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Abstract. This paper is devoted to the determination of the cases where there is equality
in Courant’s nodal domain theorem in the case of a Robin boundary condition. For
the square, we partially extend the results that were obtained by Pleijel, Bérard—Helffer,
Helffer—Persson Sundqvist for the Dirichlet and Neumann problems. After proving some
general results that hold for any value of the Robin parameter s, we focus on the case
where £ is large. We consider the case where / is small in a second paper. We also obtain
some semi-stability results for the number of nodal domains of a Robin eigenfunction of
a domain with piecewise C>* boundary (o > 0) as / large varies.
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1. Introduction

Let Q C R™, m > 2, be a bounded, connected, open set with Lipschitz boundary
and let 7 € R, h > 0. The case when & < 0 is mathematically interesting but less
motivated by Physics. The Robin eigenvalues of the Laplacian on Q with param-
eter /1 are /4 ;,(Q) € R, k € N, k > 1, such that there exists a function u; € H'(Q)
which satisfies

—Aug(x) = e n(Q)ug (x), xeQ,

%uk(x) +hu(x) =0, xedQ,

where v is the outward-pointing unit normal to Q.
We recall that by the minimax principle, the Robin problem is associated with
the quadratic form:

Hl(Q)auHJ |Vu\2dx+hJ lucal® do,
Q

0Q

where uyq is the trace of u. So the spectrum is monotonically increasing with
respect to /4 for h € [0,+00). That is, the Robin eigenvalues with /4 > 0 inter-
polate between the Neumann eigenvalues (2 = 0) and the Dirichlet eigenvalues
(h = +00).
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The Robin eigenvalues satisfy the celebrated Courant nodal domain theorem
[11] stating that any eigenfunction corresponding to A ,(Q) has at most k£ nodal
domains. We consider the Courant-sharp Robin eigenvalues of Q. We call a
Robin eigenvalue /; ,(Q) Courant-sharp if it has a corresponding eigenfunction
that has exactly k& nodal domains.

The study of the Courant-sharp eigenvalues can be motivated by the fact that
the nodal partition of a corresponding eigenfunction is a spectral minimal parti-
tion. This was shown for the eigenfunctions of a Schrodinger operator with
Dirichlet boundary condition in [26]. The case of the Neumann Laplacian was
described in [27] (the case of the Robin Laplacian with positive parameter /1 holds
analogously to the latter).

Typical questions about Courant-sharp eigenvalues of the Laplacian on a given
domain are: How many are there, and how large are they? For the Robin case,
these questions have recently received some attention in the literature for do-
mains with sufficiently smooth boundary, see [22], [34]. As for the Dirichlet and
Neumann eigenvalues, 4; ,(Q) and 4, () are Courant-sharp for all # > 0.

A further interesting question is whether it is possible to follow the Courant-
sharp (Neumann) eigenvalues with 4 = 0 to Courant-sharp (Dirichlet) eigenvalues
as h — +oo, or whether there are some critical values /*(k,Q) after which the
Robin eigenvalues A 4(Q), h > h*(k,Q) become Courant-sharp or are no longer
Courant-sharp.

We consider the particular example where Q is a square S in R? of side-length
7 and the main question is: Is it possible to determine the Courant-sharp Robin
eigenvalues of this square?

As 1 4(S) = 43,4(S) by a symmetry argument, it follows immediately that
A3.1(S) is not Courant-sharp for any 4 > 0. In addition, A4 ;(S) is Courant-sharp
for all 47 > 0, see Subsection 2.2.

It was asserted by Pleijel in [36] that the only Courant-sharp Dirichlet eigen-
values of the square are for kK = 1,2,4. This was shown rigorously in [3]. The
only Courant-sharp Neumann eigenvalues of the square are for k =1,2,4,5,9,
as shown in [29].

The first step to obtain the results of [3], [29] is to reduce the number of poten-
tial Courant-sharp eigenvalues by invoking an argument which was inspired by
the founding paper of Pleijel [36]. We employ a similar argument in Section 3 to
reduce the possible cases that may give rise to Courant-sharp Robin eigenvalues.
We have the following theorem.

Theorem 1.1. Let h > 0. If 4 ;(S) is an eigenvalue of the Robin Laplacian on S
with parameter h and k > 520, then it is not Courant-sharp.

We note that in the case of a Dirichlet boundary condition, the equivalent
statement in [36] gives k > 34 and in the case of a Neumann boundary condi-
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tion, [29], k >209. The strategies of [3], [29] are then either to re-implement
the Faber—Krahn inequality, or to use symmetry properties of the corresponding
eigenfunctions to further eliminate potential Courant-sharp eigenvalues. One is
then reduced to the analysis of the nodal structure of very few families of eigen-
functions that belong to two-dimensional eigenspaces.

We show that the Robin eigenfunctions satisfy analogous symmetry prop-
erties. We note that it is possible that a Robin eigenvalue has multiplicity larger
than 2 and the corresponding eigenfunctions have no common symmetries (see
120)).

In addition, for a Robin eigenvalue /x ;(S), we do not know how to take the
relationship between k& and /4 into account in an efficient way. Indeed, to prove
Theorem 1.1 our arguments are independent of / as they rely on the monotonicity
of the Robin eigenvalues and comparison to the corresponding Dirichlet and Neu-
mann eigenvalues.

We also treat the problem asymptotically as 7 — +oo. We show that for /
large enough the only Courant-sharp Robin eigenvalues are for k = 1,2, 4.

Theorem 1.2. There exists hy > 0 such that for h > hy, the Courant-sharp cases
for the Robin problem on S are the same as those for h = +oo (i.e. the Dirichlet
case).

In order to prove this theorem, we follow the strategy due to Pleijel, [36]. It is
therefore necessary to estimate the number of nodal domains whose boundaries
intersect the boundary of the square in at least a non-trivial interval. For such
nodal domains, we cannot use the Faber—Krahn inequality for the Dirichlet
problem. Nevertheless, there is a Faber—Krahn inequality for the Robin problem
when /4 > 0 (see [7], [8], [9], [12]). We will see how this can be used for / suffi-
ciently large in Subsection 3.3 and Section 4.

In Section 5, we analyse the number of nodal domains of Robin eigenfunctions
in the general context of a planar domain with piecewise C>* boundary (« > 0).
We obtain some semi-stability results for the number of nodal domains as the
Robin parameter (h large) varies. In particular, we show that if we start with the
nodal partition of a Dirichlet eigenfunction with corresponding eigenvalue A, 1
which is not Courant-sharp, and we take a small perturbation of / large, then /
is not Courant-sharp.

For the square, the results of Section 5 allow us to deal with the remaining case
k =5 which is not covered by Pleijel’s strategy or by symmetry arguments. In
Section 6, we describe explicitly the situations where the eigenfunction correspond-
ing to the fifth Robin eigenvalue has 2, 3, 4 nodal domains respectively (for 2 > 0
sufficiently large).

In a second paper, [21], we consider the situation where the Robin parameter /
tends to 0 and prove the following theorem.
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Theorem 1.3. There exists hyg > 0 such that for 0 < h < hy, the Courant-sharp
cases for the Robin problem on S are the same, except the fifth one, as those for
h =0 (i.e. the Neumann case).

In light of the results of [3], [29], [36] and of the previous asymptotic results,
a key question is to what extent is it possible to follow the Courant-sharp (Neu-
mann) eigenvalues with 4 = 0 to Courant-sharp Robin eigenvalues as 7 — +0o0?

In Section 7, we prove a first general result concerning the possible crossings
between curves corresponding to Robin eigenvalues of the square. We then focus
on the case k = 9 where we investigate if there exist critical values /2 (S), respec-
tively /5(S), after which the Robin eigenvalue A9 ;(.S) is not Courant-sharp, re-
spectively before which it is Courant-sharp. We show that ig = f_zg*.

We note that in [20], we consider s, and we observe that for 4 = 20 the
nodal partitions of an associated eigenfunction do not satisfy the same symmetry
properties that are satisfied by the corresponding Dirichlet eigenfunction. In addi-
tion, we present an example of an eigenvalue /x ;(S) that is given by more than
two distinct curves as / varies.

Finally, we remark that in order to use the results of Section 5 to determine
which of the eigenvalues of the Robin Laplacian on a planar rectangle with
parameter / large enough are not Courant-sharp, one would first need to know
which of the Dirichlet eigenvalues of this rectangle are not Courant-sharp. These
eigenvalues have been identified in certain cases, in particular where the square of
the ratio of side-lengths is irrational see [28], but there are still some remaining
cases to be dealt with even for the Dirichlet problem.

2. Formulas for the eigenvalues and eigenfunctions of the Robin Laplacian
for a rectangle

2.1. Main formulas. In this subsection, we show that an orthogonal basis of
eigenfunctions for the Robin realisation of the Laplacian on the square S :=
(- %,g)z with parameter 4 > 0 is given by

p,q.0(X, ¥) = tp n(X)ttg, 5 (1), (2.1)

where, for p,¢ € N (where N is the set of the non-negative integers)

1 0lpX
W(X) = ——5cos| — |, 2.2
Up,n(X) sin 2 < 7 ) (2.2)
when p is even, and
1 0lpX
= - 2.3
i) = (). 23)
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when p is odd, and where a, = a,(h) is the non-zero solution in [px, (p + 1)n)
of

) 2
=% cos o + (1 _ ) )sin %, = 0. (2.4)

hr h2n?

Here we follow the description given in [23] and we specialise to 2 dimensions.
For rectangles Q = (0,4) x (0,/4) € R? and (x, y) € Q, an orthogonal basis for
the Robin problem is given by (2.1) where, for p,q € N, u, is the (p + 1)-st
eigenfunction of the Robin problem in (0,4} ):

o, (h)
hty

up 5(x) = sin (o, (h)x/41) + cos (o, (h)x/4)).

One should assume o, (/) # 0 which holds for 4 # 0. For & = 0, the solution is
trivial, hence not the right one! Here o, = a,(h) is the solution in [px, (p + 1)7)
of

2, CORP
A cosa, + [ 1 — 120 sinoy, = 0. (2.5)

We note that u, ;(y) with y € (0,/,) and o,(h) are defined analogously. The
Robin eigenvalues are then given by

2\ o\’
-z - 2.6
(f 1) " </2> 26)
So in 2 dimensions, the Robin eigenvalues correspond to pairs of non-negative in-
tegers (p, q).

We analyse the one-dimensional situation in more detail and delete the refer-
ence to p, ¢, h. We note that the condition (2.5) reads (for s # 0 and o # 0),

4 (sin + ” cos )
— = o+ -— cosa).
h ht

In this way one understands the symmetry properties of the eigenfunctions better
(see Lemma 2.1).

One also obtains the localisation of the eigenvalues in the following way. If
we consider the symmetric case, 7; = (sin o + 77 COS oc), we get
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which leads to

xtan (g) — . (2.7)

Similarly, if we consider the antisymmetric case, 7, = —(sinoc + 77 cos oc), we
get

which leads to

%~ an (§> (238)

With these formulas in mind, we get simpler expressions for the eigenfunctions.
In the first case, we observe that

u(x) = sin(ox//) + hi/ cos(ax//)
= sin(ax//) + cotan (%) cos(ax//)

B 1 cos ox o
_sin% l 2)

In the second case, we observe that

u(x) = sin(ox/7) + % cos(ax//)

= sin(ax//) — tan (g) cos(ax/4)

B 1 sin ax o
~ cos % l 2)

In this way, we clearly see the symmetry properties of the eigenfunctions and we
are closer to the Neumann case by considering x — cos(% — %) or x - sin(% — %)
as eigenfunctions.

The first case corresponds to p even. When & =0, we have « = pn and
cos(& —3) = (-1)P2 cos(Z7).
The second case corresponds to p = 2n+ 1 odd (n € N). When /# = 0, we have
prx

o = pr and sin(% — %) = tcos(ZF).
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—ag(h)
- oq(h)
—CYQ(h)

— L L !

20 20 60 80 100

h

Figure 1. Solutions og (%), o (h), o2 (h) for the square of side-length 7 with 4 < 100.

By setting / = 7 and then translating x — x + %, we obtain (2.2), (2.3) respec-
tively. In Figure 1, we plot ag(h), o (h), aa(h) for S with & < 100.

2.2. Particular cases kK =1,2,3,4. We recall from the introduction that 4,
and 4, (which for eigenfunctions of the form u, ,(x, y) correspond to (p,q) =
(0,0), (1,0) respectively) are Courant-sharp via Courant’s nodal domain theorem
and orthogonality of eigenfunctions. We note that 43 ;(S) is not Courant-sharp
since it corresponds to the case where (p,q) = (0,1) so 43 4(S) = 42.4(S).
Consider A4 ;(S) with 7> 0. Then p =¢ =1 and the corresponding eigen-

function is
1 . foux\ . [y
u 1(x,y) = ————sin{ — |sin| —
1%, ) cos? 3 7 n )’

for (x, ) € (—g,g)z.

We see that x = 0 and y = 0 are nodal lines of u; ;(x, y) which partition .S into
4 nodal domains. There cannot be any further nodal lines of u; ;(x, y) as these
would give rise to additional nodal domains so we would get a contradiction to
Courant’s nodal domain theorem. Thus A4 ,(S) with 4 > 0 is Courant-sharp.
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Hence, from this point onwards, we are only interested in the remaining eigen-
values, i.e. in the eigenvalues /, ,(S) with n > 5. Note that, due to the monoto-
nicity of the Robin eigenvalues with respect to 4, we have for n > 5,

/"anh(S) > )»47;,(5) > /1410(5) =2. (2.9)

2.3. Symmetry properties. For the case of the square with a Neumann bound-
ary condition, [29], the symmetry properties of the eigenfunctions were quite
powerful in reducing the number of potential Courant-sharp eigenvalues. In par-
ticular, via an argument due to Leydold, [35], a Courant nodal domain theorem
was deduced from these symmetry properties.

The goal of this subsection is to show that this invariance by symmetry is satis-
fied by all the Robin problems on the interval and the square. In addition, the num-
ber of nodal domains inherits some particular properties from these symmetries.

2.3.1. Symmetry of Robin eigenfunctions in 1D. We recall that 2 =0 cor-
responds to the Neumann case and s = 4oo corresponds to the Dirichlet case.
The Robin condition for (—4,%) reads

du du

S =h(=ef2), 5

dx (¢/2) = —hu(//2).

We also observe the following invariance by symmetry.

Lemma 2.1. If u is an eigenfunction of the 1D-Robin problem, the function u(x) =
u(—x) is also an eigenfunction of the same problem.

Hence, we necessarily have (using the conservation of the norm) u(—x) =
+u(x). Moreover, if u(0) # 0, we have u(—x) = u(x) and if u’'(0) # 0 we get
u(—x) = —u(x). Therefore, the eigenfunctions u, (see (2.2) and (2.3)) are alter-
nately symmetric and antisymmetric:

up(—x) = (=1)"up (%), (2.10)

like in the Dirichlet or Neumann case. We note that one can obtain the symmetry
property (2.10) immediately from (2.2), (2.3).

2.3.2. Symmetry of Robin eigenfunctions in 2D. In 2D, we now consider the
possible symmetries of a general eigenfunction associated with the eigenvalues
I of (— %,%)2 which reads,

u(x, y) = > aiui(X);(¥), (2.11)

i j:hn n(S) =12 (0] +07)
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where u, (or u, ) if we want to mention the reference to the Robin parameter)
is the (p + 1)-st eigenfunction of the #-Robin problem in (—3,%).
By considering the transformation (x, y) — (—x, —y), we obtain

Wx) =S a1 (). (2.12)

i, i, 1 (S)=1 2 (] +er})

Remark 2.2. We note that if (i + /) is odd for any pair (i, j) such that 4, ,(S) =
n 2 (o + ocjz), then we get by (2.12), u(—x, —y) = —u(x, y) and as a consequence u
has an even number of nodal domains. As we shall see in [21], other symmetries
related to the finite group generated by the identity and the symmetries (x, y) —
(—x,y) and (x, y) — (x,—y) can be considered.

In what follows, we obtain an upper bound for the number of Courant-sharp
Robin eigenvalues of S via arguments that do not depend on the parameter /4.

3. Upper bound for the number of Courant-sharp Robin eigenvalues
of a square

In this section, we prove A-independent bounds for the number of Courant-sharp
Robin eigenvalues. This was indeed the first step proposed by Pleijel [36] in the
Dirichlet case to reduce the analysis of the Courant-sharp cases to the analysis
of finitely many eigenvalues. His proof was a combination of the Faber—Krahn
inequality and the Weyl formula. In the Neumann case considered in [29], a new
difficulty arises as it is not possible to apply the Faber—Krahn inequality to the
elements of the nodal partition whose boundaries touch the boundary of the
square at more than isolated points. In this section, we extend the analysis to
the Robin case.

3.1. Lower bound for the Robin counting function. Recall that for A > 0, the
Robin counting function for the corresponding eigenvalues of Q is defined as

NEMG) = #{k e Nk =1, 4 n(Q) < A} (3.1)
Similarly we have the Dirichlet counting function

NEQ) =#{keN:k>1, k. n(Q) < 1}, (3.2)
and the Neumann counting function

NYe(A) = #{k e N: k> 1, 1 o(Q) < i} (3.3)
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Due to the monotonicity of the Robin eigenvalues with respect to 4 € [0, +0),
we have the following upper and lower bounds for Ng’h (A).

NYe() = NE°(2) = N (2) = Nyt (2) = NE(2).

For the Neumann counting function of S, we have
T - Ne T
ZHzLﬂJHZNS (D) > 42 (3.4)

(see, for example, [17]) and for the Dirichlet counting function of S, if 1 > 2, we
have by [36], that

N2(2) >g},—2\/2+ 1. (3.5)

Assume that A > 2 (this is true for n > 4 by (2.9)). Then, by (3.5) and monot-
onicity of the Robin eigenvalues with respect to A,

NEM ) > NP(2) >%z-2\/71+ 1. (3.6)
With A = 4,4 > 4,1, and ¥ an associated eigenfunction, (3.6) becomes

n> %zmh — 2T + 2. (3.7)

We now work analogously to the proof of Proposition 2.1 in [29]. Denote by
Q" the union of nodal domains of ¥ whose boundaries do not touch the bound-
ary of Q (except at isolated points), and x™ (W) the number of nodal domains of
¥ in Q" We call a nodal domain in Q™ an interior nodal domain. Similarly
denote by Q°* the nodal domains in Q\Q™ and x°"(¥) the number of nodal
domains of ¥ in Q°". We call a nodal domain in Q\Q™ a boundary nodal
domain. We note that the closure of a boundary nodal domain intersects dQ in
at least a non-trivial arc with non-empty interior. We have that

J () = () — g ()
and we require an upper bound for x°" ().

3.2. Counting the number of nodal domains touching the boundary for the
Robin problem. We give a proof which holds for all the Robin problems in the
square, except the Dirichlet case. We make use of the following theorem that is
due to Sturm, (see [4] and references therein).
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Theorem 3.1 (Sturm, 1836). Let u = ayuy, + - - - + ayu, be a non-trivial linear
combination of eigenfunctions of the one-dimensional Robin problem in (—%,%),
with 1 <m <n, and {a;,m < j < n} real constants such that a2 + ---+a> # 0.
Then, the function u has at least (m — 1), and at most (n — 1) zeros in (—%,3).

As observed originally by Pleijel [36], the analysis of the zeros of linear combi-
nations of eigenfunctions appear in the following context. We observe that if an
eigenfunction associated with 4, , (see (2.11)) satisfies the Robin condition on the
square, then its restriction to one side satisfies the Robin condition relative to the
interval and is not zero (except of course in the Dirichlet case). In general, when
the multiplicity is not one, this is no longer an eigenfunction but a linear combina-
tion of eigenfunctions on the segment (—%,%).

For example, the restriction to one side of the square, say x =7, is a linear
combination of eigenfunctions on the segment ( 7 2)‘

u(n/2,y) = Z ajui(m/2)u;(p).
i,j: 0 1 (S)= 72(“ +(Z )

We can then use Theorem 3.1 which gives a lower bound on the number of zeros
of u(n/2,y)in (—%,%) by

in(h) == min(i : 2y 4(S) = 7*(% + o) for some j),
and an upper bound by
Jn(h) == max(j: A, 4(S) = 7 (] + o) for some i). (3.8)
Recall that by (2.6) we have
Inn(S) = (o7 gy + % ) /7 = in()? + ju(h)* > ju(h)?,
which gives that
Jn(h) <\ 7 (S).

We can argue in the same way for the other sides of the square. Therefore,
the number of zeros of u(x, y) on the boundary of S is bounded from above by
41/ 2 1(S). Coming back to the number of boundary nodal domains, we have
the following lemma.

Lemma 3.2. Ler A be an eigenvalue of the Robin Laplacian on S with parameter
0 < h < 4oo0. IfY is a Robin eigenfunction associated to 1, then

() < 4V (3.9)
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Remark 3.3. There are other proofs given in Pleijel [36] and [29], but the one
given above is much more general and not restricted to two-dimensional eigen-
spaces (and also not based on an explicit knowledge of the eigenfunctions). On
the other hand, the claim in [29] is much more involved. It says that taking the
whole boundary into consideration, the number of points on the boundary in the
nodal set of an eigenfunction cos 0 u;(x)u;(y) + sin O u;(x)u;(y) (i # j) is compara-
ble with i+ j (See Section 5 of [29]). The proof! is restricted to eigenfunctions
whose corresponding eigenvalues have multiplicity 2. It would be interesting to
prove the same result for the Robin case for 4 < +oo0.

3.3. Upper bound for Courant-sharp Robin eigenvalues of a square. By
Lemma 3.2, we have

K (W) > u(W) — 4T (3.10)

Now, Q™ = (J; »i™ is a finite union of nodal domains of ¥. Assuming that
Q™™ is not empty, we get, on each @™, by Faber-Krahn (see [36]), that
A(wim) 1

i
= ;
7[]2 /ln,h

(3.11)
where A(w"™) denotes the area of ™ and j denotes the first positive zero of the
Bessel function Jy. Adding, and invoking (3.10), we find

A(S) _AQ@™) _ @™ () pY) =4 T

. . —_ —_ ?
) 72,']2 },,17 h in,h

from which we obtain

T ,u(‘I‘) —4 )vmh
2 > Ton . (3.12)

Due to (3.10), this inequality is still true if Q™ is empty.
If we are in the Courant-sharp situation, then u(¥W) = n. Combining (3.7) and
(3.12), we find that

n n—4/Jny =« 2 6
054329~ > —F—F >+ — - —. 3.13
jz in,h 4 An,h in,h ( )
The mapping
2 6 =©m =&
A N==——44+-—5
A R/ R

'There is a small gap in the proof which can be repaired using Theorem 3.1 due to Sturm.
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is increasing for 1 >4/9. Moreover, f(597) <0 and f(598) > 0. Thus, if
Jnn = 598, we violate inequality (3.13), and we are not in the Courant-sharp
situation. So, similarly to [36] and [29], Proposition 2.1, we obtain the following
proposition.

Proposition 3.4. If 4, > 598 is an eigenvalue of the Robin Laplacian on S with
parameter h > 0, then it is not Courant-sharp. Equivalently, any Courant-sharp
Robin eigenvalue satisfies 1, ,(.S) < 598.

3.4. Proof of Theorem 1.1. By invoking the upper bound of (3.4), we obtain an
upper bound for n such that 4, ,(S) < 598. Indeed, suppose 4, 5(S) < 598, then

n—1=NE"2,1(8)) = #{k € N:k =1, 2 a(S) < Ann(S)}
< gz,,,h(S) + 2\ A n(S)] +1 < 51867,  (3.14)
Hence we have shown Theorem 1.1.
We remark that the above arguments do not depend on the Robin parameter
h. In the sections that follow, we consider the case where / is large and improve
the result.

4. Analysis as & — +o0

In this section we show that for / sufficiently large, the Courant-sharp Robin
eigenvalues of the square are the same as those in the Dirichlet case, [3], [36],
that is the first, second and fourth, except possibly the fifth which we deal with
in Section 5. We first briefly revisit the strategy that was used by Pleijel for the
Dirichlet problem.

4.1. Pleijel’s approach for Dirichlet. In this subsection, 4, denotes the eigen-
values of the Dirichlet Laplacian on S. We recap Pleijel’s proof that the only
Courant-sharp Dirichlet eigenvalues of S are 4, s, A4.

We recall from (3.5) that if 4, > 2 is Courant-sharp, then

n>ga,ﬁ2m+2. (4.1)

On the other hand, if 4, is Courant-sharp, the Faber—Krahn inequality gives the
necessary condition

< 7j? < 0.54323. (4.2)

=
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Recall that j is the smallest positive zero of Jy the Bessel function of order 0, and
that 7j? is the ground state energy of the disc of area 1. Combining (4.1) and (4.2),
leads to the inequality

i > g — 2P 2 (4.3)

and to

I < 50. (4.4)

Then the proof that 1;, 4, 44 are the only Courant-sharp Dirichlet eigenvalues
of S is achieved in the following steps (see [3] for the full details).

¢ By a direct computation of the quotient -, it is possible to eliminate all the
eigenvalues except for n = 1,2,4,5,7 and 9.

e The eigenvalues for n = 7 and n = 9 are eliminated by symmetry arguments
(analogously to Remark 2.2).

e The final step is to analyse the fifth eigenfunction for which a specific analysis
of the nodal structure can be done (see [3]).

In the subsections that follow, we work through these steps and investigate the
extent to which they still work for / large.

4.2. Faber—Krahn for the Robin case. We recall the result of Bossel-Daners
[7], [12], which asserts that the Robin eigenvalues of the Laplacian satisfy
the following Faber—Krahn inequality. For a Lipschitz domain o C R? and
h>0,

~

}Ll,h(w) = Lh(Dw)a (45>
where D,, C R? is a disc such that A(D,,) = 4(w). We will refer to inequality (4.5)
as the h-Faber—Krahn inequality in what follows.

For the interior nodal domains, the approach via the standard Faber—Krahn
inequality still applies (see Subsection 3.3).

We observe that an eigenfunction u of the Robin Laplacian on S can be ex-
tended to all of R? as a solution & of —A# = Aii (we have an explicit expression
as a trigonometric polynomial). Hence the nodal sets of # have a nice local
structure (see P. Bérard [2] for a survey) and have the same properties as in the
Dirichlet case. In particular, these nodal sets are locally Lipschitz domains (actu-
ally with piecewise analytic boundary). If we observe that a nodal set of u is the
intersection of a nodal set of # with the square S, we immediately deduce that the
interior nodal domains, w}“n, are Lipschitz domains.
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We will apply the h-Faber—Krahn inequality to a boundary nodal domain of
a Robin eigenfunction u = u,, ; associated with 4, ,. However we do not know
whether the boundary nodal domains have Lipschitz boundary or not. By Lemma
3.2, the nodal set intersects the boundary finitely many times, so aa)f“‘ consists of
a finite number of arcs belonging either to S or to dS. So we can apply Theorem
4.1 of [9]. Alternatively, we can use the strategy given in Section 3 of [31] to ob-
tain (4.5) for these domains (see also [32], p. 3620). We will discuss the regularity
of the nodal domains further in Section 5.

For a boundary nodal domain w?™, u\wom satisfies a mixed Robin—Dirichlet
condition on its boundary, but we can use the monotonicity of the eigenvalues
with respect to the Robin parameter which leads to

}n h = il h( out). (46)

The h-Faber—Krahn inequality can then be applied.

In order to follow Pleijel’s strategy, we now wish to rescale the discs so that
they each have area 1. Consider a scaling of the domain w by >0, tw:=
{tx e R*: x € Q}. It is well known that the Robin eigenvalues satisfy the follow-
ing scaling property.

D () = 12y (1), (4.7)

A serious issue here is that the scaling also affects the Robin parameter. So, in
particular, replacing D,, by Dy, the disc of area 1, we have

iLh(Dw) = ;“l,hA(w)l/z (D1)/A(a)). (4.8)

When /& = +c0, the reference is 4; 1+ (D;). In the Robin case, if we start from £
large, we will not necessarily have 14 (w) 1/2 large if we use inequality (4.8) with @
a boundary nodal domain. Hence we have to be careful in the application of the
Faber—Krahn argument. This is actually the main difficulty.

In the following proposition, we recall the asymptotic behaviour of the first
Robin eigenvalue as the Robin parameter tends to +oo or to 0 (see, for example,
[16], [23]).

Proposition 4.1. Let Dy denote the disc of unit area. Then
(1) A1,x(D1) tends to 2y 4o (D1) = it as h — +oo,

(i) there exists ¢ > 0 such that, as h — +co,

Mn(Dy) = A1 o0 (D) —;+a(hlz>, (4.9)
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(iii) there exists d > 0 such that as h — 0,
Jin(Dy) = dh + O(h?). (4.10)
We give the proof for completeness.

Proof. To determine the first eigenvalue of the Robin Laplacian on the disc of
area 1 and radius 7~!/? with parameter /, one looks for an eigenfunction of the
form Jo(ar'/?r) where the corresponding eigenvalue is 7>, The Robin condition?
reads

an' 2T (o) 4+ hJo () = 0.

For the asymptotic behaviour near 1 = 0 or & = +o00, we use the Taylor expansion
of Jy or Jj at o = 0 and o« = j. We recall that Jj(0) = 0 and J(0) < 0. For/ >0,
for the first solution, we get o’z!'/2J'(0) ~ —hJo(0). Hence the corresponding
eigenvalue satisfies as 1 — 0,

Aa(Dy) = —(7'/270(0)) / (J§(0)) h + O(h?).
We also have Jy(j) = 0 and J§(j) # 0. With 7 =1, we write
ton' 2T () + Jo(a) = 0,
and expanding at o = j, we obtain:
o =j—n"?jt+ 0(?),

and

no? = i = 272°% 7 + 0(7?). O
The proof gives explicit values for the constants ¢ and d in (4.9) and (4.10).
4.3. Pleijel’s approach as # — +oo. In light of what was recalled in Subsection
4.1 for h = +o0, we now consider the different steps in the limit # — +o00. We

first show that for / sufficiently large, the eigenvalues 4, , with n > 10 are not
Courant-sharp.

“Note that there is a misprint in [23] after formula (3.9) for the Robin eigenvalue which is corrected
here.
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We recall that the eigenvalues depend continuously on /4 until +o0, in
particular

VneN, lim 4,5 = Ay. (4.11)

/l~>+00

We keep the notation of the previous section. If we are in the Courant-sharp
situation, then p(u) = n, where u is an eigenfunction associated with 4, j.

If there exists @™ such that A(w™) < A(S)/n, we are done like in the
Dirichlet case. Indeed, we combine the latter inequality with inequality (3.11) to
obtain (4.2). Together with (4.1), this gives 4, < 50. In particular, for these
eigenvalues 7 is finite and using (4.11) we get that for / sufficiently large, (4.2) is
not satisfied for n > 10.

If not, the situation is more delicate, but we can assume that there exists co;’“‘
such that

A(wj’“‘) < A(S)/n, (4.12)

and we take one of smallest area with this property.
Combining (4.1), (4.6), (4.5), (4.12) and (4.8), we find that

2 2

vV in.h +m

Here, comparing with (4.3), we need to have h := /1A(wj?’“t)1/ ? Jarge enough
if we want to arrive at the same conclusion as for the Dirichlet case (namely
Jnn < 50). So we have to find a lower bound for A(w?™) 12 This seems difficult,
at least with explicit lower bounds. We will use our initial A#-independent upper
bound for 4, , from the previous section. Hence, we can assume in this Courant-
sharp situation, that

A(S)

ty1/2
l,hA(w/."” )

(4.13)

A (D)~ 4

n < 520. (4.14)

Under these assumptions, we will now show that there exists a constant ¢ > 0
such that A(w?™) > c. According to (4.10), there exist constants ¢; > 0 and & > 0
such that

M aDr)=ch  if0<h<h. (4.15)

By monotonicity of the Robin eigenvalues with respect to 4 and the A-Faber—
Krahn inequality, we have

}~5207+3c = /ln,h > A(CU]-Out)illl

Loy (D). (4.16)
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If hA(w™)' < hy, then cih® < hidsy, 4oc. Indeed, if hA(w)"/* < hy, then
by (4.15),

) D) > cthA(wf™)'?,

l,hA(w/.O”‘)]/z(

which implies by (4.16) that

ty—1/2
2520, 400 = CthA(w]™) 2,

hence

2 ty1/2 ,
ah” < hA(o™") 0520, 100 < 17520, 100

Consequently, if /& > h%/chl/zi;£§7+w, then ¢1h% > hy/s20, 4o which implies that

hA(w)"* > hy. Therefore by (4.16) we have

J
A(wjout) > A1 (D1)/ 2520, + 00 -

This gives the existence of ¢ > 0 such that 4(w?*") > ¢ (see also Proposition
5.3). Using the latter inequality and (4.13), we have

n? >n 2 n 2
/11,(?1/211(D1> 4 in h

- .
. Anh

(4.17)

Hence for /1 large enough, we also get in this case that 4, < 50 (compare with
inequality (4.3)).

We can now follow the proof of Pleijel for the Dirichlet case (which was out-
lined in Subsection 4.1). By the above and the continuity of the eigenvalues with
respect to i as h — +oo, (4.12), for /i large enough, it remains to consider the cases
As hy 27,0, A9 as left by Pleijel in the Dirichlet case. The next step is to rule out
the cases A7 ;(S) and, for & sufficiently large, o ;(S). Here the symmetry argu-
ment due to Leydold, [35], holds in the same way as for the Dirichlet case [3] for
the two cases corresponding to the seventh and the ninth Robin eigenvalues. We
briefly recall the relevant particular case of the argument due to Leydold.

Lemma 4.2. Let 0 < h < 4+00. Suppose that 4, (S) is an eigenvalue of the Robin
Laplacian on S with parameter h and with corresponding eigenfunction defined in
(2.11). Suppose that n is odd and that the conditions of Remark 2.2 are satisfied.
Then 4, 4(S) is not Courant-sharp.

We know indeed by the standard Courant nodal domain theorem that the
number of nodal domains is not larger than » and by Remark 2.2 that it is even.
Hence the number is less than 7.
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As an application, we observe that any eigenfunction corresponding to the
seventh Robin eigenvalue is a linear combination of u, ;(x, y) and u; »(x, y) and
that 1 + 2 is odd. So 47 4(S) is not Courant-sharp for any 4 > 0.

Similarly, for & large enough, any eigenfunction corresponding to the ninth
Robin eigenvalue is a linear combination of u3 o(x, y) and u 3(x, y) (see Subsec-
tion 7.2) and 0 + 3 is odd.

Hence at this stage, we have proved the following proposition.

Proposition 4.3. There exists hy >0 such that for h > hy, the Courant-sharp
cases for the Robin problem are the same, except possibly for k =5, as those for
h=+4o0.

With what was done for the Dirichlet case [3] in mind, in order to prove
Theorem 1.2 for / large enough, it remains to count the number of nodal domains
of any eigenfunction corresponding to the fifth eigenvalue. This will be analysed
in Section 6 as a direct consequence of Section 5.

5. A general perturbation argument

5.1. Preliminary discussion. We analyse a O-dependent family ®;, of eigen-
functions, more explicitly

Dy 0.p.q(x,y) = cosOuy j(x)ug 1(y) + sinQuy, 4(y)ug n(x), (5.1)

for (x,y) € (—g,g)z.

For most of the arguments in this section, we will not use the explicit ex-
pression of the eigenfunction, but only the property that @,y is a very smooth
family of eigenfunctions (with respect to / and ¢) where, for /1 € (0,+w0], @) ¢
is an eigenfunction of the Robin Laplacian with parameter / associated with a
smooth eigenvalue A(h). Nevertheless, except the cases where £ is fixed (and so
we consider a smooth family inside a fixed eigenspace) or where we are in a prod-
uct situation, e.g. a rectangle, it is not easy to give examples of such families
as introduced above. The parameter ¢, which above belongs to R/(27xZ), could
also be thought of as belonging to some open neighbourhood of some point 6
in R.

In addition, most of the arguments in this section extend to more general
domains. We consider the case of bounded, planar domains with piecewise C>*
(o0 > 0) boundary.

For h =400 (or h=hy >0) and 0= 6y, we assume that the number of
nodal domains is known (for example, that the corresponding eigenvalue is not
Courant-sharp). The aim of this section is to prove that by perturbation (i.e. for
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T %| + |0 — G| small enough) the number of nodal domains cannot increase
(see Proposition 5.7). The proof involves various general statements which are
interesting in a more general context, hence not restricted to the case of the

square.

5.2. Robin Faber—Krahn inequality revisited and applications. In this section,
C** means C>* for some o > 0. The subsequent proposition follows from

[8].

Proposition 5.1. Let Q be a connected, bounded set with piecewise C** boundary,
and, for some h >0, let ®;, be an eigenfunction of the h-Robin realisation of the
Laplacian in Q. Then each nodal domain of ®, satisfies the h-Faber—Krahn inequal-
ity (4.5).

Proof. In [8], inequality (4.5) is proven when Q has C*>* boundary. Hence it
holds for an interior nodal domain and a boundary nodal domain whose bound-
ary intersects 0Q away from a corner (see also Theorem A.l). The case of a
boundary nodal domain whose boundary intersects dQ at a corner is also covered
by the results of [8]. Indeed, according to [8], the s-Faber—Krahn inequality holds
for any open set with finite area. In this general case, the first eigenvalue is defined
as in Definition 4.2 of [8]. It is also proven in [8] that with this choice of defini-
tion, this eigenvalue is not larger than any other definition given in a more regular
situation. O

Remark 5.2. In the case of the square Q = S there is a more direct proof. As in
Subsection 4.2, we indeed observe that @, y admits an extension Ci)hﬁ to R? such
that —A(i)hyg = A(h) &)h’g. This gives more information about the local nodal
structure of @,y up to the boundary (actually in a neighbourhood of S).

Proposition 5.3. Let Q be a connected, bounded set with piecewise C** boundary.
Let hg >0 and M >0. For hel C [hy,+x) and 0 € [0,n), let )y denote a
smooth family of eigenfunctions for the h-Robin realisation of the Laplacian on €
associated with 2,(Q) < M. Then, there exists &y > 0 such that no nodal domain
of ®;, g can have area less than &. (This includes the Dirichlet case).

Proof. This follows directly from the #-Faber—Krahn inequality. If @ is a nodal
domain of @, 4 satisfying the assumptions of the lemma, we have

M = i(h) = A(ho) = A1y (Dw) = A i (D1)/A(w) ~ dho/ A(w)' 2. (5.2)

1,hoA(w

This shows that as soon as we avoid the Neumann situation, the ground state
energy in a domain « tends to +oo as the area of the domain tends to O.

O
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5.3. On the nodal set at the boundary.

Proposition 5.4. Under the assumptions of Proposition 5.3, there exists C > 0 such
that, for any h € I and any 0, the number of zeros of ®; ¢ at the boundary is less
than C.

Remark 5.5. In the case of the square, Proposition 5.4 follows from Sturm’s
theorem.

Proof. We will use the Euler formula with boundary. The conditions for its appli-
cation are satisfied by using Theorem A.1 and it reads as follows (see, for example,
[30]).

Proposition 5.6. Let Q be an open set in R* with C** boundary, u an eigenfunc-
tion of the h-Robin realisation of the Laplacian on Q with k nodal domains, N (u) its
zero-set. Let by be the number of components of 0Q and by be the number of com-
ponents of N(u) w 0Q. Denote by v(x;) and p(y,) the numbers of curves ending at a
critical point xX; € N(u), respectively y; € N(u) n0Q. Then

k_1+b1—b0+z<

v(;i) _ 1) +;§y: p(y,). (5.3)

In our application, we immediately obtain that the number p(u) of bound-
ary points (counted with multiplicity) in the nodal set of u = ®, 4 satisfies

pu) <2k —2.

To achieve the proof of Proposition 5.4, we observe that by Courant’s nodal do-
main theorem, & is less than the minimal labelling of A(%) and that this labelling
is uniformly bounded if A(4) is uniformly bounded. By monotonicity, this label-
ling is indeed bounded by the maximal labelling of an eigenvalue 4;(h) satisfying
;»j(h1) <M.

It remains to treat what is going on in the neighbourhood of a corner x.. We
first show that there cannot exist an infinite sequence of zeros of @, » in the bound-
ary (outside the corner) tending to the corner x.. Indeed, by Proposition 5.1, sim-
ilarly to the proof of Proposition 5.3, there exists some sufficiently small ¢ > 0
such that any line starting from one of these zeros (which necessarily belongs to
the boundary of one nodal domain) should cross dD(x.,¢) N Q transversally and
only once. Hence the number of points is finite, and moreover not greater than
the cardinality of N(u) n D(x.,&) nQ. Observing that, by Proposition 5.3, the
number of nodal domains of u in Q is the same as the number of nodal domains
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of u in Q\D(x,, ¢), we can apply the Euler Formula in Q\ D(x,, ¢) and get the same
bound. 0

5.4. On the variation of the cardinality of the nodal domains by perturba-
tion. Our main result is the following proposition.

Proposition 5.7. Under the assumptions of Proposition 5.3, let p(h,0) denote the
cardinality of the nodal domains of ®;, y. For any 0y, hy € (0,4 0], there exists
Ny > 0 such that if |} —ﬂ + 10 — 0| < 1y, then

p(h,0) < p(ho, bo)-

We prove this proposition in the following subsections by analysing the struc-
ture of the zero set in a neighbourhood of the interior critical points and the
boundary points.

5.4.1. Analysis in a neighbourhood of an interior point. We treat what is going
on at an interior point zo. We assume that zy is a critical point of @y, g, associated
with an eigenvalue A(/p). We choose ¢ > 0 small enough such that

* Proposition 5.3 applies for (j,0) close to (-, 0);
L] D(Zo,é‘l) C Q;
° 77.'812 < &,

e the circle %(zo, &) crosses the 27 half-lines emanating from z, transversally at
2/ points zj(hy,0) (j=1,...,2/).

Here we have used the general results on the local structure of an eigenfunction
of the Laplacian (see [2] and Appendix A).

Lemma 5.8. With the previous notation and the assumptions of Proposition 5.3,

we have that there exists ny > 0 such that if |% — hlo‘ + |0 — Oo| < 1y, then the number

of nodal domains of ®, ¢ intersecting the disc D(zy, ) cannot increase.

Proof. 1f we look at the nodal structure inside D(zy, &), we have 2/ local nodal
domains.

By local nodal domain of an eigenfunction ®; 9, we mean the nodal domains
of the restriction of @y to D(zp,&1). We note that any local nodal domain be-
longs to a global nodal domain but that two distinct local nodal domains can be
included in the same global nodal domain.

In the second case, there exists a path y in Q joining these two local nodal
domains on which @, 4 is positive (or negative), which necessarily will not be in-
cluded in D(zg, ¢1).
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Starting from (hg, 6p) we now look at a small perturbation. By considering
the restriction of @), 4 to the circle dD(zy, &), we see that the 2/ zeros of @),y on
0D(zp, e1) move very smoothly, we denote them by z; (4, 0).

We indeed observe that the tangential derivative to dD(zo, &) of @y, 4, at each
point z;(/g, 0p) is not zero (again we use the general results for eigenfunctions,
in particular the transversal property, see Appendix A). By perturbation, this con-
dition is still true if we choose 7, small enough. Hence the restriction of @ ¢
changes sign at each point z;(/, ). Moreover, there are 2/ local domains w;(h, 0)
of @y, ¢ with the property that dew;(h, 0) intersects dD(zo, &) along the arc (z;(h, 0),
zj+1(h,0)) (with the convention that j + 1 is 1 for j = 27).

In addition, we have the following property:

If w;j(ho, 00) and w;(ho, 0y) belong to the same nodal domain (j # j'), the property
remains true for w;(h, 0) and w; (h, 0) with (h,0) sufficiently close to (hy, 0y) (i.e. for
o in the lemma sufficiently small).

Indeed let x; 0 € w;(ho, 0), Xj.0 € wj(ho, 0y) and y, be a path joining x; ¢ and x;: o
inside the nodal domain. Since ®;, 4, does not vanish on y, and by continuity,
@), y does not vanish on y, for (A, 0) sufficiently close to (%o, 0p).

If, for (0o, ho), w;(ho,0y) and w;:(hy,0y) do not belong to the same nodal do-
main, then there are two cases

e cither the situation is unchanged by perturbation;
e or, after perturbation, they belong to the same nodal domain via a new path
in D(Z(), €1 )

In the second case, the number of nodal domains touching dD(zy, ¢;) is decreasing

(see Figure 2).

Figure 2. In the leftmost figure, we begin with w;(/9,0) and w;(hy, 0p) in different nodal
domains. After perturbation, they may belong to the same nodal domain as in the middle
figure. The rightmost figure cannot occur as the area of the nodal domain that has been
created inside the disc is too small.
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On the other hand, by Proposition 5.3 and our choice of ¢, any nodal do-
main that intersects D(zg, &) crosses 0D(zg,¢1). If not, it would be contained in
D(zg, ¢1) whose area is too small (see Proposition 5.3 and Figure 2). This achieves
the proof. |

Remark 5.9. If 7 = 2, @), 4, is a Morse function whose Hessian has two non-zero
eigenvalues of opposite sign. For & small enough, @, y remains a Morse function
for 7, small enough and admits a unique critical point z; g in D(zg,¢;). Then there
are four local nodal domains if @ 4(z; 9) = 0 and three local nodal domains if
@y, 9(z5,0) # 0 (see Subsection 6.3.1 for a detailed proof).

5.4.2. Analysis in a neighbourhood of a boundary point. It remains to control
what is going on at the boundary. We consider a point zy € 0Q such that zj is a
zero of @y, g, which in addition is assumed to be critical when /sy = + 0.

We first assume that we avoid the corners and successively consider three cases:

® /iy = +oo, perturbation only in 6.
e () < hy < 400, general perturbation.

® /iy = +o0, general perturbation.

In the first case, the proof follows the same argument as that used in the proof
of Lemma 5.8 and uses the local structure of a Dirichlet eigenfunction at the
boundary (see [2] and Appendix A).

For the second case, considering the proof of Lemma 5.8 once again, we
choose ¢ > 0 sufficiently small such that zy is the only boundary point in the
nodal set. Then the proof goes in the same way.

In the third case, the situation is more delicate due to the complete vanishing of
®. ., g, on the boundary, which should not be the case for @, 4, with sy < +co0.
To deal with this, we need the following lemma.

Lemma 5.10. Let 0 =0y and Z" denote the intersection of the nodal set of
D . g, with the boundary. Then for any ¢ > 0 there exists h; such that the set
{z:d(z,0Q) < e} n{z:d(z,Z") > &} does not meet the zero set of ®, g for any
h! < h < 400 and any 0 such that |0 — 0y| < %

In other words we have some nodal stability up to the boundary as 4 — +oo.
Proof. We consider the following two cases.
At a regular point of the boundary. We consider a point z; of the boundary

(or a closed interval I in the boundary) which is not a critical point for @, ., g,.
By perturbation, this is still true for |0 — 0y| small. In this case, the normal deriv-



82 K. Gittins and B. Helffer
ative of @, ¢ for zy € I does not vanish, and to fix the ideas we can assume that
5vq)+oo79(207 9) >c>0

(the other case would be treated similarly). By continuity, replacing ¢ by §, this
is still true for @ ¢, with z in a A-independent neighbourhood of / and % small
enough.

On the other hand, we know that @, 4 satisfies the Robin condition:

5\,(1)/1’()(20, 9) +h @1170(2(), 0) =0.
Hence

1
(Dh,H(ZOa 0) = —Ea\,(D/Lg(Z(L 0) < 0.

This implies that there exists a neighbourhood of 7 and # > 0 such that, for
L4110 — 0| < n, @y g is negative (actually < —53).

At a corner. After translation, we assume that the corner is at (0,0). We also
assume that (0,0) does not belong to the nodal set of @, ., 4, and that &, g, <
0 in Q near the corner.

We now use the previous argument outside of (0,0). For g > 0 small enough
we can take 7 > 0 small enough such that, for 1+ |6 — 6| < 1, @y, 9(x, y) < 0 for
{(x,y) e R?: X2+ 2 =g} nQ

Suppose now that @, 4(x, y) > 0 for some (x, y) € D((0,0),&). Then there is
a nodal domain inside D((0,0),so) and this is excluded by Proposition 5.3 pro-
vided that we have chosen ¢y sufficiently small. O

Remark 5.11. We have not proven in full generality that @, 4 is negative at the
boundary near the corner but this is not required. We do not know what occurs if
the corner belongs to the zero set.

If the corner is not in the zero set of the Dirichlet eigenfunction for some 6, we
can prove by the previous argument that this is still the case for / large enough
and 6 close to 6. In the case of the square, we get immediately that

a?c,yq)+‘3€~,90(070) <0. (54)

We now estimate @, 4(0,0). Using the Robin condition on the two sides, we
obtain the formulas

!

(Dh’g(x, O) = 7

1
ayq)h,@(xa O)a q)h,0(07 y) = Zaxq)h,ﬂ(oa y)
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and

!

0x®y,0(x,0) = 7

6x(3y<1>h7(;(x, 0),

which imply that
@;,0(0,0) = h 207 ,@;,4(0,0).
By perturbation of (5.4), we also have,
a3 ,®5,0(0,0) <0,
which implies
D), 9(0,0) < 0.

This leads to the following result when zy € 0Q. We assume that zy is a critical
point of @, g, associated with an eigenvalue A(c0). We choose ¢ small enough
such that

e Proposition 5.3 applies;

® %(z9,61) N Q crosses the 7/ half-lines emanating from z, transversally at /
points z;(ho, 0) (j=1,...,7).

Here we have used the general results for the local structure of an eigenfunction of
the Dirichlet Laplacian (see [2], see also [28] for the case with corners).

Lemma 5.12. With the previous notation and the assumptions of Proposition 5.3,

we have that there exists ny > 0 such that if |% — %| + |0 — 00| < 1y, then the number
of nodal domains of ®, g intersecting the disc D(zy, &) cannot increase. If { =1, the

number of nodal domains equals two and remains fixed.

5.5. Application to the square. We come back to the case of the square and
prove Theorem 1.2. To this end, with Proposition 4.3 in mind, it is sufficient to
show the following.

Proposition 5.13. There exists hy > 0 such that for any h > hy, any eigenfunction
corresponding to # (oco(h)2 + ocz(h))2 has 2, 3, or 4 nodal domains (as in the Dirich-
let case). Hence for h > hy, s, is not Courant-sharp.

Proof. The property is indeed true for & = +co and, by the results of the preced-
ing sections, the number of nodal domains cannot increase and is necessarily > 1.

O
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In the next section, we carry out a deeper analysis for the eigenfunction asso-
ciated with the fifth eigenvalue, where we count the nodal domains case by case.
For some cases, the proof will use the explicit properties of the eigenfunctions @, ¢
(see below).

In relation to Proposition 5.13, we note that by choosing non-critical values
of § we can obtain that 2, 3 and 4 nodal domains are attained for /%, large
enough.

6. Particular case k =5

6.1. Main statement. Looking at the fifth eigenvalue corresponding to the pair
(0,2), which is Courant-sharp for Neumann and not Courant-sharp for Dirichlet,
we consider the family of eigenfunctions in (—Z, +§)2 with 0 € (—=, 7]:

®;,.9,0,2(x, y) := cos O cos (o (h)x/m) cos(az(h) y/m)
+ sin 0 cos (o2 (h)x/7) cos (oo (h) /7). (6.1)

Up to changing the sign of the eigenfunction, it is sufficient to consider 6 € [0, ).
We prove the following proposition.

Proposition 6.1. There exists hy > 0 such that for any h > hy, any eigenfunction
corresponding to X (og(h)* + ocz(h))z has 2, 3, or 4 nodal domains (as in the Dirich-
let case). More precisely, there are three critical values 0; (h) € [0,7) (j = 1,2,3)
such that

* 1 * T * * 37Z
0 (h) = arctan (— cp(h))’ 05 (h) 5~ 0y(h), 05 = 1
where
cos(%)
h) = 2
Q2( ) COS(“—ZO) 5

and such that @y, ¢ has:
® 3 nodal domains for 0 € [0, 67 (h));
2 nodal domains for 0 € (05 (h), 05 (h));
3 nodal domains for 0 € [0 (h),03);
4 nodal domains for 0 = 05;
3 nodal domains for 0 € (03, 7).
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Note that for the whole family of eigenfunctions, we have symmetry with
respect to the two axes. In addition, the corresponding eigenvalue # (oco(h)2 +
O(z(/’l)z) is the fifth eigenvalue for any % € [0, +o0]. For & =0, we have 0((0) =0
and o,(0) = 2.

6.2. The Dirichlet case. For 7 = 40, i.e. in the Dirichlet case, we have o (+o0)
= n and op(+o0) = 3n. The figures of Pockels, [37], give the various possibilities
as a function of §. We refer to [3] for a more rigorous mathematical analysis but
note that Pockels gives all the possible topologies. He also gives the pictures for
the 0 corresponding to transitions between these topologies. In Figure 3, we plot
the fifth Dirichlet eigenfunction

D g.0.2(x,y) = cosbcos(x)cos(3y) + sin O cos(3x) cos(y)

for (x,y) € (—%,%)2 and various values of 0.

The critical values of 6 corresponding to a change in the number of interior
critical points or the number of boundary critical points in the nodal set are
07 = arctan(1/3), 05 =% — arctan(1/3), and 05 = 3.

As was proven in [3] and can be seen in Figure 3, the fifth Dirichlet eigen-

function has either 2, 3 or 4 nodal domains. More precisely, we have for 0 e
[0, 7):

>

(a) From left to right: 0 =0, 0 = 0 = arctan(1/3), 0 =%, 0 = 0; =% — arctan(1/3).

(b) From left to right: =12, 0 =32

_ 3z —In
3. 0=3 0=%.

Figure 3. The Dirichlet eigenfunction @, 4 ¢ » for various values of 0.
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e 3 nodal domains for 6 € [0, 6;];
2 nodal domains for 6 € (6}, 65);

3 nodal domains for 6 € [65,03);

4 nodal domains for = 65;

3 nodal domains for 0 € (05, ).
In what follows, we prove that this holds for % sufficiently large.

6.3. Application of Section 5. For / large enough, we analyse

W(0,x,y) = ®pg,0,2(x, )

= cos 0 cos <M> cos <@) + sin 0 cos <@> cos (M> .
7 n n n

This solution has a double symmetry with respect to x — —x and y — —y.

6.3.1. Interior critical points. We can look at the critical points of  as a func-
tion of . In the case of Dirichlet, the only possible critical point is for x = y =0
and can only occur for cos 0 + sin = 0 (we assume 0 ¢ Z7%).

For cosf +sinfd =0, x = +y belong to the zero set of . We show that
the zero set is exactly given by x = +y. We observe that the Hessian of  at

(x,y)=1(0,0) is

cosl (o3 — o} 0
Hx y~0.0 =7~ 0 2—a2)

which has negative determinant so (x, y) = (0, 0) is a non-degenerate critical point
of . We see that H(, ,)—(,0) has one positive eigenvalue and one negative eigen-
value, so the Morse index of the critical point (0,0) is 1. By the Morse Lemma, in
a neighbourhood U of (0,0), there is a diffeomorphism ¢ = (u,0) : U — V C R?
with ¢(0,0) = (0,0) such that i := o ¢~ ' has the form
¥ (u,v) = (0,0) — u? + v*> = cos 0 + sin O — u? + v*.

So we see immediately that the critical point (0,0) is isolated. With the condition
that cos 0 + sin 0 = 0, the zero set is given by u = +v. Since ¢ is a bijection and
x = +y is contained in the zero set of y, the zero set of Y is given by x = +y.

More generally, the same proof gives that the zero set of (0,-) —
(cos @ +sin @) is given near (0,0) by x = +y. We remark that in this case there
are 4 nodal domains.
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6.3.2. Boundary edge. Considering the boundary edge x =7, we have that
either y = +7% is in the nodal set, in which case there are 4 nodal domains by
symmetry, or y = %7 is not in the nodal set. In the latter case, Theorem 3.1 gives
that there are at most two points on the boundary edge x = % that are in the nodal
set. If there are exactly two such points in the nodal set, then this corresponds to
3 nodal domains. If there are no boundary points in the nodal set, then this cor-
responds to 2 nodal domains. For example, see Figure 3.

6.3.3. Double point on the boundary. We now analyse what is going on at the
double point on the boundary. This occurs for Dirichlet when tan 0 = % and for
y = 0. Here the situation is simple (see [37]). We observe that y = 0 is a double
point for tan0 = ——-. From y/(0,%, y) = 0, we have

¢ (h)
T

o
cos (@) + lm co
The critical ¢ = tan 0 is defined by ¢t = —1/¢,(h) with

R0

T cos(%)

_ cos(%) .
cos(%)

[SS]

q2(h)

[§S]

Hence r = 1+ (}), and we have near y = 0,

e ) (st

Again, this is the perturbation of a Morse function depending on the param-
eters /1 and @ with the particularity that when yy = 0 and y = 0, the critical point
is always (% ,0). We remark that in this case there are 3 nodal domains.

6.4. Interior critical points for any 2 > 0. In this subsection, we show that
there are no other critical points than (0,0) without any restriction on 2 > 0. It
is immediate that (0,0) is a critical point and we get the same condition as in
the Dirichlet case. Writing = 0 and V{ = 0, we get as a necessary condition

that
o, tan (@> = o tan <M> ,  optan (o&_y) = op tan (M) ) (6.2)
7 T 7 7

Lemma 6.2. Let oy and oy satisfy (2.7). For x e (—%,+%), ogtan(ogx/m) =
o tan(apx/7) if and only if x = 0.
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Proof. Let us look at the function
[Og] 3 x — W(x) = o sin(apx) cos(opx) — o sin(opx) cos(opx).

Up to some multiplicative renormalisation of the eigenfunctions, we recognise
the Wronskian of the eigenfunctions uy and u,. But for the Wronskian, we
have

W'(x) = (Ao — A2)uo(x)uz(x).

Now we observe that W (0) = 0 and that by (2.7), W (3) = 0. Moreover W has a
unique critical point in (0,%) at the first zero of u,. Hence W (x) cannot vanish
except at x = 0 and 5. O

It is clear that this implies that (0,0) is the only possible critical point in
(—%,%)2. The condition that y(0,0) = 0 implies cosd + sin @ = 0.

7. Analysis of crossings

In this section, we analyse the possible crossings of two curves /1 +— 4, , 4(S) and
h— Ay 4 1(S) defined in an interval of [0,+c0). This is indeed quite important
as we want to follow the labelling of these eigenvalues when / varies. We then
consider the eigenvalue A9 ,(.S) which is Courant-sharp when 4 = 0 but not when
h = +c0.

7.1. A general result.

Proposition 7.1. For distinct pairs (p, q) and (p',q’), with p < q and p' < q', there
is at most one value of h in [0,400) such that A, 4 1(S) = Ay,q'.1(S).

Proof. Suppose that 4, 4 1(S) = 4,7.4,1(S). Without loss of generality, suppose
p < p' <q' <q. Consider the variation of

(0,+00) 3 h— a(h) = % (o (h)* 4 og () — 00 () — oty ()?).

The zeros of ¢ correspond to the values of /i for which the curves correspond-
ing to (p,q), (p',q’) intersect. To analyse its variation, we note that

a'(h) = % (o (1)oy, () + g (R)org () — oty (), () = oty ()t (1))
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Now, we deduce from (2.7) and (2.8), that & — oy (h) satisfies the differential
equation

a_]/( OC_,% h2r2 -
e (hn—l— > +—2 =, (7.1)
which implies
2 p22
oy | hm + S o}, (7.2)
2 2
We introduce for 2> 0 and k € N,
2 322
an(h) = hn+°‘7"+7” > 0.

We deduce

2 (a2 o ol o3 4 RPa2\ /1 1 1 1
p=2(3 5B RS Py 1 1)
n\a, a; ay ag T 2 a, a; ay ag

We now assume that (/) = 0, which implies

ap +ag =ay +ay.

This gives

iy - (hn . /12n2> ((a,, +a,)(aya, — a,,aq)).

T 2 (apaqgayay)

So the sign of ¢’(h) is the sign of aya, — aya,. For ¢ >0, we can now write
a, = ay, — ¢ and a, = a, + ¢, and compute

apay — ayay = (ay — &)(ay + &) — ayay = (ay — ay)e —&* < 0.

Since the derivative of ¢ has constant sign, there can be at most one point of
intersection.

Remark 7.2. The proof of Proposition 7.1 shows that if p < p’ < ¢’ < ¢ and
Ap.g.he = Apt .1+ for some h* > 0, then the map

s 12 (o () + g () — ap(h)* = 0 (h)7)
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is increasing for & > h*. Hence the curve 72 (ocp(h)2 + ocq(h)z) is below the curve
72 (0 (h)* + o (h)?) for h > h*.

7.2. The eigenvalue A9 4(5). The ninth eigenvalue of the Neumann Laplacian
for the square is Courant-sharp, [29], and corresponds to the eigenvalue 22 + 22
= 8. This eigenvalue is simple and corresponds to the labelling (2,2). The eigen-
function reads

2
D p2,2(x, y) =cos2xcos2y, for(x,y)e€ (—g,g> -

It is easy to see that the Courant-sharp property is still true for 4 small enough.
By deformation, the eigenfunction is

®@),.9.2,2(x, y) = cos(a(h)x/n) cos(aa(h) y/7),

with corresponding eigenvalue % (ocz(h))z. The nodal structure is given by

hence for this eigenfunction and for / € [0,+0c0), there are nine nodal domains
as long as % (ocz(h))2 is the ninth eigenvalue.

The issue is to follow the labelling of 2 (062(]’1))2 and we observe that when
h = +oo this eigenvalue is 18 which has minimal labelling 11. Because 9 < 11,
this eigenfunction is NOT Courant-sharp for / sufficiently large.

On the other hand the eigenvalue - (ag(h)” + a3(h)”) which has minimal label-
ling 10 for & = 0 arrives with labelling 9 at # = +c0. Hence some transition oc-
curs for at least one 45 > 0 which satisfies

ao(h)? + az(h)? = 2ay ()™

By Proposition 7.1, there is at most one point of intersection between the curves
corresponding to (2,2) and (3,0).

We recall that oy(0) =0, o (0) =7, 02(0) = 27, 23(0) = 3% and that og(+0)
=71, o1 (+00) = 27, ap(+00) = 3, 03(+00) = 4m, s0 ag(h)* + a3(h)? is increasing
from 972 to 1722 when 20,(h)? goes from 872 to 1872,

We first show that the curves corresponding to the pairs (2,2), (3,0) do not
intersect the curves corresponding to the other pairs.

From above, we see that the eigenvalues corresponding to the pairs (3,3),
(4,2), (2,4) and so on are all larger than or equal to 18. So we need to consider
the eigenvalues corresponding to the pairs (3, 1), (3,2), (4,0), (4, 1) and show that
they do not correspond to the ninth, tenth or eleventh eigenvalues for any 4 > 0.
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Numerically we find that,

23.1.4(S) = A13.4(S) = 18 for h > 11.4225,
73.2.4(S) = A2.3.4(S) > 18  for h > 2.6288,
Jaon(S) = do.an(S) =18  for h > 1.2668,
Jarn(S) = A1.4n(S) =18  for h > 0.4208.

So we are left to consider /# < 11.4225.

From below, we see that the eigenvalues corresponding to the pairs (0,0),
(1,0), (0,1), (1,1) are smaller than or equal to 8 for all 0 < 4 < +00. So we need
to consider the eigenvalues corresponding to the pairs (2,0), (2, 1) and show that
they do not correspond to the ninth, tenth or eleventh eigenvalues for any 4 > 0.
Numerically we find that,

Joan(S) =13 forh > 2.9804,
;\.3"07]1(51) = »0’37/1(5) >13 for h > 3.5468.

So we are left to consider /1 < 3.5468 < 11.4225.

In Figure 4, we plot the Robin eigenvalues of the square (x,,(h)” + o, (h)*) /7>
for i < 12 corresponding to the pairs (0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0),
(3,1), (3,2), (4,0), (4,1).

From Figure 4, we see that for 4 < 12 the curves corresponding to the pairs
(2,2), (3,0) do not intersect the curves corresponding to the other pairs. By Prop-
osition 7.1, the curves corresponding to (2,2) and (3,0) intersect for a unique
value of h = hg > 0.

Since uy 2(x, y) is an eigenfunction corresponding to 4 ;s (S) that has 9 nodal
domains, we have proved the following proposition.

Proposition 7.3. There exists hy > 0 such that Jo j is Courant-sharp for 0 < h <
hg and not Courant-sharp for h > h;.

By the bisection method, we compute /5 numerically and find that 5 ~ 1.6967.

By the above, A9 is given by the pair (2,2) for 7 < h§ and the pair (3,0) for
h > hg. Also, Ay j is given by the pair (0,3) and 41 5 is given by the pair (3,0) for
h < hg and the pair (2,2) for h > hg.

This shows that whether the eigenfunction corresponding to a Robin eigen-
value of the square is an odd function or an even function depends on / (in the
case where there are crossings).

For example, for A9 , with 4 < hg, we have that uy »(—x, —y) = u2(x, y). On
the other hand, for i > Ay,

uso(—x,—y) = —uzo(x,y) and  wup3(—x,—y) = —uo 3(x, y).
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An

251

20

15|

10

2 4 6 8 10 12

(h)?)/=* for h < 12 corre-
0), 3,1), (3,2), (4,0),
2) and (3,0) occurs at

Figure 4. The Robin eigenvalues of the square (ozm(h) + o (
sponding to the pairs (0,0), (1,0), (1,1), (2,0), (2,1), (2,2),
(4,1). The intersection between the curves corresponding to
(1.6970, 11.4498).

)

(3,0),
(2,2)

So any linear combination of w3 ¢(x, y) and ug 3(x, y) is antisymmetric with re-
spect to the transformation (x, y) — (—x,—y). Hence A9 is not Courant-sharp
for h > hg (via Lemma 4.2).

For i = hg, any eigenfunction corresponding to 4 5+ (S) is a linear combina-
tion of uy »2(x, y), uso(x, y) and up 3(x, y), so in general it is neither symmetric
nor antisymmetric with respect to the transformation (x, y) — (—x, —p).

Appendix. On the local structure of the nodal set

In this appendix, we prove some well-known results for the nodal set of an eigen-
function of the Neumann problem and extend them to the Robin problem. Al-
though used in various contributions, for example [26], no detailed proofs seem
to be published for the Neumann problem. For the Dirichlet problem, see [30]
and [28] where the case with corners or cracks is also considered. In addition, we
require these results under weaker regularity assumptions on the boundary.
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A.1. Main statement. Our main result describes the local structure of an eigen-
function of the Laplacian with a Robin boundary condition around an interior
critical point or at the boundary.

Theorem A.1. Let Q be an open set in R* with C>* boundary. Let h € [0, +o)
and let u be a real-valued eigenfunction of the Laplacian with h-Robin boundary
condition. Then u € C*(Q). Furthermore, u has the following properties:

(1) If u and Vu vanish at a point xo € Q then there exists £/ > 1, ¢ >0 and a
real-valued, non-zero, harmonic, homogeneous polynomial of degree ¢ such
that:

u(x) = ps(x — x0) + O(|x — x| "*). (A.1)
(2) If u vanishes at xy € 0Q, then (A.1) holds for some £ > 0 and
u(x) = ar’ costw + O(r'*) (A.2)

for some non-zero a € R, where (r,w) are polar coordinates of x around xy. The
angle w is chosen so that the tangent to the boundary at xy is given by the equa-
tion sinw = 0.

(3) The nodal set N(u) is the union of finitely many, C*-immersed circles in Q,
and C'-immersed lines which connect points of 0Q. Each of these immersions
is called a nodal line. Note that self-intersections are allowed. The connected
components of Q\N (u) are called nodal domains.

(4) If u has a zero of order £ at a point xo € Q then exactly £ segments of nodal lines
pass through xo. The tangents to the nodal lines at xy dissect the full circle of
radius B(xg, o) (for o > 0 small enough) into 2/ equal angles.

(5) If u has a zero of order ¢ at a point xy € 0Q then exactly ¢/ segments of nodal
lines meet the boundary at xo. The tangents to the nodal lines at x, are given by
the equation cos/w = 0, where w is chosen as in (A.2).

A.2. Proof of the theorem. The CZ-regularity of u up to the boundary is a
consequence of standard Schauder estimates (see [19]). The proof now is in four
steps.

A.2.1. Reduction to the Neumann case. The first step is to reduce the problem
from the Robin case to the Neumann case. This is done through a change of
functions. Setting u = exp ¢, v, we can choose ¢, such that v € C?(Q) satisfies the
Neumann condition. Indeed, this ¢, should be in C?(Q) and satisfy d,¢, = —h on
the boundary of Q (take A dist(x, Q) near 0Q and then use a cut-off function).
We obtain a Neumann problem where the Laplacian is replaced by exp —¢, o
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A) oexp gy, that is the Laplacian with an additional term of degree 1 with
(Q) coefficients and an additional term of degree 0 in C°(Q).
From this point onwards, we consider the Neumann case.

(=
Cl

A.2.2. Double manifold. The second step is to use the double manifold as sug-
gested in Donnelly—Feffermann, [13], [14], [15]. As we only wish to prove a local
result, by a diffeomorphism we can reduce to the case when the boundary is given
by x; = 0. In these new coordinates, the operator reads

H .= Zgii(x17x2)ax,-axj~ + Zai(xla)@)ax,- + ¢(x).
ij i

In addition, this difftomorphism can be chosen as a conformal map (see [15]), so
more precisely, we have

A+Za, X)0y, + c(x).

Note that if we had started with the Neumann case (4 = 0), then there would be
no terms of degree one. This would make the proof easier and would permit
weaker assumptions.

Starting from u as in Subsection A.2.1, after all these transformations, we get
a local solution in C?(R2) of Hw = Aw.

We define w by

w(xy,x) = w(xi,x2)  forx; >0,
v M}(_xla-XZ) for x| < 0.

We can then define the extension of the operator as H

2
H = —p(x)A+ ) ady, + &(x)
i=1

where p, a; and ¢ are the extensions of p, a; and ¢ by reflection and 4; is defined by
odd reflection.

We observe for later that p is Lipschitz and that the other coefficients are
bounded.

With this definition, we verify that w is an even function (with respect to xj)
that satisfies the Neumann condition, and a solution of

Hw = /w.
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By analysing the way that we obtain w from u (starting from the first line of
the proof), it is clear that w € C*(R_ x R) n C*(R;. x R). Also, w is clearly in
CU!'(R?) (as it’s an even function with respect to x).

We note that from w(x,x2) = w(—x1,x3), we get ail)xsz(O,xz) =0. The
other second derivatives match on x; = 0. Moreover W is actually locally in

C*(R?).

A.2.3. Nodal structure for solutions of a second-order elliptic operator with
coefficients with less regularity. The third step is to determine whether the local
nodal structure that holds for the Laplacian still holds for this second-order elliptic
operator which has coefficients with less regularity. This problem is analysed by
Hardt-Simon in [25] (at least in a weaker sense) and more precisely in [24] (see
Theorem 1.5 and Theorem 3.1). The following theorem is Theorem 3.1 of [24]
applied to w and

L::g—;\,

in the neighbourhood of a point in the zero set on the boundary, which is assumed
to be (0,0). In [24], the author proves the result for a second-order elliptic opera-
tor of the form

L= ay00y+ Y _ bi(x)dy + ¢
ij i

where the a;; are Holder and the other coefficients are bounded.
From this point onwards, we omit the tildes.

Theorem A.2. Suppose that Lu = 0 and that u is not flat at (0,0), that is, u has
finite vanishing order at (0,0). Then there exists a homogeneous harmonic poly-
nomial P of some degree d > 0 and, for any p > 1, an ¢ > 0 such that \y == u— P
satisfies.

Y(x) = 0(x|),
and

1/p
< criter2le 0.

g (J B(0.7) VAN dx)l/p * V(Js(o,w Ml dx)

In other words u is locally like the harmonic polynomial P in the pointwise
sense, and the first and second derivatives of u are locally like the corresponding
derivatives of P in the integral sense.
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Remark A.3. Note that to apply Theorem A.2, we need to know that u is not flat.
According to [24] (p. 985, lines 7-9), this is the case under our assumptions and
the reference is [18].

This theorem gives a good indication of the nodal structure: it should be close
to the zero set of the harmonic polynomial P whose structure is well known.

A.2.4. Cheng—Kuo’s argument. Hence the last step is to verify if Cheng’s argu-
ment [10] applies (a former reference is [6]). We can apply the following lemma
attributed by Cheng [10] to Kuo [33].

Lemma A.4. Suppose that u and ¢ are smooth functions in R* such that, with
Y = u— ¢, we have for some d > 1 and ¢ > 0,

(i) ¥(x) = (57,
(i) Vy(x) = 0(x "),
(ili) ¢ vanishes with order d at 0,
)

(iv) [V(x)| = ¢l

Then there exists a local C' diffeomorphism © fixing the origin such that

In [10], Cheng applies the lemma to C* functions, but the regularity of u and ¢
is not discussed there. The proof clearly holds for C? functions and this assump-
tion is satisfied in our case.

To apply this lemma to the present situation, we observe that a homogeneous
harmonic polynomial of degree d in dimension 2 satisfies (iii) and (iv) above. It
has indeed, for some y € C, the form R(yz¢) with z = (x; + ix,). We note that
(1) holds by Theorem A.2.

It remains to verify that (ii) holds. We compare this condition with the prop-
erty established in the previous theorem. By Theorem A.2, we get a control of
Vi in W7 in any ball B(0,r) hence by Sobolev’s embedding theorem we have,
as soon as p > 2, the control of Vi in L* (B(O,r)) (see, for example, Part II
Case C’ of Theorem 5.4 in [1]). It remains to control the constants appearing in
the continuity of this injection. To do this, for » > 0, we introduce a cut-off y(x/r)
where y = 1 on B(0, 1) and supp y C B(0,2), and apply the standard Sobolev em-
bedding theorem to y(x/r)d,,} and use the two estimates from Theorem A.2. We
get

sup |Vy(x)| < Cr 2T for p > 2.
xeB(0,r)
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For p > 2 sufficiently close to 2 (for example —1 + % = —%), we get

sup  |Vi(x)| < Cr 1942 for p > 2.
xeB(0,r)

This is sufficient to apply the lemma.

Remark A.5. There is a gap in Cheng’s paper [10] when applied to a dimen-
sion larger than 2. The reason for this is that a harmonic homogeneous poly-
nomial does not always satisfy item (iv) when the dimension is larger than 2 (see
Appendix E in [5] for a complete discussion). Here we only use the statement in
dimension 2.

A.3. Remarks. We note that all the proofs are local and the results can be ob-
tained locally if we have the corresponding local regularity property.

In the Dirichlet case, we do not require the argument from Subsection A.2.1.
We begin with the doubling argument as in Subsection A.2.2 (see [14], [15]). We
then apply a conformal diffeomorphism as in [13], [15] and, as we work in dimen-
sion 2, the corresponding Laplacian has no terms of degree 1 (see, for example,
equation (2.8) of [13]). Similarly to Subsection A.2.2, we obtain a local solution

of Hu = Juin C*(R?). Instead of the reflection argument, in order to construct ,
we can introduce an extension via odd reflection:

B(x1,x2) = u(xy,x7) for x; > 0,
b2 —u(—x1,x) for x; <O0.

Analogously to the above, if u is an eigenfunction locally in C?(Q) satisfying the
Dirichlet condition (note that 6§1X1u(0, x;) = 0), one can verify that w is locally in
C*(R?).

Theorem A.6. Let Q be an open set in R*> with C*>* boundary and let u be a real-
valued ei'genfunclion of the Laplacian with Dirichlet boundary conditions. Then
u e C*Q). Furthermore, u has the following properties:

(1) If u and Vu vanish at a point xo € Q then there exists £/ > 1, ¢ >0 and a
real-valued, non-zero, harmonic, homogeneous polynomial of degree ¢ such
that:

u(x) = ps(x = xo) + O(|x — xo|"**). (A3)
(2) If moreover xy € 0L, then

u(x) = ar’ sinfow + O(r’*) (A4)
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for some non-zero a € R, where (r,w) are polar coordinates of x around xy. The
angle w is chosen so that the tangent to the boundary at xy is given by the equa-
tion w = 0.

(3) The nodal set N (u) is the union of finitely many, C*-immersed circles in Q, and
C'-immersed lines which connect points of 0Q.

(4) If u has a zero of order £ at a point xy € Q, then exactly { segments of nodal
lines pass through xy. The tangents to the nodal lines at xy dissect the full circle
of radius B(xo, o) (for o > 0 small enough) into 2/ equal angles.

(5) If u has a zero of order ¢ at a point xo € 0Q then exactly £/ — 1 segments of
nodal lines meet the boundary at xo. The tangents to the nodal lines at xy are
given by the equation sin/w = 0, w # 0, 7.

We can, for example, refer to [28] for the Dirichlet case which gives the results
(except C? regularity) under the weaker assumption that the boundary is piecewise
ch+,
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