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Abstract. This paper is devoted to the determination of the cases where there is equality
in Courant’s nodal domain theorem in the case of a Robin boundary condition. For
the square, we partially extend the results that were obtained by Pleijel, Bérard–Hel¤er,
Hel¤er–Persson Sundqvist for the Dirichlet and Neumann problems. After proving some
general results that hold for any value of the Robin parameter h, we focus on the case
where h is large. We consider the case where h is small in a second paper. We also obtain
some semi-stability results for the number of nodal domains of a Robin eigenfunction of
a domain with piecewise C 2; a boundary ða > 0Þ as h large varies.
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1. Introduction

Let W � Rm, mb 2, be a bounded, connected, open set with Lipschitz boundary

and let h a R, hb 0. The case when h < 0 is mathematically interesting but less

motivated by Physics. The Robin eigenvalues of the Laplacian on W with param-

eter h are lk;hðWÞ a R, k a N, kb 1, such that there exists a function uk a H 1ðWÞ
which satisfies

�DukðxÞ ¼ lk;hðWÞukðxÞ; x a W;

q

qn
ukðxÞ þ hukðxÞ ¼ 0; x a qW;

where n is the outward-pointing unit normal to qW.

We recall that by the minimax principle, the Robin problem is associated with

the quadratic form:

H 1ðWÞ C u 7!
ð
W

j‘uj2 dxþ h

ð
qW

juqWj2 ds;

where uqW is the trace of u. So the spectrum is monotonically increasing with

respect to h for h a ½0;þlÞ. That is, the Robin eigenvalues with h > 0 inter-

polate between the Neumann eigenvalues ðh ¼ 0Þ and the Dirichlet eigenvalues

ðh ¼ þlÞ.
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The Robin eigenvalues satisfy the celebrated Courant nodal domain theorem

[11] stating that any eigenfunction corresponding to lk;hðWÞ has at most k nodal

domains. We consider the Courant-sharp Robin eigenvalues of W. We call a

Robin eigenvalue lk;hðWÞ Courant-sharp if it has a corresponding eigenfunction

that has exactly k nodal domains.

The study of the Courant-sharp eigenvalues can be motivated by the fact that

the nodal partition of a corresponding eigenfunction is a spectral minimal parti-

tion. This was shown for the eigenfunctions of a Schrödinger operator with

Dirichlet boundary condition in [26]. The case of the Neumann Laplacian was

described in [27] (the case of the Robin Laplacian with positive parameter h holds

analogously to the latter).

Typical questions about Courant-sharp eigenvalues of the Laplacian on a given

domain are: How many are there, and how large are they? For the Robin case,

these questions have recently received some attention in the literature for do-

mains with su‰ciently smooth boundary, see [22], [34]. As for the Dirichlet and

Neumann eigenvalues, l1;hðWÞ and l2;hðWÞ are Courant-sharp for all hb 0.

A further interesting question is whether it is possible to follow the Courant-

sharp (Neumann) eigenvalues with h ¼ 0 to Courant-sharp (Dirichlet) eigenvalues

as h ! þl, or whether there are some critical values h�ðk;WÞ after which the

Robin eigenvalues lk;hðWÞ, hb h�ðk;WÞ become Courant-sharp or are no longer

Courant-sharp.

We consider the particular example where W is a square S in R2 of side-length

p and the main question is: Is it possible to determine the Courant-sharp Robin

eigenvalues of this square?

As l2;hðSÞ ¼ l3;hðSÞ by a symmetry argument, it follows immediately that

l3;hðSÞ is not Courant-sharp for any hb 0. In addition, l4;hðSÞ is Courant-sharp
for all hb 0, see Subsection 2.2.

It was asserted by Pleijel in [36] that the only Courant-sharp Dirichlet eigen-

values of the square are for k ¼ 1; 2; 4. This was shown rigorously in [3]. The

only Courant-sharp Neumann eigenvalues of the square are for k ¼ 1; 2; 4; 5; 9,

as shown in [29].

The first step to obtain the results of [3], [29] is to reduce the number of poten-

tial Courant-sharp eigenvalues by invoking an argument which was inspired by

the founding paper of Pleijel [36]. We employ a similar argument in Section 3 to

reduce the possible cases that may give rise to Courant-sharp Robin eigenvalues.

We have the following theorem.

Theorem 1.1. Let hb 0. If lk;hðSÞ is an eigenvalue of the Robin Laplacian on S

with parameter h and kb 520, then it is not Courant-sharp.

We note that in the case of a Dirichlet boundary condition, the equivalent

statement in [36] gives kb 34 and in the case of a Neumann boundary condi-
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tion, [29], kb 209. The strategies of [3], [29] are then either to re-implement

the Faber–Krahn inequality, or to use symmetry properties of the corresponding

eigenfunctions to further eliminate potential Courant-sharp eigenvalues. One is

then reduced to the analysis of the nodal structure of very few families of eigen-

functions that belong to two-dimensional eigenspaces.

We show that the Robin eigenfunctions satisfy analogous symmetry prop-

erties. We note that it is possible that a Robin eigenvalue has multiplicity larger

than 2 and the corresponding eigenfunctions have no common symmetries (see

[20]).

In addition, for a Robin eigenvalue lk;hðSÞ, we do not know how to take the

relationship between k and h into account in an e‰cient way. Indeed, to prove

Theorem 1.1 our arguments are independent of h as they rely on the monotonicity

of the Robin eigenvalues and comparison to the corresponding Dirichlet and Neu-

mann eigenvalues.

We also treat the problem asymptotically as h ! þl. We show that for h

large enough the only Courant-sharp Robin eigenvalues are for k ¼ 1; 2; 4.

Theorem 1.2. There exists h1 > 0 such that for hb h1, the Courant-sharp cases

for the Robin problem on S are the same as those for h ¼ þl (i.e. the Dirichlet

case).

In order to prove this theorem, we follow the strategy due to Pleijel, [36]. It is

therefore necessary to estimate the number of nodal domains whose boundaries

intersect the boundary of the square in at least a non-trivial interval. For such

nodal domains, we cannot use the Faber–Krahn inequality for the Dirichlet

problem. Nevertheless, there is a Faber–Krahn inequality for the Robin problem

when h > 0 (see [7], [8], [9], [12]). We will see how this can be used for h su‰-

ciently large in Subsection 3.3 and Section 4.

In Section 5, we analyse the number of nodal domains of Robin eigenfunctions

in the general context of a planar domain with piecewise C2;a boundary ða > 0Þ.
We obtain some semi-stability results for the number of nodal domains as the

Robin parameter (h large) varies. In particular, we show that if we start with the

nodal partition of a Dirichlet eigenfunction with corresponding eigenvalue lk;þl

which is not Courant-sharp, and we take a small perturbation of h large, then lk;h
is not Courant-sharp.

For the square, the results of Section 5 allow us to deal with the remaining case

k ¼ 5 which is not covered by Pleijel’s strategy or by symmetry arguments. In

Section 6, we describe explicitly the situations where the eigenfunction correspond-

ing to the fifth Robin eigenvalue has 2, 3, 4 nodal domains respectively (for h > 0

su‰ciently large).

In a second paper, [21], we consider the situation where the Robin parameter h

tends to 0 and prove the following theorem.
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Theorem 1.3. There exists h0 > 0 such that for 0 < ha h0, the Courant-sharp

cases for the Robin problem on S are the same, except the fifth one, as those for

h ¼ 0 (i.e. the Neumann case).

In light of the results of [3], [29], [36] and of the previous asymptotic results,

a key question is to what extent is it possible to follow the Courant-sharp (Neu-

mann) eigenvalues with h ¼ 0 to Courant-sharp Robin eigenvalues as h ! þl?

In Section 7, we prove a first general result concerning the possible crossings

between curves corresponding to Robin eigenvalues of the square. We then focus

on the case k ¼ 9 where we investigate if there exist critical values h�
9 ðSÞ, respec-

tively h�
9 ðSÞ, after which the Robin eigenvalue l9;hðSÞ is not Courant-sharp, re-

spectively before which it is Courant-sharp. We show that h�
9 ¼ h�

9 .

We note that in [20], we consider l25;h and we observe that for h ¼ 20 the

nodal partitions of an associated eigenfunction do not satisfy the same symmetry

properties that are satisfied by the corresponding Dirichlet eigenfunction. In addi-

tion, we present an example of an eigenvalue lk;hðSÞ that is given by more than

two distinct curves as h varies.

Finally, we remark that in order to use the results of Section 5 to determine

which of the eigenvalues of the Robin Laplacian on a planar rectangle with

parameter h large enough are not Courant-sharp, one would first need to know

which of the Dirichlet eigenvalues of this rectangle are not Courant-sharp. These

eigenvalues have been identified in certain cases, in particular where the square of

the ratio of side-lengths is irrational see [28], but there are still some remaining

cases to be dealt with even for the Dirichlet problem.

2. Formulas for the eigenvalues and eigenfunctions of the Robin Laplacian
for a rectangle

2.1. Main formulas. In this subsection, we show that an orthogonal basis of

eigenfunctions for the Robin realisation of the Laplacian on the square S :¼
� p

2 ;
p
2

� �2
with parameter h > 0 is given by

up;q;hðx; yÞ ¼ up;hðxÞuq;hðyÞ; ð2:1Þ

where, for p; q a N (where N is the set of the non-negative integers)

up;hðxÞ ¼
1

sin
ap
2

cos
apx

p

� �
; ð2:2Þ

when p is even, and

up;hðxÞ ¼
1

cos
ap
2

sin
apx

p

� �
; ð2:3Þ
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when p is odd, and where ap ¼ apðhÞ is the non-zero solution in ½pp; ðpþ 1ÞpÞ
of

2ap
hp

cos ap þ 1� ðapÞ2

h2p2

 !
sin ap ¼ 0: ð2:4Þ

Here we follow the description given in [23] and we specialise to 2 dimensions.

For rectangles W ¼ ð0; l1Þ � ð0; l2Þ � R2 and ðx; yÞ a W, an orthogonal basis for

the Robin problem is given by (2.1) where, for p; q a N, up;h is the ðpþ 1Þ-st
eigenfunction of the Robin problem in ð0; l1Þ:

up;hðxÞ ¼ sin
�
apðhÞx=l1

�
þ apðhÞ

hl1
cos
�
apðhÞx=l1

�
:

One should assume apðhÞA 0 which holds for hA 0. For h ¼ 0, the solution is

trivial, hence not the right one! Here ap ¼ apðhÞ is the solution in ½pp; ðpþ 1ÞpÞ
of

2ap
hl1

cos ap þ 1� ðapÞ2

h2l21

 !
sin ap ¼ 0: ð2:5Þ

We note that uq;hðyÞ with y a ð0; l2Þ and aqðhÞ are defined analogously. The

Robin eigenvalues are then given by

ap

l1

� �2

þ aq

l2

� �2

: ð2:6Þ

So in 2 dimensions, the Robin eigenvalues correspond to pairs of non-negative in-

tegers ðp; qÞ.
We analyse the one-dimensional situation in more detail and delete the refer-

ence to p, q, h. We note that the condition (2.5) reads (for hA 0 and aA 0),

a

hl
¼e sin aþ a

hl
cos a

� �
:

In this way one understands the symmetry properties of the eigenfunctions better

(see Lemma 2.1).

One also obtains the localisation of the eigenvalues in the following way. If

we consider the symmetric case, a
hl ¼ sin aþ a

hl cos a
� �

, we get

2a

hl
sin2 a

2

� �
¼ sin a;
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which leads to

a tan
a

2

� �
¼ hl: ð2:7Þ

Similarly, if we consider the antisymmetric case, a
hl ¼ � sin aþ a

hl cos a
� �

, we

get

2a

hl
cos2

a

2

� �
¼ �sin a;

which leads to

a

hl
¼ �tan

a

2

� �
: ð2:8Þ

With these formulas in mind, we get simpler expressions for the eigenfunctions.

In the first case, we observe that

uðxÞ ¼ sinðax=lÞ þ a

hl
cosðax=lÞ

¼ sinðax=lÞ þ cotan
a

2

� �
cosðax=lÞ

¼ 1

sin a
2

cos
ax

l
� a

2

� �
:

In the second case, we observe that

uðxÞ ¼ sinðax=lÞ þ a

hl
cosðax=lÞ

¼ sinðax=lÞ � tan
a

2

� �
cosðax=lÞ

¼ 1

cos a
2

sin
ax

l
� a

2

� �
:

In this way, we clearly see the symmetry properties of the eigenfunctions and we

are closer to the Neumann case by considering x 7! cos ax
l � a

2Þ
�

or x 7! sin ax
l � a

2

� �
as eigenfunctions.

The first case corresponds to p even. When h ¼ 0, we have a ¼ pp and

cos ax
l � a

2

� �
¼ ð�1Þp=2 cos ppx

l

� �
.

The second case corresponds to p ¼ 2nþ 1 odd ðn a NÞ. When h ¼ 0, we have

a ¼ pp and sin ax
l
� a

2

� �
¼ecos

ppx

l

� �
.
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By setting l ¼ p and then translating x 7! xþ p
2 , we obtain (2.2), (2.3) respec-

tively. In Figure 1, we plot a0ðhÞ, a1ðhÞ, a2ðhÞ for S with ha 100.

2.2. Particular cases kF 1; 2; 3; 4. We recall from the introduction that l1;h
and l2;h (which for eigenfunctions of the form up;qðx; yÞ correspond to ðp; qÞ ¼
ð0; 0Þ; ð1; 0Þ respectively) are Courant-sharp via Courant’s nodal domain theorem

and orthogonality of eigenfunctions. We note that l3;hðSÞ is not Courant-sharp
since it corresponds to the case where ðp; qÞ ¼ ð0; 1Þ so l3;hðSÞ ¼ l2;hðSÞ.

Consider l4;hðSÞ with h > 0. Then p ¼ q ¼ 1 and the corresponding eigen-

function is

u1;1ðx; yÞ ¼
1

cos2 a1
2

sin
a1x

p

� �
sin

a1y

p

� �
;

for ðx; yÞ a � p
2 ;

p
2

� �2
.

We see that x ¼ 0 and y ¼ 0 are nodal lines of u1;1ðx; yÞ which partition S into

4 nodal domains. There cannot be any further nodal lines of u1;1ðx; yÞ as these

would give rise to additional nodal domains so we would get a contradiction to

Courant’s nodal domain theorem. Thus l4;hðSÞ with hb 0 is Courant-sharp.

Figure 1. Solutions a0ðhÞ, a1ðhÞ, a2ðhÞ for the square of side-length p with ha 100.
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Hence, from this point onwards, we are only interested in the remaining eigen-

values, i.e. in the eigenvalues ln;hðSÞ with nb 5. Note that, due to the monoto-

nicity of the Robin eigenvalues with respect to h, we have for nb 5,

ln;hðSÞb l4;hðSÞb l4;0ðSÞ ¼ 2: ð2:9Þ

2.3. Symmetry properties. For the case of the square with a Neumann bound-

ary condition, [29], the symmetry properties of the eigenfunctions were quite

powerful in reducing the number of potential Courant-sharp eigenvalues. In par-

ticular, via an argument due to Leydold, [35], a Courant nodal domain theorem

was deduced from these symmetry properties.

The goal of this subsection is to show that this invariance by symmetry is satis-

fied by all the Robin problems on the interval and the square. In addition, the num-

ber of nodal domains inherits some particular properties from these symmetries.

2.3.1. Symmetry of Robin eigenfunctions in 1D. We recall that h ¼ 0 cor-

responds to the Neumann case and h ¼ þl corresponds to the Dirichlet case.

The Robin condition for � l
2 ;

l
2

� �
reads

du

dx
ð�l=2Þ ¼ huð�l=2Þ; du

dx
ðl=2Þ ¼ �huðl=2Þ:

We also observe the following invariance by symmetry.

Lemma 2.1. If u is an eigenfunction of the 1D-Robin problem, the function ~uuðxÞ ¼
uð�xÞ is also an eigenfunction of the same problem.

Hence, we necessarily have (using the conservation of the norm) uð�xÞ ¼
euðxÞ. Moreover, if uð0ÞA 0, we have uð�xÞ ¼ uðxÞ and if u 0ð0ÞA 0 we get

uð�xÞ ¼ �uðxÞ. Therefore, the eigenfunctions up (see (2.2) and (2.3)) are alter-

nately symmetric and antisymmetric:

upð�xÞ ¼ ð�1ÞpupðxÞ; ð2:10Þ

like in the Dirichlet or Neumann case. We note that one can obtain the symmetry

property (2.10) immediately from (2.2), (2.3).

2.3.2. Symmetry of Robin eigenfunctions in 2D. In 2D, we now consider the

possible symmetries of a general eigenfunction associated with the eigenvalues

ln;h of � p
2 ;

p
2

� �2
which reads,

uðx; yÞ ¼
X

i; j:ln; hðSÞ¼p�2ða2
i
þa2

j
Þ
aijuiðxÞujðyÞ; ð2:11Þ
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where up (or up;h if we want to mention the reference to the Robin parameter)

is the ðpþ 1Þ-st eigenfunction of the h-Robin problem in � p
2 ;

p
2

� �
.

By considering the transformation ðx; yÞ 7! ð�x;�yÞ, we obtain

uð�x;�yÞ ¼
X

i; j:ln; hðSÞ¼p�2ða2
i
þa2

j
Þ
aijð�1Þ iþj

uiðxÞujðyÞ: ð2:12Þ

Remark 2.2. We note that if ði þ jÞ is odd for any pair ði; jÞ such that ln;hðSÞ ¼
p�2ða2i þ a2j Þ, then we get by (2.12), uð�x;�yÞ ¼ �uðx; yÞ and as a consequence u

has an even number of nodal domains. As we shall see in [21], other symmetries

related to the finite group generated by the identity and the symmetries ðx; yÞ 7!
ð�x; yÞ and ðx; yÞ 7! ðx;�yÞ can be considered.

In what follows, we obtain an upper bound for the number of Courant-sharp

Robin eigenvalues of S via arguments that do not depend on the parameter h.

3. Upper bound for the number of Courant-sharp Robin eigenvalues
of a square

In this section, we prove h-independent bounds for the number of Courant-sharp

Robin eigenvalues. This was indeed the first step proposed by Pleijel [36] in the

Dirichlet case to reduce the analysis of the Courant-sharp cases to the analysis

of finitely many eigenvalues. His proof was a combination of the Faber–Krahn

inequality and the Weyl formula. In the Neumann case considered in [29], a new

di‰culty arises as it is not possible to apply the Faber–Krahn inequality to the

elements of the nodal partition whose boundaries touch the boundary of the

square at more than isolated points. In this section, we extend the analysis to

the Robin case.

3.1. Lower bound for the Robin counting function. Recall that for l > 0, the

Robin counting function for the corresponding eigenvalues of W is defined as

NR;h
W ðlÞ :¼afk a N : kb 1; lk;hðWÞ < lg: ð3:1Þ

Similarly we have the Dirichlet counting function

ND
W ðlÞ :¼afk a N : kb 1; lk;þlðWÞ < lg; ð3:2Þ

and the Neumann counting function

NNe
W ðlÞ :¼afk a N : kb 1; lk;0ðWÞ < lg: ð3:3Þ
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Due to the monotonicity of the Robin eigenvalues with respect to h a ½0;þlÞ,
we have the following upper and lower bounds for NR;h

W ðlÞ.

NNe
W ðlÞ ¼ NR;0

W ðlÞbNR;h
W ðlÞbNR;þl

W ðlÞ ¼ ND
W ðlÞ:

For the Neumann counting function of S, we have

p

4
lþ 2b

ffiffiffi
l

p
c þ 1bNNe

S ðlÞ > p

4
l; ð3:4Þ

(see, for example, [17]) and for the Dirichlet counting function of S, if lb 2, we

have by [36], that

ND
S ðlÞ > p

4
l� 2

ffiffiffi
l

p
þ 1: ð3:5Þ

Assume that lb 2 (this is true for nb 4 by (2.9)). Then, by (3.5) and monot-

onicity of the Robin eigenvalues with respect to h,

N
R;h
S ðlÞbND

S ðlÞ > p

4
l� 2

ffiffiffi
l

p
þ 1: ð3:6Þ

With l ¼ ln;h > ln�1;h and C an associated eigenfunction, (3.6) becomes

n >
p

4
ln;h � 2

ffiffiffiffiffiffiffiffi
ln;h

p
þ 2: ð3:7Þ

We now work analogously to the proof of Proposition 2.1 in [29]. Denote by

W inn the union of nodal domains of C whose boundaries do not touch the bound-

ary of W (except at isolated points), and m innðCÞ the number of nodal domains of

C in W inn. We call a nodal domain in W inn an interior nodal domain. Similarly

denote by Wout the nodal domains in WnW inn, and moutðCÞ the number of nodal

domains of C in Wout. We call a nodal domain in WnW inn a boundary nodal

domain. We note that the closure of a boundary nodal domain intersects qW in

at least a non-trivial arc with non-empty interior. We have that

m innðCÞ ¼ mðCÞ � moutðCÞ

and we require an upper bound for moutðCÞ.

3.2. Counting the number of nodal domains touching the boundary for the
Robin problem. We give a proof which holds for all the Robin problems in the

square, except the Dirichlet case. We make use of the following theorem that is

due to Sturm, (see [4] and references therein).
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Theorem 3.1 (Sturm, 1836). Let u ¼ amum þ � � � þ anun be a non-trivial linear

combination of eigenfunctions of the one-dimensional Robin problem in � p
2 ;

p
2

� �
,

with 1ama n, and faj;ma ja ng real constants such that a2m þ � � � þ a2n A 0.

Then, the function u has at least ðm� 1Þ, and at most ðn� 1Þ zeros in � p
2 ;

p
2

� �
.

As observed originally by Pleijel [36], the analysis of the zeros of linear combi-

nations of eigenfunctions appear in the following context. We observe that if an

eigenfunction associated with ln;h (see (2.11)) satisfies the Robin condition on the

square, then its restriction to one side satisfies the Robin condition relative to the

interval and is not zero (except of course in the Dirichlet case). In general, when

the multiplicity is not one, this is no longer an eigenfunction but a linear combina-

tion of eigenfunctions on the segment � p
2 ;

p
2

� �
.

For example, the restriction to one side of the square, say x ¼ p
2 , is a linear

combination of eigenfunctions on the segment � p
2 ;

p
2

� �
:

uðp=2; yÞ ¼
X

i; j:ln; hðSÞ¼p�2ða2
i
þa2

j
Þ
aijuiðp=2ÞujðyÞ:

We can then use Theorem 3.1 which gives a lower bound on the number of zeros

of uðp=2; yÞ in � p
2 ;

p
2

� �
by

inðhÞ :¼ min
�
i : ln;hðSÞ ¼ p�2ða2i þ a2j Þ for some j

�
;

and an upper bound by

jnðhÞ :¼ max
�
j : ln;hðSÞ ¼ p�2ða2i þ a2j Þ for some i

�
: ð3:8Þ

Recall that by (2.6) we have

ln;hðSÞ ¼ ða2inðhÞ þ a2jnðhÞÞ=p
2
b inðhÞ2 þ jnðhÞ2b jnðhÞ2;

which gives that

jnðhÞa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln;hðSÞ

q
:

We can argue in the same way for the other sides of the square. Therefore,

the number of zeros of uðx; yÞ on the boundary of S is bounded from above by

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln;hðSÞ

p
. Coming back to the number of boundary nodal domains, we have

the following lemma.

Lemma 3.2. Let l be an eigenvalue of the Robin Laplacian on S with parameter

0 < h < þl. If C is a Robin eigenfunction associated to l, then

moutðCÞa 4
ffiffiffi
l

p
: ð3:9Þ
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Remark 3.3. There are other proofs given in Pleijel [36] and [29], but the one

given above is much more general and not restricted to two-dimensional eigen-

spaces (and also not based on an explicit knowledge of the eigenfunctions). On

the other hand, the claim in [29] is much more involved. It says that taking the

whole boundary into consideration, the number of points on the boundary in the

nodal set of an eigenfunction cos y uiðxÞujðyÞ þ sin y ujðxÞuiðyÞ ðiA jÞ is compara-

ble with i þ j (See Section 5 of [29]). The proof1 is restricted to eigenfunctions

whose corresponding eigenvalues have multiplicity 2. It would be interesting to

prove the same result for the Robin case for h < þl.

3.3. Upper bound for Courant-sharp Robin eigenvalues of a square. By

Lemma 3.2, we have

m innðCÞbmðCÞ � 4
ffiffiffiffiffiffiffiffi
ln;h

p
: ð3:10Þ

Now, W inn ¼
S

i o
inn
i is a finite union of nodal domains of C. Assuming that

W inn is not empty, we get, on each o inn
i , by Faber–Krahn (see [36]), that

Aðo inn
i Þ

pj2
b

1

ln;h
; ð3:11Þ

where Aðo inn
i Þ denotes the area of o inn

i and j denotes the first positive zero of the

Bessel function J0. Adding, and invoking (3.10), we find

p

j2
¼ AðSÞ

pj2
>

AðW innÞ
pj2

b
m innðCÞ
ln;h

b
mðCÞ � 4

ffiffiffiffiffiffiffiffi
ln;h

p
ln;h

;

from which we obtain

p

j2
>

mðCÞ � 4
ffiffiffiffiffiffiffiffi
ln;h

p
ln;h

: ð3:12Þ

Due to (3.10), this inequality is still true if W inn is empty.

If we are in the Courant-sharp situation, then mðCÞ ¼ n. Combining (3.7) and

(3.12), we find that

0:543229Q
p

j2
>

n� 4
ffiffiffiffiffiffiffiffi
ln;h

p
ln;h

>
p

4
þ 2

ln;h
� 6ffiffiffiffiffiffiffiffi

ln;h
p : ð3:13Þ

The mapping

l 7! f ðlÞ ¼ 2

l
� 6ffiffiffi

l
p þ p

4
� p

j2

1There is a small gap in the proof which can be repaired using Theorem 3.1 due to Sturm.
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is increasing for lb 4=9. Moreover, f ð597Þ < 0 and f ð598Þ > 0. Thus, if

ln;hb 598, we violate inequality (3.13), and we are not in the Courant-sharp

situation. So, similarly to [36] and [29], Proposition 2.1, we obtain the following

proposition.

Proposition 3.4. If ln;hb 598 is an eigenvalue of the Robin Laplacian on S with

parameter h > 0, then it is not Courant-sharp. Equivalently, any Courant-sharp

Robin eigenvalue satisfies ln;hðSÞ < 598.

3.4. Proof of Theorem 1.1. By invoking the upper bound of (3.4), we obtain an

upper bound for n such that ln;hðSÞ < 598. Indeed, suppose ln;hðSÞ < 598, then

n� 1 ¼ N
R;h
S

�
ln;hðSÞ

�
¼afk a N : kb 1; lk;hðSÞ < ln;hðSÞg

a
p

4
ln;hðSÞ þ 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln;hðSÞ

q
c þ 1 < 518:67: ð3:14Þ

Hence we have shown Theorem 1.1.

We remark that the above arguments do not depend on the Robin parameter

h. In the sections that follow, we consider the case where h is large and improve

the result.

4. Analysis as h ! þT

In this section we show that for h su‰ciently large, the Courant-sharp Robin

eigenvalues of the square are the same as those in the Dirichlet case, [3], [36],

that is the first, second and fourth, except possibly the fifth which we deal with

in Section 5. We first briefly revisit the strategy that was used by Pleijel for the

Dirichlet problem.

4.1. Pleijel’s approach for Dirichlet. In this subsection, ln denotes the eigen-

values of the Dirichlet Laplacian on S. We recap Pleijel’s proof that the only

Courant-sharp Dirichlet eigenvalues of S are l1, l2, l4.

We recall from (3.5) that if lnb 2 is Courant-sharp, then

n >
p

4
ln � 2

ffiffiffiffiffi
ln

p
þ 2: ð4:1Þ

On the other hand, if ln is Courant-sharp, the Faber–Krahn inequality gives the

necessary condition

n

ln
apj�2 < 0:54323: ð4:2Þ
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Recall that j is the smallest positive zero of J0 the Bessel function of order 0, and

that pj2 is the ground state energy of the disc of area 1. Combining (4.1) and (4.2),

leads to the inequality

pj�2 >
p

4
� 2l�1=2

n þ 2l�1
n ; ð4:3Þ

and to

lna 50: ð4:4Þ

Then the proof that l1, l2, l4 are the only Courant-sharp Dirichlet eigenvalues

of S is achieved in the following steps (see [3] for the full details).

• By a direct computation of the quotient n
ln
, it is possible to eliminate all the

eigenvalues except for n ¼ 1; 2; 4; 5; 7 and 9.

• The eigenvalues for n ¼ 7 and n ¼ 9 are eliminated by symmetry arguments

(analogously to Remark 2.2).

• The final step is to analyse the fifth eigenfunction for which a specific analysis

of the nodal structure can be done (see [3]).

In the subsections that follow, we work through these steps and investigate the

extent to which they still work for h large.

4.2. Faber–Krahn for the Robin case. We recall the result of Bossel–Daners

[7], [12], which asserts that the Robin eigenvalues of the Laplacian satisfy

the following Faber–Krahn inequality. For a Lipschitz domain o � R2 and

h > 0,

l1;hðoÞb l1;hðDoÞ; ð4:5Þ

where Do � R2 is a disc such that AðDoÞ ¼ AðoÞ. We will refer to inequality (4.5)

as the h-Faber–Krahn inequality in what follows.

For the interior nodal domains, the approach via the standard Faber–Krahn

inequality still applies (see Subsection 3.3).

We observe that an eigenfunction u of the Robin Laplacian on S can be ex-

tended to all of R2 as a solution ~uu of �D~uu ¼ l~uu (we have an explicit expression

as a trigonometric polynomial). Hence the nodal sets of ~uu have a nice local

structure (see P. Bérard [2] for a survey) and have the same properties as in the

Dirichlet case. In particular, these nodal sets are locally Lipschitz domains (actu-

ally with piecewise analytic boundary). If we observe that a nodal set of u is the

intersection of a nodal set of ~uu with the square S, we immediately deduce that the

interior nodal domains, o inn
i , are Lipschitz domains.
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We will apply the h-Faber–Krahn inequality to a boundary nodal domain of

a Robin eigenfunction u ¼ un;h associated with ln;h. However we do not know

whether the boundary nodal domains have Lipschitz boundary or not. By Lemma

3.2, the nodal set intersects the boundary finitely many times, so qoout
j consists of

a finite number of arcs belonging either to S or to qS. So we can apply Theorem

4.1 of [9]. Alternatively, we can use the strategy given in Section 3 of [31] to ob-

tain (4.5) for these domains (see also [32], p. 3620). We will discuss the regularity

of the nodal domains further in Section 5.

For a boundary nodal domain oout
j , ujoout

j
satisfies a mixed Robin–Dirichlet

condition on its boundary, but we can use the monotonicity of the eigenvalues

with respect to the Robin parameter which leads to

ln;hb l1;hðoout
j Þ: ð4:6Þ

The h-Faber–Krahn inequality can then be applied.

In order to follow Pleijel’s strategy, we now wish to rescale the discs so that

they each have area 1. Consider a scaling of the domain o by t > 0, to :¼
ftx a R2 : x a Wg. It is well known that the Robin eigenvalues satisfy the follow-

ing scaling property.

ln;hðoÞ ¼ t2ln;h=tðtoÞ: ð4:7Þ

A serious issue here is that the scaling also a¤ects the Robin parameter. So, in

particular, replacing Do by D1, the disc of area 1, we have

l1;hðDoÞ ¼ l
1;hAðoÞ1=2ðD1Þ=AðoÞ: ð4:8Þ

When h ¼ þl, the reference is l1;þlðD1Þ. In the Robin case, if we start from h

large, we will not necessarily have hAðoÞ1=2 large if we use inequality (4.8) with o

a boundary nodal domain. Hence we have to be careful in the application of the

Faber–Krahn argument. This is actually the main di‰culty.

In the following proposition, we recall the asymptotic behaviour of the first

Robin eigenvalue as the Robin parameter tends to þl or to 0 (see, for example,

[16], [23]).

Proposition 4.1. Let D1 denote the disc of unit area. Then

(i) l1;hðD1Þ tends to l1;þlðD1Þ ¼ pj2 as h ! þl,

(ii) there exists c > 0 such that, as h ! þl,

l1;hðD1Þ ¼ l1;þlðD1Þ �
c

h
þ O

1

h2

� �
; ð4:9Þ
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(iii) there exists d > 0 such that as h ! 0,

l1;hðD1Þ ¼ dhþ Oðh2Þ: ð4:10Þ

We give the proof for completeness.

Proof. To determine the first eigenvalue of the Robin Laplacian on the disc of

area 1 and radius p�1=2 with parameter h, one looks for an eigenfunction of the

form J0ðap1=2rÞ where the corresponding eigenvalue is pa2. The Robin condition2

reads

ap1=2J 0
0ðaÞ þ hJ0ðaÞ ¼ 0:

For the asymptotic behaviour near h ¼ 0 or h ¼ þl, we use the Taylor expansion

of J0 or J
0
0 at a ¼ 0 and a ¼ j. We recall that J 0

0ð0Þ ¼ 0 and J 00
0 ð0Þ < 0. For hb 0,

for the first solution, we get a2p1=2J 00
0 ð0ÞP�hJ0ð0Þ: Hence the corresponding

eigenvalue satisfies as h ! 0,

l1;hðD1Þ ¼ �
�
p1=2J0ð0Þ

�
=
�
J 00
0 ð0Þ

�
hþ Oðh2Þ:

We also have J0ðjÞ ¼ 0 and J 0
0ðjÞA 0. With t ¼ 1

h
, we write

tap1=2J 0
0ðaÞ þ J0ðaÞ ¼ 0;

and expanding at a ¼ j, we obtain:

a ¼ j� p1=2jtþ Oðt2Þ;

and

pa2 ¼ pj2 � 2p3=2j2tþ Oðt2Þ: r

The proof gives explicit values for the constants c and d in (4.9) and (4.10).

4.3. Pleijel’s approach as h ! þT. In light of what was recalled in Subsection

4.1 for h ¼ þl, we now consider the di¤erent steps in the limit h ! þl. We

first show that for h su‰ciently large, the eigenvalues ln;h with nb 10 are not

Courant-sharp.

2Note that there is a misprint in [23] after formula (3.9) for the Robin eigenvalue which is corrected
here.
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We recall that the eigenvalues depend continuously on h until þl, in

particular

En a N; lim
h!þl

ln;h ¼ ln: ð4:11Þ

We keep the notation of the previous section. If we are in the Courant-sharp

situation, then mðuÞ ¼ n, where u is an eigenfunction associated with ln;h.

If there exists o inn
i such that Aðo inn

i ÞaAðSÞ=n, we are done like in the

Dirichlet case. Indeed, we combine the latter inequality with inequality (3.11) to

obtain (4.2). Together with (4.1), this gives ln;ha 50. In particular, for these

eigenvalues n is finite and using (4.11) we get that for h su‰ciently large, (4.2) is

not satisfied for nb 10.

If not, the situation is more delicate, but we can assume that there exists oout
j

such that

Aðoout
j ÞaAðSÞ=n; ð4:12Þ

and we take one of smallest area with this property.

Combining (4.1), (4.6), (4.5), (4.12) and (4.8), we find that

AðSÞ
l
1;hAðoout

j
Þ1=2ðD1Þ

>
p

4
� 2ffiffiffiffiffiffiffiffi

ln;h
p þ 2

ln;h
: ð4:13Þ

Here, comparing with (4.3), we need to have ~hh :¼ hAðoout
j Þ1=2 large enough

if we want to arrive at the same conclusion as for the Dirichlet case (namely

ln;ha 50). So we have to find a lower bound for Aðoout
j Þ1=2. This seems di‰cult,

at least with explicit lower bounds. We will use our initial h-independent upper

bound for ln;h from the previous section. Hence, we can assume in this Courant-

sharp situation, that

na 520: ð4:14Þ

Under these assumptions, we will now show that there exists a constant c > 0

such that Aðoout
j Þb c. According to (4.10), there exist constants c1 > 0 and h1 > 0

such that

l1;~hhðD1Þb c1~hh if 0a ~hha h1: ð4:15Þ

By monotonicity of the Robin eigenvalues with respect to h and the h-Faber–

Krahn inequality, we have

l520;þlb ln;hbAðoout
j Þ�1l

1;hAðoout
j

Þ1=2ðD1Þ: ð4:16Þ
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If hAðoout
j Þ1=2a h1, then c1h

2a h1l520;þl. Indeed, if hAðoout
j Þ1=2a h1, then

by (4.15),

l
1;hAðoout

j
Þ1=2ðD1Þb c1hAðoout

j Þ1=2;

which implies by (4.16) that

l520;þlb c1hAðoout
j Þ�1=2;

hence

c1h
2
a hAðoout

j Þ1=2l520;þla h1l520;þl:

Consequently, if h > h
1=2
1 c

�1=2
1 l

1=2
520;þl; then c1h

2 > h1l520;þl which implies that

hAðoout
j Þ1=2 > h1. Therefore by (4.16) we have

Aðoout
j Þb l1;h1ðD1Þ=l520;þl:

This gives the existence of c > 0 such that Aðoout
j Þb c (see also Proposition

5.3). Using the latter inequality and (4.13), we have

p2

l1; c1=2hðD1Þ
>

p

4
� 2ffiffiffiffiffiffiffiffi

ln;h
p þ 2

ln;h
: ð4:17Þ

Hence for h large enough, we also get in this case that ln;ha 50 (compare with

inequality (4.3)).

We can now follow the proof of Pleijel for the Dirichlet case (which was out-

lined in Subsection 4.1). By the above and the continuity of the eigenvalues with

respect to h as h ! þl, (4.12), for h large enough, it remains to consider the cases

l5;h, l7;h, l9;h as left by Pleijel in the Dirichlet case. The next step is to rule out

the cases l7;hðSÞ and, for h su‰ciently large, l9;hðSÞ. Here the symmetry argu-

ment due to Leydold, [35], holds in the same way as for the Dirichlet case [3] for

the two cases corresponding to the seventh and the ninth Robin eigenvalues. We

briefly recall the relevant particular case of the argument due to Leydold.

Lemma 4.2. Let 0a h < þl. Suppose that ln;hðSÞ is an eigenvalue of the Robin

Laplacian on S with parameter h and with corresponding eigenfunction defined in

(2.11). Suppose that n is odd and that the conditions of Remark 2.2 are satisfied.

Then ln;hðSÞ is not Courant-sharp.

We know indeed by the standard Courant nodal domain theorem that the

number of nodal domains is not larger than n and by Remark 2.2 that it is even.

Hence the number is less than n.
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As an application, we observe that any eigenfunction corresponding to the

seventh Robin eigenvalue is a linear combination of u2;1ðx; yÞ and u1;2ðx; yÞ and
that 1þ 2 is odd. So l7;hðSÞ is not Courant-sharp for any hb 0.

Similarly, for h large enough, any eigenfunction corresponding to the ninth

Robin eigenvalue is a linear combination of u3;0ðx; yÞ and u0;3ðx; yÞ (see Subsec-

tion 7.2) and 0þ 3 is odd.

Hence at this stage, we have proved the following proposition.

Proposition 4.3. There exists h1 > 0 such that for hb h1, the Courant-sharp

cases for the Robin problem are the same, except possibly for k ¼ 5, as those for

h ¼ þl.

With what was done for the Dirichlet case [3] in mind, in order to prove

Theorem 1.2 for h large enough, it remains to count the number of nodal domains

of any eigenfunction corresponding to the fifth eigenvalue. This will be analysed

in Section 6 as a direct consequence of Section 5.

5. A general perturbation argument

5.1. Preliminary discussion. We analyse a y-dependent family Fh;y of eigen-

functions, more explicitly

Fh;y;p;qðx; yÞ ¼ cos y up;hðxÞuq;hðyÞ þ sin y up;hðyÞuq;hðxÞ; ð5:1Þ

for ðx; yÞ a � p
2 ;

p
2

� �2
.

For most of the arguments in this section, we will not use the explicit ex-

pression of the eigenfunction, but only the property that Fh;y is a very smooth

family of eigenfunctions (with respect to h and y) where, for h a ð0;þl�, Fh;y

is an eigenfunction of the Robin Laplacian with parameter h associated with a

smooth eigenvalue lðhÞ. Nevertheless, except the cases where h is fixed (and so

we consider a smooth family inside a fixed eigenspace) or where we are in a prod-

uct situation, e.g. a rectangle, it is not easy to give examples of such families

as introduced above. The parameter y, which above belongs to R=ð2pZÞ, could
also be thought of as belonging to some open neighbourhood of some point y0
in R.

In addition, most of the arguments in this section extend to more general

domains. We consider the case of bounded, planar domains with piecewise C2;a

ða > 0Þ boundary.
For h ¼ þl (or h ¼ h0 > 0) and y ¼ y0, we assume that the number of

nodal domains is known (for example, that the corresponding eigenvalue is not

Courant-sharp). The aim of this section is to prove that by perturbation (i.e. for
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��1
h
� 1

h0

��þ jy� y0j small enough) the number of nodal domains cannot increase

(see Proposition 5.7). The proof involves various general statements which are

interesting in a more general context, hence not restricted to the case of the

square.

5.2. Robin Faber–Krahn inequality revisited and applications. In this section,

C2;þ means C2;a for some a > 0. The subsequent proposition follows from

[8].

Proposition 5.1. Let W be a connected, bounded set with piecewise C2;þ boundary,

and, for some h > 0, let Fh be an eigenfunction of the h-Robin realisation of the

Laplacian in W. Then each nodal domain of Fh satisfies the h-Faber–Krahn inequal-

ity (4.5).

Proof. In [8], inequality (4.5) is proven when W has C2;þ boundary. Hence it

holds for an interior nodal domain and a boundary nodal domain whose bound-

ary intersects qW away from a corner (see also Theorem A.1). The case of a

boundary nodal domain whose boundary intersects qW at a corner is also covered

by the results of [8]. Indeed, according to [8], the h-Faber–Krahn inequality holds

for any open set with finite area. In this general case, the first eigenvalue is defined

as in Definition 4.2 of [8]. It is also proven in [8] that with this choice of defini-

tion, this eigenvalue is not larger than any other definition given in a more regular

situation. r

Remark 5.2. In the case of the square W ¼ S there is a more direct proof. As in

Subsection 4.2, we indeed observe that Fh;y admits an extension ~FFh;y to R2 such

that �D~FFh;y ¼ lðhÞ ~FFh;y. This gives more information about the local nodal

structure of Fh;y up to the boundary (actually in a neighbourhood of S).

Proposition 5.3. Let W be a connected, bounded set with piecewise C2;þ boundary.

Let h0 > 0 and M > 0. For h a I � ½h0;þlÞ and y a ½0; pÞ, let Fh;y denote a

smooth family of eigenfunctions for the h-Robin realisation of the Laplacian on W

associated with lhðWÞaM. Then, there exists e0 > 0 such that no nodal domain

of Fh;y can have area less than e0. (This includes the Dirichlet case).

Proof. This follows directly from the h-Faber–Krahn inequality. If o is a nodal

domain of Fh;y satisfying the assumptions of the lemma, we have

Mb lðhÞb lðh0Þb l1;h0ðDoÞ ¼ l
1;h0AðoÞ1=2ðD1Þ=AðoÞP dh0=AðoÞ1=2: ð5:2Þ

This shows that as soon as we avoid the Neumann situation, the ground state

energy in a domain o tends to þl as the area of the domain tends to 0.

r
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5.3. On the nodal set at the boundary.

Proposition 5.4. Under the assumptions of Proposition 5.3, there exists C > 0 such

that, for any h a I and any y, the number of zeros of Fh;y at the boundary is less

than C.

Remark 5.5. In the case of the square, Proposition 5.4 follows from Sturm’s

theorem.

Proof. We will use the Euler formula with boundary. The conditions for its appli-

cation are satisfied by using Theorem A.1 and it reads as follows (see, for example,

[30]).

Proposition 5.6. Let W be an open set in R2 with C2;þ boundary, u an eigenfunc-

tion of the h-Robin realisation of the Laplacian on W with k nodal domains, NðuÞ its
zero-set. Let b0 be the number of components of qW and b1 be the number of com-

ponents of NðuÞA qW. Denote by nðxiÞ and rðyiÞ the numbers of curves ending at a

critical point xi a NðuÞ, respectively yi a NðuÞB qW. Then

k ¼ 1þ b1 � b0 þ
X
xi

nðxiÞ
2

� 1

� �
þ 1

2

X
yi

rðyiÞ: ð5:3Þ

In our application, we immediately obtain that the number rðuÞ of bound-

ary points (counted with multiplicity) in the nodal set of u ¼ Fh;y satisfies

rðuÞa 2k � 2:

To achieve the proof of Proposition 5.4, we observe that by Courant’s nodal do-

main theorem, k is less than the minimal labelling of lðhÞ and that this labelling

is uniformly bounded if lðhÞ is uniformly bounded. By monotonicity, this label-

ling is indeed bounded by the maximal labelling of an eigenvalue ljðh1Þ satisfying
ljðh1ÞaM.

It remains to treat what is going on in the neighbourhood of a corner xc. We

first show that there cannot exist an infinite sequence of zeros of Fh;y in the bound-

ary (outside the corner) tending to the corner xc. Indeed, by Proposition 5.1, sim-

ilarly to the proof of Proposition 5.3, there exists some su‰ciently small e > 0

such that any line starting from one of these zeros (which necessarily belongs to

the boundary of one nodal domain) should cross qDðxc; eÞBW transversally and

only once. Hence the number of points is finite, and moreover not greater than

the cardinality of NðuÞBDðxc; eÞBW. Observing that, by Proposition 5.3, the

number of nodal domains of u in W is the same as the number of nodal domains
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of u in WnDðxc; eÞ, we can apply the Euler Formula in WnDðxc; eÞ and get the same

bound. r

5.4. On the variation of the cardinality of the nodal domains by perturba-
tion. Our main result is the following proposition.

Proposition 5.7. Under the assumptions of Proposition 5.3, let rðh; yÞ denote the

cardinality of the nodal domains of Fh;y. For any y0, h0 a ð0;þl�, there exists

h0 > 0 such that if
��1
h
� 1

h0

��þ jy� y0j < h0, then

rðh; yÞa rðh0; y0Þ:

We prove this proposition in the following subsections by analysing the struc-

ture of the zero set in a neighbourhood of the interior critical points and the

boundary points.

5.4.1. Analysis in a neighbourhood of an interior point. We treat what is going

on at an interior point z0. We assume that z0 is a critical point of Fh0;y0 associated

with an eigenvalue lðh0Þ. We choose e1 > 0 small enough such that

• Proposition 5.3 applies for 1
h
; y

� �
close to

�
1
h0
; y0
�
;

• Dðz0; e1Þ � W;

• pe21 < e0;

• the circle Cðz0; e1Þ crosses the 2l half-lines emanating from z0 transversally at

2l points zjðh0; y0Þ ð j ¼ 1; . . . ; 2lÞ.

Here we have used the general results on the local structure of an eigenfunction

of the Laplacian (see [2] and Appendix A).

Lemma 5.8. With the previous notation and the assumptions of Proposition 5.3,

we have that there exists h0 > 0 such that if
��1
h
� 1

h0

��þ jy� y0j < h0, then the number

of nodal domains of Fh;y intersecting the disc Dðz0; e1Þ cannot increase.

Proof. If we look at the nodal structure inside Dðz0; e1Þ, we have 2l local nodal

domains.

By local nodal domain of an eigenfunction Fh;y, we mean the nodal domains

of the restriction of Fh;y to Dðz0; e1Þ. We note that any local nodal domain be-

longs to a global nodal domain but that two distinct local nodal domains can be

included in the same global nodal domain.

In the second case, there exists a path g in W joining these two local nodal

domains on which Fh;y is positive (or negative), which necessarily will not be in-

cluded in Dðz0; e1Þ.
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Starting from ðh0; y0Þ we now look at a small perturbation. By considering

the restriction of Fh;y to the circle qDðz0; e1Þ, we see that the 2l zeros of Fh;y on

qDðz0; e1Þ move very smoothly, we denote them by zjðh; yÞ.
We indeed observe that the tangential derivative to qDðz0; e1Þ of Fh0;y0 at each

point zjðh0; y0Þ is not zero (again we use the general results for eigenfunctions,

in particular the transversal property, see Appendix A). By perturbation, this con-

dition is still true if we choose h0 small enough. Hence the restriction of Fh;y

changes sign at each point zjðh; yÞ. Moreover, there are 2l local domains ojðh; yÞ
of Fh;y with the property that qojðh; yÞ intersects qDðz0; e1Þ along the arc

�
zjðh; yÞ;

zjþ1ðh; yÞ
�
(with the convention that j þ 1 is 1 for j ¼ 2l).

In addition, we have the following property:

If ojðh0; y0Þ and oj 0 ðh0; y0Þ belong to the same nodal domain ð jA j 0Þ, the property

remains true for ojðh; yÞ and oj 0 ðh; yÞ with ðh; yÞ su‰ciently close to ðh0; y0Þ (i.e. for
h0 in the lemma su‰ciently small ).

Indeed let xj;0 a ojðh0; y0Þ, xj 0;0 a oj 0 ðh0; y0Þ and g0 be a path joining xj;0 and xj 0;0
inside the nodal domain. Since Fh0;y0 does not vanish on g0 and by continuity,

Fh;y does not vanish on g0 for ðh; yÞ su‰ciently close to ðh0; y0Þ.
If, for ðy0; h0Þ, ojðh0; y0Þ and oj 0 ðh0; y0Þ do not belong to the same nodal do-

main, then there are two cases

• either the situation is unchanged by perturbation;

• or, after perturbation, they belong to the same nodal domain via a new path

in Dðz0; e1Þ.

In the second case, the number of nodal domains touching qDðz0; e1Þ is decreasing
(see Figure 2).

Figure 2. In the leftmost figure, we begin with ojðh0; y0Þ and oj 0 ðh0; y0Þ in di¤erent nodal
domains. After perturbation, they may belong to the same nodal domain as in the middle
figure. The rightmost figure cannot occur as the area of the nodal domain that has been
created inside the disc is too small.
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On the other hand, by Proposition 5.3 and our choice of e1, any nodal do-

main that intersects Dðz0; e1Þ crosses qDðz0; e1Þ. If not, it would be contained in

Dðz0; e1Þ whose area is too small (see Proposition 5.3 and Figure 2). This achieves

the proof. r

Remark 5.9. If l ¼ 2, Fh0;y0 is a Morse function whose Hessian has two non-zero

eigenvalues of opposite sign. For e0 small enough, Fh;y remains a Morse function

for h0 small enough and admits a unique critical point zh;y in Dðz0; e1Þ. Then there

are four local nodal domains if Fh;yðzh;yÞ ¼ 0 and three local nodal domains if

Fh;yðzh;yÞA 0 (see Subsection 6.3.1 for a detailed proof ).

5.4.2. Analysis in a neighbourhood of a boundary point. It remains to control

what is going on at the boundary. We consider a point z0 a qW such that z0 is a

zero of Fh0;y0 which in addition is assumed to be critical when h0 ¼ þl.

We first assume that we avoid the corners and successively consider three cases:

• h0 ¼ þl, perturbation only in y.

• 0 < h0 < þl, general perturbation.

• h0 ¼ þl, general perturbation.

In the first case, the proof follows the same argument as that used in the proof

of Lemma 5.8 and uses the local structure of a Dirichlet eigenfunction at the

boundary (see [2] and Appendix A).

For the second case, considering the proof of Lemma 5.8 once again, we

choose e1 > 0 su‰ciently small such that z0 is the only boundary point in the

nodal set. Then the proof goes in the same way.

In the third case, the situation is more delicate due to the complete vanishing of

Fþl;y0 on the boundary, which should not be the case for Fh0;y0 with h0 < þl.

To deal with this, we need the following lemma.

Lemma 5.10. Let y ¼ y0 and Zbnd denote the intersection of the nodal set of

Fþl;y0 with the boundary. Then for any e > 0 there exists h�
e such that the set

fz : dðz; qWÞ < egB fz : dðz;ZbndÞ > eg does not meet the zero set of Fh;y for any

h�
e a h < þl and any y such that jy� y0j < 1

h �
e
.

In other words we have some nodal stability up to the boundary as h ! þl.

Proof. We consider the following two cases.

At a regular point of the boundary. We consider a point z0 of the boundary

(or a closed interval I in the boundary) which is not a critical point for Fþl;y0 .

By perturbation, this is still true for jy� y0j small. In this case, the normal deriv-
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ative of Fþl;y for z0 a I does not vanish, and to fix the ideas we can assume that

qnFþl;yðz0; yÞ > c > 0

(the other case would be treated similarly). By continuity, replacing c by c
2 , this

is still true for Fh;y, with z in a h-independent neighbourhood of I and 1
h
small

enough.

On the other hand, we know that Fh;y satisfies the Robin condition:

qnFh;yðz0; yÞ þ hFh;yðz0; yÞ ¼ 0:

Hence

Fh;yðz0; yÞ ¼ � 1

h
qnFh;yðz0; yÞ < 0:

This implies that there exists a neighbourhood of I and h > 0 such that, for
1
h
þ jy� y0j < h, Fh;y is negative (actually < � c

2h).

At a corner. After translation, we assume that the corner is at ð0; 0Þ. We also

assume that ð0; 0Þ does not belong to the nodal set of Fþl;y0 and that Fþl;y0 <

0 in W near the corner.

We now use the previous argument outside of ð0; 0Þ. For e0 > 0 small enough

we can take h > 0 small enough such that, for 1
h
þ jy� y0j < h, Fh;yðx; yÞ < 0 for

fðx; yÞ a R2 : x2 þ y2 ¼ e20gBW.

Suppose now that Fh;yðx; yÞ > 0 for some ðx; yÞ a D
�
ð0; 0Þ; e0

�
. Then there is

a nodal domain inside D
�
ð0; 0Þ; e0

�
and this is excluded by Proposition 5.3 pro-

vided that we have chosen e0 su‰ciently small. r

Remark 5.11. We have not proven in full generality that Fh;y is negative at the

boundary near the corner but this is not required. We do not know what occurs if

the corner belongs to the zero set.

If the corner is not in the zero set of the Dirichlet eigenfunction for some y0, we

can prove by the previous argument that this is still the case for h large enough

and y close to y0. In the case of the square, we get immediately that

q2x;yFþl;y0ð0; 0Þ < 0: ð5:4Þ

We now estimate Fh;yð0; 0Þ. Using the Robin condition on the two sides, we

obtain the formulas

Fh;yðx; 0Þ ¼
1

h
qyFh;yðx; 0Þ; Fh;yð0; yÞ ¼

1

h
qxFh;yð0; yÞ
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and

qxFh;yðx; 0Þ ¼
1

h
qxqyFh;yðx; 0Þ;

which imply that

Fh;yð0; 0Þ ¼ h�2q2x;yFh;yð0; 0Þ:

By perturbation of (5.4), we also have,

q2x;yFh;yð0; 0Þ < 0;

which implies

Fh;yð0; 0Þ < 0:

This leads to the following result when z0 a qW. We assume that z0 is a critical

point of Fþl;y0 associated with an eigenvalue lðlÞ. We choose e1 small enough

such that

• Proposition 5.3 applies;

• Cðz0; e1ÞBW crosses the l half-lines emanating from z0 transversally at l

points zjðh0; y0Þ ð j ¼ 1; . . . ; lÞ.

Here we have used the general results for the local structure of an eigenfunction of

the Dirichlet Laplacian (see [2], see also [28] for the case with corners).

Lemma 5.12. With the previous notation and the assumptions of Proposition 5.3,

we have that there exists h0 > 0 such that if
��1
h
� 1

h0

��þ jy� y0j < h0, then the number

of nodal domains of Fh;y intersecting the disc Dðz0; e1Þ cannot increase. If l ¼ 1, the

number of nodal domains equals two and remains fixed.

5.5. Application to the square. We come back to the case of the square and

prove Theorem 1.2. To this end, with Proposition 4.3 in mind, it is su‰cient to

show the following.

Proposition 5.13. There exists h0 > 0 such that for any h > h0, any eigenfunction

corresponding to 1
p2

�
a0ðhÞ2 þ a2ðhÞ

�2
has 2, 3, or 4 nodal domains (as in the Dirich-

let case). Hence for h > h0, l5;h is not Courant-sharp.

Proof. The property is indeed true for h ¼ þl and, by the results of the preced-

ing sections, the number of nodal domains cannot increase and is necessarily > 1.

r
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In the next section, we carry out a deeper analysis for the eigenfunction asso-

ciated with the fifth eigenvalue, where we count the nodal domains case by case.

For some cases, the proof will use the explicit properties of the eigenfunctions Fh;y

(see below).

In relation to Proposition 5.13, we note that by choosing non-critical values

of y we can obtain that 2, 3 and 4 nodal domains are attained for h0 large

enough.

6. Particular case kF 5

6.1. Main statement. Looking at the fifth eigenvalue corresponding to the pair

ð0; 2Þ, which is Courant-sharp for Neumann and not Courant-sharp for Dirichlet,

we consider the family of eigenfunctions in � p
2 ;þ p

2

� �2
with y a ð�p; p�:

Fh;y;0;2ðx; yÞ :¼ cos y cos
�
a0ðhÞx=p

�
cos
�
a2ðhÞy=p

�
þ sin y cos

�
a2ðhÞx=p

�
cos
�
a0ðhÞy=p

�
: ð6:1Þ

Up to changing the sign of the eigenfunction, it is su‰cient to consider y a ½0; pÞ.
We prove the following proposition.

Proposition 6.1. There exists h0 > 0 such that for any h > h0, any eigenfunction

corresponding to 1
p2

�
a0ðhÞ2 þ a2ðhÞ

�2
has 2, 3, or 4 nodal domains (as in the Dirich-

let case). More precisely, there are three critical values y�
j ðhÞ a ½0; pÞ ð j ¼ 1; 2; 3Þ

such that

y�
1 ðhÞ ¼ arctan � 1

q2ðhÞ

� �
; y�

2 ðhÞ ¼
p

2
� y�

1 ðhÞ; y�
3 ¼ 3p

4
;

where

q2ðhÞ ¼
cos a2

2

� �
cos a0

2

� � ;
and such that Fh;y has:

• 3 nodal domains for y a ½0; y�
1 ðhÞ�;

• 2 nodal domains for y a
�
y�
1 ðhÞ; y

�
2 ðhÞ

�
;

• 3 nodal domains for y a ½y�
2 ðhÞ; y

�
3 Þ;

• 4 nodal domains for y ¼ y�
3 ;

• 3 nodal domains for y a ðy�
3 ; pÞ.
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Note that for the whole family of eigenfunctions, we have symmetry with

respect to the two axes. In addition, the corresponding eigenvalue 1
p2

�
a0ðhÞ2 þ

a2ðhÞ2
�
is the fifth eigenvalue for any h a ½0;þl�. For h ¼ 0, we have a0ð0Þ ¼ 0

and a2ð0Þ ¼ 2p.

6.2. The Dirichlet case. For h ¼ þl, i.e. in the Dirichlet case, we have a0ðþlÞ
¼ p and a2ðþlÞ ¼ 3p. The figures of Pockels, [37], give the various possibilities

as a function of y. We refer to [3] for a more rigorous mathematical analysis but

note that Pockels gives all the possible topologies. He also gives the pictures for

the y corresponding to transitions between these topologies. In Figure 3, we plot

the fifth Dirichlet eigenfunction

Fþl;y;0;2ðx; yÞ ¼ cos y cosðxÞ cosð3yÞ þ sin y cosð3xÞ cosðyÞ

for ðx; yÞ a � p
2 ;

p
2

� �2
and various values of y.

The critical values of y corresponding to a change in the number of interior

critical points or the number of boundary critical points in the nodal set are

y�
1 ¼ arctanð1=3Þ, y�

2 ¼ p
2 � arctanð1=3Þ, and y�

3 ¼ 3p
4 .

As was proven in [3] and can be seen in Figure 3, the fifth Dirichlet eigen-

function has either 2, 3 or 4 nodal domains. More precisely, we have for y a
½0; pÞ:

(a) From left to right: y ¼ 0, y ¼ y�
1 ¼ arctanð1=3Þ, y ¼ p

4 , y ¼ y�
2 ¼ p

2 � arctanð1=3Þ.

(b) From left to right: y ¼ p
2 , y ¼ 5p

8 , y ¼ 3p
4 , y ¼ 7p

8 .

Figure 3. The Dirichlet eigenfunction Fþl; y; 0; 2 for various values of y.
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• 3 nodal domains for y a ½0; y�
1 �;

• 2 nodal domains for y a ðy�
1 ; y

�
2 Þ;

• 3 nodal domains for y a ½y�
2 ; y

�
3 Þ;

• 4 nodal domains for y ¼ y�
3 ;

• 3 nodal domains for y a ðy�
3 ; pÞ.

In what follows, we prove that this holds for h su‰ciently large.

6.3. Application of Section 5. For h large enough, we analyse

cðy; x; yÞ ¼ Fh;y;0;2ðx; yÞ

¼ cos y cos
a0x

p

� �
cos

a2y

p

� �
þ sin y cos

a2x

p

� �
cos

a0y

p

� �
:

This solution has a double symmetry with respect to x 7! �x and y 7! �y.

6.3.1. Interior critical points. We can look at the critical points of c as a func-

tion of y. In the case of Dirichlet, the only possible critical point is for x ¼ y ¼ 0

and can only occur for cos yþ sin y ¼ 0 (we assume y B Z p
2).

For cos yþ sin y ¼ 0, x ¼ey belong to the zero set of c. We show that

the zero set is exactly given by x ¼ey. We observe that the Hessian of c at

ðx; yÞ ¼ ð0; 0Þ is

Hðx; yÞ¼ð0;0Þ ¼
cos y

p2

a22 � a20 0

0 a20 � a22

� �
;

which has negative determinant so ðx; yÞ ¼ ð0; 0Þ is a non-degenerate critical point

of c. We see that Hðx; yÞ¼ð0;0Þ has one positive eigenvalue and one negative eigen-

value, so the Morse index of the critical point ð0; 0Þ is 1. By the Morse Lemma, in

a neighbourhood U of ð0; 0Þ, there is a di¤eomorphism f ¼ ðu; vÞ : U 7! V � R2

with fð0; 0Þ ¼ ð0; 0Þ such that ~cc :¼ c � f�1 has the form

~ccðu; vÞ ¼ ~ccð0; 0Þ � u2 þ v2 ¼ cos yþ sin y� u2 þ v2:

So we see immediately that the critical point ð0; 0Þ is isolated. With the condition

that cos yþ sin y ¼ 0, the zero set is given by u ¼ev. Since f is a bijection and

x ¼ey is contained in the zero set of c, the zero set of c is given by x ¼ey.

More generally, the same proof gives that the zero set of cðy; �Þ �
ðcos yþ sin yÞ is given near ð0; 0Þ by x ¼ey. We remark that in this case there

are 4 nodal domains.
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6.3.2. Boundary edge. Considering the boundary edge x ¼ p
2 , we have that

either y ¼ep
2 is in the nodal set, in which case there are 4 nodal domains by

symmetry, or y ¼ep
2 is not in the nodal set. In the latter case, Theorem 3.1 gives

that there are at most two points on the boundary edge x ¼ p
2 that are in the nodal

set. If there are exactly two such points in the nodal set, then this corresponds to

3 nodal domains. If there are no boundary points in the nodal set, then this cor-

responds to 2 nodal domains. For example, see Figure 3.

6.3.3. Double point on the boundary. We now analyse what is going on at the

double point on the boundary. This occurs for Dirichlet when tan y ¼ 1
3 and for

y ¼ 0. Here the situation is simple (see [37]). We observe that y ¼ 0 is a double

point for tan y ¼ � 1
q2ðhÞ . From c y; p2 ; y

� �
¼ 0, we have

cos
a2y

p

� �
þ t

cos a2
2

� �
cos a0

2

� � cos a0y

p

� �
¼ 0:

The critical t ¼ tan y is defined by t ¼ �1=q2ðhÞ with

q2ðhÞ ¼
cos a2

2

� �
cos a0

2

� � :
Hence t ¼ 1

3 þ O 1
h

� �
, and we have near y ¼ 0,

y2 ¼
 
cþ O

1

h

� �!
tþ 1

q2ðhÞ

� �
:

Again, this is the perturbation of a Morse function depending on the param-

eters h and y with the particularity that when c ¼ 0 and y ¼ 0, the critical point

is always p
2 ; 0
� �

. We remark that in this case there are 3 nodal domains.

6.4. Interior critical points for any hI 0. In this subsection, we show that

there are no other critical points than ð0; 0Þ without any restriction on h > 0. It

is immediate that ð0; 0Þ is a critical point and we get the same condition as in

the Dirichlet case. Writing c ¼ 0 and ‘c ¼ 0, we get as a necessary condition

that

a2 tan
a2x

p

� �
¼ a0 tan

a0x

p

� �
; a2 tan

a2y

p

� �
¼ a0 tan

a0y

p

� �
: ð6:2Þ

Lemma 6.2. Let a0 and a2 satisfy (2.7). For x a � p
2 ;þ p

2

� �
, a0 tanða0x=pÞ ¼

a2 tanða2x=pÞ if and only if x ¼ 0.
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Proof. Let us look at the function

0;
p

2

	 

C x 7! W ðxÞ ¼ a0 sinða0xÞ cosða2xÞ � a2 sinða2xÞ cosða0xÞ:

Up to some multiplicative renormalisation of the eigenfunctions, we recognise

the Wronskian of the eigenfunctions u0 and u2. But for the Wronskian, we

have

W 0ðxÞ ¼ ðl0 � l2Þu0ðxÞu2ðxÞ:

Now we observe that W ð0Þ ¼ 0 and that by (2.7), W p
2

� �
¼ 0. Moreover W has a

unique critical point in 0; p2
� �

at the first zero of u2. Hence W ðxÞ cannot vanish
except at x ¼ 0 and p

2 . r

It is clear that this implies that ð0; 0Þ is the only possible critical point in

� p
2 ;

p
2

� �2
. The condition that cð0; 0Þ ¼ 0 implies cos yþ sin y ¼ 0.

7. Analysis of crossings

In this section, we analyse the possible crossings of two curves h 7! lp;q;hðSÞ and
h 7! lp 0;q 0;hðSÞ defined in an interval of ½0;þlÞ. This is indeed quite important

as we want to follow the labelling of these eigenvalues when h varies. We then

consider the eigenvalue l9;hðSÞ which is Courant-sharp when h ¼ 0 but not when

h ¼ þl.

7.1. A general result.

Proposition 7.1. For distinct pairs ðp; qÞ and ðp 0; q 0Þ, with pa q and p 0a q 0, there
is at most one value of h in ½0;þlÞ such that lp;q;hðSÞ ¼ lp 0;q 0;hðSÞ.

Proof. Suppose that lp;q;hðSÞ ¼ lp 0;q 0;hðSÞ. Without loss of generality, suppose

p < p 0a q 0 < q. Consider the variation of

ð0;þlÞ C h 7! sðhÞ :¼ 1

p2

�
apðhÞ2 þ aqðhÞ2 � ap 0 ðhÞ2 � aq 0 ðhÞ2

�
:

The zeros of s correspond to the values of h for which the curves correspond-

ing to ðp; qÞ, ðp 0; q 0Þ intersect. To analyse its variation, we note that

s 0ðhÞ ¼ 2

p2

�
apðhÞa 0

pðhÞ þ aqðhÞa 0
qðhÞ � ap 0 ðhÞa 0

p 0 ðhÞ � aq 0 ðhÞa 0
q 0 ðhÞ

�
:
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Now, we deduce from (2.7) and (2.8), that h 7! akðhÞ satisfies the di¤erential

equation

a 0
k

ak
hpþ a2k

2
þ h2p2

2

� �
¼ p; ð7:1Þ

which implies

a 0
kak hpþ a2k

2
þ h2p2

2

� �
¼ pa2k : ð7:2Þ

We introduce for h > 0 and k a N,

akðhÞ ¼ hpþ a2k
2
þ h2p2

2
> 0:

We deduce

s 0ðhÞ ¼ 2

p

a2p

ap
þ
a2q

aq
�
a2p 0

ap 0
�
a2q 0

aq 0

 !
¼ � 4

p
hpþ h2p2

2

� �
1

ap
þ 1

aq
� 1

ap 0
� 1

aq 0

� �
:

We now assume that sðhÞ ¼ 0, which implies

ap þ aq ¼ ap 0 þ aq 0 :

This gives

s 0ðhÞ ¼ � 4

p
hpþ h2p2

2

� �
ðap þ aqÞðap 0aq 0 � apaqÞ

ðapaqap 0aq 0 Þ

� �
:

So the sign of s 0ðhÞ is the sign of apaq � ap 0aq 0 . For e > 0, we can now write

ap ¼ ap 0 � e and aq ¼ aq 0 þ e, and compute

apaq � ap 0aq 0 ¼ ðap 0 � eÞðaq 0 þ eÞ � ap 0aq 0 ¼ ðap 0 � aq 0 Þe� e2 < 0:

Since the derivative of s has constant sign, there can be at most one point of

intersection.

Remark 7.2. The proof of Proposition 7.1 shows that if p < p 0a q 0 < q and

lp;q;h � ¼ lp 0;q 0;h � for some h�b 0, then the map

h 7! p�2
�
ap 0 ðhÞ2 þ aq 0 ðhÞ2 � apðhÞ2 � aqðhÞ2

�
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is increasing for h > h�. Hence the curve p�2
�
apðhÞ2 þ aqðhÞ2

�
is below the curve

p�2
�
ap 0 ðhÞ2 þ aq 0 ðhÞ2

�
for h > h�.

7.2. The eigenvalue l9;hðSÞ. The ninth eigenvalue of the Neumann Laplacian

for the square is Courant-sharp, [29], and corresponds to the eigenvalue 22 þ 22

¼ 8. This eigenvalue is simple and corresponds to the labelling ð2; 2Þ. The eigen-

function reads

F0;y;2;2ðx; yÞ ¼ cos 2x cos 2y; for ðx; yÞ a � p

2
;
p

2

� �2
:

It is easy to see that the Courant-sharp property is still true for h small enough.

By deformation, the eigenfunction is

Fh;y;2;2ðx; yÞ ¼ cos
�
a2ðhÞx=p

�
cos
�
a2ðhÞy=p

�
;

with corresponding eigenvalue 2
p2

�
a2ðhÞ

�2
. The nodal structure is given by

a2ðhÞx
p

¼ � p

2
;

a2ðhÞx
p

¼ p

2
;

a2ðhÞy
p

¼ � p

2
;

a2ðhÞy
p

¼ p

2
;

hence for this eigenfunction and for h a ½0;þlÞ, there are nine nodal domains

as long as 2
p2

�
a2ðhÞ

�2
is the ninth eigenvalue.

The issue is to follow the labelling of 2
p2

�
a2ðhÞ

�2
and we observe that when

h ¼ þl this eigenvalue is 18 which has minimal labelling 11. Because 9 < 11,

this eigenfunction is NOT Courant-sharp for h su‰ciently large.

On the other hand the eigenvalue 1
p2

�
a0ðhÞ2 þ a3ðhÞ2

�
which has minimal label-

ling 10 for h ¼ 0 arrives with labelling 9 at h ¼ þl. Hence some transition oc-

curs for at least one h�
9 > 0 which satisfies

a0ðhÞ2 þ a3ðhÞ2 ¼ 2a2ðhÞ2:

By Proposition 7.1, there is at most one point of intersection between the curves

corresponding to ð2; 2Þ and ð3; 0Þ.
We recall that a0ð0Þ ¼ 0, a1ð0Þ ¼ p, a2ð0Þ ¼ 2p, a3ð0Þ ¼ 3p and that a0ðþlÞ

¼ p, a1ðþlÞ ¼ 2p, a2ðþlÞ ¼ 3p, a3ðþlÞ ¼ 4p, so a0ðhÞ2 þ a3ðhÞ2 is increasing

from 9p2 to 17p2 when 2a2ðhÞ2 goes from 8p2 to 18p2.

We first show that the curves corresponding to the pairs ð2; 2Þ, ð3; 0Þ do not

intersect the curves corresponding to the other pairs.

From above, we see that the eigenvalues corresponding to the pairs ð3; 3Þ,
ð4; 2Þ, ð2; 4Þ and so on are all larger than or equal to 18. So we need to consider

the eigenvalues corresponding to the pairs ð3; 1Þ, ð3; 2Þ, ð4; 0Þ, ð4; 1Þ and show that

they do not correspond to the ninth, tenth or eleventh eigenvalues for any h > 0.
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Numerically we find that,

l3;1;hðSÞ ¼ l1;3;hðSÞb 18 for h > 11:4225;

l3;2;hðSÞ ¼ l2;3;hðSÞb 18 for h > 2:6288;

l4;0;hðSÞ ¼ l0;4;hðSÞb 18 for h > 1:2668;

l4;1;hðSÞ ¼ l1;4;hðSÞb 18 for h > 0:4208:

So we are left to consider ha 11:4225.

From below, we see that the eigenvalues corresponding to the pairs ð0; 0Þ,
ð1; 0Þ, ð0; 1Þ, ð1; 1Þ are smaller than or equal to 8 for all 0 < h < þl. So we need

to consider the eigenvalues corresponding to the pairs ð2; 0Þ, ð2; 1Þ and show that

they do not correspond to the ninth, tenth or eleventh eigenvalues for any h > 0.

Numerically we find that,

l2;2;hðSÞb 13 for h > 2:9804;

l3;0;hðSÞ ¼ l0;3;hðSÞb 13 for h > 3:5468:

So we are left to consider ha 3:5468 < 11:4225.

In Figure 4, we plot the Robin eigenvalues of the square
�
amðhÞ2 þ anðhÞ2

�
=p2

for ha 12 corresponding to the pairs ð0; 0Þ, ð1; 0Þ, ð1; 1Þ, ð2; 0Þ, ð2; 1Þ, ð2; 2Þ, ð3; 0Þ,
ð3; 1Þ, ð3; 2Þ, ð4; 0Þ, ð4; 1Þ.

From Figure 4, we see that for ha 12 the curves corresponding to the pairs

ð2; 2Þ, ð3; 0Þ do not intersect the curves corresponding to the other pairs. By Prop-

osition 7.1, the curves corresponding to ð2; 2Þ and ð3; 0Þ intersect for a unique

value of h ¼ h�
9 > 0.

Since u2;2ðx; yÞ is an eigenfunction corresponding to l9;h �
9
ðSÞ that has 9 nodal

domains, we have proved the following proposition.

Proposition 7.3. There exists h�
9 > 0 such that l9;h is Courant-sharp for 0a ha

h�
9 and not Courant-sharp for h > h�

9 .

By the bisection method, we compute h�
9 numerically and find that h�

9 P 1:6967.

By the above, l9;h is given by the pair ð2; 2Þ for ha h�
9 and the pair ð3; 0Þ for

h > h�
9 . Also, l10;h is given by the pair ð0; 3Þ and l11;h is given by the pair ð3; 0Þ for

ha h�
9 and the pair ð2; 2Þ for h > h�

9 .

This shows that whether the eigenfunction corresponding to a Robin eigen-

value of the square is an odd function or an even function depends on h (in the

case where there are crossings).

For example, for l9;h with ha h�
9 , we have that u2;2ð�x;�yÞ ¼ u2;2ðx; yÞ. On

the other hand, for h > h�
9 ,

u3;0ð�x;�yÞ ¼ �u3;0ðx; yÞ and u0;3ð�x;�yÞ ¼ �u0;3ðx; yÞ:
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So any linear combination of u3;0ðx; yÞ and u0;3ðx; yÞ is antisymmetric with re-

spect to the transformation ðx; yÞ 7! ð�x;�yÞ. Hence l9;h is not Courant-sharp

for h > h�
9 (via Lemma 4.2).

For h ¼ h�
9 , any eigenfunction corresponding to l9;h�

9
ðSÞ is a linear combina-

tion of u2;2ðx; yÞ, u3;0ðx; yÞ and u0;3ðx; yÞ, so in general it is neither symmetric

nor antisymmetric with respect to the transformation ðx; yÞ 7! ð�x;�yÞ.

Appendix. On the local structure of the nodal set

In this appendix, we prove some well-known results for the nodal set of an eigen-

function of the Neumann problem and extend them to the Robin problem. Al-

though used in various contributions, for example [26], no detailed proofs seem

to be published for the Neumann problem. For the Dirichlet problem, see [30]

and [28] where the case with corners or cracks is also considered. In addition, we

require these results under weaker regularity assumptions on the boundary.

Figure 4. The Robin eigenvalues of the square
�
amðhÞ2 þ anðhÞ2

�
=p2 for ha 12 corre-

sponding to the pairs ð0; 0Þ, ð1; 0Þ, ð1; 1Þ, ð2; 0Þ, ð2; 1Þ, ð2; 2Þ, ð3; 0Þ, ð3; 1Þ, ð3; 2Þ, ð4; 0Þ,
ð4; 1Þ. The intersection between the curves corresponding to ð2; 2Þ and ð3; 0Þ occurs at
ð1:6970; 11:4498Þ.
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A.1. Main statement. Our main result describes the local structure of an eigen-

function of the Laplacian with a Robin boundary condition around an interior

critical point or at the boundary.

Theorem A.1. Let W be an open set in R2 with C2;þ boundary. Let h a ½0;þlÞ
and let u be a real-valued eigenfunction of the Laplacian with h-Robin boundary

condition. Then u a C2ðWÞ. Furthermore, u has the following properties:

(1) If u and ‘u vanish at a point x0 a W then there exists l > 1, e > 0 and a

real-valued, non-zero, harmonic, homogeneous polynomial of degree l such

that:

uðxÞ ¼ plðx� x0Þ þ Oðjx� x0jlþeÞ: ðA:1Þ

(2) If u vanishes at x0 a qW, then (A.1) holds for some l > 0 and

uðxÞ ¼ a rl cos loþ OðrlþeÞ ðA:2Þ

for some non-zero a a R, where ðr;oÞ are polar coordinates of x around x0. The

angle o is chosen so that the tangent to the boundary at x0 is given by the equa-

tion sino ¼ 0.

(3) The nodal set NðuÞ is the union of finitely many, C2-immersed circles in W,

and C1-immersed lines which connect points of qW. Each of these immersions

is called a nodal line. Note that self-intersections are allowed. The connected

components of WnNðuÞ are called nodal domains.

(4) If u has a zero of order l at a point x0 a W then exactly l segments of nodal lines

pass through x0. The tangents to the nodal lines at x0 dissect the full circle of

radius Bðx0; aÞ ( for a > 0 small enough) into 2l equal angles.

(5) If u has a zero of order l at a point x0 a qW then exactly l segments of nodal

lines meet the boundary at x0. The tangents to the nodal lines at x0 are given by

the equation cos lo ¼ 0, where o is chosen as in (A.2).

A.2. Proof of the theorem. The C2-regularity of u up to the boundary is a

consequence of standard Schauder estimates (see [19]). The proof now is in four

steps.

A.2.1. Reduction to the Neumann case. The first step is to reduce the problem

from the Robin case to the Neumann case. This is done through a change of

functions. Setting u ¼ exp fh v, we can choose fh such that v a C2ðWÞ satisfies the
Neumann condition. Indeed, this fh should be in C2ðWÞ and satisfy qnfh ¼ �h on

the boundary of W (take h distðx; qWÞ near qW and then use a cut-o¤ function).

We obtain a Neumann problem where the Laplacian is replaced by exp�fh �
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ð�DÞ � exp fh, that is the Laplacian with an additional term of degree 1 with

C1ðWÞ coe‰cients and an additional term of degree 0 in C0ðWÞ.
From this point onwards, we consider the Neumann case.

A.2.2. Double manifold. The second step is to use the double manifold as sug-

gested in Donnelly–Fe¤ermann, [13], [14], [15]. As we only wish to prove a local

result, by a di¤eomorphism we can reduce to the case when the boundary is given

by x1 ¼ 0. In these new coordinates, the operator reads

H :¼
X
ij

gijðx1; x2Þqxiqxj þ
X
i

aiðx1; x2Þqxi þ cðxÞ:

In addition, this di¤eomorphism can be chosen as a conformal map (see [15]), so

more precisely, we have

H :¼ �rðxÞDþ
X
i

aiðxÞqxi þ cðxÞ:

Note that if we had started with the Neumann case ðh ¼ 0Þ, then there would be

no terms of degree one. This would make the proof easier and would permit

weaker assumptions.

Starting from u as in Subsection A.2.1, after all these transformations, we get

a local solution in C2ðR2
þÞ of Hw ¼ lw.

We define ~ww by

~wwðx1; x2Þ ¼
wðx1; x2Þ for x1 > 0;

wð�x1; x2Þ for x1 < 0:

�

We can then define the extension of the operator as ~HH

~HH :¼ �~rrðxÞDþ
X2
i¼1

~aaiqxi þ ~ccðxÞ:

where ~rr, ~aa2 and ~cc are the extensions of r, a2 and c by reflection and ~aa1 is defined by

odd reflection.

We observe for later that ~rr is Lipschitz and that the other coe‰cients are

bounded.

With this definition, we verify that ~ww is an even function (with respect to x1)

that satisfies the Neumann condition, and a solution of

~HH ~ww ¼ l~ww:
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By analysing the way that we obtain ~ww from u (starting from the first line of

the proof ), it is clear that ~ww a C2ðR� � RÞBC2ðRþ � RÞ. Also, ~ww is clearly in

C1;1ðR2Þ (as it’s an even function with respect to x1).

We note that from ~wwðx1; x2Þ ¼ ~wwð�x1; x2Þ, we get q2x1;x2 ~wwð0; x2Þ ¼ 0. The

other second derivatives match on x1 ¼ 0. Moreover ~ww is actually locally in

C2ðR2Þ.

A.2.3. Nodal structure for solutions of a second-order elliptic operator with
coe‰cients with less regularity. The third step is to determine whether the local

nodal structure that holds for the Laplacian still holds for this second-order elliptic

operator which has coe‰cients with less regularity. This problem is analysed by

Hardt–Simon in [25] (at least in a weaker sense) and more precisely in [24] (see

Theorem 1.5 and Theorem 3.1). The following theorem is Theorem 3.1 of [24]

applied to ~ww and

L :¼ ~HH � l

in the neighbourhood of a point in the zero set on the boundary, which is assumed

to be ð0; 0Þ. In [24], the author proves the result for a second-order elliptic opera-

tor of the form

L ¼
X
ij

aijqxiqxj þ
X
i

biðxÞqxi þ c

where the aij are Hölder and the other coe‰cients are bounded.

From this point onwards, we omit the tildes.

Theorem A.2. Suppose that Lu ¼ 0 and that u is not flat at ð0; 0Þ, that is, u has

finite vanishing order at ð0; 0Þ. Then there exists a homogeneous harmonic poly-

nomial P of some degree db 0 and, for any p > 1, an e > 0 such that c :¼ u� P

satisfies:

cðxÞ ¼ OðjxjdþeÞ;

and

r2
�ð

Bð0; rÞ
j‘2cðxÞjp dx

�1=p
þ r
�ð

Bð0; rÞ
j‘cðxÞjp dx

�1=p
aCrdþeþ2=p; r > 0:

In other words u is locally like the harmonic polynomial P in the pointwise

sense, and the first and second derivatives of u are locally like the corresponding

derivatives of P in the integral sense.
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Remark A.3. Note that to apply Theorem A.2, we need to know that u is not flat.

According to [24] (p. 985, lines 7–9), this is the case under our assumptions and

the reference is [18].

This theorem gives a good indication of the nodal structure: it should be close

to the zero set of the harmonic polynomial P whose structure is well known.

A.2.4. Cheng–Kuo’s argument. Hence the last step is to verify if Cheng’s argu-

ment [10] applies (a former reference is [6]). We can apply the following lemma

attributed by Cheng [10] to Kuo [33].

Lemma A.4. Suppose that u and f are smooth functions in R2 such that, with

c ¼ u� f, we have for some db 1 and e > 0,

(i) cðxÞ ¼ OðjxjdþeÞ;
(ii) ‘cðxÞ ¼ Oðjxjd�1þeÞ;
(iii) f vanishes with order d at 0,

(iv) j‘fðxÞjb 1
C
jxjd�1

.

Then there exists a local C1 di¤eomorphism Y fixing the origin such that

uðxÞ ¼ f
�
YðxÞ

�
:

In [10], Cheng applies the lemma to Cl functions, but the regularity of u and f

is not discussed there. The proof clearly holds for C2 functions and this assump-

tion is satisfied in our case.

To apply this lemma to the present situation, we observe that a homogeneous

harmonic polynomial of degree d in dimension 2 satisfies (iii) and (iv) above. It

has indeed, for some g a C, the form <ðgzdÞ with z ¼ ðx1 þ ix2Þ. We note that

(i) holds by Theorem A.2.

It remains to verify that (ii) holds. We compare this condition with the prop-

erty established in the previous theorem. By Theorem A.2, we get a control of

‘c in W 1;p in any ball Bð0; rÞ hence by Sobolev’s embedding theorem we have,

as soon as p > 2, the control of ‘c in Ll
�
Bð0; rÞ

�
(see, for example, Part II

Case C 0 of Theorem 5.4 in [1]). It remains to control the constants appearing in

the continuity of this injection. To do this, for r > 0, we introduce a cut-o¤ wðx=rÞ
where w ¼ 1 on Bð0; 1Þ and supp w � Bð0; 2Þ, and apply the standard Sobolev em-

bedding theorem to wðx=rÞqxic and use the two estimates from Theorem A.2. We

get

sup
x ABð0; rÞ

j‘cðxÞjaCpr
�2þdþeþ2=p; for p > 2:
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For p > 2 su‰ciently close to 2 (for example �1þ 2
p
¼ � e

2), we get

sup
x ABð0; rÞ

j‘cðxÞjaCpr
�1þdþe=2; for p > 2:

This is su‰cient to apply the lemma.

Remark A.5. There is a gap in Cheng’s paper [10] when applied to a dimen-

sion larger than 2. The reason for this is that a harmonic homogeneous poly-

nomial does not always satisfy item (iv) when the dimension is larger than 2 (see

Appendix E in [5] for a complete discussion). Here we only use the statement in

dimension 2.

A.3. Remarks. We note that all the proofs are local and the results can be ob-

tained locally if we have the corresponding local regularity property.

In the Dirichlet case, we do not require the argument from Subsection A.2.1.

We begin with the doubling argument as in Subsection A.2.2 (see [14], [15]). We

then apply a conformal di¤eomorphism as in [13], [15] and, as we work in dimen-

sion 2, the corresponding Laplacian has no terms of degree 1 (see, for example,

equation (2.8) of [13]). Similarly to Subsection A.2.2, we obtain a local solution

of Hu ¼ lu in C2ðR2
þÞ. Instead of the reflection argument, in order to construct ~ww,

we can introduce an extension via odd reflection:

~wwðx1; x2Þ ¼
uðx1; x2Þ for x1 > 0;

�uð�x1; x2Þ for x1 < 0:

�

Analogously to the above, if u is an eigenfunction locally in C2ðWÞ satisfying the

Dirichlet condition (note that q2x1x1uð0; x2Þ ¼ 0), one can verify that ~ww is locally in

C2ðR2Þ.

Theorem A.6. Let W be an open set in R2 with C2;þ boundary and let u be a real-

valued eigenfunction of the Laplacian with Dirichlet boundary conditions. Then

u a C2ðWÞ. Furthermore, u has the following properties:

(1) If u and ‘u vanish at a point x0 a W then there exists l > 1, e > 0 and a

real-valued, non-zero, harmonic, homogeneous polynomial of degree l such

that:

uðxÞ ¼ plðx� x0Þ þ Oðjx� x0jlþeÞ: ðA:3Þ

(2) If moreover x0 a qW, then

uðxÞ ¼ arl sin loþ OðrlþeÞ ðA:4Þ
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for some non-zero a a R, where ðr;oÞ are polar coordinates of x around x0. The

angle o is chosen so that the tangent to the boundary at x0 is given by the equa-

tion o ¼ 0.

(3) The nodal set NðuÞ is the union of finitely many, C2-immersed circles in W, and

C1-immersed lines which connect points of qW.

(4) If u has a zero of order l at a point x0 a W, then exactly l segments of nodal

lines pass through x0. The tangents to the nodal lines at x0 dissect the full circle

of radius Bðx0; aÞ ( for a > 0 small enough) into 2l equal angles.

(5) If u has a zero of order l at a point x0 a qW then exactly l� 1 segments of

nodal lines meet the boundary at x0. The tangents to the nodal lines at x0 are

given by the equation sin lo ¼ 0, oA 0; p.

We can, for example, refer to [28] for the Dirichlet case which gives the results

(except C2 regularity) under the weaker assumption that the boundary is piecewise

C1;þ.
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[2] P. Bérard. Inégalités isopérimétriques et applications. Domaines nodaux des fonctions
propres. Séminaire Équations aux dérivées partielles (École Polytechnique) exp. n�11
(1981–1982), 1–9.

[3] P. Bérard, B. Hel¤er. Dirichlet eigenfunctions of the square membrane: Courant’s
property, and A. Stern’s and A. Pleijel’s analyses. In: A. Baklouti, A. El Kacimi,
S. Kallel, N. Mir (eds). Analysis and Geometry. Springer Proceedings in Mathematics
& Statistics, 127, Springer, Cham (2015).

[4] P. Bérard, B. Hel¤er. Sturm’s theorem on zeros of linear combinations of eigenfunc-
tions. arXiv:1706.08247 [math.SP] (16 October 2018). Online in Expo. Math. (2018).
https://doi.org/10.1016/j.exmath.2018.10.002.
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https://doi.org/10.1007/s40316-019-00120-7.
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