP2.2, the model predictions show no decrease of
tridecenal selectivity as the experimental data. Therefore, it is
likely that a semistable operation point of the miniplant
occurred because the feed amount of internal olefins was
changed during the operation. Nevertheless, the comparison
proofed the ability of the process model to predict the
performance of the miniplant.
Compared to the proposed selectivity and conversion gain of

the RSBR + CSTR reactor tandem by Kaiser et al.,1 the
experimentally determined increase is lower. The main reasons
for this discrepancy are the lower residence time and the
different reaction conditions used in the experiments. Kaiser et
al.1 applied a total residence time of up to 300 min and
dynamic control variables for the SBR whereby a higher
tridecanal selectivity results. Nevertheless, the experimental
results confirm the ability of the tandem reactor system to
enhance the conversion of 1-dodecene and the tridecanal yield.
In terms of flexibility, the RSBR + CSTR tandem must be

preferred over the former single CSTR setup. The batch
reaction time is an additional time horizon through which the
reaction parameters can be changed in order to maximize the
process performance. In this study, the entire potential of the
RSBR + CSTR setup was not exploited, as the reaction
parameters of the RSBR were not changed in time and
semiempirical parameters were used. The results of this study
serve as a solid basis for further experimental investigations
with this setup, including other types of homogeneously
catalyzed gas−liquid reactions or even tandem reactions like
the hydroaminomethylation. Moreover, the reactor setup is
potentially suitable for shorter-chain olefins such as decene.
Considering the same TMS as well as catalyst and ligand, the
optimal reaction control profiles for decene28 are similar to
those of dodecene.14,15

Finally, some remarks on the operation effort of this reactor
network are given. Compared to the single CSTR setup
previously discussed, the effort to operate the tandem reactor
system is significantly higher. Especially because of the fact that

Table 3. Comparison of the Experimental and Predicted Dodecene Conversions As Well As Tridecanal Yields and Selectiviesa

Experimental Model Prediction

Dreimann et al.6 OP1 OP2.1 OP2.2 OP1 OP2.1 OP2.2

XC12en/% 84.5 95.1 (80.3) (59.2) (59.3) 99.5 (70.7) 99.4 (66.7) 99.3 (62.3)
YnC13al/% 62.5 63.2 (64.4) (53.4) (47.0) 66.8 (66.0) 78.0 (62.2) 87.1 (57.9)
SnC13al/% 74 66.5 (80.2) (90.2) (79.3) 67.1 (93.3) 78.5 (93.2) 87.8 (93.0)

aThe numbers without brackets were calculated with eqs (S.1)−(S.3) in the Supporting Information; numbers shown with brackets were calculated
with eqs (S.4)−(S.6) in the Supporting Information.
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many steps of the RSBR operation procedure must be
performed manually, like the charging and discharging of the
reactor. However, many steps of this procedure can be
implemented into a routine and executed by the process
control system. The routine is then repeated for every batch,
whereby the operation effort will be reduced significantly. This
furthermore has the advantage that no additional investment
capital is necessary.

6. SUMMARY

A tandem reactor system consisting of a repeated semibatch
reactor (RSBR) and a continuously stirred tank reactor
(CSTR) for the hydroformylation of 1-dodecene was operated
in two long-term experiments with closed catalyst recycle loop.
Kaiser et al.1 suggested this reactor tandem to maximize the
selectivity of the linear aldehyde for high conversions of the
terminal olefin within a process with closed byproduct recycle
loop. The experiments were designed to be comparable in
terms of the residence time as well as catalyst and ligand
concentrations to Dreimann et al.,6 who used a single CSTR.
The dynamic model from Raẗze et al.7 was used to distribute
the fixed residence time between the process units and to
simulate the process beforehand, whereby the flow rates for the
experiments as well as the process performance were predicted.
The results of the first experiment show a higher conversion
and tridecanal yield compared to the single CSTR setup.6

During the second experiment, internal olefins were fed
additionally, to simulate the byproduct recycle from the
product distillation column. With this, a selectivity of up to
90% was achieved. However, the increase of the internal olefin
feed ratio during the experiment decreased the tridecanal
selectivity to 79%. The selectivities of the first and the second
experiment, where a low internal olefin ratio was fed, are
excellently predicted from the process model. The outcome of
this study proves the feasibility of the model-based approach
from Kaiser et al.1 and the capability of the RSBR + CSTR
tandem reactor system to enhance the selectivity to the linear
aldehyde with closed byproduct recycle loop. Furthermore, the
degree of freedom of the used setup is far greater than that of
the former single CSTR, which helps to enhance the economy
of the process even more.
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■ NOMENCLATURE

Abbreviations
acac = acetylacetonato
BiPhePhos = 6,6′[(3,3′-ditert-butyl-l-5,5′-dimehtoxy-1,1′-
biphenyl-2,2′diyl) bis(oxy)]bis(dibenzo[d,f][1,3,2] dioxa-
phosphepin
CO = carbon monoxide
CSTR = continuously stirred tank reactor
nC12an = dodecane
1C12en = 1-dodecene
iC12en = dodecene isomers
C10an = n-decane
DMF = N,N-dimethylformamide
DOP = Dynamic Optimization Problem
GC = gas chromatography
H2 = hydrogen
iC13al = isomeric aldehydes
ICP-OES = inductively coupled plasma−optical emission
spectroscopy
IPOPT = Interior Point Optimizer (software name)
NLP = nonlinear program
ODE = ordinary differential equation
Rh = rhodium
RSBR = repeated semibatch reactor
SBR = semibatch reactor
SD = standard deviation
nC13al = tridecanal
TMS = thermomorphic multiphase system
tot = total

Greek Symbols
ε = hold-up [mL mL−1]
τ = residence time [s]
ϕ = mass or molar ratio [g/g, mol/mol]

Latin Symbols
kLa = volumetric mass-transfer coefficient [min−1]
m = mass [kg]
Ṅ = molar flow [mol s−1]
n = amount of moles [mol]
p = pressure [bar (abs)]
S = selectivity [mol mol−1]
T = temperature [K]
t = time [s]
V = volume [mL]

̇V = volumetric flow rate [mL min−1]
X = conversion [mol mol−1 ]
Y = yield [mol mol−1]
y = gas phase molar fraction [mol mol−1]
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Subscripts and Superscripts
α = continuous index for species
AP = apolar
B = batch
cat = catalyst
DBuffer = flash buffer vessel
Dec = decanter
Dist = distillation
fresh = fresh substrate entering the process
in = inlet
I = idle
L = liquid
OP1 = operating point 1
OP2 = operating point 2
out = outlet
tot = total
UBuffer = feed buffer vessel
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